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Abstract

The upper and lower compensated convex transforms [30, 31l [33] are ‘tight’ one-sided ap-
proximations for a given function. We apply these transforms to the extraction of fine geometric
singularities from general semiconvex/semiconcave functions and DC-functions in R™ (difference
of convex functions). Well-known geometric examples of (locally) semiconcave functions include
the Euclidean distance function and the Euclidean squared-distance function. For a locally
semiconvex function f with general modulus, we show that ‘locally’ a point is singular (a non-
differentiable point) if and only if it is a scale 1-valley point, hence by using our method we
can extract all fine singular points from a given semiconvex function. More precisely, if f is a
semiconvex function with general modulus and z is a singular point, then locally the limit of the
scaled valley transform exists at every point x and can be calculated as ,\li»rfoo MA(f)(x) =72 /4,

where r, is the radius of the minimal bounding sphere [18] of the (Fréchet) subdiffential 0_ f(x)

of the locally semiconvex f and Vi(f)(z) is the valley transform at xz. Thus the limit func-

tion Voo (f)(z) := )\hIJIrl MV (f)(x) = r2/4 provides a ‘scale 1-valley landscape function’ of the
—+00

singular set for a locally semiconvex function f. At the same time, the limit also provides an
asymptotic expansion of the upper transform C}{(f)(z) when A\ approaches +o00. For a locally
semiconvex function f with linear modulus we show further that the limit of the gradient of
the upper compensated convex transform )\EIJIrlOO VCY(f)(z) exists and equals the centre of the

minimal bounding sphere of d_ f(x). We also show that for a DC-function f = g — h, the scale
1-edge transform, when A\ — 400, satisfies l}%mJirnf ANEX(f)(2) > (g0 — The)?/4, where 7y, and
— 400

1, are the radii of the minimal bounding spheres of the subdifferentials 0_g and 0_h of the
two convex functions g and h at x, respectively.
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1 Introduction and main results

About ten years ago, the first author submitted the paper [30] dedicated to Professor Kung-ching
Chang on the occasion of his 70th birthday. Ten years on, the subject discussed in [30] has seen
some further theoretical developments [31], 33, 34, [32]. As a step towards applications, we have been
granted a UK patent [35] on image processing methods based on this theory. In the present paper
we work along a similar line to that in [30]. We study the approximations and geometric singular
extractions for semiconvex and semiconcave functions by using compensated convex transforms

introduced in [30].

Semiconcave and semiconvex functions have been extensively studied in the context of Hamilton-
Jacobi equations [8]. DC-functions (difference of convex functions) [I3] have been used in many opti-
misation problems [I5]. Important classes of such functions include the Euclidean distance function
and the squared distance function. Since general DC-functions and semiconvex/semiconcave func-
tions are locally Lipschitz functions in their essential domains ([8, Theorem 2.1.7]), Rademacher’s
theorem implies that they are therein differentiable almost everywhere. Fine properties for the sin-
gular sets of convex/concave and semiconvex/semiconcave functions have been studied extensively
13, 2, 8] showing that the singular set of a semiconvex/semiconcave function is rectifiable. However,
from the applied mathematics point of view, natural questions arise, such as how such functions
can be effectively approximated by smooth functions, whether all singular points are of the same
type, that is, for semiconcave (semiconvex) functions, whether all singular points are geometric
‘ridge’ (‘valley’) points, how singular sets can be effectively extracted beyond the definition of dif-
ferentiability and how the information concerning ‘strengths’ of different singular points can be
effectively measured. Answers to these questions have important applications in image processing
and computer-aided geometric design. For example, the singular set of the Euclidean squared-
distance function dist?(-,Q2¢) to the complement of a bounded open domain @ C R” (called the
medial axis [6] of the domain ) carries important ‘compact’ geometric information of the domain.
It is also well known that the squared Euclidean distance function dist?(-, K) is 2-semiconcave [S].
An answer to the question of how to extract the medial axis in a ‘stable’ manner with respect to
the domain under consideration has been addressed in [32] and has many applications [26]. In [32]
we introduced the notion of the medial axis map defined by My (K)(x) = (1 + N Ry(dist?(-, K))(x)
for a closed set K C R", where Ry(f) is the ridge transform of f defined in [33], and studied
its properties. We showed that M) () defines a Hausdorff stable multiscale representation of the
medial axis for finite A\ > 0 and the limit limy o My (Q)(z) = dist?(z, K) — dist?(z, co[K (2)])
exists for all z € R", where K(x) = {y € K, dist(z, K) = |x — y|} and co[K ()] is its convex hull.
This provides a ‘multiscale landscape’ of the medial axis in the sense that higher is the height,
higher is the distance between the generating points of the medial axis branch.

The present work is partly motivated by [32]. Our approximation results in the present work
are much more general than those in [32]. Simple examples which were not covered in [32] are the
Euclidean distance function itself and the weighted squared distance function [23] for a finite set
K ={x;, i =1,...,m} defined by distib(a:, K) = min{w;|z — z;)*> + b;, 7; € K, w; > 0, b; € R}.
It is known that the Euclidean distance function dist(-, K) is locally semiconcave of linear modulus
in R"\K [8] and its singular set is more difficult to study geometrically than that of the squared
Euclidean distance function. It can be easily verified that the weighted squared distance function
is globally semiconcave. However, singularities for both of these functions are difficult to study at
a ‘finite scale’. This is in contrast with the standard Euclidean functions [32].

In [33] B4], we introduced several singularity extraction devices for detecting geometric ridges,
valleys, edges for functions and geometric intersections between smooth manifolds defined by their
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characteristic functions (point clouds) based on compensated convex transforms. These tools can
also be used to measure the strength of singularities of a particular type at a finite scale. In this
paper we apply these tools to extract fine geometric singularities from semiconvex/semiconcave
functions and from DC-functions. Our results demonstrate that our tight approximations by com-
pensated convex transforms are of very high quality in the sense they can extract geometric infor-
mation of the original semiconvex/semiconcave functions up to the first order derivative.

We denote by R" the standard n-dimensional Euclidean space with standard inner product z -y
and norm |z| for z, y € R". We denote by A the closure of a set A in R” and by B,(z) and B, ()
the open and closed balls in R™ centred at € R with radius » > 0. We also denote by C(B,(z))
the space of real-valued continuously differentiable functions in an open set containing B, (z) and
by C1Y(B,(x)) the space of real-valued continuous differentiable functions whose gradients are Lip-
schitz mappings. Before we state our main results, let us first introduce the notions of compensated
convex transforms in R”. We state the definitions only for functions of linear growth which will
cover functions we deal with in this paper. For definitions under more general growth conditions,
see [30]. Let f: R™ — R satisfy the linear growth condition |f(z)| < Clz|+ C; for some constants
C >0and C; >0 and for all z € R".

The lower compensated compensated convex transform (lower transform for short) (see [30])
for f is defined for A > 0 by

CA()(@) = co[f + Al - [P)(x) — Alzf*, @ €R™, (1.1)

where co[g] is the convex envelope [24] [16] of a function g : R — (—o0, +o0], whereas the upper
compensated compensated convex transform (upper transform for short) (see [30]) for f is defined
for A > 0 by

CY(F)(x) = Aal* = co[A| - [* = fl(x), = €R™ (1.2)

The two mixed compensated convex transforms are defined by C*(C%)(f) and CL(C¥)(f) when
A, > 0.

It is known [33] that the lower and upper transforms are respectively the critical mixed Moreau
envelopes [21], 22 20, [4] and they can be viewed as morphological openings and closings [33] re-
spectively, in mathematical morphology terms [25] [17].

Since our main aim is to describe the behaviour of the ridge, valley and edge transforms for
large A > 0, we introduce the following local versions of compensated convex transforms. Due to
the ‘locality property’ for compensated convex transforms (see Proposition 2.3] below), it will be
obvious later that such definitions do not depend on the choices of domains involved.

Let © C R™ be an open set and let f : Q — R be a locally Lipschitz function, which is thus
bounded on every compact subset of 2. Assume z € ) and let G be a bounded open subset of {2
such that z € G € G C Q. Let Lg > 0 be the Lipschitz constant of f restricted to G denoted by
fla : G — R. By Kirszbraun’s theorem [I1], f|5 can be extended to R™ as a Lipschitz continuous
function fo : R" — R with the same Lipschitz constant Lg. Of course such an extension is not
unique. However, due to the locality property of compensated convex transforms, our results are
independent of the Lipschitz extensions given by Kirszbraun’s theorem and the choices of G.

Now we define the local lower compensated convex transform (local lower transform for short)
and the local upper compensated convex transforms (local upper transform for short) for a locally
Lipschitz function f: Q +— R at x € Q with respect to G respectively by

Chalf)2) = Ci(fe)(x) and CYo(f)(@) = Ci(fe)(z), = e€R". (1.3)
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In [33] we introduced the notions of the ridge transform R)(f), the valley V) (f) transform and
the edge transform E)(f), respectively, as

RA(f)(x) = f(z) = CA(N)(@),  Va(f)lx) = C¥(f)(x) - f(z),
Ex(f)(z) = CY(f)(x) — CA(f)(@) = Ra(f)(z) + Va(f) (@)

(1.4)

for x € R".

We should point out that our valley transform defined here is always non-negative and there is
a sign difference in comparison with the valley transform defined in [33]. Given an open set  C R”
and a locally Lipschitz function f : 2 — R, we also define the local versions of ridge, valley and
edge transforms as follows.

Definition 1.1. For x € Q and for a fired open set G whose closure is compact and G satisfies
r € G C G CQ, we define the local ridge, valley and edge transforms of f at x with respect to G
respectively as

Ryc(f)(x) = Ra(fo)(@), Vac(f)(x)=Va(fe)(x), Exc(f)(z)=E\(fc)(@). (1.5)

Suppose f : R™ — R is a Lipschitz function with Lipschitz constant L > 0. It was established
in [33] Theorem 2.12 (iii)] that

2 2
o G -1 < @) S U@, (1.6)

for A > 0. Hence, the following estimates also hold [33]

CL(f)(x) < fz) < CL(f)(z) +

L? L?

VS R(NE < 0SNS5 (1.7

for A > 0, and at every point xg € R"™ where f is differentiable, we have

/\h_)m ARN\(f)(x9) =0 and /\h_)m A (f)(xg) =0, hence /\h_)m AEN(f)(zg) = 0. (1.8)

For convenience later we call the quantities AR)(f), AVA(f) and AE\(f) the scale 1-ridge, -valley
and -edge transforms, respectively.

We will need also the following result on the minimal bounding sphere for a compact set in R".
The question was first asked by J. J. Sylvester in a two line statement [27] in 1857 for finite sets in
the plane, which he then studied in his 1860 paper [28]. The general result was proved by Jung in
1901 [I§]. There are however many later elementary proofs [7, 29, O] by using Helly’s theorem [14].

Lemma 1.2. ([18,[7,129,[9]) Let K C R™ be a non-empty compact set. Then

(i) There is a unique minimal closed ball B,(yo) containing K in the sense that B,(yo) is the
closed ball containing K with the smallest radius. The sphere S, (xy) := 0B, (x¢) is called the
minimal bounding sphere of K.

(i) Let d be the diameter of K, then r < 2(n—7jr1)d.

(7i1) The centre of the ball xq satisfies xg € co[K NS, (xq)], the convex hull of K NS, (xq).
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The proofs of Lemma [[2)(7) and (i7) can be found in [7] while for the proof of (iii) we refer to
[9, 2.6 and 6.1] or [I2] Lemma 2].

In this paper we will consider semiconvex and semiconcave functions, which are defined as

follows [8], ]

Definition 1.3. Let Q C R™ be a non-empty open convexr domain.

(1) A function f: Q+— R is called semiconvex in Q with modulus w if there is a non-decreasing
upper semicontinuous function w : [0, +00) — [0, +00) such that tlirOner(t) =0 and
—>

sflz)+ (1 =s)f(y) = flsz+ (1 —s)y) = —s(1 =)z — ylw(|z — yl) (1.9)
for all x, y € Q and for all 0 < s < 1.

(73) A function f : Q — R is semiconcave in Q with modulus w if —f is semiconvex with modulus
w.

(131) When w(r) = Xor for r > 0 and for some Ao > 0, we say that f : Q — R is 2\g-semiconvex
with linear modulus [§] (2)\g-semiconvex for short). In this case, there is a convex function
g: Q> R such that f(z) = g(x) — Xo|x|? for all z € Q [8, Propostion 1.1.3].
A function f is 2\p-semiconcave with linear modulus (2)\q-semiconcave for short) if —f
18 2X\g-semiconvexr with linear modulus. In this case, there is a concave function g : Q — R
such that f(x) = g(x) + Xo|z|? for all x € Q [8, Propostion 1.1.3].

(iv) A function f:Q — R is called locally semiconvex (respectively, locally semiconcave) in
Q if, on every convex compact set K C §, f is semiconvez (respectively, semiconcave) with a
modulus wg depending on K.

(v) A function f : Q — R is called locally semiconvex (respectively, locally semiconcave) with
linear modulus if for every conver compact subset K C €2, there is a constant A\xr > 0 and a
convex function ( respectively, concave function) gi : K — R such that when z € K, we have

f(@) = gr(x) — Mg |z|? (respectively, f(x) = gr(x) + Mg |z]?).

From Definition [[3] it can be easily seen that the lower and upper compensated convex trans-
forms with scale A > 0 are 2 -semiconvex and 2A-semiconcave functions, respectively. In fact, they
are 2A-semiconvex and 2\-semiconcave ‘envelopes’ of the given function.

Let Q@ C R™ be a non-empty open convex set. We also recall [I, pag. 221] that a locally
semiconvex/semiconcave function f : Q — R" is locally Lipschitz continuous in €2, that is, in every
compact subset K C §2, f is a Lipschitz function on K.

The following is our main result on local approximations and geometric singular extraction of
semiconvex functions by the upper transform. The result regards the Fréchet subdifferential of
semiconvex functions. For its definition, we refer to Definition below and to its characterization

@1D.

Theorem 1.4. (i) Let Q C R™ be a non-empty open conver domain. Suppose f : Q +— R is a
locally semiconvex function in Q. Let zg € 2 be a non-differentiable (singular) point of f.
Then for every bounded open set G C ) such that xo € G C G C §Q,

li = %o 1.1
i AV a(f)(zo) 10 (1.10)
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where ry, > 0 is the radius of the minimal bounding sphere of the subdifferential O_ f(xo) of
fat xzg.

(1) Assume that f : Q — R is a locally semiconvex function with linear modulus in 0, i.e. on

every conver compact subset K of Q, there exists A\x > 0 such that f(x) = gr(x) — A\i|z|?

for x € K, where gk : K — R is a convex continuous function on K, and let xg € € be a

non-differentiable (singular) point of f. Then for every bounded open set G C Q such that
g€ GCGCQ,

lim V3 (f)(z0) = vo, (1.11)

A—~+00

where yo € 0 f(xo) is the centre of the minimal bounding sphere of 0_ f(xg).

A similar result holds also for locally semiconcave functions, with the differences that we have
to replace the valley transform by the ridge transform so that (i) of Theorem [[4] reads

2
. T
lim ARya(f)(0) = 22, (112)

with r;, > 0 the radius of the minimal bounding sphere of the (Fréchet) superdifferential 04 f(xo)
of the locally semiconcave function f at xg (see Definition below), while (i) becomes

lim VC5 4 (f)(x0) = yo, (1.13)

A——+00

with yo € 04 f the centre of the minimal bounding sphere of 04 f(zg).

Since near every point € G, with G a bounded open subset of § such that x € G € G C Q,
Ci(fe) is a C! function in any given neighbourhood B, (x) C B,(z) C G for sufficiently large
A > 0 due to the locality property (see Proposition below), C{(fq) realizes a locally smooth
approximation from above and the error of the approximation satisfies

Mia(fe) (@) = MCX(fe)(x) — fa(x)) — r3/4 for A — 400

at a singular point z € G.

In order to help readers to have an intuitive view on compensated convex transforms, the
ridge/valley transforms and their limit for semiconvex/semiconcave functions, we consider the fol-
lowing simple example first.

Example 1.5. Let f(z) = |x| for x € R. Clearly, f is a convez function. For A\ > 0, we have

Az + — x| < 1 9 2 1
snm=1 T =] (W-g3) - W<
’ =2\ 0, |z > 5x;
d -1, x <0, 1 =0
lim —C¥(f)(z)=¢ 0, z=0, lim A(f)(z) =4 4> = 7
L I R 0. @#0;
(1.14)

For this example the subdifferential of f at 0 is given by O_ f(0) = [—1, 1]. Thus the smallest closed
interval which contains 0_ f(0) coincides with O_ f(0) itself, with the mid point 0 and radius 1.
Note also that Theorem [I.Z)i) and (it) hold in this case. O
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There are many examples of locally semiconvex/semicocave functions [8]. Suppose Q@ C R" is
open and K C R™ is compact. If F': K x Q +— R and V,F are both continuous in K x €, then
f(z) = supye F(s,) is locally semiconvex. If V2F also exists and is continuous in K x Q, then
f is locally semiconvex with linear modulus (see [8, Proposition 3.4.1]).

The following are two important examples on extraction of geometric singular points arising
from applications. They refer to the square distance function and to the distance function to a
closed set K C R".

Example 1.6. Let K C R" be a non-empty closed set, satisfying K # R"™ and denote by dist?(-, K)
the squared Euclidean distance function to K. Let Mg = {y € R", 321, 29 € K, 21 # 29 dist(z, K) =
ly — 21| = |y — 22|} be the medial azis of K. It is known that My is the singular set of dist?(-, K).
In [32] we have the following Luzin type theorem. Let A > 0. If we define

ik ={z e R", MXdist(z, M) < dist(z, K)},

then
dist?(z, K) = CL(dist(-, K))(x)
for x € R"\V) g and )
Mg = ﬂigOV)\7K .
As a result, we have [32]
dist2(-, K) € Cl’l(Rn \V)\,K)

and
|Vdist?(z, K) — Vdist*(y, K)| < 2max{1, \}}z —y|, =, y € R"\Vyx.

Since the proof of this result relies on the special geometric features of the squared Euclidean distance
function, in [32] we have not been able to extend this result to more general semiconcave functions.
We have therefore defined the (quadratic) medial axis map as My (z, K) = (1+\)Ry(dist?(-, K)(x)
and proved that

/\lirf My(z, K) = dist?(z, K) — dist?(z, co[K (z)]), (1.15)

—+00
where co[K (x)] is the convex hull of the compact set K (z) = {y € K, dist(z, K) = |z — y|}.
We can now interpret the limit (LI0) by applying Theorem[I.7)i). Since /\lim Ry (dist?(-, K)(z) =
—+00
0, by the definition of My(z, K) we have
lim My(z, K) = lim ARy(dist*(-, K)(z),

A—400 A—~+00

where ARy (dist?(-, K)(z) is our scale 1-ridge transform. Now, for x € My, the superdifferential of
dist?(-, K) at = is given by 0,dist*(z, K) = co{2(x —vy), y € K(x)} so that the square r2 of the
radius of the minimum bounding sphere of O dist?(x, K) is 4(dist2(x, K) — dist?(x, co[K(x)]))
Thus 72 /4, which is the limit of the scale 1-ridge transform (see (LI12)), is the same as dist?(z, K)—
dist?(z, co[K (z)]) (see (LID), [32, Theorem 3.23]).

Example 1.7. In this ezample, we consider the case of the Euclidean distance function dist(z, K)
itself. It is then known [8, Proposition 2.2.2] that dist(-, K) is locally semiconcave with linear
modulus in R™\K. Therefore if we consider the limit of the scale 1-ridge transform, by Theorem
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applied to semiconcave functions, we have (see (LI12))

lim ARy (dist(-, K))(z) = 72 /4 and /\hl}rl VO (dist(-, K))(z) = yo, z ¢ K,
— 400

A——+00

where 1, is the radius of the minimal bounding sphere of the superdifferential 0ydist(x, K) and y,
is the centre of the minimal bounding sphere. Since O4dist(x, K) = co{(z—y)/|z —y|, dist(z, K) =
|z —y|}, if we let p, € co[K(x)] be the unique closest point from x to co[K (x)], then we have

2 dist?(z, K) — dist?(z, co[K (x)] Yo = Pz
x dist?(z, K) ’ dist(z, K)

By comparing (LIH) and (LI6) we find that for x ¢ K

lim ARy (dist?(-, K))(z)
A——+o0

(1.16)

lim ARy (dist(-, K))(z) =
JHm ARx(dist(:, K))(z) Adist?(z, K)

)

and

/\hT VC’ﬁ\(dist2(-,K))(x)
Amboo VOMdist(, K))(z) 2dist(z, K)
whereas for x € K, we have that Ry(dist(-, K))(z) = Ry(dist®(-, K))(z) = 0 as points in K
are minimum points of both the distance function and the squared distance function [30]. We

can conclude therefore that Theorem links the asymptotic behaviours of C(dist(-, K))(z) and
C4 (dist?(-, K))(z), with the latter which is much easier to analyse [32]. O

For DC-functions, that is, functions that can be represented as difference between two convex
functions, we have the following sufficient condition for extracting edges.

Corollary 1.8. Let 2 C R™ be a non-empty open convex set. Assume g, h :  — R are finite
continuous convex functions in 2 and let f(x) = g(x) — h(z) for z € Q. Take x9 € Q@ and G C Q

an open bounded set such that xo € G C G C Q. Let rg ., and 11,4, be the radii of the minimal
bounding spheres of 0_g(xo) and 0_h(xq), respectively. Then,

_ 2
lim inf By fo () > (g0 ~ Thaao)” (1.17)
A—400 4

Remark 1.9. It is easy to see that the lower bound in (LIT) is sharp. If we set g(x) = h(x) = |z|
for x € R, f =0, thus rg0 = rp0 = 1 while Ex(f)(0) = 0 for all X > 0. However, when
Tgz0 = Thao, there are simple examples that show that the left hand side of ([LIT) may be strictly
positive. For example, if we let F(z,y) = |z| — |y| in R? and let f(x) = |z|, it is easy to see that
E\(F)(z,y) = Vx(f)(x) + Va(f)(y), hence by (LI4), we have ,\2141-100 AEN\(F)(0,0) =1/2 > 0. Note
that if we write fi(z,y) = f(z) and fa(z,y) = f(y), we have O_f1(0,0) = [—1,1] x {0} while
0_f2(0,0) = {0} x [—1,1]. The minimal bounding sphere for both 0_ f1(0,0) and O f2(0,0) is the
unit sphere in R?, thus Tf.0 = Tf0- In general, it would be rather technical to analyse the left-hand
side of (LIT) based on the subdifferentials O_g(xo) and O_h(xo) [15]. We will not consider this
case here.

We say that compensated convex transforms are ‘tight approximations’ for a given function.
Roughly speaking for functions that are locally of class C1! near zg, then there is a finite A > 0,
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such that C¥(f)(zo) = f(zo) = CL(f)(x0) whenever A\ > A [30, Theorem 2.3(iv)]. This implies
that at a smooth point, the graph of the upper/lower transform is tightly attached to that of the
original function from above/below. If f : Q +— R islocally a semiconvex/semiconcave function with
linear modulus, where 2 C R™ is a non-empty convex open set, then according to the well-known
Alexandrov’s theorem [I0] §], f is twice differentiable almost everywhere in 2, that is, for almost
every g € €, there is some p € R" and an n x n symmetric matrix B such that

i @) = f(@o) —p- (z — 29) — (x — z0) - Bz — )

T—T0 |;U — :1;‘0|2

=0. (1.18)

We say that zo € Q is an Alexandrov point if (LI8]) holds.

Proposition 1.10. Let Q C R" be a non-empty open convex set. Suppose f : Q +— R is a locally
semiconvex/semiconcave function of linear modulus. Assume xo €  and G a bounded open subset
of Q such that o € G C G C Q. If xg is an Alexandrov point, there is a constant A > 0, such that
when X > A, we have

f(xo) = C3(fa)(wo) = C(fa)(xo), (1.19)
and

V f (o) = VC3(fa)(wo) = VCA(f&) (x0). (1.20)

Remark 1.11. (i) For a locally semiconvex function f with linear modulus, it is not difficult to
show that by the locality property, for every fixred x € G, when X\ > 0 is sufficiently large,
f(z) = Ck(fe)(x). The slightly more involved part is to show that also the upper transform
CY(fa)(x) attains the value f(x) for a finite A > 0 at an Alexandrov point.

(11) Theorem[1.]], Proposition[I10 and ([L8)) provide a clearer picture on how compensated convex
transforms approach a locally semiconvex function with linear modulus.

(iii) Since at every point v € G C G C Q, lim AV\g(f)(z) and lim ARy (f)(z) exist, we
A—+00 A—+400

can define the ‘valley landscape map’ and the ‘ridge landscape map’ for locally semiconcovex
and locally semiconcave functions with general modulus, respectively, by

Voo (f)(x) = Tim AVAg(f)(2), Roo(f)(x) = lim ARya(f)(2), (1.21)

A—r400 A—+00
Due to the locality property, the limits (I2I) are independent of the choice of G.

(iv) From the definition of the ‘valley landscape map’ of a semiconvex function f, we can identify
at least three distinct features:

(a) A\Vxc(f)(xz) =0 in finite time X > 0 if x is an Alexandrov point;
(b) If f is differentiable at x and AV q(f)(x) > 0 for all X\ > 0, then )\lilsrrl MWaa(f)(x) =0;
— 00

(c) If f is not differentiable at x, then /\lirf MWaa(f) (@) =r2/4 > 0.
— 400

Therefore, for large X > 0, subject to the boundary effect for points near OG, the set {x €
G, \Waa(f)(x) > €} for a fixed € > 0 contains both singular points of f in G and points of
high curvature, that is, either V2 f(x) does not exist or the largest eigenvalue of V2 f(x) is
very large.
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In Section 2 we introduce some further preliminary results which are needed for the proofs of
our main results Theorem [[.4] and Corollary [L8 We prove our results in Section [Bl

2 Some preliminary results

In this section, we collect some basic properties of compensated convex transforms which will be
needed in the following, and refer to [30, B3] B4] for proofs and details.
The ordering property of compensated convex transforms holds for x € R™ and reads as

CL(f)(@) < CL(f)(@) < fz) < CH(f)(x) < CX(f)(x), 7=\

The upper and lower transform for functions f : R" — R with quadratic growth, i.e. |f(x)] <
C(1 + |z|?) for z € R™ and for a constant C' > 0, are related to each other when A\ > 0 is large
enough by the following relation

CA(f)(@) = =CX (= f)(2).

If f is a continuous function with quadratic growth,

lim C\(f)(z) = f(z), lim CY(f)(z) = f(x), = €R".

A—00 A—00

If f and g are both Lipschitz functions, then for A > 0 and 7 > 0, we have

Chir(f +9) 2 CA(f) + CLg), Oy (f +9) < CX(S) + C(g). (2.1)

We recall from [5] the following definition.

Definition 2.1. We say that f : R"™ — R is upper semi-differentiable at x¢g € R™ if there is some
u € R™ such that
oo F@0 ) = F(0) — -y
im sup

<0.
y—0 ’y‘

The following differentiability property [19, pag 726] and more generally [5, Corollary 2.5] is
useful in the proofs of our results.

Lemma 2.2. Suppose g : B,(xg) — R is convex and f : B,(xzg) — R is upper semi-differentiable
at xg, such that g < f on By(xo) and g(xo) = f(xo). Then f and g are both differentiable at xg
and V f(xo) = Vg(xo).

Note that concave functions are upper semi-differentiable.

We recall the following locality property of the compensated convex transforms for Lipschitz
continuous functions. A similar result for bounded functions was established in [33].
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Proposition 2.3. Suppose f : R"™ +— R is Lipschitz continuous with Lipschitz constant L > 0. Let
A >0 and x € R". Then there exist (13,y;) € RxR", i=1,...,n+ 1, such that

colf +Al() — zf’|(z) = cop, (»)[f + () — z*)()

n+1
.= inf {Z Tilf (yi) + Alyi — 2’] g € R™, 7 2 0, |yi — 2| <y, (2.2)

i=1
n+1 n+1
Son=1Y myi=uz
=1 =1

where Ty = (2 + V2)L/\.
Furthermore, there is an affine function y — €(y) = a-(y —x) + b for y € R" with a € R™ and
b € R such that

(i) Ly) < f(y) + Aly — =f? for all y € R,
(1) (x;) = f(x) + Na; —z|? fori=1,...,n+1;
fii) b= t(z) = colf + N|() — 2P)(a).

We call cop, (,) A(-) = z|> + f](z) defined in (2] the local convex envelope of y € R™
Ny —z]* + f(y) at z in B, (z).

Remark 2.4. (i) The locality property given in Proposition [2.3 also applies to the compensated
convex transforms. Due to the translation invariance property [33], for every fived xo € R™,
we have

CA(f) (@) = colf + AI(-) — zof*](2) — Alz — of?,

2.3
CH(F) () = Az — 202 — colA|()  zof? — F1@). (23)

thus, if we take xo = x, we obtain
CL(F)(@) = colf + A|(-) = zP](x), CY(f)(z) = —coA[() —af* = fl(=),  (24)
and 22)) can be used.

(ii) A consequence of [30, Remark 2.1] is that if f is continuous and with linear growth, then the
infimun in the definition of the convex envelope of the function y € R™ — My — x> + f(y) at
y = x is attained by some \; > 0, z; € R", i =1,...,k with2 < k <n+1 (see [16, [2])),

that 1is,
k

cog, (@) [f + M) = 2lJ(@) = Y Nlf (2i) + Alzi — 2]
i=1
with |x; — x| <ry,i=1,...,k with2 <k <n+1, and Zle)\i =1, Z?:ll)\izni =

The following lemma can be considered a special case of Theorem [T.4]

Lemma 2.5. Let S C R" be a non-empty compact convex set, containing more that one element,
and denote by S,(—a) the minimal bounding sphere of S with radius r > 0 and centre —a € R".
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Consider the sublinear function o : x € R" — o(x) = max{p-x, p € S}. Then for a fized
0 <e<min{l, 7} and for A > 0, we have

)2
Cto—d- o) = T (25)
VO3 (0)(0) = ~a; (2.6)
and for a fized 0 < € < min{1, r}
2

CH(7 + el )(0) < Ci_gn(@)(0) + CA(el - DO) = 755 + 13 (2.7)

where . 1

Aal? + . el < 55
Al D) = ? 2 (2.5)

elel, 2] > .

We have also the following local C! result for the upper transform of locally semiconvex
functions with linear modulus.

Proposition 2.6. Let f : R" — R be a Lipschitz continuous function with Lipschitz constant
L > 0. Assume that for some r > 0, f is 2\g-semiconvez in the closed ball B, (0), that is,
f(x) = g(x) — Xo|x|* for x € Bo,(0), where \g > 0 is a constant and g : Ba,(0) — R is conver.
Then for A > X\ sufficiently large, C3(f) € CY1(B,(0)) and

IVCX()(@) = VCX(H W) < 2z —yl, 2,y € By(0). (2.9)

Remark 2.7. From the proof of Proposition[2.8 (and [30, Theorem 4.1] with a Lipschitz constant
less as sharp) we can derive that if f : R™ — R is both Lipschitz continuous and convez, for example
if f(x) = o(x) is the sublinear function [16] defined by

o:2€R" - o(zx) =max{z-p, pe S},

where S is compact and convez, the estimate ([Z9) holds globally in R™ with Ao = 0.

We conclude this section by recalling the definition and some properties of the subdifferential
of convex and semiconvex functions we need in our proofs.

Definition 2.8. Let Q2 C R™ be a non-empty open convex set. Assume f : Q +— R is conver and
let x € Q. The subdifferential of f at x, denoted by O_ f(x), is the set of u € R™ satisfying [16]

fly)— flx)—u-(y—x) >0, forallye

The subdifferential 0_ f(x) is a non-empty, compact and convex subset of R". If we define the
sublinear function [16, Chapter D] y € R" — 0,(y) := max{u -y, u € O_ f(z)} then

S h) — J (@) — ou(h)
h—0 |h]

— 0, (2.10)
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where o, (h) defines the directional derivative of f at z along h € R".

Just like the convex case, locally semiconvex functions have a natural notion of generalized
gradient given by the subdifferential. This is defined as follows.

Definition 2.9. Let f: Q2 — R" be a locally semiconvex function in Q and let x € Q. Denote by
K an open convex subset of  such that v € K C K C Q) and by wx a semiconvex modulus for f
in K. The Fréchet subdifferential O_f of f at x is the set of vectors p € R™ satisfying

fy)=f@)—p-(y—2) 2 —ly — zlwk(ly — ) (2.11)
for any point y such that the segment of ends y and x is contained in K.

It is not difficult to show that the definition of 0_ f(z() does not depend on K, in fact, condition
[2II) can be expressed in terms of a kind of regularization of the semiconvexity modulus (see [I]
Proposition 2.1]). We also have that d_ f(xg) is a non-empty convex compact set. Likewise for
convex functions, we can equally define for locally semiconvex functions, the sublinear function
ox(h) = max{p-h, p € O_f(z)}. By a similar argument as in the proof of [I6, Lemma 2.1.1,
Chapter D], we can show that o,(h) satisfies (ZI0) and is therefore referred to as the directional
derivative of f along h [8, Theorem 3.36].

In the case of a locally semiconcave function f, we introduce the notion of superdifferential 9, f
of f at x as follows.

Definition 2.10. Let f : Q@ — R" be a locally semiconcave function in  and let x € Q. Denote by
K an open convex subset of 2 such that v € K C K C Q and by wx a semiconcave modulus for f
in K. The Fréchet superdifferential O f of f at x is the set of vectors p € R" satisfying

fy) = f@)—p-(y—=) <y —zlwk(ly —z|) (2.12)
for any point y such that the segment of ends y and x is contained in K.

Similar observations and properties to d_ f(x) can be drawn for d4 f(x).

3 Proofs of results

We first prove the main results Theorem [[.4] and Corollary [L8 by assuming that other results hold.
Then we establish the remaining results.

Proof of Theorem [I.4l Part (i): Without loss of generality, we may assume that zo = 0 is a
singular point and f(0) = 0. Let G be any bounded open set such that 0 € G C G C Q and r > 0
be such that Bs,.(0) C G, and let f be semiconvex in Ba,(0) with modulus w,(-). Given z € Ba,.(0),
J_ f(x) is not empty, thus

f) = f@)—pz-(y—2) >~y —zlw:(Jly —2|), y, x € Bar(0), ps € O_f()

hence, — f is upper semi-differentiable in Bs,.(0). By the locality property (Proposition 23] we also
have

Ci(fa)(x) = Nzf* = cop, )l - [* = fl(x)
for x € B, /2(0) provided A is sufficiently large, and
L F) £~ oy(a)

h—0 |h

=0,
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where og(h) = max{p-h, p € 0_f(0)}. Note that 0_f(0) is compact, convex and contains more
than one point since we have assumed that 0 is a singular point. Let rg > 0 be the radius of the
minimal bounding sphere of 9_ f(0). We fix 0 < € < min{1, 7o}, then there is 0 < § < r/2 such that
|f(z) — oo(x)| < €|x| whenever x € Bs(0) as we have assumed that f(0) = 0. Thus for z € Bs(0),

oo(z) — €lz| < f(z) < oo(x) + €|z|.
By the locality property, we have, when A > 0 is sufficiently large,
Cx(o0 — €l - )(0) < CX(f6)(0) < CX(o0 + € - )(0).

By (27), we have

u u "0 ¢
< = i
C3 (o0 + €| - )(0) < CE_1(00)(0) + C& (el - )(0) i—ox " x
hence we obtain
A(fe)(0) < 81 €
R (s
Now by (2.3]), we have
oo~ - (o) = =L
)\ 00 € - 4)\ 9
so that ( )2 2
ro — € 7o €
NV ERPT < —.

Finally we take upper and lower limits first as A — +oo, then let ¢ — 04, we obtain
lim AVi(f&)(0) =15 /4,
A—400

which completes the proof of Part (i). O

Part (i1): Let zp € Q be a singular point of f and let G be a bounded open convex set such
that o € G C G C Q. Without loss of generality, we may assume that zq = 0. Since f is locally
semiconvex with linear modulus, we may assume that on G, f(z) = g(x) — Ao|z|?, where g : G+ R
is convex and A9 > 0 is a constant. Clearly 0_f(0) = 0_g(0). As f(0) = ¢(0), we may further
assume that g(0) = 0. Let o(x) = max{p-z, p € 9_g(0)} be the sublinear function of g at 0.

Now for every fixed € > 0, there is a § > 0 such that |g(z) — o(x)| < €|z| whenever z € Bs(0).
Therefore we have

o(z) = dolz[* < f(z) = g(x) = Molz[* < (@) — Aolz|* + ez]
for z € Bs(0). By the locality property, for x € Bj /2(0), and for sufficiently large A > 0, we have
Ci(o = ol - P)(@) < CX(fa)(x) < CR(o+e - | = Xol - P) () (3.1)

Now we apply Proposition to C{(fa), then for large A > Ao, C¥(fa) € CH(Bs/2(0)). Let
px = VCY(fc)(0), we have |py| < Lg and CY(fg) is an Lg-Lipschitz function (see [33] Theorem
3.12] and [8, Theorem 3.5.3]) and

C(fa) (@) = CX(fa)(0) — px - 2] < 2A|zf?
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for x € 35/2(0). Thus for z € 35/2(0), we have

pr-x < CY(fa)(x) — CY(fa)(0) + 2A[x[?
< CY(o+el | =Xl - ) (@) — CX(o = Xo| - [1)(0) + 2A[z|
2
7 "o 2
=71 74()\_1_)\0) + 2X|z|*.

Here we have used the fact that

2

CR(e = ol - )(0) = Chin ()0) = 505

given by (23] with e = 0. By a similar argument to that used to show (Z7]), we also have
=G0+l | =Xl - P)@) < Ch_ s (0 =Nl - P)@) + CAel - @) =y + T
Now
J1 = Cli_ga(o = Aol - *)(x)
= Cl_orin (0)(@) — Ao|z|?
— (Cleapern(@)0) = 0O +a-) + (Chin ()0 — a2 = dolsf)

2
"o

(1 —=e)A+ o)

§2<(1—e))\—|—)\0>|x|2—|—4 —a-z— Alz|?.

Here we have used (29]) and applied Lemma 2.5 to the sublinear function y — o(y) to obtain that
VO _ortr (0)(0) = —a, where —a is the centre of the minimal bounding sphere of 0_g(0), and
C’Z‘l_E)AJH\O(U)(O) = 72/(4((1 — €)X + X)). We will deal with Jo = C% (e| - |)(x) later. Therefore,
when A > )\q is sufficiently large, we have

2 2
o 2 2 "o u
-+ 2) <2((L —e)A+ A —a- .
o 2|z [? — Aolz?
4(A + o) ’
et 8|z + O (e - )(z) —a -z
41 —e)A A ’
so that
(r+a)-z< "0 L8 + Ch (el D). (32)
T 41— e)A ¢
Now we take
Py T+ a

AT B+ Ja| + Lo)N
Then |z,| < 1/(2*)\) < §/2 if A > ) is sufficiently large. Also |z)| < 1/(2)) so that

u . — e\ 2 i
5l - Dea) = s + =
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in the explicit formula ([2.8]). Thus if we substitute x) into ([B.2), we obtain

Ipx + al? - erg Ipa + al? eAlpy + al? €

(1 + Ja| + La)r — 41— X | 27(L+ |a| + La)2h |+ 210(1 1 [a] + Lg)2A2 | 4x

px + af? elpr + a? €rg €

i G B 5 N T Ry » W TGRS W S

As 0 < e <1, we have

2
2 < 96(1 La) A+ 20) (204 € ).

Let A — 400 in the inequality above, we obtain

. erd €
limsup [px + al? < 27(1 + |a] + Lg) < 0 _ 1 —> .
A—+00 41—¢) 4

Finally, we let ¢ — 0+ and deduce that py — —a as A — +oo. Thus
li ¥ =—
Jim VOX(fe)(0) = —a

with —a the centre of the minimal bounding sphere of J_g(0), which completes the proof of Part
(ii). .

Remark 3.1. We do not know whether a version of Theorem[I.4|(ii) holds for locally semiconvex
functions with general modulus. To establish a similar result by following a similar approach, we
need to know the regularity properties of CY(fa)(x) better in order to make the proof work.

Proof of Corollary .8 Again, without loss of generality, we may assume that 2o = 0 and

79,0 < Th0- Since EA(fg)(O) = R)\(fg)(()) —I—V)\(fg)(()) >0, if Tg.0 = Th,0, (m) holds. If 79,0 > Th,0,
as E\(fa) = Ex(—fa), we can reduce the problem to the case 140 < 7, 0.

Next we prove, under our assumption that rg 0 < rp o that
lim inf ARx(f6)(0) > (rg.0 = 7n,0)*/4 (3.3)
—00

By the locality property (see Proposition B3), if B,.(0) C G for some r > 0, we see that for A > 0
sufficiently large, we have

colfa+ Al - [*)(0) = cogs, ()9 =+ Al - [*)(0).
Let o4(x) = max{p-z, p € 0_g(0)} and oj,(z) = max{p-z, p € 0_h(0)} for x € R" be the sublinear

functions of g and h at 0 respectively, we have, by ([2.I0)) that for 0 < € < rj, g — 74,0, there is a
0 < 6 <, such that

[(92) = n(@)) = (900) = h(0) = (04(@) = (@) )| < el
whenever x € Bs(0), so that

9(@) = h(x) < (0,(x) = on(a) ) + ele] + (9(0) = h(0))
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for z € Bs(0). Without loss of generality, we may assume that f(0) = g(0) — h(0) = 0.
Again by the locality property, if A > 0 is sufficiently large, we have

oA+ * + f&](0) = cop,()[Al - [ +g = h](0) < co[A] - [* + oy — o, + €] - [J(0).

Let a4 be the centre of the minimal bounding sphere of 0_g¢(0) and ¢(z) = a, - = for x € R", we
have

og(x) = max{p -z, p € d_g(0)} — {(x) + £(x)
= max{(p — ag) -z, p € 0-g(0)} + ()
<rgolx] + ().
Since the convex envelope is affine co-variant, that is co[H + ¢] = co[H| + ¢, we see that
oAl - [P+ g —an + e )(0) < co[A] - [* + (rg0 + )] - | = 04](0) + £(0).

Since £(0) = 0, CL(H) = —C¥(—H) for continuous functions H of linear growth, we may use (Z.3)
in Lemma [2.5] to obtain

CA((rgo+ )l - | = an)(0) = co[A] - [* + (rg,0 + €)| - | = 4] (0)
= —CX(on = (rg0 +€)| - )(0)

(rho = 790 — €)°
4 .

Thus )
(Th,0 — g0 — €)

C(fa)(0) < — 0=

when A > 0 is sufficiently large. Therefore

(rho — rg0 — €)?
: .

AR\(fe)(0) >
If we let A — 400, then let ¢ — 0+, we have

(rho —790)°

lim inf AE(fg)(0) 2 lim inf AR, (f5)(0) = 1

A——+00
The proof is finished. O

Proof of Proposition Suppose that f : Q — R is locally semiconvex with linear
modulus. Without loss of generality, we assume that zg = 0 is an Alexandrov point. We set
Ao = || B||, the operator norm of the symmetric matrix B given by ([I8). For e = 1, by (LIS),
there is some & > 0 such that

\fo(x) — fa(0) — p- o — 2T Br| < e|z]? = |2

whenever x € Bs(0). Now we consider the affine function ¢(z) = —fg(0) — p - x. Clearly £(0) =
—fc(0). We show that ¢(z) < Mz|?> — f(x) for all z € R® when A > 0 is large enough, so that

—fc(0) = co[Al - [* = fc](0) hence fc(0) = CY(f)(0).
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We have, in Bs(0) that
—fa(z) > —fa(0) —p-z — 2T By — \m]2 >0(x) — (Mo + 1)]3:\2
so that
Nal? = fa(x) > () + (A = xo — Dz]* > £(x)
if z € Bs(0) and A > Ao + 1.

If |x| > 4, note that since fg is a Lipschitz function with Lipschitz constant Lg > 0, we then
have

Mz|* = fa(z) > Az* — Lalz| — fa(0),
>

while £(z) = —fc(0) —p- 2 < —f&(0) + |p[lz|. Thus A|z|* — fa()
holds if A0 > L¢ + |p|, that is, A > (Lg + [p|)/d. Thus if

LG+|p|}

{(z) if A|x| — Lg > |p|, which

)\zmax{)\o—i-l, 5

we have A|z|? — fg(z) > {(x) for all z € R™. Therefore f;(0) = C¥(fa)(0).

Since in G, fo(r) = f(z) = g(z) — A\1]z|? for some convex function g : G + R and for some
A1 > 0, if we let £(z) = g(0) 4 ¢ - = for some g € _g(0), then clearly £(0) = ¢g(0) = f(0). We show
that g(0)+¢-z < fo(x) + Alz|? for all z € R™, hence f(0) = g(0) = co[fe + Al [2](0) = C4 (f&)(0)
when A > 0 is sufficiently large.

Since 0 € G and G is open, there is a § > 0 such that Bs(0) C G. Thus in Bs(0), we have
fa(@) + Maf? = g(z) + (A = M)|z* > g(x) > 9(0) + ¢ =

if A > A;.

If |z| > 1, similar to the proof for the upper transform, again we have fg(z) + Mz|? > £(z)
when A > 0 is sufficiently large. Thus f;(0) = C4(f¢)(0) when A > 0 is sufficiently large.

The equalities in (I.20) are direct consequences of Lemma Here we have CL(fg) < fa
C4(fe) and C(fe)(0) = fa(0) < C¥(fe)(0), we may deduce that VC4 (f5)(0) = VC(f)(0)
—p, hence Vfz(0) = —p.

Proof of Lemma We establish (23] first by calculating

O IA

C(o — el - )(0) = — oA - |* + €[ - | = 0] (0).

We write
(@) = Az]? + e[| - o(x)
for x € R™ and let S = 0_f(0). Again let S,(—a) be the minimal bounding sphere of S given by

Lemma [I.2] We set
(r—e)?

4\
and define the affine function ¢(x) = a - © + b. We show that (i) for p* € S,.(—a) NS, if we let

b=—

« (p"+al—¢€) p"+a
T = , 3.4
22\ |p* + al (34)
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then f\(z*) —a-2* = b; and (4i) if z* is a minimum point of fy(z) — a - = then there is some
p* € Sp(—a) NS such that z* satisfies (34) and fy(z*) —a-2* =D.

We prove (i) first. Suppose ([B.4)) holds. We have

Az —a-z* = Na* > + ez*| —o(z*) —a-2*

~(lp* +a|—¢)? ) [p* +al —e
—T—max{(p—l—a) :E,pES}—I—eT
_ (|p*+a|_€)2 |p*_‘_a|_E * *
= o +€ ) (p*+a)-x
__(wta-9? _,

4\ '

Here we have used the facts that z* is along the direction of p* + a and p* + a € 9(S + a) is the
maximum point of max{(p+a)-z*, p € S}, where 9(S +a) is the relative boundary of the bounded
closed convex set S +a:={p+a, p€e S}

Since b < 0, clearly x = 0 is not a minimum point of fy(x) —a-z. As the function fy(z) —a-x
is coercive, and continuous, it reaches its minimum. Let 2* # 0 be such a point. Let & < 0
be the minimum value of fy(z) — a - x, that is, fy(z*) —a-2z* = b < 0. Then as —o(x) is
upper semi-differentiable and e|z| is differentiable for z # 0, to follows from Lemma that
V(fa(z*) —a-x*) =0, that is
':L'*

2 ™ +e|$*| (p*+a)=0

where max{p - z*, p € S} = p* - 2* and p* € 95, that is, p* must be a relative boundary point of

S. Clearly, x* is along the same direction as p* + a. It is easy to see that

< el
2\

as * # 0. Therefore z* is given by (3.4]). Thus

>0

* * (|p* + (1| - 6)2 (TO - 6)2
by=fi(z")—a-x 75 > 75 b

Thus by = b, hence b = co[f](0) which implies that

AVa(o =€ - [)(0) = ACX(0 — €| - )(0) = =b =

and this proves (Z.5]).

Now we prove (6], that is, VC¥(0)(0) = —a . Let fi(z) = Alz|?> — o(x). We have found
that {(x) = a-x+b < fi(z) for all x € R", including the special case ¢ = 0, where —a is the
centre of the minimal bounding sphere of 9_g(0) and b = —72/(4)). Since fi(z) = Az|? — o ()
is upper semi-differentiable in R", by [19], co[fy] € C*(R™). In particular ¢(z) < co[f](x) and
b = £(0) = co[f»](0). By Lemma 22 we see that a = V/(0) = V co[f,](0). Thus by definition,
VC{(0)(0) = —a.
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Next we establish (2.7). By (2.1)) we have
CX(o0 + €| - )(2) < Cl_gr(o0)(@) + Ci(el - (=)

for x € R". At z = 0, we have, by ([2.5) with e = 0 that

7,2

Czli—e)x(f’)(o) = m

Also it is easy to see by a direct calculation that C% (e| - |)(x) is given by (Z8). Thus at = = 0,

which completes the proof. O

Proof of Proposition Without loss of generality, we may assume that = 0. By [30L
Remark 2.1], we have

k

CLF)(0) = colf + Al() — 2](0) = D Ailf (w) + Ali]” (3.5)

i=1

forsome 2 < k<n+1, A\ >0, 2, € R" fori =1,2,...,k with Zle)\i =1 and Zle)\ixi =0.
We define fy(y) = f(y) + Aly|? for y € R™. Since (z;, fr(z;)) with i = 1,2,...,k lie on a support
hyperplane of the epi-graph epi(fy) := {(y,«a), vy € R", a > f\(y)}, there is an affine function
l(y) = a -y + b such that

(1) Ly) < faly) for all y € R™ and
(13) £(z;) = foa(w;) for i =1,2... k.
By (ii) and ([B.5) we also have £(0) = b = C{(f)(0). So (iii) also holds.
To derive the bound r) we evaluate (i) at y = a/(2\) to derive a bound of |a| as follows:

ore=t(gy) </ () + )

)

so that
|af? Lla| | L?

< (55) b= (55) O+ —b< TR+ T

hence |a|?> < 2L|a|+ L?. Here we have used the fact that f is L-Lipschitz and f(0)—b = Ry(f)(0) <
L?/(4)\) by 7). Thus we have |a| < (1 +v/2)L.

Now we use (ii) a-z; + b= f(z;) + A|z;]? to obtain
Mail? = b= f(z;) + a2 =b— f(0)+ f(0) — f(z:) + a-z; < Llag| + |a| |z,

as b— f(0) = —Ryx(f)(0) <0. Thus we can deduce that for each z; with i = 1,2,... k,

|z;| <

L+lal _ (2+V2)L
A S x

Therefore 7y = (2 + v2)L/\. O
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Proof of Proposition We use the locality property (Proposition 2.3]) to localise the
global C! property obtained in [5, Proposition 3.7] and [30] Theorem 4.1]. We show that when
A > 0 is sufficiently large, CY(f) is continuously differentiable in B,.(0) and

— Xalyo — zof* < CX(£)(w0) — CX(f)(20) — VOI(f)(=0) - (o — z0) < Alyo — wol? (3.6)

for z9, yo € B,(0), where \g > 0 is the non-negative constant used in the definition that f is
semiconvex in Bo, satisfying f(y) = Xo|y|> — g(y) with g : Bo, + R convex. From (3.8]) we see that
if A > A¢ is sufficiently large, C{(f) is both 2A-semiconvex and 2A-semiconcave. Therefore by [8]
Corollary 3.3.8], C¥(f) € C*'(B,(0)) and

IVEX(N)(y) = VOX()(@)] < 2A|y — =

for 2, y € B,(0).

Since f is L-Lipschitz, by the locality property, when A\ > 0 is sufficiently large, we have, for
o € BT(O),

%(0)
(o) = = colA| - [* = fl(wo) = = N Wai” —ol* — f(1”)

with 1 < k© <n+1, )\EO) > 0, ]a:l(-o) — x| < 7.

We define g)(y) = Aly — 20|?> — f(y). By Proposition 3] there is an affine function £(y) =
a-(y—xo) + b such that (7): £(y) < ga(y) for all y € R™ and (i4): E(xgo)) = g)\(ZEEO)). Let

asl k(0)
0 .
ALL‘O: ZMZ,Z'E )7 /’1/2207 1217...7k(0)7 Z/,lel
i=1 P

be the simplex defined by {$§0), e ,xlg%)}, then we see that co[gx](y) = a- (y — o) + b for y € Ay,
as the set U := {(y,a - y —|— b), y € Ap} is contained in a face of the convex hull of the epi-graph

colepi(gy)] of gx and {(xl ,oa(x (0)) e (a:&?,gA(xS,‘P)} C U Nepi(gy).

Now we have co[g](y) < ga(y) for y € Ba,(0), and co[gy](x (0)) = g>\( ) a- (xg —x9)+b for
i=1,...,kO9. Furthermore, in By,.(0), gr(y) = Ay — z0|? — f(y) where f( ) = g(y) — Xoly — z0|?
is 2\g-semicovex in Ba,.(0) with g : Ba,(0) — R convex and \g > 0. Thus gx(y) = (A + Xo)|ly —
zo|? — g(y) is upper semi-differentiable in By, (0). Thus by Lemma 2.2}, we see that both co[gy] and

0)

g» are differentiable at xl(o) and
Vcolgal(e}”) = Vaa(ai”) = 200 + do)(a;” — o) = Vg(a;”).
hence Vg(:ngo)) exists for i = 1,..., k). If we apply Lemma 22 to the affine function ¢(y) and the

Z(-O)):aforizl,...,k(o).

Now we show that C{(f) is differentiable at g and VCY(f)(zo) = —a. We follow an argument in
[19]. We know that co[gy](zo) = Zk(o) )\(0) A(x (0)) with 1 < k(0 < n+41, and we may further assume
that )\go) > > )\]i%) >0, |:EZ(-0) — xo| <7 (by the locality property), satisfying Zk( : ) =1 and

upper semi-differentiable function gy (y) in Ba,(0), we also have Vg, (z
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Zf;ol) )\( )ZE(O) = x0. We then have )\( >1/(n+1). Now for y € R", we have

% (0)
xo+y—)\(0)< >+Z/\(°

By the convexity of co[gy], we have

k(0)
colga)(x0 + 1) — colga) (o) < AL (gA@O) +y/A) - gx(rcgo))) + (Z M [ga (") — gx(xﬁo))])
=2

=\ (9@ +5/2) = g2l

for y € R™. Since the left hand side of the above equation is convex in y and the right hand side
is upper semi-differentiable at y = 0 and the two terms are equal at y = 0, by Lemma 2.2] we see

that V colgx](zo) = Vgx(xgo)). Thus co[g,] is differentiable at z.

Furthermore, since ¢(y) < gi(y) for y € R", by the definition of convex envelope, we see that
0(y) < colga](y) for y € R™. We also have ¢(xg) = b = co[gx](z¢). Also since colg,] is differentiable
at zg, by Lemma 2.2 we have V co[g)]|(z9) = a. Thus VC}(f)(z9) = —a. Therefore C{(f) is
differentiable in B,.(0). The continuity of VC}{(f) in B,(0) follows from [19].

Now we prove that for all g, yo € B,(0), we have
CY(f)(yo) — CX(f) (o) — VCY(f) (o) - (Yo — o) = —Aolyo — ol (3.7)

so that CY(f) is 2\g-semiconvex in B, (0). We use the notation associated to C}(f)(z) as above.
We see that (87 is equivalent to

Alyo — zol” — colga](yo) + colga](zo) + V co[gal(zo) - (yo — z0) > —Xo|yo — w0

which again is equivalent to

co[ga] (o) — colga](z0) — V co[gal(zo) - (yo — o) < (A + Xo)lyo — o|*.

Note that

% (0)
- Z)‘Eo)gx(xgo)), Vcolgal(zo) =a, Veo[ga] (@) = Vgr(z!”) = a.

Since yo € B,(0) and \xl(o) — xo| < r, we see that

% (0)
y0+(2()_$0)€B2r0 and Z)\ <y0_|_ O—l‘0)>—y0.

Thus,
k() (0)
o[ga](yo) < ZA( ogal(yo + (2" — ) < ZAEO)Q/\(yO + (@ — 20)).
i=1
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We also have
% (0)

= > Alor (o + (@ — o))

and

k()

V co[ga](zo) - (Yo — 20) = a - (Yo — o) Z A (yo — z0)
%(0)
= Z /\EO)VQA(xo + (x§°> —x9) - (Yo — xo).
i=1

We notice that in Bs,(0), f is semiconvex and f(y) = Aogly — z0|> — g(y) for a convex function
g : B, (0) = R. Thus

co[gx](yo) — colgx](w0) — V co[ga](z0) - (yo — o)
%(0)

< 2N (oo + a1 = a0) —anfan + (01” — 20)) = Voa(wo + a1 = 20)) - (0 — a0))

k(O)
= ZA A+ 20) (190 = w0) + (@ = 20)) 2 = | = 20)) 2 = 202 — 20) - (3o — 20))

k(O)
ZA (gt + @~ 20)) ~ gl + @ — 20)) = Vgloo + @ ~ 20) - (o~ 20))

< ()\ + Xo)|vo — ol

Here we have used the facts that Zk( : A )( © _ xg) = 0 and that ¢ is convex and differentiable

at xE ). Thus C3(f) is 2X\p-semiconvex in B, (0). Also by the definition of the upper transform,
C¥(f) is 2A-semiconcave, hence for zg, yo € B,(0)

CX () (o) — CX(f) (o) — VOX(f)(=o0) - (yo — x0) < Alyo — wol? (3.8)

Combining [B.7) and (B.8) we see that CY(f) is 2\-semiconvex and 2\-semiconvex in B, (0). There-
fore by [8, Corollary 3.3.8], we see that C¥(f) € C11(B,(0)) satisfying

IVCX(f)(y) = VOX(f)(@)] <2y — x|, v, = € B:(0)

if we choose A > \g. O
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