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Abstract

We examine the behaviour of OLS-demeaned/detrended and GLS-demeaned/de-

trended unit root tests that employ stationary covariates, as proposed by Hansen

(1995) and Elliott and Jansson (2003), respectively, in situations where the mag-

nitude of the initial condition of the time series under consideration may be

non-negligible. We show that the asymptotic power of such tests is very sensitive

to the initial condition; OLS- and GLS-based tests achieve relatively high power

for large and small magnitudes of the initial condition, respectively. Combining

information from both types of test via a simple union of rejections strategy is

shown to effectively capture the higher power available across all initial condition

magnitudes.

Keywords: Unit root tests; stationary covariates; initial condition uncertainty; asymp-

totic power.

JEL Classification: C22.

1 Introduction

Conventional testing for a unit root in a time series is typically carried out using

the OLS-demeaning/detrending procedure of Dickey and Fuller (1979), or the GLS-

demeaning/detrending procedure of Elliott, Rothenberg and Stock (1996). When the

series under consideration covaries with an available stationary variable, Hansen (1995)
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showed that it is possible to substantially increase the power of the OLS-based unit

root tests by augmenting the underlying OLS regression model with that stationary

covariate. Elliott and Jansson (2003) and Westerlund (2013) show that incorporating

covariates in a GLS-demeaning/detrending setting also improves the power of GLS-

based unit root tests.

As shown in Müller and Elliott (2003), the powers of conventional OLS-based and

GLS-based unit root tests are sensitive to the magnitude of the unobserved initial

condition of a time series. For a small initial condition, GLS-based tests can have sub-

stantially more power than their OLS-based counterparts, while the reverse is true for

a large initial condition. Typically, the power of OLS-based tests is an increasing func-

tion of this magnitude, whereas GLS-based tests demonstrate the opposite behaviour.

In any practical testing situation, the magnitude of the initial condition is not known

(nor can it be consistently estimated) and it is therefore unclear whether it is best to

apply an OLS- or GLS-based unit root test in order to extract the most information

about the presence, or otherwise, of a unit root. Harvey et al. (2009) examine the

behaviour of a simple union of rejections strategy whereby (in its simplest guise) the

unit root null hypothesis is rejected whenever either of the individual OLS- or GLS-

based unit root tests rejects. This procedure is shown to perform well in practice since

it captures the superior power of the GLS-based test for a small initial condition and

the superior power of the OLS-based test for a large initial condition.

In this paper we show that the patterns of sensitivity of the power of OLS- and

GLS-based covariate augmented unit root tests to the magnitude of the initial condition

are actually very similar to that of their non-covariate augmented counterparts. This

implies that the same considerations are relevant as in the non-covariate augmented

case, when deciding which of the OLS- or GLS-based covariate augmented unit root

tests to apply. Our proposed solution is once again to employ a union of rejections

strategy, which we demonstrate is very effective in the covariate augmented context.

The plan of the paper is as follows. The next section sets out the model and

describes the Hansen (1995) and Elliott and Jansson (2003) covariate augmented unit

root tests. Here we also consider a simpler variant of the Elliott and Jansson (2003)

GLS-based test following Westerlund (2013) which proves useful in the context of the

union of rejections strategy. Section 3 derives the local asymptotic power functions

of the tests in the presence of possibly non-negligible initial conditions and examines

their asymptotic local powers. Section 4 introduces the union of rejections strategies

and examines their large sample power properties. Finite sample power comparisons

are shown in section 5, which also includes discussion of issues regarding the practical

implementation of the recommended procedure. Section 6 concludes the paper. In
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what follows, I(.) denotes the indicator function, L denotes the lag operator, p→ denotes

convergence in probability, and ⇒ denotes weak convergence.

2 The model and covariate augmented unit root

tests

For purposes of transparency we will conduct our analysis within the context of a fairly

simple model that admits a single covariate and abstracts from serial correlation in the

innovations; we subsequently discuss elaborations to the case of more general serial

correlation in section 5 below. We consider the following model for the series yt and

the covariate xt, t = 1, ..., T :[
yt

xt

]
=

[
µy + βyt

µx + βxt

]
+

[
uy,t

ux,t

]
(1)

where [
uy,t − ρuy,t−1

ux,t

]
=

[
vt

et

]
. (2)

Within this generic data generating process (DGP) specification we identify three al-

ternative specifications for the deterministic components of yt and xt, with varying

restrictions concerning the trend component of yt and xt:

Model A : βy = βx = 0

Model B : βy 6= 0, βx = 0

Model C : βy 6= 0, βx 6= 0

In Model A, no trends are assumed present in either yt or xt; in Model B, a trend is

permitted in yt alone, while both yt and xt admit a trend in Model C. We make the

following assumption regarding the innovations vt and et:

Assumption 1. The stochastic process εt = [ vt et ]′ is a martingale difference

sequence with variance E (εtε
′
t) = Ω where

Ω =

[
σ2
v σev

σev σ2
e

]

and suptE(‖et‖4) <∞. Let the squared correlation between the innovation vt and the
covariate ux,t = et be denoted by

R2 =
σ2
ev

σ2
vσ

2
e

.
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Within (2), for the autoregressive process uy,t we set ρ = 1 + c/T for c ≤ 0, with c = 0

and c < 0 corresponding to unit root and local-to-unit root autoregressive processes,

respectively. Here ux,t = et is the stationary covariate which is correlated with the

innovation term of uy,t when σev 6= 0 (i.e. when R2 > 0).

In this paper we wish to allow for the possibility that the initial condition of the

autoregressive process uy,t, i.e. uy,1, is asymptotically non-negligible, so that its limiting

effect on covariate augmented unit root tests can be ascertained. Specifically, the

following assumption is made regarding the behaviour of uy,1:

Assumption 2. For c < 0, the initial condition is generated according to uy,1 =

α
√
σ2
v/(1− ρ2), where α is a fixed parameter. For c = 0, we may set uy,1 = 0 without

loss of generality, due to the exact similarity of the covariate augmented unit root tests

to the initial condition in this case.

In Assumption 2, the parameter α controls the magnitude of the fixed initial condition

uy,1 (i.e. the deviation of the initial observation from the underlying mean/trend in the

data) relative to the standard deviation of a stationary AR(1) process with parameter ρ

and innovation variance σ2
v. This form for the initial condition is closely related to that

given in Müller and Elliott (2003) and Harvey and Leybourne (2005). Notice also that,

when c < 0, the initial value is not asympytotically negligible because T−1/2uy,1 →
ασv/

√
−2c as T →∞.

Our focus in this paper is on testing the unit root null H0 : ρ = 1 against the

stationary alternative H1 : ρ < 1, in the case where a stationary covariate is available.

In the context of the model (1)-(2) and Assumption 1 we now outline statistics that

derive from the Hansen (1995) and Elliott and Jansson (2003) approaches to covariate

augmented unit root testing, which are respectively based on OLS and GLS detrending

of the yt data.

2.1 OLS-based statistics

The Hansen (1995) approach tests for a unit root in yt using a Dickey-Fuller-type regres-

sion, augmented by the stationary covariate as an additional regressor, and implicitly

employs OLS demeaning/detrending of the yt and xt series (note that Hansen does

not consider Model C, but extension to this case is trivial). Based on our components

representation of the DGP in (1), we express this type of statistic as follows:

tφ̂ =
φ̂

s.e.(φ̂)
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where φ̂ and s.e.(φ̂) are the OLS estimate and associated standard error of φ obtained

from the regression

∆ûy,t = φûy,t−1 + δûx,t + ηt (3)

with ûy,t and ûx,t denoting residuals from the OLS demeaned/detrended yt and xt series

ûy,t =

{
yt − µ̂y for Model A

yt − µ̂y − β̂yt for Models B, C

ûx,t =

{
xt − µ̂x for Models A, B

xt − µ̂x − β̂xt for Model C

where in the demeaned cases, µ̂y and µ̂x denote the estimated intercepts in the regres-

sions of yt and xt, respectively, on a constant, while in the detrended cases, µ̂y, β̂y and

µ̂x, β̂x denote the intercept, trend coeffi cient estimates in the regressions of yt and xt,

respectively, on a constant and linear trend.

2.2 GLS-based statistics

Elliott and Jansson (2003) propose an approach to covariate augmented unit root test-

ing based on a likelihood ratio principle combined with GLS demeaning/detrending for

yt but retaining OLS demeaning/detrending for the stationary covariate xt. Specifi-

cally, for our basic model, their statistic is given by

Λ̂ = T

tr
[ T∑

t=1

ût(1)ût(1)′

]−1 [ T∑
t=1

ût(ρ̄)ût(ρ̄)′

]− 1− ρ̄


where, for r = ρ̄ = 1 + c̄/T (for some chosen c̄ < 0) and r = 1,

ût(r) = zt(r)− dt(r)′β̂(r)

with

zt(r) =

[
(1− rI(t > 1)L)yt

xt

]

dt(r)
′ =



[
1− rI(t > 1) 0

0 1

]
for Model A[

1− rI(t > 1) 0 (1− rI(t > 1)L)t

0 1 0

]
for Model B[

1− rI(t > 1) 0 (1− rI(t > 1)L)t 0

0 1 0 t

]
for Model C
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and

β̂(r) =

[
T∑
t=1

dt(r)Ω̂
−1dt(r)

′

]−1 [ T∑
t=1

dt(r)Ω̂
−1zt(r)

]
where Ω̂ is a consistent estimator of Ω.

An alternative approach to covariate augmented unit root testing that also makes

use of GLS demeaning/detrending for yt is to adapt the Hansen (1995) Dickey-Fuller-

based statistic, where the deterministic coeffi cients in (1) are estimated using GLS

rather than OLS, an approach suggested by Westerlund (2013). Specifically, we con-

sider the following GLS-based variant of Hansen’s statistic:

tφ̃ =
φ̃

s.e.(φ̃)

where φ̃ and s.e.(φ̃) are obtained from the fitted OLS regression

∆ũy,t = φ̃ũy,t−1 + δ̃ûx,t + η̃t (4)

with ûx,t denoting residuals from the OLS demeaned/detrended xt series as before,

but now ũy,t denoting the GLS demeaned/detrended yt series, obtained from an OLS

regression of (1 − ρ̄I(t > 1)L)yt on 1 − ρ̄I(t > 1) for Model A, and (1 − ρ̄I(t > 1)L)yt

on [1− ρ̄I(t > 1), (1− ρ̄I(t > 1)L)t]′ for Models B and C.

Both the Λ̂ and tφ̃ GLS-based statistics rely on specifying a value of c̄. Elliott and

Jansson (2003) and Westerlund (2013) suggest using the Elliott et al. (1996) values of

c̄ = −7 for Model A and c̄ = −13.5 for Models B and C. These choices are motivated

by the value of c = c̄ for which the nominal 0.05-level asymptotic Gaussian local power

envelope is at 0.50 in the non-covariate augmented case, which corresponds to the case

of R2 = 0 in the context of the covariate augmented tests. As Elliott and Jansson

(2003) and Westerlund (2013) note, it is also possible to select c̄ according to the value

of R2, so that the asymptotic Gaussian local power envelope is at 0.50 for any given

R2, but these authors do not recommend such an approach, arguing that unit root test

power is increasing in R2 (for a given c), and so base their choice of a single c̄ parameter

on the lowest power scenario (R2 = 0). In what follows, we follow such previous work

and set c̄ = −7 for Model A and c̄ = −13.5 for Models B and C.

3 Asymptotic results

In this section we derive the local asymptotic distributions for tφ̂, tφ̃ and Λ̂ under

Assumptions 1 and 2, when ρ = 1 + c/T , c ≤ 0. We make use of the following weak
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convergence result

T−1/2

brT c∑
t=1

[
vt

et

]
⇒

[
σv 0

σeR
√
σ2
e(1−R2)

][
W1(r)

W2(r)

]

=

[
σvW1(r)

σe
{
RW1(r) +

√
1−R2W2(r)

} ]

where W1(r) and W2(r) are independent Brownian motions. The initial condition

manifests itself via the result (see, for example, Müller and Elliott, 2003)

T−1/2(uy,brT c − uy,1)⇒ σvKc(r) (5)

where

Kc(r) =

{
W1(r) c = 0

α(erc − 1)/
√
−2c+W1c(r) c < 0

(6)

and W1c(r) is the Ornstein-Uhlenbeck process

W1c(r) = c

∫ r

0

ec(r−s)W1(s)ds+W1(r).

The following theorem now provides the limit distributions of the three covariate aug-

mented unit root statistics, the proof of which can be found in the companion working

paper version Aristidou et al. (2016) [ALT].1

Theorem 1 For the DGP given by (1)-(2), under Assumptions 1 and 2, with ρ =

1 + c/T , c ≤ 0,

(i) For Model i (i = A,B,C),

tφ̂ ⇒
c√

1−R2

√∫ 1

0
Lic(r)

2dr +
√

1−R2

∫ 1

0
Lic(r)dW1(r)√∫ 1

0
Lic(r)

2dr
−R

∫ 1

0
Lic(r)dW2(r)√∫ 1

0
Lic(r)

2dr

where

LAc (r) = Kc(r)−
∫ 1

0
Kc(s)ds

LBc (r) = LCc (r) = Kc(r)−
{

4
∫ 1

0
Kc(s)ds− 6

∫ 1

0
sKc(s)ds

}
−
{

12
∫ 1

0
sKc(s)ds− 6

∫ 1

0
Kc(s)ds

}
r.

1Note that the key result (6) which shows how the initial condition enters the limit distributions is

unchanged if α is not a fixed parameter but is instead a random variable. Of course, the limit Kc(r)

will depend on the distribution assumed for α in such a case.
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(ii) For Model i (i = A,B,C),

tφ̃ ⇒
c√

1−R2

√∫ 1

0
M i

c,c̄(r)2dr +
√

1−R2

∫ 1

0
M i

c,c̄(r)dW1(r)√∫ 1

0
M i

c,c̄(r)2dr
−R

∫ 1

0
M i

c,c̄(r)dW2(r)√∫ 1

0
M i

c,c̄(r)2dr

+
cα√

−2c(1−R2)

∫ 1

0
M i

c,c̄(r)dr√∫ 1

0
M i

c,c̄(r)2dr
+

1√
1−R2

N i
c,c̄

{
c
∫ 1

0
rM i

c,c̄(r)dr −
∫ 1

0
M i

c,c̄(r)dr
}

√∫ 1

0
M i

c,c̄(r)2dr

+
R√

1−R2

P i
∫ 1

0
M i

c,c̄(r)dr +Qi
∫ 1

0
rM i

c,c̄(r)dr√∫ 1

0
M i

c,c̄(r)2dr

where

MA
c,c̄(r) = Kc(r)

MB
c,c̄(r) = MC

c,c̄(r) = Kc(r)−
{
c̄∗Kc(1) + 3(1− c̄∗)

∫ 1

0
sKc(s)ds

}
r

NA
c,c̄ = 0

NB
c,c̄ = NC

c,c̄ = c̄∗Kc(1) + 3(1− c̄∗)
∫ 1

0
rKc(r)dr

PA = PB = RW1(1) +
√

1−R2W2(1)

PC = 4
{
RW1(1) +

√
1−R2W2(1)

}
− 6

{
R
∫ 1

0
rdW1(r) +

√
(1−R2)

∫ 1

0
rdW2(r)

}
QA = QB = 0

QC = 12
{
R
∫ 1

0
rdW1(r) +

√
(1−R2)

∫ 1

0
rdW2(r)

}
− 6

{
RW1(1) +

√
1−R2W2(1)

}
with c̄∗ = (1− c̄+ c̄2/3)−1(1− c̄).
(iii) For Model i (i = A,B,C),

Λ̂⇒ Gi
c,c̄ +H i

c,c̄ +
R2

1−R2
(c̄2 − 2cc̄)

∫ 1

0
Sic(r)

2dr +
R√

1−R2
2c̄
∫ 1

0
Sic(r)dW2(r)

where

GA
c,c̄ = c̄2

∫ 1

0
Kc(r)

2dr − c̄Kc(1)

GB
c,c̄ = GC

c,c̄ = c̄2
∫ 1

0
Kc(r)

2dr + (1− c̄)Kc(1)2 − k−1
c̄

{
(1− c̄)Kc(1) + c̄2

∫ 1

0
rKc(r)dr

}2

HA
c,c̄ = HC

c,c̄ = 0

HB
c,c̄ = k−1

c̄

{
(1− c̄)Kc(1) + c̄2

∫ 1

0
rKc(r)dr

}2

−
{
kc̄ +

c̄2R2

12(1−R2)

}−1

×[
(1− c̄)Kc(1) + c̄2

∫ 1

0
rKc(r)dr +

R2

1−R2

{
c̄(c− c̄)

2

∫ 1

0
Kc(r)dr − c̄(c− c̄)

∫ 1

0
rKc(r)dr

}
+

R√
1−R2

{
c̄
∫ 1

0
rdW2(r)− c̄

2

∫ 1

0
dW2(r)

}]2
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SAc (r) = SBc (r) = Kc(r)−
∫ 1

0
Kc(s)ds

SCc (r) = Kc(r)− (4− 6r)
∫ 1

0
Kc(s)ds− (12r − 6)

∫ 1

0
sKc(s)ds

with kc̄ = 1− c̄+ c̄2/3.

We now consider numerical results for the asymptotic properties of the tests pre-

sented so far in this paper. In Table 1 we report asymptotic null (left-tail) critical

values for R2 = {0, 0.1, ..., 0.9} for all tests at the nominal 0.10-, 0.05- and 0.01-levels,
which were obtained by direct simulation of the limit representations of Theorem 1

with c = 0 (note from (6) that the limits are not dependent on α when c = 0). For all

asymptotic results in this paper, we conducted Monte Carlo simulations using Gauss

9.0 with 50,000 replications, approximating the Brownian motion processes W1(r) and

W2(r) using independent NIID(0, 1) random variates for each, and approximating the

corresponding integrals by normalized sums of 2000 steps.

To gain some insight into the relative power performance of the three tests tφ̂, tφ̃
and Λ̂, we first abstract from the effect of the initial condition by making the usual

assumption that it is asymptotically negligible. The limit distributions of the statistics

are then as given in Theorem 1 on setting α = 0. Figures 1 and 2 show the local

asymptotic powers of the tests conducted at the nominal 0.05-level as functions of

−c = {0, 0.5, ..., 20.0} (with c = 0 corresponding to asymptotic size, i.e. 0.05) for

Models A and B, respectively, for R2 = {0.2, 0.4, 0.6, 0.8}.
Consider first the results for Model A in Figure 1. We observe that for smaller

values of R2, the familiar result of the GLS-based tests delivering a substantial power

advantage relative to the OLS-based test tφ̂ is borne out. These power advantages,

however, diminish as R2 increases, so that by R2 = 0.8, there is considerably less

difference between the power profiles of the three tests. For the two GLS-based tests,

there is very little to choose between them for small to moderate R2, while for larger

R2, the Λ̂ test has slightly lower power than tφ̃ for small −c but modestly higher
power for some larger −c. In Figure 2 (Model B), as expected we see a reduction in
power of all tests relative to Model A, brought about by the allowance of a trend in

yt. However, it is still the case that for small R2, the GLS-based tests outperform

tφ̂, and have similar levels of power to each other. Interestingly, as R
2 increases, tφ̃

becomes generally more powerful than Λ̂, and by R2 = 0.8, the relative power levels of

Λ̂ have reduced to values generally below those of the OLS-based test tφ̂. In contrast,

tφ̃ retains a power advantage over tφ̂ for all R
2 considered. Overall, from the results

of Figures 1-2 we conclude that, if we abstract from potentially non-negligible initial

conditions, on balance the tφ̃ test offers arguably the most appealing power profile of

the tests considered.
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We now examine the effects of an asymptotically non-negligible initial condition on

local asymptotic power. Figures 3 and 4 report local asymptotic powers of the five

tests conducted at the nominal 0.05-level, as functions of α = {0, 0.1, ..., 4.0} (α = 0

corresponding to an asymptotically negligible initial condition); note that replacing α

with −α would give the same results. Figure 3 presents results for Model A, where a
representative local alternative setting of c = −5 is used, while Figure 4 gives results

for Model B using c = −10.

Considering first Model A in Figure 3, the stand out feature of these power curves

is that while the power of the OLS-based tφ̂ test is increasing in the magnitude of the

initial condition α, the powers of both GLS-based tests decrease to zero as α increases.

Hence, while the GLS tests are more powerful for α = 0 (cf. Figure 1) and for small

values of α, they are much less powerful than tφ̂ for larger initial conditions. This

pattern of results closely mirrors what is found when analyzing the effects of initial

conditions on standard, non-covariate augmented OLS and GLS demeaned/detrended

unit root tests, and highlights the fact that GLS-based unit root tests do not deliver

reliable unit root test inference in the presence of large initial conditions. Between the

two GLS-based tests, there is little difference between the power profiles for R2 = 0.2

and R2 = 0.4, while as R2 increases to 0.6 and then 0.8, it is clear that Λ̂ emerges

as the more powerful procedure. For Model B (Figure 4), we observe the same broad

patterns of results vis-à-vis the power of tφ̂ compared to the GLS-based tests. Once

again, tφ̂ has power that increases in α, while the GLS-based tests have higher power

when α = 0, but then a decreasing power profile as α rises. Between the GLS-based

tests, in contrast to Model A, here we see that tφ̃ offers generally the best levels of

power across α, particularly for larger α and R2 values.2

4 A union of rejections strategy

The results of the previous section demonstrate that when the initial condition is small,

we would want to apply one of the two GLS-based tests (tφ̃ or Λ̂); on the other hand,

when the initial condition is larger, applying such a test would result in a (potentially

substantial) loss of power relative to applying the OLS-based test tφ̂. In practice, given

2In ALT, results are also provided for Model C. Similar comments apply as for Model B in Figure

2, although for R2 = 0.8, the power of tφ̃ also drops slightly below that of tφ̂, so that here tφ̂ generally

outperforms both GLS-based tests. The power profiles for Model C across α again highlight that the

GLS-based tests are typically more powerful than tφ̂ for zero and small α, with the reverse ranking for

larger α. As with Model A, the powers of the two GLS-based tests are very similar for R2 = {0.2, 0.4},
while Λ̂ performs better for the larger R2.
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uncertainty regarding the magnitude of the initial condition, we wish to have available

a procedure that capitalizes on both the relatively high power of the GLS approach

when α is small, and the relatively high power of tφ̂ otherwise. A similar issue arises in

the case of non-covariate augmented unit root testing, and the approach proposed by

Harvey et al. (2009) is to take a union of rejections of the OLS- and GLS-based tests,

whereby the null hypothesis is rejected if either of the individual tests rejects. In the

present context, this implies taking a union of rejections between tφ̂ and either one of

the GLS-based tests.

We now set out the union of rejections approach based on tφ̂ (here denoted by

tOLS) and a GLS-based test (tφ̃ or Λ̂) denoted by tGLS. Denoting the asymptotic ξ-

level critical values of these tests by cvOLSξ and cvGLSξ , respectively, we can define the

simple union of rejections strategy by the decision rule

Reject H0 if {tOLS < cvOLSξ or tGLS < cvGLSξ }.

An alternative way of representing this decision rule is to express it in terms a single

test statistic, tUR, as follows:

Reject H0 if

{
tUR = min

(
tOLS,

cvOLSξ

cvGLSξ

tGLS

)
< cvOLSξ

}
.

If we use LOLS and LGLS to denote the generic joint limit distributions of tOLS and tGLS,
respectively (i.e. the right-hand-side expressions given in Theorem 1), an application

of the continuous mapping theorem establishes that

tUR ⇒ min

(
LOLS,

cvOLSξ

cvGLSξ

LGLS
)
.

The Bonferroni bound for the asymptotic size of this procedure under the null is 2ξ

(since it simply involves rejecting the null when either of the individual tests reject).

Harvey et al. (2009) suggest restoring the union of rejections asymptotic size to the

nominal level ξ by applying a common positive scaling constant, ψξ > 1, to the (nega-

tive) critical values cvOLSξ and cvGLSξ (so that tOLS is compared with ψξcv
OLS
ξ and tGLS

with ψξcv
GLS
ξ ), such that in the limit, rejection of the null occurs with probability ξ.

While this approach extends naturally to the covariate augmented unit root testing

problem when using tφ̃ for tGLS, since here both cv
OLS
ξ and cvGLSξ are negative, we

cannot apply such a simple adjustment when using Λ̂, since the latter test has positive

critical values, and scaling by ψξ > 1 would induce greater asymptotic size. An ad-

justment that is applicable in all cases is to first apply a common additive adjustment

11



to both tGLS and cvGLSξ , say tGLS − λξ and cvGLSξ − λξ, such that the GLS-based test
decision rule is unchanged, but that the adjusted critical value cvGLSξ −λξ equals cvOLSξ ,

i.e. λξ = cvGLSξ − cvOLSξ . Once the critical values are lined up in this way, the critical

values are both negative, and a Harvey et al. (2009)-type multiplicative scaling can be

applied to control the asymptotic size. More formally we propose the following union

of rejections decision rule:

Reject H0 if {tOLS < ψξcv
OLS
ξ or tGLS − λξ < ψξcv

OLS
ξ }

or, equivalently,

Reject H0 if
{
t∗UR = min (tOLS, tGLS − λξ) < ψξcv

OLS
ξ

}
.

In the limit we obtain

t∗UR ⇒ min
(
LOLS,LGLS − λξ

)
and we compute ψξ by simulation of the limit distribution of t

∗
UR, calculating the ξ-

level null critical value for this distribution, say cvURξ , and then evaluate ψξ as ψξ =

cvURξ /cvOLSξ . In what follows, we consider two union of rejections procedures, one based

on a union of tφ̂ and tφ̃, the other based on a union of tφ̂ and Λ̂; hereafter we denote these

unions by UR(tφ̂, tφ̃) and UR(tφ̂, Λ̂) respectively. Values for ψξ for R
2 = {0, 0.1, ..., 0.9}

at the nominal 0.10-, 0.05- and 0.01-levels are given in Table 2 for each of these union

of rejections strategies.

The union of rejection strategies UR(tφ̂, tφ̃) and UR(tφ̂, Λ̂) are by construction

asymptotically correctly sized. We now consider the asymptotic local power prop-

erties of UR(tφ̂, tφ̃) and UR(tφ̂, Λ̂) in relation to the powers of the individual tests, the

results for which are also displayed in Figures 3-4. Consider first Model A in Figure 3,

and to aid comparison of the union of rejections procedures, consider an informal (and

infeasible) power “envelope”formed from the limit power of Λ̂ for values of α up to the

point where Λ̂ and tφ̂ have the same power, and from the limit power of tφ̂ for α beyond

this point. With reference to this envelope, both UR(tφ̂, tφ̃) and UR(tφ̂, Λ̂) track its

broad shape, offering decent power levels across the range of α values considered. Both

UR(tφ̂, tφ̃) and UR(tφ̂, Λ̂) capture much of the power advantage that tφ̃ and Λ̂ hold

over tφ̂ for small α, while also achieving the substantial power gain that tφ̂ holds over

either of the GLS-based tests for larger α, with power profiles that are increasing in α

as opposed to approaching zero. Of the two union of rejections procedures, a trade-off

clearly exists between the higher power for small α that UR(tφ̂, Λ̂) achieves, and the

higher power for larger α that UR(tφ̂, tφ̃) displays. However, in the small-α region

where UR(tφ̂, Λ̂) outperforms UR(tφ̂, tφ̃), the power differences are relatively modest,

12



while in the larger-α range where UR(tφ̂, tφ̃) outperforms UR(tφ̂, Λ̂), the gains can be

quite substantial. For this reason, we consider that UR(tφ̂, tφ̃) offers the more preferable

power profile of the two procedures across the range of α considered. Indeed, it could

be argued that overall UR(tφ̂, Λ̂) has an inferior power profile to that of tφ̂ alone, due to

the relatively low power levels for modest to large α. On the other hand, UR(tφ̂, tφ̃) has

a power profile closer to that of tφ̂ than does UR(tφ̂, Λ̂) for this region of α, while still

achieving much of the power gains of tφ̃ over tφ̂ when α is closer to zero. This union of

rejections therefore offers decent power gains over tφ̂ for the arguably more typical case

of small α, while simultaneously providing insurance against the low power for large

α that is associated with tφ̃. For Model B in Figure 4, broadly similar comments can

be applied, with UR(tφ̂, tφ̃) outperforming UR(tφ̂, Λ̂) overall, and UR(tφ̂, tφ̃) having a

power profile that more closely tracks the shape of the informal envelope comprised

of the best performing tests for each region of α. If anything, compared to Model A,

the power differences between UR(tφ̂, tφ̃) and the informal envelope are less marked,

adding weight to our recommendation for UR(tφ̂, tφ̃).3 ,4

5 Finite sample comparisons

In this section we consider the finite sample behaviour of the individual tests of section

2 and the proposed union of rejections procedures UR(tφ̂, tφ̃) and UR(tφ̂, Λ̂) under

Assumptions 1 and 2. In order to implement the tests in such a setting, we first require

a consistent estimator of R2, given that all the tests have critical values that depend on

this unknown quantity (the union of rejections procedures also require R2-dependent

scaling values ψξ). Under our assumptions, the estimator

R̂2 =
σ̂2
ev

σ̂2
vσ̂

2
e

where

σ̂2
v = T−1

T∑
t=2

v̂2
t , σ̂2

e = T−1

T∑
t=1

ê2
t , σ̂ev = T−1

T∑
t=2

êtv̂t

3Results for Model C are again provided in ALT, and similar comments apply as for Model B in

Figure 4.
4We also considered a variant of the UR(tφ̂, tφ̃) procedure where the asymptotic size is controlled

using only a multiplicative scaling to cvOLSξ and cvGLSξ as in Harvey et al. (2009). We found that such

a variant led to near identical local asymptotic power profiles to those displayed in Figure 4 (Model

B). In the case of Figure 3 (Model A), UR(tφ̂, tφ̃) yielded slight local asymptotic power advantages

over this variant for larger values of α, while surrendering very little power to UR(tφ̂, tφ̃) for small α,

hence we do not consider this variant further.
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with êt = ûx,t and v̂t being the residual from a regression of ûy,t on ûy,t−1 can be shown

to provide a consistent estimator of R2. Additionally, as highlighted in section 2.2, the

Λ̂ statistic requires a consistent estimator of Ω. Given that Ω is also comprised of σ2
v,

σ2
e and σev, a natural estimator is to use

Ω̂ =

[
σ̂2
v σ̂ev

σ̂ev σ̂2
e

]

which can be shown to be consistent for Ω. Note that both R̂2 and Ω̂ remain consistent

when α in Assumption 2 is not equal to zero; in contrast, the corresponding estimators

outlined in Elliott and Jansson (2003, p.81) are only consistent under the local-to-unit

root alternative when the initial condition is asymptotically negligible (i.e. α = 0), due

to their reliance on a first difference-based (cf. GLS-based) demeaning/detrending of

yt.

Our Monte Carlo simulations are based on generating (1)-(2) for T = 150 using

50,000 replications, with εt = [ vt et ]′ ∼ IIN(0,Ω), σ2
v = σ2

e = 1, σ2
ev = R2 =

{0.2, 0.4, 0.6, 0.8}, and with µy = βy = µx = βx = 0. We first simulated the empirical

size of the tφ̂, tφ̃, Λ̂ tests and the UR(tφ̂, tφ̃), UR(tφ̂, Λ̂) procedures at the nominal

0.05-level, setting ρ = 1 in (2). Asymptotic critical values and ψξ values were used,

linearly interpolating between the values in Tables 1 and 2 on the basis of R̂2. The

results for Models A and B are reported in Table 3, and we observe only modest finite

sample size distortions across the different tests and values of R2. For larger R2 in the

case of Model B, Λ̂ and UR(tφ̂, Λ̂) are a little under-sized, while tφ̃ and UR(tφ̂, tφ̃) are

a little over-sized for all cases. However, all sizes for tφ̃ and UR(tφ̂, tφ̃) are below 0.07

and 0.06 respectively, hence finite sample size distortion does not appear to be a major

concern for these procedures.5

Of most interest are the relative finite sample powers of the procedures, and Figure

5 presents results for Model A, for settings that correspond to the local asymptotic

power results in Figure 3. Here, we set ρ = 1 + c/T with c = −5, and report the

estimated powers of nominal 0.05-level tests across α = {0, 0.1, ..., 4.0}. We find that
the relative finite sample powers bear a very close resemblance to the corresponding

local asymptotic results, with the powers of tφ̂ increasing in α, the powers of tφ̃ and

Λ̂ initially higher than that for tφ̂ for small α, but then falling towards zero as α

increases, and the UR(tφ̂, tφ̃) and UR(tφ̂, Λ̂) procedures capturing a proportion of the

higher tφ̃ and Λ̂ power for small α, and a proportion of the higher power of tφ̂ for

larger α. Compared to the asymptotic results, tφ̃ and UR(tφ̂, tφ̃) appear to have higher

5Results for Model C are very similar to those for Model B, as shown in ALT.
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relative power for T = 150, which arises as a result of the small over-size seen for these

procedures, but otherwise the finite sample and large sample results are very similar.

What is clear is that the union of rejections procedures offer robust power profiles across

the full range of initial conditions, avoiding the low power that can arise from use of

the GLS-based tests alone while retaining a good proportion of the additional power

offered by the GLS-based tests over the OLS-based variant. Of the two, UR(tφ̂, tφ̃)

emerges as the test with arguably the most attractive power properties overall, and on

the basis of both the asymptotic and finite sample results, it is this procedure that we

recommend for practical applications.6

In practice, when implementing UR(tφ̂, tφ̃) we would want to allow for additional

serial correlation in uy,t and ux,t. In order to admit more general serial correlation into

our DGP, we consider the following simple autoregressive-based extension to (2):[
a(L)(uy,t − ρuy,t−1)

b(L)ux,t

]
=

[
vt

et

]

with

a(L) = 1− a1L− ...− apLp,
b(L) = 1− b1L− ...− bqLq

where the roots of a(L) and b(L) all lie outside the unit circle, and where εt = [ vt et ]′

continues to satisfy Assumption 1. We also modify Assumption 2 so that, when c < 0,

uy,1 = α
√
ω2/(1− ρ2), where ω2 denotes the long run variance of a(L)−1vt, i.e. ω2 =

σ2
v/a(1)2.

In this setting, consider tφ̂ and tφ̃ statistics, computed as in section 2 but on re-

placing (3) and (4) with the fitted regressions

∆ûy,t = φ̂ûy,t−1 +

p∑
j=1

π̂j∆ûy,t−j +

q∑
j=0

δ̂jûx,t−j + η̂t, (7)

∆ũy,t = φ̃ũy,t−1 +

p∑
j=1

π̃j∆ũy,t−j +

q∑
j=0

δ̃jûx,t−j + η̃t. (8)

It can then be shown that the large sample results for tφ̂, tφ̃ and UR(tφ̂, tφ̃) from sections

3 and 4 continue to hold.7 Moreover, R2 is now consistently estimated using the form

6Results for Models B and C are reported in ALT, and similar comments apply, confirming our

preference for UR(tφ̂, tφ̃).
7Note that extension of the Λ̂ statistic to the case of additional serial correlation is more involved,

requiring construction of estimates of long-run versions of Ω and R2.
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of R̂2 given in the previous section, but with êt and v̂t replaced with residuals from q’th

and p+1’th order autoregressions fitted to ûx,t and ûy,t, respectively. In practice, since

p and q are unknown, they can be determined endogenously using typical lag order

selection rules such as downward testing or application of an information criterion.

Finally, note that the fitted regressions (7) and (8) also cover the case where [uy,t, ux,t]
′

follows a standard vector autoregression (VAR) process of order min(p+ 1, q). In this

case, (7) and (8) then model the single equation for uy,t from the VAR, cf. Hansen

(1995), and the contemporaneous regressor ûx,t is not required in (7) and (8).

6 Conclusion

In this paper we have considered the power of covariate augmented unit root tests,

based on OLS demeaning/detrending and GLS demeaning/detrending, in the presence

of asymptotically non-negligible initial conditions. We have shown that while the

GLS-based approaches display superior finite sample and local asymptotic power for

zero and small initial conditions, the power of such procedures falls towards zero as

the initial condition increases in magnitude. Since we cannot be sure that such large

initial conditions will not arise, this limits the reliability of such GLS-based tests in

practice. On the other hand, while the OLS-based variants lose power for small initial

conditions relative to their GLS-based counterparts, this ranking is reversed for larger

initial conditions as the power of the OLS-based tests increases with the initial condition

magnitude. We have then proposed a union of rejections based procedure, which detects

evidence in favour of the alternative hypothesis taken from both OLS- and GLS-based

demeaned/detrended variants, and find that such a procedure works very well, retaining

attractive power levels across zero, small and large initial condition magnitudes. Our

findings mirror those found in the standard non-covariate augmented unit root testing

environment, and our recommended procedure adds to the suite of available unit root

testing procedures a covariate augmented approach that offers reliable power levels

across the range of possible (unknown) initial conditions.
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Table 1. Asymptotic ξ-level critical values of covariate augmented unit root tests

tφ̂ tφ̃ Λ̂

R2 ξ = 0.10 ξ = 0.05 ξ = 0.01 ξ = 0.10 ξ = 0.05 ξ = 0.01 ξ = 0.10 ξ = 0.05 ξ = 0.01

Model A

0.0 −2.57 −2.86 −3.40 −1.61 −1.94 −2.60 4.60 3.30 1.92
0.1 −2.52 −2.82 −3.39 −1.57 −1.91 −2.57 4.80 3.36 1.67
0.2 −2.46 −2.77 −3.37 −1.52 −1.88 −2.53 5.08 3.44 1.42
0.3 −2.40 −2.72 −3.33 −1.47 −1.82 −2.51 5.45 3.60 1.22
0.4 −2.33 −2.65 −3.28 −1.41 −1.77 −2.46 5.95 3.85 1.06
0.5 −2.25 −2.58 −3.21 −1.34 −1.71 −2.41 6.64 4.28 0.98
0.6 −2.16 −2.50 −3.15 −1.27 −1.64 −2.35 7.72 4.99 1.08
0.7 −2.05 −2.40 −3.06 −1.18 −1.57 −2.29 9.61 6.25 1.52
0.8 −1.92 −2.27 −2.95 −1.07 −1.48 −2.21 13.37 8.99 2.90
0.9 −1.74 −2.10 −2.78 −0.95 −1.39 −2.16 24.82 17.64 7.97

Model B

0.0 −3.13 −3.42 −3.98 −2.56 −2.85 −3.43 6.90 5.66 3.92
0.1 −3.05 −3.35 −3.90 −2.52 −2.81 −3.37 7.22 5.70 3.55
0.2 −2.98 −3.28 −3.83 −2.46 −2.77 −3.32 7.71 5.90 3.30
0.3 −2.89 −3.20 −3.76 −2.41 −2.71 −3.28 8.43 6.23 3.14
0.4 −2.79 −3.10 −3.69 −2.34 −2.65 −3.23 9.46 6.88 3.15
0.5 −2.68 −3.00 −3.59 −2.27 −2.58 −3.16 11.01 7.96 3.48
0.6 −2.54 −2.88 −3.49 −2.19 −2.50 −3.10 13.47 9.75 4.30
0.7 −2.39 −2.73 −3.36 −2.10 −2.43 −3.03 17.68 12.99 6.20
0.8 −2.20 −2.55 −3.19 −2.02 −2.34 −2.95 26.34 19.96 10.79
0.9 −1.94 −2.30 −2.97 −1.97 −2.31 −2.91 52.20 41.10 25.74

Model C

0.0 −3.13 −3.42 −3.98 −2.56 −2.85 −3.43 6.90 5.66 3.92
0.1 −3.05 −3.35 −3.90 −2.50 −2.79 −3.35 7.24 5.71 3.64
0.2 −2.98 −3.28 −3.83 −2.43 −2.74 −3.30 7.71 5.90 3.38
0.3 −2.89 −3.20 −3.76 −2.35 −2.67 −3.24 8.36 6.27 3.29
0.4 −2.79 −3.10 −3.69 −2.27 −2.59 −3.18 9.30 6.86 3.34
0.5 −2.68 −3.00 −3.59 −2.17 −2.49 −3.10 10.70 7.82 3.65
0.6 −2.54 −2.88 −3.49 −2.06 −2.39 −3.01 12.90 9.47 4.39
0.7 −2.39 −2.73 −3.36 −1.93 −2.27 −2.91 16.75 12.52 6.15
0.8 −2.20 −2.55 −3.19 −1.78 −2.14 −2.81 24.79 18.97 10.61
0.9 −1.94 −2.30 −2.97 −1.60 −2.00 −2.70 49.76 39.30 25.13
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Table 2. Asymptotic ψξ values for ξ-level union of rejections procedures

UR(tφ̂, tφ̃) UR(tφ̂, Λ̂)

R2 ξ = 0.10 ξ = 0.05 ξ = 0.01 ξ = 0.10 ξ = 0.05 ξ = 0.01

Model A

0.0 1.099 1.081 1.062 1.200 1.132 1.071
0.1 1.105 1.083 1.057 1.212 1.143 1.080
0.2 1.108 1.086 1.056 1.226 1.157 1.090
0.3 1.111 1.091 1.057 1.240 1.168 1.099
0.4 1.113 1.093 1.064 1.261 1.184 1.106
0.5 1.119 1.097 1.068 1.276 1.205 1.117
0.6 1.126 1.102 1.070 1.297 1.223 1.135
0.7 1.135 1.106 1.073 1.336 1.236 1.149
0.8 1.152 1.115 1.076 1.389 1.271 1.172
0.9 1.179 1.136 1.082 1.502 1.352 1.207

Model B

0.0 1.063 1.053 1.039 1.134 1.107 1.058
0.1 1.063 1.055 1.042 1.148 1.115 1.064
0.2 1.065 1.055 1.041 1.162 1.128 1.082
0.3 1.065 1.055 1.039 1.179 1.130 1.091
0.4 1.066 1.057 1.040 1.197 1.149 1.098
0.5 1.066 1.058 1.047 1.220 1.160 1.107
0.6 1.068 1.061 1.045 1.248 1.178 1.111
0.7 1.070 1.060 1.045 1.285 1.204 1.133
0.8 1.075 1.060 1.044 1.364 1.261 1.152
0.9 1.088 1.067 1.047 1.499 1.362 1.205

Model C

0.0 1.063 1.053 1.039 1.134 1.107 1.058
0.1 1.065 1.055 1.042 1.147 1.113 1.067
0.2 1.067 1.056 1.040 1.157 1.119 1.074
0.3 1.069 1.056 1.042 1.169 1.130 1.085
0.4 1.072 1.061 1.041 1.183 1.135 1.095
0.5 1.075 1.063 1.048 1.197 1.144 1.102
0.6 1.080 1.065 1.047 1.222 1.155 1.107
0.7 1.085 1.071 1.048 1.251 1.186 1.121
0.8 1.095 1.075 1.049 1.318 1.235 1.147
0.9 1.126 1.093 1.061 1.491 1.353 1.202
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Table 3. Finite sample size of nominal 0.05-level covariate augmented unit root tests: T = 150

R2 tφ̂ tφ̃ Λ̂ UR(tφ̂, tφ̃) UR(tφ̂, Λ̂)

Model A

0.2 0.053 0.064 0.053 0.059 0.053
0.4 0.053 0.065 0.051 0.057 0.050
0.6 0.050 0.064 0.048 0.056 0.048
0.8 0.048 0.061 0.041 0.054 0.042

Model B

0.2 0.054 0.064 0.049 0.059 0.050
0.4 0.053 0.063 0.047 0.057 0.049
0.6 0.052 0.060 0.043 0.055 0.044
0.8 0.048 0.053 0.029 0.049 0.032
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(a) R2 = 0.2 (b) R2 = 0.4

(c) R2 = 0.6 (d) R2 = 0.8

Figure 1. Local asymptotic power of nominal 0.05-level tests: Model A, α = 0;
tφ̂: , tφ̃: – – , Λ̂: - - -
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(a) R2 = 0.2 (b) R2 = 0.4

(c) R2 = 0.6 (d) R2 = 0.8

Figure 2. Local asymptotic power of nominal 0.05-level tests: Model B, α = 0;
tφ̂: , tφ̃: – – , Λ̂: - - -
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(a) R2 = 0.2 (b) R2 = 0.4

(c) R2 = 0.6 (d) R2 = 0.8

Figure 3. Local asymptotic power of nominal 0.05-level tests: Model A, c = −5;
tφ̂: , tφ̃: – – , Λ̂: - - - , UR(tφ̂, tφ̃): � , UR(tφ̂, Λ̂): N
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(a) R2 = 0.2 (b) R2 = 0.4

(c) R2 = 0.6 (d) R2 = 0.8

Figure 4. Local asymptotic power of nominal 0.05-level tests: Model B, c = −10;
tφ̂: , tφ̃: – – , Λ̂: - - - , UR(tφ̂, tφ̃): � , UR(tφ̂, Λ̂): N
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(a) R2 = 0.2 (b) R2 = 0.4

(c) R2 = 0.6 (d) R2 = 0.8

Figure 5. Finite sample power of nominal 0.05-level tests: Model A, T = 150, c = −5;
tφ̂: , tφ̃: – – , Λ̂: - - - , UR(tφ̂, tφ̃): � , UR(tφ̂, Λ̂): N
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