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Abstract

Whole genome sequencing of pathogens from multiple hosts in an epidemic offers the potential to 

investigate who infected whom with unparalleled resolution, potentially yielding important 

insights into disease dynamics and the impact of control measures. We considered disease 

outbreaks in a setting with dense genomic sampling, and formulated stochastic epidemic models to 

investigate person-to-person transmission, based on observed genomic and epidemiological data. 

We constructed models in which the genetic distance between sampled genotypes depends on the 

epidemiological relationship between the hosts. A data augmented Markov chain Monte Carlo 

algorithm was used to sample over the transmission trees, providing a posterior probability for any 

given transmission route. We investigated the predictive performance of our methodology using 

simulated data, demonstrating high sensitivity and specificity, particularly for rapidly mutating 

pathogens with low transmissibility. We then analyzed data collected during an outbreak of 

methicillin-resistant Staphylococcus aureus in a hospital, identifying probable transmission routes 

and estimating epidemiological parameters. Our approach overcomes limitations of previous 

methods, providing a framework with the flexibility to allow for unobserved infection times, 

multiple independent introductions of the pathogen, and within-host genetic diversity, as well as 

allowing forward simulation.

1 Introduction

A fundamental aim in the analysis of infectious disease epidemics is to identify who infected 

whom, however, achieving this is challenging, since transmission dynamics are generally 

unobserved. A probabilistic estimation of the transmission tree based on all available data 
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offers many potential benefits. In particular, this can lead to improved understanding of 

transmission dynamics, provide a mechanism to quantify factors associated with heightened 

transmissibility and susceptibility to carriage and infection, and help identify effective 

interventions to reduce transmission. Pathogen typing can be used to cluster genetically 

similar isolate samples, which can rule out potential transmission routes. Whole genome 

sequence (WGS) data offers maximal discriminatory power through the identification of 

individual point mutations, or single nucleotide polymorphisms (SNPs), potentially leading 

to more accurate transmission tree reconstructions than hitherto possible. However, the joint 

analysis of genetic and surveillance data poses several challenges, as the relationship 

between epidemic and evolutionary dynamics is complex [1].

To date, genomic data have primarily been used to analyse transmission at a population 

rather than an individual level. This typically relies on a broad sample of individuals from a 

large population, with the aim of estimating past population dynamics over a long period of 

time. Phylogenetic analyses have been used to infer patterns of large-scale geographic 

spread [2]. Coalescent theory has been used with such data to estimate, among other things, 

fluctuations in population size and transmission parameters [3, 4]. Methods have also been 

described to estimate transmission parameters by combining sequence data and time series 

incidence data [5].

In contrast, we focus on individual-level transmission, using high-frequency genomic 

samples from a subpopulation (eg. hospital, school, jail, farm, community), with the aim of 

reconstructing transmission routes. Such sampling presents more of a challenge in terms of 

resources and data collection. However, with falling sequencing costs, gathering genomic 

data is rapidly becoming a feasible component of outbreak investigations, as demonstrated 

by recent studies [6–8]. We aim to estimate the transmission tree, a graph representing the 

spread of a pathogen between individuals, comprising nodes (cases, which may be defined 

as infected or colonized persons depending on the context), and directed edges (transmission 

events). Edges may additionally be associated with a transmission time. A transmission tree 

may be composed of multiple unconnected subtrees, each representing independent chains 

of transmission. Each transmission chain has an origin, representing a new introduction of 

the pathogen into the population. While in some situations, it may be reasonable to regard 

the tree as fully connected (that is, only one origin exists), more generally, multiple 

introductions of the pathogen from external sources must be accounted for.

A number of approaches to reconstruct transmission trees for communicable pathogens 

using densely sampled genomic data have been described in recent years. Many methods 

have been based around the construction of phylogenetic trees, which describe the inferred 

evolutionary relationships between pathogen samples, and can be fit to sequence data under 

various evolutionary models. The phylogenetic tree is a bifurcating structure in which 

external nodes represent sampled isolates, while internal nodes represent the most recent 

common ancestor of its descendants. Internal nodes are similarly linked, such that the 

structure is fully-connected. Since phylogenetic trees may be topologically dissimilar to 

transmission trees [9, 10], interpreting phylogenetic proximity as epidemiological linkage 

can be misleading. Furthermore, phylogenetic trees are undirected, leaving ambiguity 

around the direction of transmission even if the transmission tree is topologically identical.
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Phylogenetic trees have been used in conjunction with contact tracing data using adhoc 

approaches to rule out possible transmission links [8, 11], while other approaches have 

developed more formal methods to make use of phylogenetic trees to infer transmission 

trees. For instance, Ypma et al. developed a method to sample over both the transmission 

and phylogenetic tree given a set of sequence data, ensuring both structures remain 

consistent with one another [1]. This approach required the specification of a model to 

describe within-host pathogen dynamics, which remain poorly understood for the majority 

of pathogens. Similarly, Numminen et al. describe an importance sampling approach in 

which both phylogeny and transmission tree are sampled from proposal distributions [12]. 

This approach required sequence data to be partitioned into clusters pre-analysis, and the 

topology of the phylogeny to be fixed, but avoids the computational complexity associated 

with Markov chain Monte Carlo (MCMC) based methods.

Alternatively, a second class of reconstruction methods avoids phylogenetic tree inference, 

using models in which transmission routes are weighted by a function of observed genetic 

distance. Simply identifying the source of infection by selecting the host carrying the most 

genetically similar sampled isolate has been suggested [13], although this neglects the role 

of within-host diversity and sampling time, as well as uncertainty surrounding the times of 

infection. While more sophisticated approaches allow for uncertainty in transmission time 

and provide a more realistic model for the accumulation of mutations over time, hosts are 

characterized by a single pathogen genotype [14–16]. Jombart et al. describe a Bayesian 

data-augmentation approach making use of genetic distance data to infer likely transmission 

events, dates of infections, and unobserved cases [17]. The approach assumes known 

distributions of the generation interval and time from infection to isolate collection, and does 

not allow for within host diversity or explicitly account for imported cases (though multiple 

unconnected trees can be allowed for). These assumptions mean that, while the approach 

may be suitable for an acute infection in an outbreak scenario, it is not appropriate for 

pathogens such as S. aureus where long-term carriage is common, the generation interval is 

not well-defined, and where within-host diversity can be substantial.

Of the above methods, all assume that a single genotype is sampled from each host, with the 

exception of Numminen et al. [12]. This assumption can lead to poor tree inference in the 

presence of within-host diversity [18]. Only the approach developed by Mollentze et al. can 

identify importations [16]; the remainder of methods assume the transmission tree is fully 

connected. Most methods described assume infection times are known with certainty. It is 

likely to be extremely useful to relax each of these assumptions in most infectious disease 

settings. Finally, while the importance sampling method by Numminen et al. can 

accommodate various transmission models [12], the remainder consider instead the 

probability of a transmission tree linking the set of infected individuals, ignoring the 

probability of susceptible individuals avoiding infection.

Here we describe a generalized approach to transmission tree reconstruction that overcomes 

these limitations and makes use of both molecular typing information and known exposure 

data. A key novelty of our approach is that we model the genetic distances between 

sequences rather than the microevolution of the sequences themselves. This offers a flexible 

framework in which multiple independent introductions of the pathogen and within-host 
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diversity may be considered, as well as the transmission process itself. This approach avoids 

the need to make any assumptions about the within-host pathogen population dynamics, 

which in general, are poorly understood. Furthermore, our proposed framework allows data 

to be simulated forward in time, a feature lacking in the majority of existing methods (with 

reverse time simulation typically required in phylogenetic methods, and only an incomplete 

set of genetic distances simulated from other approaches), which is of fundamental 

importance in predictive modelling and model evaluation.

2 Methods

The importance of identifying transmission pathways in hospital epidemiology is one of the 

major motivations for our work. We therefore describe our approach for this setting, and 

analyse real and simulated hospital epidemic data. Since infection is often asymptomatic in 

this setting, even with frequent patient screening, epidemics are only partially observed. 

Furthermore, patients may be admitted to the ward already infected (importations), which 

requires consideration of multiple disconnected transmission trees. Our approach accounts 

for these complications. In line with most literature on hospital-associated infections, we 

subsequently use the term ‘colonized’ to refer to patients who are either symptomatically or 

asymptomatically infected with the pathogen.

We observe a set of n patients admitted and discharged from a hospital over a study period. 

For each patient (j, say), we observe the day of admission  and discharge , the days and 

results of screening tests (positive or negative for the pathogen) taken during their stay. We 

denote the set of all screening results by X. We also suppose that some (not necessarily all) 

of the positive swabs have a corresponding sequenced isolate, i.e. we have genetic 

information related to some of the positive tests. From a total of ns sequenced isolates, we 

derive a symmetric pairwise genetic distance matrix Ψ = (ψa,b)a,b≤ns, with the genetic 

element ψa,b giving the genetic distance between isolates a and b. If colonized, the day of 

colonization for patient j is denoted , and the source of infection, sj, is equal to the ID of 

the patient from whom the pathogen was acquired, or equal to zero if the patient was already 

colonized on admission. These quantities specify the transmission tree, but are typically 

unobserved. For patients who are never colonized, . We denote the set of 

colonization times and routes of infection by T. We can write the likelihood of observing 

genetic and screening data, given model-specific parameters θ as

(1)

We now describe the distinct components of our model, which govern the transmission 

dynamics (π(T|θ)), the observation of screening data (π(X|T, θ)), and the generation of 

genetic diversity π(Ψ|X, T, θ).

2.1 Transmission model

We first define a stochastic model which describes both pathogen transmission and the 

genetic distances arising between genotypes sampled from any two individuals. Each patient 
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j, j = 1, . . . , n, is admitted to the ward, independently carrying the pathogen with probability 

p, and has marker variable ϕj, equal to 1 if the patient is positive on admission, and zero 

otherwise. We assumed homogeneous mixing, such that each colonized patient has 

equivalent contact with each susceptible individual. The rate of transmission to a given 

susceptible patient on day t is then βC(t), where C(t) is the number of colonized patients on 

day t, and β is the transmission rate per colonized individual. We assumed that individuals 

colonized on day t may transmit the pathogen from day t + 1 until their discharge. Working 

in discrete time using daily intervals, the probability that a given susceptible patient avoids 

colonization on day t is exp(−βC(t)), thus, acquisition occurs with probability 1 − 

exp(−βC(t)). Each patient has the same chance of contacting any other patient in this model, 

and we note that transmission is often indirect, via the hands of healthcare workers (HCWs) 

[19–21]. Given an individual acquires the pathogen on day t, the probability that the source 

of transmission is a particular positive individual is simply 1/C(t), since it is assumed that 

colonized patients have an equal potential to transmit. More generally, this probability will 

be the transmission pressure from the potential source divided by the total transmission 

pressure at time t. The model for transmission dynamics, T , can then be given as

(2)

where 1x is the indicator function, returning 1 if the condition x is true, and zero otherwise.

2.2 Observation model

During each patient's stay in the hospital, regular screening is carried out to detect carriage 

of the pathogen. We assume that the test is highly specific, but imperfectly sensitive – that is, 

false positive results are not possible, but a positive patient is correctly screened positive 

with probability z (test sensitivity) [22]. Let TP(X, T), FN(X, T) and FP(X, T) be the total 

number of true positive, false negative and false positive results in the screening data 

respectively, given the set of colonization times. The likelihood of observing the screening 

results, given test sensitivity and transmission times is

(3)

2.3 Genetic distance models

We defined the genetic distance to be the observed number of SNPs between isolates, though 

other metrics are possible. The genetic distance between any two isolates is assumed to be 

drawn from some probability distribution, which in general can depend on any desired 

features of the two samples in question, or the hosts from whom they were sampled, such as 
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their relatedness in terms of transmission. We assume that genetic distances are perfectly 

observed, and that insertions, deletions and recombinant sections are removed from the 

genome such that the genetic distance is representative of the accumulation of SNPs.

The true distribution of the observed number of SNPs between two samples is complex, and 

depends on the mutation rate and the time of their most recent common ancestor, which in 

turn is dependent on the within-host pathogen population dynamics, as well as the effective 

transmission inoculum size. Since such factors are still poorly understood for most 

pathogens, we supposed that the distribution could be approximated by either a Poisson or a 

geometric distribution, dependent on the relationship between the sampled hosts. This 

relationship could be modeled a number of ways, but here we focus on two particular 

models, allowing for genetic diversity to be generated through alternative dynamics.

2.3.1 Transmission diversity model—The first model, the transmission diversity 

model, discriminates between individuals in a transmission chain under the assumption that 

the expected genetic diversity changes predictably as sampled individuals are further apart in 

the tree. Typically, one would expect that distances will increase along the chain, due to the 

accumulation of mutations within each host. Each increase in the tree distance between 

nodes results in the expected genetic distance changing at a rate governed by a parameter k, 

which we call the transmission diversity factor. Distances between isolates taken from 

individuals in unrelated transmission chains are assumed to be drawn from a different 

specified distribution.

We proposed a distribution to describe the genetic distance between two isolates, given the 

relationship between their carriers in the transmission tree. For isolates x and y, we defined 

t(x, y) to be the number of links which separate the isolates in the transmission tree, with t(x, 
y) = ∞ if x and y are sampled from separate chains. For two samples taken from the same 

host, we have t(x, y) = 0. Under the transmission diversity model, we used the following 

geometric distribution: for d = 0, 1, . . .

(4)

where γkt(x,y) ∈ [0, 1]. Here, the parameter γG represents genetic diversity between samples 

belonging to different transmission chains. The parameter γ is the geometric parameter for 

genetic distances occurring in the same transmission chain, while k denotes the factor by 

which this parameter is changed upon an additional transmission link between the samples.

The expected genetic distance between samples is then (1 − γkz)/γkz for samples separated 

by z transmission links, or (1 − γG)/γG for samples belonging to independent chains. The 

likelihood contribution for the nth observed sequence is then just the product of probabilities 

for the n−1 genetic distances to previously observed sequences. Under this model, the 

likelihood of observing the genetic distance matrix Ψ, given the transmission tree structure, 

is:
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(5)

We note that in regular circumstances, we would expect k ≤ 1, indicating steady or 

increasing diversity along a transmission chain. However, we allow for k to take values 

greater than 1, as this may highlight sampling bias (eg. hosts with greater within-host 

diversity sampled more frequently), which would not be revealed with a fixed upper bound 

of 1.

The true distribution of genetic distances between independent transmission chains is 

dependent on the population which enters the hospital already colonized. This distribution 

will depend upon the strain types circulating in the community, and may be multimodal, 

reflecting clusters of similar strains. In the absence of local and regional sampling data 

which would be necessary to obtain a more suitable approximation, we use the geometric 

distribution, assuming strains are more likely to be similar than dissimilar. Our second 

model is designed to avoid the challenge of approximating this distribution.

2.3.2 Importation structure model—The second model, the importation structure 

model, assumes that imported cases are assigned into genetically similar groups. An 

individual who acquires the pathogen from another person in a given group is assigned the 

same group. An importation may belong to a previously observed group, despite not being 

connected in the transmission chain. The distance between each pair of isolates in a 

particular group follows the same distribution, regardless of the tree distance between the 

nodes, while we expect that isolates belonging to different groups to be genetically further 

apart. The number, and composition, of groups is unobserved, so must be inferred. Under the 

importation structure model, we have, for d = 0, 1, 2, . . .

(6)

Similar to the previous model, the expected genetic distance between samples is then (1 − 

γ)/γ for samples within the same group, or (1 − γG)/γG for samples belonging to different 

groups. It is necessary to introduce some additional notation for this model; let gj be the 

group to which colonized individual j belongs (equal to zero if not colonized). We estimate 

an additional parameter, c, which gives the probability that the strain of an imported case 

belongs to an existing group. Under this model, the likelihood of observing the genetic 

distance matrix Ψ, given the transmission tree structure and group memberships g, is

(7)

Furthermore, the likelihood of observing nc groupings among the Σj ϕj importations is
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(8)

2.4 Inference methods

To allow for unobserved transmission dynamics, namely the set of transmission days and 

sources T = {tc, s} (and additionally the set of group memberships g under the importation 

structure model), we used a Bayesian framework and employed a data augmented MCMC 

algorithm [23] to sample over this space. Individuals with no observed positive swabs may 

also have been colonized, and we allow for this possibility by sampling over this space. A 

combination of Metropolis-Hastings and Gibbs sampling was used to draw samples from the 

parameter space θ, consisting of the parameters {p, z, β, γ, γG, k} for the transmission 

diversity model, and additionally c under the importation structure model. This approach is 

an extension of the analytical frameworks previously used to estimate transmission 

parameters given unobserved infection days [24–26]. In addition to sampling transmission 

days, we specify a model for genetic data in this approach, sampling transmission routes to 

identify the posterior transmission tree.

Transmission trees were sampled by randomly drawing new colonization days and sources, 

such that every proposed tree had a non-zero likelihood. Full details of the tree sampling 

methods, acceptance probabilities and MCMC algorithm are provided in the Appendix. By 

calculating the proportion of total samples for which particular transmission routes existed, 

we derived a tree with edges weighted by posterior probability. The R package ‘bitrugs’ 

(Bayesian Inference of Transmission Routes Using Genome Sequences) contains code to 

implement the MCMC algorithm, and is included in the online supplementary materials.

Except where mentioned, parameters p, z, γ, γG, c were assigned Beta(1,1) prior densities. 

The parameters β and k were assumed to be exponentially distributed a priori, with rate 10−6.

2.5 Data

We first investigated the performance of our models using simulated hospital data, generated 

under several different scenarios. Code to simulate data is included in an R package, 

available in the supplementary materials. We assessed tree accuracy by comparing the 

simulated true and estimated tree, and examining the receiver operating characteristic (ROC) 

curve [27], identifying scenarios in which the model performed well and poorly. We 

compared our estimated trees to the ‘uninformed’ tree – that is, an estimate of transmission 

routes excluding genomic data, assigning each potential source an equal weight. The ROC 

for the uninformed tree is calculated under the assumption that the times of infection are 

known, an advantage over our estimation method. Calculating the area under the curve 

(AUC) and comparing this with the uninformed tree can indicate the improvement in 

accuracy over the naïve structure.

We then applied our methods to methicillin-resistant S. aureus (MRSA) carriage and 

sequence data collected from a special care baby unit in Cambridge, UK, during an outbreak 

in 2011. These data comprised a full set of patient admission and discharge days, MRSA 

carriage screening results and sequenced genomes of a subset of positive results. The 
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genomic data have been described previously by Harris et al., who combined genomic 

analysis and contact tracing to estimate routes of infection within and outside of the hospital 

ward [28].

3 Results

3.1 Simulated data

We simulated several datasets under the two genetic distance models described in order to 

determine the ability of our estimation approach to recover the transmission tree as well as 

the parameter values. We simulated 500 patient admissions over 250 days, and varied model 

parameters to determine their impact on the ability to identify transmission routes (see 

appendix for more details on simulation). We also investigated the accuracy of tree 

reconstruction when fitting the model to data simulated under the alternative model. For a 

range of plausible parameter values we were able to recover the transmission tree well, 

consistently outperforming the uninformed transmission tree. Under both models, larger 

outbreaks tended to be associated with more uncertainty surrounding the source of infection. 

Figure 2 shows a simulated hospital outbreak, comprising several unconnected subtrees. 

Also shown is the uninformed transmission tree, in which edges are placed with equal 

weight for all potential sources of transmission, and our reconstruction under the 

transmission diversity model. While most transmission events are successfully recovered, 

there is uncertainty within the largest transmission chains which contain several nodes, as 

well as, in some cases, uncertainty as to whether a case was imported or not. For simulations 

with an increased transmission rate, a higher number of genetically similar new infections 

were seen in the ward at any given time, increasing tree uncertainty (Figure 4A). The 

transmission diversity model allows the length of the transmission chain to have an impact 

on the expected genetic distances between two given isolates and therefore allows 

discrimination between the set of possible sources. For higher transmission rates, 

transmission chains typically become longer, resulting in the expected genetic distance 

between isolates approaching the levels expected for unrelated individuals, adding further 

between-chain uncertainty. Allowing the between-chain expected genetic distance to 

increase (i.e. reducing γG) resulted in improved accuracy (Figure 4B). If imported strains are 

always highly distinct, then it is straightforward to assign an individual to the correct chain, 

if not the true source of transmission. Table 1 gives an overview of tree estimation accuracy 

under various parameter values.

The importation structure model lends itself to the identification of independent outbreaks 

rather than individual transmission routes, since by definition, it may discriminate between 

groups of similar strains, but assumes a fixed distribution of distances for all samples within 

a transmission chain. For this reason, tree reconstruction was often more uncertain than 

under the transmission diversity model, particularly for higher transmission rates. However, 

the identification of isolate groups was successful for a range of scenarios. In cases with 

frequent importations, the importation structure model often performed better than the 

transmission diversity model, particularly when importations were genetically similar to 

each other. Furthermore, this model generated better tree reconstruction from data simulated 

under the transmission diversity model, than vice-versa. The identification of group 
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membership depended largely on the ratio of within- and between-group expected diversity; 

the smaller this value, the better the performance (Figure 3).

A key determinant of the transmission diversity model performance was the value of the 

factor k. The posterior estimate of this parameter was often associated with much 

uncertainty, especially in the absence of longer transmission chains. Differentiating the exact 

routes of transmission becomes difficult, or even impossible for values of k close to 1, as 

genetic similarity along a transmission chain diminishes. Values of k close to zero indicate 

that a considerable amount of mutation occurs between transmission events, and the 

genotype within the newly infected individual is very different to that found in the source. 

We found that tree reconstruction was less successful when k was low (table 1), and low 

values of k were typically overestimated.

In most cases, the ROC curve for estimated transmission trees indicated a considerably 

better performance than the uninformed tree, demonstrating the gain in information 

associated with the inclusion of genomic data. However, the tree reconstruction was 

relatively poor where diversity was defined to be similar for related and unrelated isolates, or 

when diversity could accumulate quickly in a transmission chain (Table 1). Tree accuracy 

was relatively poor for lower values of test sensitivity (Figure 4C), but we nevertheless 

found that our estimates consistently outperformed the uninformed tree (Table 1). However, 

even with perfect sensitivity, some transmission routes were not recovered, due to 

colonization and subsequent discharge occurring prior to the next screening time. The degree 

of uncertainty surrounding even relatively simple trees is notable, reflecting the genetic 

similarity of linked cases.

We tested sensitivity to our choice of prior distributions by varying the rate parameter of the 

prior exponential distributions of β and k. We found that neither the parameter estimates nor 

the estimated transmission tree were affected considerably by varying this value between 

10−2 and 10−10.

We additionally simulated sequence data under an explicit pathogen evolutionary model. 

Using the R package ‘seedy’ [29], we generated sequence data on top of transmission trees 

simulated as before. We found that transmission trees could be recovered well, offering a 

considerable improvement on the uninformed trees (see appendix for further details).

3.2 MRSA outbreak data from Rosie Hospital, Cambridge, UK

An outbreak of MRSA was observed in 2011 in a special care baby unit at the Rosie 

Hospital, Cambridge, UK, in which a total of 20 newborn infants were found to be MRSA-

positive. We considered a dataset spanning 450 days, including this outbreak, comprising 

admission and discharge times, as well as MRSA screening results and times, for all patients 

admitted during this period. A total of 1108 unique patients were admitted to the ward in this 

period, and were swabbed regularly for the presence of MRSA. Figure 1 shows the 

colonized patient episodes and total population over the study period. Of the 20 patients with 

positive swabs, 18 had one positive isolate sequenced, and 15 of these were found to be 

sequence type 2371 (ST2371) (patient numbers 1-15). The remaining three sequenced 

isolates (carried by patients 27-29) were separated from this outbreak type (and each other) 
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by several thousand SNPs. Two patients (654 and 801) had a positive swab, but no 

sequenced isolate. During the outbreak investigation, all HCWs were screened voluntarily 

and with consent, one of whom was found to be MRSA positive. Twenty colonies from this 

individual were sequenced, revealing carriage of several ST2371 genotypes, differing by up 

to 10 SNPs (mean pairwise distance 3.9 SNPs). Full details of sequencing and data 

collection are described in Harris et al. [28], and sequences were uploaded to the European 

Nucleotide Archive (www.ebi.ac.uk/ena).

The non-outbreak sequence types differed by many thousands of SNPs. Fitting the 

transmission diversity model to these data using a geometric distribution would make the 

relative likelihood of an observed distance of a much smaller magnitude arising from 

unrelated transmission chains very low, forcing the model to link all outbreak strains where 

possible. This in turn results in an overestimation of the frequency of transmission events. 

This suggests that a geometric distribution is not an adequate approximation of between 

transmission chain genetic distances when multiple strain types are present. For this reason, 

we fitted the transmission diversity model to a restricted dataset, omitting the non-ST2371 

strain types. Alternatively, a multimodal distribution could be chosen to account for distant 

strain clusters, although such a model would likely be overparameterized given the available 

data. The importation structure model avoids this issue, so we used all available data in this 

case. For both models, we assumed that test sensitivity was beta distributed with mean 0.8 

and standard deviation 0.04 a priori, in line with previous estimates [25]. We used the 

sequenced isolates from the colonized HCW to inform our prior density of within-host 

diversity, γ. All other priors were as described in section 2.4.

We first ran the MCMC algorithm under the transmission diversity model. Posterior mean 

estimates and credible intervals of model parameters are summarized in table 2. We 

estimated that 1.2% (95% CrI: 0.7%, 1.9%) of patients were positive on admission. The rate 

of transmission was low, and we estimated a total of 4.8 (3, 7) acquisitions on the ward. 

Three transmission events had a posterior probability above 0.5, and no transmission was 

inferred to or from the non-outbreak types (Figure 5). Around 26% of colonized individuals 

were the source of one or more secondary cases (Figure 6a). Isolates from patient 654 were 

not sequenced, therefore we sampled over possible genetic types for this individual. With a 

high posterior probability (97%), this patient was involved in a transmission event with 

patient 10, although the direction of transmission was uncertain. We estimated the 

transmission diversity factor k to be 1.2 (0.7, 1.8), the wide credible interval reflecting the 

paucity of transmission events, most of which formed a transmission chain of length 1 

(Figure 6b). Within-host diversity was estimated to be 3.9 (3.3, 4.6) SNPs, an estimate 

dominated by the prior density based on the samples from the HCW. As such, the expected 

distance from source to recipient was approximately 3 SNPs. With the non-outbreak strain 

types excluded, the expected distance to unrelated strains was 4.9 (4, 6.1) SNPs. We 

generated the posterior predictive distributions for the number of observed importations, 

acquisitions and overall diversity. We found that the true observed values from the dataset 

fell within the 95% central quantile of the predictive distribution, providing no indication 

that the model was a poor fit (see Appendix).
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The importation structure model placed a high posterior probability on the existence of four 

groups, reflecting the four sequence types observed in the study. We estimated the expected 

pairwise distance between isolates belonging to the same group to be 3.7 (3, 4.5) SNPs. 

Under this model, the probability of importation was estimated to be slightly higher, while 

the transmission rate was lower. We estimated that patients 1 and 3, who were originally 

missed by the infection control team at the hospital, were part of the main outbreak group, in 

accordance with the previous study [28].

4 Discussion

The genetic diversity and structured importation models we have described here allow the 

combined analysis of genetic and epidemiological data. We applied these methods to the 

transmission of MRSA in hospitals, demonstrating the simultaneous estimation of model 

parameters and a transmission tree. More generally, the approaches we have developed can 

be applied to the analysis of disease transmission in a community where high-frequency 

sampling of sequence data is available. These methods offer flexibility not available in 

previous approaches, as they allow multiple introductions of the pathogen into the 

population, incorporation of within-host genetic diversity, unobserved colonization times, 

and the provision of estimates of uncertainty for each potential transmission route. While we 

have used whole genome sequence data, this approach may also be used with lower 

resolution genetic data, provided a distance metric between isolates can be defined. A major 

advantage of our framework over existing methods is the ability to simulate forward from 

our models. This allows one to perform predictive analyses, as well as model evaluation 

procedures.

A considerable degree of uncertainty was associated with the resulting estimated 

transmission trees, even for small outbreaks, despite the densely sampled genomic data and 

well-defined periods of potential contact. As has been previously demonstrated, individual 

transmission routes are generally unlikely to be identified with high confidence using 

genetic distance data alone [30]. This reflects the high genetic similarity of individuals in the 

same transmission chain, and we believe that quantification of uncertainty is of much 

importance âĂŞ methods which provide an optimal tree with no measure of uncertainty may 

be misleading. While we have demonstrated the general improvement in tree accuracy 

associated with the availability of genomic data, in most cases, much uncertainty is likely to 

remain regarding transmission routes.

Some previous studies aiming to reconstruct transmission trees using densely-sampled 

genetic data have used a phylogenetic approach, implicitly assuming that a transmission tree 

will map closely to the phylogenetic tree [8, 11, 31]. However, this assumption may not hold 

[9, 10]. A fundamental limitation of phylogeny-based approaches is that the relationship 

between the transmission and phylogenetic trees depends on the within-host evolutionary 

dynamics which, in the absence of dense within-host sampling, are not identifiable. By 

simultaneously sampling over the phylogenetic tree and the transmission tree, one can 

account for unknown coalescent times and dependencies between genetic distances [1]. 

While this approach offers a more realistic model for the emergence of diversity, it also 

requires a reliable model of within-host pathogen population dynamics. Furthermore, this 
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method requires sampling over the space of phylogenetic trees (and therefore unobserved 

sequence data), resulting in a considerably more computationally intensive approach than 

our proposed framework. Even with such a model, the method cannot differentiate between 

importations and acquisitions, crucial when considering an outbreak in a hospital setting. 

Data on within-host dynamics are currently scarce, and these dynamics may vary widely 

between individuals. As such, robust specification of such models is challenging.

Our analysis has some limitations. We have assumed that the source of transmission for each 

patient must come (indirectly, via HCW) from another patient present on the ward. As 

previously suggested, there is a strong possibility of external sources of transmission in this 

setting [28]. This would mean that the patient-to-patient transmission rate may be 

overestimated in our model. Our approach would perform best when all potential contacts 

are included in the analysis. Additionally, we have used a transmission model that does not 

allow for heterogeneous rates of transmissibility. We believe that this model is adequate in 

this setting, and did not affect our primary goal of estimating the transmission tree. We have 

assumed that clearance of carriage and reinfection are not possible; while it appears unlikely 

that such events are common in this dataset, incorporating mechanisms for these could be 

important in other settings and over longer time periods.

Our estimates from the Rosie hospital data suggested that within- and between-host diversity 

were similar, with the former slightly higher than the latter, suggested by the estimate of k > 

1. Our estimates of within-host diversity were driven by the HCW, since multiple isolates 

were not collected from patients. If the HCW was colonized for a long period of time, a 

higher level of within-host diversity would be expected than within newly colonized infant 

patients, potentially leading to estimates of k > 1. We believe that repeated sampling of each 

patient would lead to an improved estimate of within-host patient diversity, and that as an 

estimate of k > 1 would be unlikely. We repeated our analysis with k restricted to the interval 

[0, 1], and found that both parameter estimates and the inferred transmission tree were 

largely unaffected (appendix, table 2).

We chose simple geometric distributions to represent the genetic diversity both within and 

between individuals, assuming the probability of each observed sequence was time-

homogeneous. We additionally experimented with equivalent Poisson distributions, however, 

results for the ICU data were very similar using both distributions, although this may not 

hold for larger datasets with longer transmission chains. While little evidence exists on 

observed genetic diversity during an epidemic, pairwise genetic distances of the same strain 

type collected during a tuberculosis outbreak appear to approximate a geometric distribution 

[11], and with a known time to coalescence t and mutation rate μ, the genetic distance should 

follow a Pois(2μt) distribution. With an unknown coalescent time and constant pathogen 

population size, the genetic distance between contemporaneously sampled genomes should 

follow a Geometric distribution [32].

As discussed in section 2.3.1, the true distribution between independent transmission chains 

may be multimodal, and poorly approximated by a geometric distribution. For this reason, 

we excluded non-outbreak sequence types manually before running the transmission 

diversity model. Our model could be extended in the future to remove this requirement, as 
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for large datasets, and scenarios with concurrent outbreaks belonging to different strain 

types, this approach would be inappropriate. If local sampling data were available from the 

community or other regional hospital admissions, we could potentially construct an 

empirical distribution for the pairwise genetic distances expected between unlinked cases. 

As yet, such data are typically unavailable, though collection of such data may be feasible in 

the future.

We have assumed in our analysis that genetic distances are observed without error. In 

common with all existing tree estimation methods, we assumed that errors arising from 

sequencing and/or alignment were negligible. In the appendix we explored the impact of 

introducing observation error into the genetic distance matrix, finding that network 

reconstruction remained largely unaffected by such errors.

There are several potential alterations to our model which could be considered, and readily 

incorporated into our framework. The transmission chain diversity model allows the 

expected genetic distance to increase with number of transmission events, and could be 

reformulated to allow distance to increase linearly, or via an alternative relationship. Time 

between samples could instead be used as the factor by which diversity increases, however, 

this relationship is complex, and only fully understood by accounting for within-host 

dynamics [30]. Furthermore, since the time between samples from transmission pairs does 

not vary greatly in this setting, we do not believe it would affect the results significantly. 

However, in cases where the length of stay (or length of carriage in a non-hospital setting) is 

long, which would allow times between sample pairs to vary considerably, then such an 

amendment should be considered.

Furthermore, in creating this model framework, we have assumed that genetic distances are 

drawn independently, which is not the case in reality. Although in principle this assumption 

can be relaxed, this would require considerable additional computational complexity. This 

may be considered in future studies.

Identifying imported cases is challenging, especially when cases are admitted with highly 

similar strains. In such a setting, our models can exhibit significantly different results – 

under the importation structure model, an importation of the same group is more likely than 

an acquisition soon after admission from another individual on the ward, while under the 

transmission diversity model, the reverse is true. As such, when strains circulating in the 

community are very similar to those found in the hospital, the importation structure model 

will generally perform better, allowing such strains to be clustered importations rather than 

rapid acquisitions. An intensive care unit admitting patients from elsewhere in the same 

hospital is an example of a setting where similar strains may be repeatedly imported to the 

ward. With no prior knowledge of external diversity, it is hard to determine which model is 

more suitable for identifying importations. However, if both models are run, significant 

differences between estimated transmission trees suggests that external diversity is similar to 

that found within the ward. Further data collection would be required to confirm this. The 

classification of cases as importations or acquisitions is key to the evaluation of infection 

control procedures, which for healthcare facilities in particular is of great importance. The 
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framework described here can be used to provide evidence towards importation or 

acquisition in each case using genetic and surveillance data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix

Data augmentation

Since the full transmission process is typically unobserved, a data-augmented MCMC 

process was used. We sampled over the time of colonisation, as well as the source of 

colonisation, for each patient. Patients with no positive test results may have a colonisation 

time and source added (and subsequently removed) during the sampling process. Depending 

on assumptions made in the model, it may additionally be necessary to sample over the 

genetic distances arising from positive but unsampled hosts. In order to do this, one 

‘phantom observation’ is created for this individual, creating a new row (or column) of the 

genetic distance matrix Ψ, which we denote , when we propose to add a colonisation. This 

incorporates the uncertainty of unobserved colonisations to estimates of genetic diversity (γ 

and γG). Probability mass functions m(·) and mG(·) are defined, which are used to generate 

distances from this imputed sequence to isolates in the same group, and different groups, 

respectively. Since in our analyses, we have assumed that genetic distances are sampled 

independently, it is not necessary to create genetic observations for unsampled hosts. 

However, we describe the full process in this section.

We describe here the data augmentation step for the importation structure model, where the 

genetic distance between strains depends on their assigned type. Due to the need to classify 

importations by MRSA type (g), the data augmentation step is more complex than for the 

transmission chain diversity model. The aim of the data augmentation process is to sample 

over the set of missing data T = {s, g, tc, ϕ, Ψc}, that is, the set of sources s, MRSA groups 

g, colonisation times tc, admission statuses ϕ, and a set of unobserved genetic distances, Ψc. 

Further, we define  to be the set of observed imported sequences 

prior to time t.
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At each iteration, a new dataset T* = {s*, g*, tc*, ϕ*, Ψc* is proposed. Any patient who has 

a colonisation added by the algorithm is assigned a colonisation time and source, and a set of 

genetic distances from all other observed and inferred isolates. Let vs be the number of 

patients never screened positive, vq be the number of patients who carry MRSA at some 

point during their episode (either observed, or added by the algorithm), va be the number of 

patients for whom a colonisation time has been added by the algorithm, v0 of whom have no 

‘offspring’; that is, the inferred colonised patients who infect no further individuals. Finally, 

let vn be the number of patients who have a positive screen, but no sequenced isolates. We 

define the proposal ratio qA,A* = P(T* → T)/P(T → T*). At each iteration of the algorithm, 

one of the following moves is made with equal probability:

• Change colonisation route/time

Select uniformly at random one of the vq patients (j, say) with a colonisation time. If vq = 0, 

no move is made. With probability w, propose the patient was positive on admission ( ), 

otherwise sample a colonisation time  from { }, where lj is the last potential day 

of colonisation (the earliest from day of discharge, day of first positive screen, and first 

onward transmission). If an importation is proposed, then with probability w′, we set  to 

the same group of one of the  already-observed imported patients, otherwise, set 

. If an acquisition has been proposed, we then select one of the  patients already 

colonised on the proposed transmission day (excluding the chosen patient, if present on day 

) to be the source of colonisation. If there are no other colonised patients on this day, the 

move is rejected. We define qT,T* according to the following table, where the row denotes 

the current state, and the column is the proposed state:

Acquisition Importation (g j
∗ ≠ j) Importation (g j

∗ = j)

Acquisition C t j
c ∗

C t j
c

∣ Yext t j
a ∣ 1 − w

ww′ l j − t j
a + 1 C t j

c

1 − w

w 1 − w′ l j − t j
a + 1 C t j

c

Importation (gj ≠ j) ww′ l j − t j
a + 1 C t j

c ∗

∣ Yext t j
a ∣ 1 − w

1 w′
∣ Yext t j

a ∣ 1 − w′

Importation (gj = j) w 1 − w′ l j − t j
a + 1 C t j

c ∗

1 − w

1 − w′ ∣ Yext t j
a ∣

w′

1

• Change genetic distances

Select one of the vn individuals with a positive screen, but no genetic data (j, say). If vn = 0, 

no move is made. Update their set of ns + va genetic distances . These 

distances are drawn at random according to the probability mass function m and mG if the 

sequence being compared is taken from a related or unrelated chain respectively. This move 

has proposal ratio
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• Add colonisation

Select at random one of the vs − va patients (j, say) who is currently assumed to be negative. 

If vs − va = 0, no move is made. With probability w, define this patient to be an importation, 

otherwise, an acquisition. If an importation is proposed, set . Now, we 

determine whether the proposed importation is clustered (in which case a group must be 

chosen) or not. With probability w′, propose the sequence is clustered, and select at random 

one of the already-observed imported sequences , setting the proposed MRSA 

group  to that of the chosen sequence. If , the move is rejected. Draw a set of 

ns + va genetic distances  from probability mass functions m(·) and mG(·), 

for strains in the same group and different groups respectively.

With probability 1 − w′, the sequence is not clustered, so the chosen individual is assigned to 

a new group; . Draw a set of ns + va genetic distances  from the 

probability mass functions mG(·) to all other sequences. If an acquisition is proposed, then 

draw a colonisation time  from { }. Select with equal probability a transmission 

source  from the  colonised patients on that day. If there are no colonised patients 

on this day, no move is made. Finally, select a set of ns + va genetic distances, according to 

the relationship between the chosen patient and other colonised patients.

• Remove colonisation

Choose at random one of the v0 patients who have had a colonisation time added by the data 

augmentation process, and are not currently assumed to be the source of infection for 

another individual. If v0 = 0, then no move is made. Set , ,  and .

Having established the augmented data move mechanisms, the probability ratios qT,T* for 

adding or removing colonisation times may be given as follows:

Importation (clustered) Importation (unclustered) Acquisition

Add vs − va ∣ Yext t j
a ∣

ww′ v0 + 1 Ma

vs − va
w 1 − w′ v0 + 1 Ma

vs − va t j
d − t j

a + 1 C t j
c ∗

1 − w v0 + 1 Ma

Remove ww′v0Mr

vs − va + 1 ∣ Yext t j
c ∣

w 1 − w′ v0Mr
vs − va + 1

v0 1 − w Mr

t j
d − t j

a + 1 vs − va + 1 C t j
c − 1

where
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and

Having sampled a candidate colonisation time/source, the candidate augmented dataset T* is 

accepted with probability

The proposal probability mass functions m and mG, which are used to generate unobserved 

sequences related to a transmission source, an external imported strain, or the reference 

strain respectively, should be specified pre-analysis. Similarly, one must set w and w′, the 

probabilities of selecting an importation, and choosing an importation cluster. These choices 

will not affect results, but will impact the convergence and mixing rates of the algorithm.

Performing this process over a large number of iterations will allow us to calculate the 

posterior probability that a particular transmission route exists; this can be calculated as the 

proportion of iterations for which an inferred route is made.

The data augmentation process is implemented similarly for the transmission chain diversity 

model. The same moves are proposed, but the imputation of groupings, g, is not required. 

For reasons of brevity, we omit the full description of the data augmentation process for the 

transmission chain diversity model.

Simulations

In order to assess the performance of our model, we simulated epidemiological and genetic 

data for hospital wards according to each model. We now describe in detail how data may be 

simulated under either of the models described. Patient episodes are generated with 

probability p of carriage on admission, and a length of stay is drawn from a Poisson 

distribution with mean D. Tests are generated every x calendar days, and positive patients 

are observed to be negative with probability 1 − z. Patients positive on admission are 

assigned a set of genetic distances to all previously observed sequences (if applicable), 

which are drawn from distributions according to the relationship between isolates. For the 

transmission chain diversity model, genetic distances are generated by randomly drawing 

samples from a Geom(γG) distribution. For the importation structure model, an importation 

sequence is defined to be unclustered if no previous importation sequences have been 

recorded. If the sequence is not the first to be observed, the strain is defined to be clustered 

with probability c, otherwise, it is unclustered. For genetic distances to isolates of the same 
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type, we draw genetic distances at random according to the distribution Geom(γ), while for 

sequences in a different group, genetic distances are drawn from the Geom(γG) distribution.

Susceptible patients become colonized at a rate of βC(t) at time t. Colonized patients 

contribute to the colonized population C(t) from the day after acquisition, or the day of 

importation, until the day of discharge. For a newly colonized patient j, colonized on day t, a 

transmission source sj is chosen uniformly at random from the C(t) positive patients present 

at the start of the day of colonisation. A set of genetic distances is generated according to the 

relationship between this patient and all previously observed patients with sequenced 

isolates. Under the importation structure model, distances are drawn from the Geom(γ) or 

Geom(γG) distributions, depending on whether the isolates are of the same type, or different 

type respectively. Under the transmission chain diversity model, distances are drawn from 

the Geom(γkτ) or Geom(γG) distributions, depending on whether the isolates belong to the 

same transmission chain (τ transmission events apart), or are unrelated, respectively. At 

subsequent observation times resulting in positive results, genetic distances are generated 

accordingly. The first observation is assigned the same distances generated for the patient's 

importation/acquisition. Subsequent sequenced isolates differ from previous within-host 

sequences by x SNPs, where x ~Geom(γ).

For the simulations in this study, we used D = 7, x = 3, and simulated admissions over 250 

days. In figures 7 and 8, parameters estimated from simulated datasets are shown for the 

importation clustering model and the transmission diversity model respectively.

Simulation using ‘seedy’

While we can recover parameters from data simulated under our models in many reasonable 

settings, we do not explicitly describe evolutionary dynamics, rather a process by which 

pairwise genetic distances are generated. While this allows additional flexibility in our 

framework, and avoids specification of processes which remain poorly understood, it is of 

interest to assess the performance of our analysis using data simulated under a more realistic 

evolutionary model. We used the R package ‘seedy’ (Simulation of Evolutionary and 

Epidemiological Dynamics, http://cran.r-project.org/web/packages/seedy/) v1.2.1 to 

generate sequence data from a hospital outbreak. This software simulates pathogen evolution 

within- and between-host during a communicable disease outbreak, under a user-specified 

evolutionary model. We simulated trees as before, and passed infection times and routes to 

the simfixoutbreak function, which generated genome samples at designated times. We 

specified the effective population size to be 3000, transmission bottleneck size to be 1, and 

allowed the mutation rate and the importation diversity (that is, the expected genetic distance 

between two importations) to vary.

Figure 9 shows an example of a simulated outbreak, and the estimated routes of 

transmission, with genetic data simulated using seedy. The variable governing the expected 

distance between imported cases was a key factor in the performance of the model, with 

higher values typically leading to better network recovery. This effect is similar to lower 

values of γG generating larger between-chain/group genetic distances under our models, and 
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providing a greater discrimination between epidemiologically-linked hosts. Table 3 provides 

parameter estimates and Δ AUC values for simulated outbreaks.

Perturbation of the genetic distance matrix

Errors in sequencing and alignment can lead to incorrectly observed genetic distances. In 

order to assess the impact of such errors, we perturbed genetic distance matrices generated 

from simulated outbreaks, and compared parameter estimates and inferred transmission 

routes. Matrices were perturbed by adding a Poisson-distributed ‘noise’ variable to each 

pairwise distance; we considered expected errors of 0.1, 0.5, 1 and 2 SNPs.

Figure 10 shows an example simulated outbreak, and the transmission routes inferred using 

increasingly perturbed genetic distance matrix. In each of our simulation scenarios, we 

found that the transmission trees remained qualitatively similar, and compared to the tree 

generated under the unperturbed distance matrix, estimated trees had a Δ AUC between 

−0.01 and 0.01.

Figure 11 shows posterior parameter estimates for each simulation scenario under each level 

of matrix perturbation. While epidemiological parameters (p, β) remained unchanged by 

perturbation, the genetic diversity parameters fell in line with the error-induced increases in 

pairwise distances. The chain diversity parameter k remained approximately the same, 

though with a wide credible interval.

Posterior predictive distributions

We used posterior predictive distributions to assess model fit. Having fit our model to the 

Rosie hospital data, we repeatedly drew samples from the posterior distribution and used 

these to simulate new datasets, using the observed admission and discharge times which 

were not part of the modelling framework. We looked at the number of importations, judged 

as the number of patients whose first test result was positive, the number of acquisitions, 

defined to be the number of patients with a negative test followed by a positive test as well 

as the overall genetic diversity, the expected pairwise distance between any two isolates.
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Figure 1. 
Colonized patient episodes in the Rosie hospital neonatal ward. Patients are shown as 

colonized (black) after their first MRSA positive swab result until the end of their episode. 

Susceptible patients are shown in grey. Patient marked with an asterisk (*) carry a non-

outbreak sequence type.
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Figure 2. 
A hospital outbreak was simulated, and we attempted to recover the routes of transmission. 

Patients are represented by open or closed circles, representing acquisitions or importations 

respectively, and transmission routes are shown as arrows. (A) The true transmission tree. 

(B) The uninformed transmission tree, in which all colonized patients at the time of 

transmission are considered equally likely sources of infection. (C) The estimated 

transmission tree under the transmission diversity model. Numbers beside each node 

represent the estimated probability that the individual was positive on admission.
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Figure 3. 
Group identification under importation structure model. Data were simulated under a range 

of within and between group genetic distance distributions, and we estimated the posterior 

probability that the importation structure model placed an infected individual in the correct 

group (belonging to the same group as the first importation of that group). Baseline scenario: 

p = 0.05, z = 0.8, β = 0.005, c = 0.2.
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Figure 4. 
ROC curves for estimated transmission trees, based on data simulated under various 

parameters. We varied transmission rate (A), the geometric rate parameter governing 

between-chain genetic diversity, for which lower values correspond to larger genetic 

distances (B), and test sensitivity (C). The ROC curves shown are the average for ten 

datasets simulated for each scenario.
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Figure 5. 
Colonized patient episodes in the Rosie hospital neonatal ward. Horizontal bars represent 

patient episodes, with ID marked alongside. Grey bars denote susceptibility, while black 

represents the period after the patient's first MRSA positive swab. Arrows denote inferred 

routes of transmission, with darker arrows representing higher posterior probabilities, the 

values of which are given alongside. Patients carrying non-outbreak types are shown at the 

top of the figure.

Worby et al. Page 27

Ann Appl Stat. Author manuscript; available in PMC 2016 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
Properties of the transmission network, estimated under the transmission diversity model. 

The posterior distribution of secondary infections for each colonized individual (left), and of 

the number of connected nodes in each subtree (right).
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Figure 7. 
Estimated parameters for the importation cluster model for datasets simulated under various 

scenarios. Each panel shows posterior median estimates and 95% credible intervals for each 

parameter. Colours represent the scenario under which the data were simulated; baseline 

(red), high transmission (blue), high within-host diversity (green), high between-chain 

diversity (purple), and high group clustering parameter (orange). True values are shown as 

dashed vertical lines.
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Figure 8. 
Estimated parameters for the transmission chain diversity model for datasets simulated 

under various scenarios. Each panel shows posterior median estimates and 95% credible 

intervals for each parameter. Colours represent the scenario under which the data were 

simulated; baseline (red), high transmission (blue), high within-host diversity (green), high 

between-chain diversity (purple), and high chain diversity parameter (orange). True values 

are shown as dashed vertical lines.
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Figure 9. 
Transmission tree recovery using genetic data simulated using the R package ‘seedy’. (A) 

The true transmission tree simulated as described in the simulations section (p = 0.05, β = 

0.008). sampled genomes were simulated using the simfixoutbreak function in seedy 

(mutation rate 0.01 per generation, 20 pathogen generations per day, effective pathogen 

population size 3000, transmission bottleneck size 1). (B) The uninformed transmission tree, 

in which all possible transmission routes at time of infection are shown, and are weighted by 

the number of possible sources. (C) Inferred transmission tree, using the transmission 

diversity model.
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Figure 10. 
A simulated transmission tree (top left), and recovered transmission routes under varying 

degrees of genetic distance observation error. The ‘noise’ variable indicates the expected 

additional genetic distance observed on top of the true distance due to errors arising from 

sequencing and/or alignment. The network was simulated under the transmission diversity 

model with γ = 0.3, γG = 0.01, p = 0.05 and chain diversity parameter k = 0.7.
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Figure 11. 
Posterior median estimates for genetic diversity parameters under different levels of genetic 

distance error. Matrices were perturbed by adding a Poisson-distributed ‘noise’ variable to 

each pairwise distance; we considered expected errors of 0.1, 0.5, 1 and 2 SNPs. Each 

coloured line corresponds to a different simulated scenario, with varying transmission rates 

(β=0.005, 0.008) and between-chain diversity values (γG=0.01, 0.08, 0.1, 0.3). True values of 

parameters are indicated with dashed horizontal lines; four different levels of γG were used.
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Figure 12. 
Posterior predictive distributions for number of acquisitions (left) number of importations 

(centre) and the overall average pairwise diversity (right). Values observed from the Rosie 

hospital dataset are marked as vertical blue lines, while the bounds of the 95% central 

quantile of the posterior predictive distribution are marked as dashed red lines.
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Table 1

Estimated tree accuracy under various scenarios.

Scenario Parameters AUC (uninf.) AUC (inf.)

Baseline * 0.67 0.93

Low sensitivity z = 0.6 0.67 0.84

High sensitivity z = 0.9 0.68 0.94

Low transmission β = 0.001 0.62 0.96

High transmission β = 0.008 0.74 0.91

Equal diversity ratio γ = 0.1, γG = 0.1 0.68 0.91

Low diversity ratio γ = 0.3, γG = 0.1 0.68 0.93

High diversity ratio γ = 0.3, γG = 0.005 0.68 0.96

No increasing chain diversity k = 1 0.68 0.93

Strongly increasing chain diversity k = 0.5 0.69 0.90

Each value presented is the mean area under the ROC curve (AUC) for estimated trees under the transmission diversity model, based on 20 datasets 
simulated under the parameters indicated. Uninformed AUC is based on assigning equal weighting to all available sources. The more accurate 
reconstruction is highlighted in bold.

*
Baseline scenario: p = 0.05, z = 0.8, β = 0.005, γ = 0.2, γG = 0.05, k = 0.8.
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Table 2

Posterior mean estimates and 95% credible intervals for parameters of each model fitted to the Rosie hospital 

outbreak data.

Parameter Transmission diversity (95% CrI) Importation structure (95% CrI)

Probability of importation, p 0.012 (0.007, 0.019) 0.017 (0.009, 0.024)

Test sensitivity, z 0.72 (0.65, 0.79) 0.70 (0.64, 0.77)

Transmission rate β × 10–5 89.9 (38.8, 158.2) 80.6 (30.1, 153.7)

Within host/group diversity γ 0.20 (0.18, 0.23) 0.22 (0.19,0.25)

Between host/group diversity, γG 0.17 (0.18, 0.23) 1.6 (1.4, 1.9) × 10–4

Chain diversity factor, k 1.2 (0.71, 1.82) —
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Table 3

Posterior median estimates and 95% credible intervals for parameters under data simulated under various 

scenarios.

Scenario p z β γ γ G k AUC (Δ AUC)

μ = 0.01, 
d = 5

0.04 (0.02,0.06) 0.81 (0.65, 0.92) 0.005 (0.003, 0.009) 0.59 (0.47, 0.70) 0.078 (0.075, 0.081) 1.17 (0.79, 1.57) 0.868 (+0.168)

μ = 0.03, 
d=5

0.07 (0.05,0.10) 0.71 (0.56, 0.81) 0.010 (0.006, 0.016) 0.49 (0.40, 0.60) 0.041 (0.039, 0.042) 0.78 (0.620, 1.02) 0.98 (+0.275)

μ = 0.01, 
d = 25

0.06 (0.04,0.09) 0.83 (0.72, 0.91) 0.012 (0.008, 0.017) 0.62 (0.51, 0.72) 0.020 (0.019, 0.021) 0.97 (0.80, 1.22) 0.93 (+0.224)

μ = 0.03, 
d = 25

0.08 (0.06, 0.11) 0.81 (0.72, 0.88) 0.011 (0.007, 0.015) 0.25 (0.21, 0.29) 0.018 (0.017, 0.018) 0.66 (0.54, 0.82) 0.938 (+0.179)

The variable d is the expected number of SNPs between imported cases, while μ represents the per-generation mutation rate. Data were simulated 
under the parameters p = 0.05, β = 0.008 and z = 0.8.
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Table 4

Posterior median estimates and 95% credible intervals for the Rosie hospital dataset, with k constrained to the 

interval [0, 1].

Parameter Estimate (95% credible interval)

p 0.0109 (0.0057,0.0186)

z 0.765 (0.696,0.825)

β 0.0010 (0.0004,0.0019)

γ 0.206 (0.180,0.233)

γ G 0.157 (0.143,0.171)

k 0.86 (0.56,0.99)
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