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Abstract—The cogging force arising due to the strong 

attraction forces between the iron core and the permanent 

magnets, is a common inherent property of the linear motors, 

which significantly affects the control performance. Therefore, 

significant research efforts have been devoted to the 

compensation of the cogging force. In this paper, an 

identification approach based on the radial basis function 

neural network (RBFNN) is proposed to obtain an accurate 

model of the cogging force. A self-adaptive hybrid self-learning 

teaching-learning-based optimization (SHSLTLBO) method is 

utilized to train the neural network. Finally, the experimental 

results confirm the effectiveness and the superiority of the 

proposed cogging force identification method. 
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I. INTRODUCTION  

The ultra-precision motion platforms driven by the linear 
motors have been widely employed in many nanoscale 
manufacturing machines such as the lithography wafer 
scanners [1]. The increasing requirements like higher tracking 
accuracy, larger velocity and acceleration for the control 
performance of the motion platforms motivate the necessity of 
improving the linear motors performance. However, the 
cogging force arising due to the strong attraction forces 
between the iron core and the permanent magnets, is a 
common inherent property of the linear motors, which 
significantly affects the control performance [2]. The cogging 
force exists even in the absence of any winding current and it 
presents a periodic relationship with respect to the position of 
the translator relative to the magnets. Therefore, significant 
research efforts have been devoted to the compensation of the 
cogging force.  

The compensation strategies for the cogging force can be 
approximately summarized into model-free methods and 
model-based methods. The model-free compensation methods 
[3-5] do not require accurate cogging force model but need to 
design complicated self-tuning control approaches which 

could cause the loss of system stability and could hardly 
satisfy the highly real-time requirement in practice. In contrast, 
the model-based compensation approaches [6, 7] require 
accurate and continuous cogging force model so that the 
compensation value relative to the position can be obtained in 
real time. This leads to less challenge of designing the 
feedback and feedforward controllers, which facilitates the 
practice applications in the industrial fields. Meanwhile, the 
control performance can be improved via increasing the 
identification accuracy of the cogging force.  

Therefore, more interests are attracted for developing the 
effective cogging force identification methods in the linear 
motors. In [6], the cogging force model was expressed as the 
sum of a set of sines functions with different frequencies and 
its parameters were obtained by recursive least square (RLS) 
algorithm. Although the identification method was quite easy 
to operate, the fitting result of cogging force in [6] was not 
good enough to be directly compensated into the system so 
that an internal model principle based controller was needed 
to produce better performance. To tackle above problem, a 
two-stage trained radial basis function neural network 
(RBFNN) model was proposed in [7] and its superiority over 
the RLS based identification method was verified by the 
experiments on a dual-wafer stage. However, the optimization 
process of the RBF neural network is nonlinear. To overcome 
the nonlinear optimization problem, in [7] a candidate pool 
consisting of lots of  basis functions was prepared in advance 
and this transformed the optimization process of the RBF 
neural network into a linear one through selecting the basis 
functions in the candidate pool. As a result, this method could 
not guarantee that the obtained RBFNN model is optimal. 

Motivated by the above analysis, a radial basis function 
neural network based identification approach is proposed to 
obtain an accurate and continuous model of the cogging force 
and a self-adaptive hybrid self-learning teaching-learning-
based optimization (SHSLTLBO)   method [8] is utilized to 
train the neural network. The contribution of this paper is 
threefold. First, selecting the RBFNN based model enables the 
possibility to compensate for the cogging force through the 
feedforward compensation method which directly introduces 
the compensation value relative with the position into the 
system such as the mapping compensation method. Second, 
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the SHSLTLBO method is utilized to train the RBFNN. 
Obviously, the parameters identification process of the 
RBFNN model is nonlinear which brings more challenges to 
the optimization. The meta-heuristic optimization techniques 
such as the SHSLTLBO method belong to the multi-
dimension zero-order nonlinear optimization operator, which 
provides an effective optimization tool for the complicated 
practical off-line nonlinear problems [9]. Furthermore, based 
on the hybrid self-adaptive mutation frame, the SHSLTLBO 
makes better tradeoff between the exploration and the 
exploitation capacity of teaching-learning-based optimization 
(TLBO) variants [8]. Finally, an experiment on the linear 
motor demonstrates the effectiveness and the superiority of 
the proposed cogging force identification method. 

The rest of the paper is organized as follows. The problem 
statement is formulated in Section II. The RBFNN based 
cogging force model identification method that is based on the 
SHSLTLBO is presented in Section III. The experimental 
results are presented with discussions in Section IV. The 
conclusions are drawn in Section V. 

II. PROBLEM STATEMENT 

A. Analysis of Cogging Force 

The cogging force in the linear motor consists of the detent 
force and the force caused by the edge-effect. The detent force 
is generated by interaction of the iron rotor and the magnetic 
field of the motor stator, which pulls the rotor to a balance 
point of the magnetic force. While the force caused by the 
edge-effect is due to the length limitation of the motor slotting 
and the rotor. According to the electromagnetic theory [6], the 

detent force 
dF  and the edge-effect of the primary winding 

can be expressed as 
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where 
kL i = + , 

kL  denotes the iron length,   denotes the 

polar distance, gL  denotes the length of the air-gap, 
mL  

denotes the thickness of the magnetic steel, 
rB  denotes the 

radial magnetic flux density, p  denotes the number of the 

pole-pairs, and x  denotes the axial distance. From (1) and (2), 

it can be seen that for a designed and finished linear motor the 
cogging force relies on the relative position of the primary 
winding and the secondary winding. However, the accurate 
parameters in the above expressions are unavailable due to the 
manufacturing or assembling errors. Therefore, it is 
challenging to obtain the accurate model of the cogging force 
by using the theoretical results in (1) and (2). From the above 
analysis, it is noted that the cogging force model can be seen 
as a function of the displacement of the linear motor. As a 
result, the data-driven approach can be applied to identify the 
cogging force model through using the measured data of the 
cogging force and the displacement. 

 

Fig. 1. The structure of RBFNN. 

B. Radial Basis Function Neural Network 

According to the aforementioned analysis, an RBFNN 
based model is proposed to depict the cogging force. The 
RBFNN is a three-layered feedforward neural network and it 
is a specific form of linear-in-the-parameters model which can 
be formulated by a linear combination of nonlinear basis 
functions, whose structure is shown in Fig. 1. x  denotes the 

model input, which is the position of the linear motor. y  

denotes the model output, which is the cogging force.    

denotes the measurement noise. 
i  is the i-th radial basis 

function and 
i  is the linear coefficient of  

i . 

The mathematical output is formulated as 
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where 
iv  is the nonlinear parameter set of 

i , and 

1,2, ,t M= , M  is the number of the trained data. In this 

paper, the radial basis function 
i  of the input ( )x t  is 

selected as the Gaussian function defined below 
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where 
i  is the width and 

i  is the center of the i-th hidden 

node. 

Since the optimization of 
i , 

i , and 
i is nonlinear, the 

identification of these parameters becomes a key problem. In 
light of the aforementioned analysis, the self-adaptive hybrid 
self-learning TLBO (SHSLTLBO)   method [8] is employed 
to train the RBFNN model to obtain these linear parameters. 

III. RBFNN MODEL IDENTIFICATION BASED ON 

SHSLTLBO 

The self-adaptive hybrid self-learning TLBO method 
consists of a teaching phase, a learning phase and a self-
learning phase. The hybrid self-adaptive mutation frame is 
applied in the teacher phase and the learner phase, which 
makes better tradeoff between the global exploration to 
explore the unknown regions and the convergence ability to 
rapidly exploit the high-precision solutions in the known 
regions. Meanwhile, the self-learning phase is involved into 
the self-adaptive frame. In the self-learning phase, two 
mutation strategies embedded into hybrid self-adaptive 
mutation frame are used to reduce the possibility of early-
maturation in the initialization according to the individual 
neighborhood information, which improves the convergence 
performance compared with the original TLBO.  



A. Teacher Phase 

In the teacher phase, the teacher is generated and the 
individuals are updated through the updating law. As the best  
performer of the whole population, the teacher shares his/her 
knowledge with the whole class to improve the performance. 
The students absorb the experience randomly and mimic 
different learning capabilities of the students. The updating 
law of the teacher phase for the i-th variable to be optimized 

of the j-th student ijSt  is expressed as 
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where 
old

ijSt  and 
new

ijSt  denote ijSt  before and after the 

teaching process respectively, 
1rand  and 1randp  are D-

dimensions vector of random numbers distributed uniformly 
in (0,1), D is the number of the problem dimensions, 

1p  is a 

mutation control const, 
iT  is the teacher, 

iMean  is the mean 

value at the i-th iteration, and 
FT  is a teaching factor. 

FT  is 

presented as 

 ( )( )21 0,1FT round rand= +   (6) 

where 
2rand  is also a random number uniformly distributed 

among (0,1). 

B. Learner Phase 

After the teacher phase, the optimization algorithm leads 
the population into a learner phase. In the learner phase, the 
students will learn knowledge from each other. The diversity 
of the population is improved by exchanging knowledge 
among students. The cooperation of the students boosts the 
exploring capacity of the optimization algorithm. The hybrid 
mutation law in learner phase is presented as 
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where 
3rand  is a random number uniformly distributed 

among (0,1).  

From (5) and (7), it can be seen that the parameter p  

reflects the usage frequency of the two mutations during the 
optimization, which affects both the convergence speed and 
the exploration ability. However, it is difficult to select the 
value of p  without enough prior knowledge. Therefore, the 

updating law for p  is proposed in [8], which is formulated as 
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where 
1ns  and 

2ns  denote the number of the individuals that 

are successfully updated by the first equation in (7) and the 

second equation in (7) respectively, while 
1nf  and 

2nf  denote 

the number of those don’t. 
1vs  and 

2vs  denote the descending 

ratio of the cost-function caused by the first equation in (7) 
and the second equation in (7) respectively, which are 
introduced into (8) to enhance the exploration ability since 
involving the success ratio of the mutation could not directly 

reflect the convergence performance of the algorithm. Taking 
the local convergence as an example, although the individuals 
are continually updated, the improvement of the cost-function 
could be limited due to the limited exploration ability. 
Therefore, the descending ratio of the cost-function caused by 
the successful mutation is involved to conquer above issue and 
provide more usage possibility to the preponderant mutation 
in the next evolution iteration, which is expressed as 
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C. Self-learning Phase 

To further improve the exploitation ability and the 
convergence performance, a self-learning phase is introduced 
to the optimization algorithm. In the self-learning phase, the 
population information is replaced by that of the individual to 
be used in the updating law. Through this phase, the own 
information of the individual can be further used to explore 
the space around themselves. The updating law of the 
SHSLTLBO algorithm in the self-learning phase is presented 
as 
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where 
4rand  is a random value uniformly distributed in (0,1), 

5rand  is a vector of random numbers uniformly distributed in 

(0,1),  1 2, , , DrandDir Dir Dir Dir=  and it denotes a 

random direction in the solution space, 
iDir  is random 

selected from {-1,0,1}, R  is a radius vector, w  is a ratio 

factor, 2randp  uniformly lies in (0,1), and 
2p  is a coefficient 

adjusting the mutation possibility which is independent with 

1p . 

When the SHSLTLBO algorithm is used to optimize a 
problem that is lacking in prior knowledge, the value of pn  

can be set as an initial value closed to 1 which will play more 
exploration ability in the initial stage. With the optimization 
process running, the value of pn  will be adjusted by the 

hybrid self-adaptive mutation frame to balance the exploration 
and the exploitation capacity. The detailed information of both 
the pseudocode and the flowchart for SHSLTLBO can be 
referred to [8]. 

IV. EXPERIMENTAL RESULTS 

To illustrate the proposed cogging force identification 
approach and evaluate its validity, the experimental study on 
a linear motor of the wafer stage is implemented in this section. 

A. Experimental Setup 

The RBFNN model input data x  and the RBFNN model 

output data y  are obtained through an experiment on a linear 

motor of the wafer stage. The experimental setup is shown in 
Fig. 2. The permanent magnet of the linear motor is installed 
in the stator and the winding groups are assembled in the rotor. 
The motor drive can make the bandwidth of the current-loop  



 

Fig. 2. Block diagram of the experimental setup. 

 

Fig. 3. The measured cogging force varying with the position and spectrum 

analysis of the cogging force. 

TABLE I.  STATISTIC INFORMATION OF TRAINED DATA 

Data Min Max Mean Variance 

Input/m 0 0.0600 0.0300 2.9971×10-4 

Output/N -15.7800 19.7580 1.9487 50.0384 

 

achieve 2000Hz and its peak current is 60A. The position 
sensor is a Heidenhain linear incremental encoder with the 
effective resolution of 0.05μm and the maximum velocity of 
0.3m/s. The wafer stage is mounted on an air bearing with 
400kPa air pressure, which leads to nearly no friction force in 
the system. The sampling period is set as 200μs. 

To measure the real value of the cogging force relative to 
the position, the reference trajectory is set as a ramp signal 
with the velocity of 0.075m/s. The data of x  is measured by 

the linear encoder and the system control signal is regarded as 
the data of y . The measured cogging force varying with 

position and its spectrum analysis are shown in Fig. 3. In 
addition, the statistic information of the measured data that is 
to be trained is shown in TABLE I. 

To verify the effectiveness of the proposed method, 
different cogging force models and different optimization 
methods are tested via training above measured data. 

B. Results of Using Different Cogging Force Model 

To illustrate the superiority of the proposed RBFNN based 
model compared with other models, the nonlinear least square  

 

Fig. 4. The estimated result of using the least square method. 

 

Fig. 5. The estimated result of using the BP neural network model. 

method based approach mentioned in [6] and the BP neural 
network based method proposed in [10] are tested. According 
to [6] and Fig. 3, the cogging force is fitted as the expression 
in (12) and the salient frequencies with peak amplitude are 
selected as the feature-points. Here, only low-order harmonics 
are used in the signal model structure with consideration for 
the existing of the high frequency noise, which leads to 
i=1,2,3,5. Therefore, the estimated result of the least square 
based method is shown in Fig. 4. 
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Obviously, the estimated result of using the least square 
method is not desirable, which is mainly caused by the too 
simple model that cannot fit the cogging force due to the 
inherently complicated frequency component of the measured 
cogging force. To provide more comparison, the BP neural 
network model is used to fit the cogging force. According to 
[10], three hidden layers are used in the BP neural network 
and there are 60 nodes in each hidden layer. The gradient 
descent backpropagation with adaptive learning rate is 
selected to train the network. The iteration period and learning 
rate are set as 20000 and 0.1, respectively. Since the gradient 
descent backpropagation requires initial values of the BP 
neural network, the genetic algorithm (GA) is used to optimize 
these initial values. For GA, the crossover probability is set as 



 

Fig. 6. The estimated result of using the proposed method. 

0.2 and the mutation probability is set as 0.1. The estimated 
result is shown in Fig. 5. 

Seen from Fig. 5, the estimated result of using the BP 
neural network model is better than the result obtained through 
the least square method. Using the BP neural work to estimate 
the cogging force model, the maximum estimated error is 
8.88056N and the root-mean-square error (RMSE) is 1.9672N. 
Although the estimated result curve of BP neural network in 
Fig. 5 seems to good, the statistical analysis of the estimated 
error shows the unavailability of the estimated result. 

From the above results, the necessity of exploiting the 
proposed cogging force model identification approach is 
confirmed. The hidden node number of RBFNN is set as 300. 
The single learning period for SHTLBO is set as 100 and 
maximal evolutionary generations is set as 20. The population 
size is set to 100. The ratio factor w  is linear varying from 2 

to 4. The initial probability parameters 
1p  is set as 0.5 and 

2p  

is set as 0.9. The other initial setups can be referred to [8] in 
detail. The estimated result of the proposed method is shown 
in Fig.6. To more clearly observe the difference among the 
above three methods, the comparative result of the estimated 
errors is shown in Fig. 7. 

From Fig. 7, it can be obviously seen that the proposed 
method performs better than other two methods in fitting the 
cogging force model. Using the proposed method, the 
maximum estimated error of the cogging force identification 
model is 5.6814N and the RMSE of the estimated error is 
1.6679N, which is outperform the BP neural network based 
model identification method. Compared with the BP neural 
network based method, using the proposed approach improves 
the maximum estimated error and the RMSE by 35.48% and 
15.21% respectively. Consequently, the above results fully 
confirm the effectiveness of the RBFNN model in identifying 
the cogging force model. 

C. Results of Using Different Optimization Algorithms 

To illustrate the superiority of the SHSLTLBO algorithm, 
four optimization methods that are widely applied in the 
engineering practice are served as the comparison. The 
comparative group consists of several classical optimization 
algorithms, including the differential evolution (DE) [11], the 
particle swarm optimization (PSO) [12], the heterogeneous 
comprehensive learning PSO (HCLPSO) [13], and TLBO [8]. 

 

Fig. 7. The comparative result of the estimated errors among three different 

cogging force models. 

To provide a fair comparison, the total number of the 
generations and the population size of these four optimization 
methods are set the same as SHSLTLBO. Meanwhile, the 
detailed parameter settings of these algorithms are set as 
follows. For DE, F=0.7, CR=0.9 are set. For PSO, the 

parameters 
1c  is set as 1 and 

2c  is set as 3. For HCLPSO, the 

subpopulation sizes are set as 
1 2 50g g= = . The acceleration 

coefficients c  is linear varying from 3 to 1.5, 
1c  is linear 

varying from 2.5 to 0.5, and 
2c  is linear varying from 0.5 to 

2.5. The inertia weight is linear varying from 3 to 1.5. For 
TLBO, there is no parameter setting. The RMSE of predicted 
results is set as the fitness function of each optimization 
method.  

For the iteration number, there are some explanations need 
to be made for the clarity. For SHSLTLBO the population is 
updated three times during each iterations, while for other 
optimization algorithms it could be one or two, for example 
for DE the updating is with only one time and for TLBO the 
updating will be run two times. Therefore, to provide a fair 
comparison, the total updating times of the population is set as 
6000, which means for SHSLTLBO the iteration times will be 
2000 and for DE the iteration times will be 6000. 

Under the above settings, the comparative result of using 
different optimization algorithms is shown in Fig. 8, and the 
detailed estimated error results are shown in TABLE II. 
Furthermore, the comparative result of the estimated errors 
among HCLPSO, TLBO and SHSLTLBO is shown in Fig. 9. 

From these comparative results, several conclusions and 
analysis can be drawn. First of all, Fig. 8 shows that both 
TLBO and SHSLTLBO can rapidly converge to optimum but 
HCLPSO, PSO and DE fall into the local optimum soon after 
the optimization processes start, which demonstrates the 
outstanding exploration ability of SHSLTLBO. Second, from 
Fig. 9 and TABLE II, it can be concluded that SHSLTLBO 
outperform TLBO in the identification accuracy. Furthermore, 
Fig. 8 confirms that SHSLTLBO is with more rapid 
convergence speed than TLBO. Consequently, the above 
results full illustrate that among different optimization 
methods, the SHSLTLBO is with superiority of both the 
identification accuracy and the convergence speed in 
identifying the cogging force RBFNN model. 



 

Fig. 8. The comparative result of the estimated errors RMSE with five 

different optimization methods. 

From the above two subsections, the cogging force 
identification results respectively with different models and 
different optimization algorithms fully prove the effectiveness 
and the superiority of the proposed cogging force 
identification strategy, which provides a new reference for the 
research on the cogging force compensation in practice. 

V. CONCLUSIONS 

This paper addresses the practical problems of the accurate 
compensation for the cogging force in the linear motors 
usually driving the precision motion platforms. First, an RBF 
neural network based cogging force model has been 
established, which enables the possibility of achieving a 
continuous accurate model to be directly used to compensate 
for the cogging force. Subsequently, the SHSLTLBO 
algorithm is utilized to identify the nonlinear parameters of the 
RBFNN model. The comparative identification results 
respectively with different models and different optimization 
algorithms fully demonstrate the benefits of the proposed 
identification approach, listed as 1) its ability to achieve more 
accurate cogging force model; 2) its advantage of improving 
the convergence speed; 3) its superiority to increasing the 
exploration and exploitation ability. Finally, the future work 
can be predicted towards introducing the obtained RBFNN 
based cogging force model into the control of the motion 
platform driven by the linear motors. 
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