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Abstract. 

Despite widespread evidence for atmospheric dust deposition prior to the Quaternary, 

quantitative rate data remains sparse. As dust influences both climate and biological 

productivity, the absence of quantitative dust data limits the comprehensiveness of 

models of pre-Quaternary climate and biogeochemical cycles. Here, we propose that 

inorganic matter contained in coal primarily records atmospheric dust deposition. To 

test this, we use the average concentration of inorganic matter in Permian coal to map 

global patterns and deposition rates of atmospheric dust over Pangea. The dust 

accumulation rate is calculated assuming Permian peat carbon accumulation rates in 

temperate climates were similar to Holocene rates and accounting for the loss of carbon 

during coalification. Coal-derived rates vary from 0.02 to 25 g m-2 yr-1, values that fall 

within the present-day global range. A well constrained East-West pattern of dust 

deposition corresponding to expected palaeoclimate gradients extends across Gondwana 

with maximum dust deposition rates occurring close to arid regions. A similar pattern is 

partially defined over the northern hemisphere. Patterns are consistent with the 

presence of two large global dust plumes centred on the tropics. The spatial patterns of 

dust deposition also were compared to dust cycle simulations for the Permian made 



with the Community Climate System Model version 3 (CCSM3). Key differences 

between the simulations and the coal data are the lack of evidence for an Antarctic dust 

source, higher than expected dust deposition over N and S China and greater dust 

deposition rates over Western Gondwana. This new coal-based dust accumulation rate 

data expands the pre-Neogene quantitative record of atmospheric dust and can help to 

inform and validate models of global circulation and biogeochemical cycles over the 

past 350 Myr.   
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1. Introduction. 

Mineral dust influences globally important terrestrial and marine biogeochemical 

processes, particularly the carbon cycle, by seeding oceanic and terrestrial ecosystems with 

phytonutrients such as iron and phosphorus (Boyd and Ellwood, 2010; Bristow et al., 2010; 

Evan et al., 2011; Okin et al., 2011).  Mineral dust also influences climate via its influence on 

albedo and cloud nucleation (Prenni et al., 2009; Sugden et al., 2009). Quaternary dust 

deposition records are predominantly obtained from ice-cores (Lambert et al., 2008), deep 

marine sediments (McGee et al., 2013), and peat (Le Roux et al., 2012). Of these only peat is 

extensively preserved in the pre-Quaternary geological record, where it occurs as coal and 

lignite in a wide range of palaeogeographic settings.      

Records of atmospheric dust deposition prior to the Quaternary are abundant but 

mostly have gone unrecognized (Gabbott et al., 2010; Retallack, 2011; Retallack et al 2003: 

Retallack et al 2012; Soreghan et al., 2008a) and do not readily yield quantifiable rates of 

dust deposition. In terrestrial settings, there are multiple examples of alternating loess and 

palaeosol accumulation analogous to deposits in the Chinese Loess Plateau (Soreghan et al., 



2008a; Soreghan et al., 2008b; Soreghan et al., 2014). In shallow marine settings, a 

distinctive facies of fine dust is often observed at lowstands (Soreghan et al., 2008b; Sur et 

al., 2010). In one case, the concentration of silicate minerals in a shallow marine carbonate 

deposit was used to estimate dust accumulation rates (DAR) that ranged over the course of a 

presumptive glacial–interglacial cycle from 0.07 to 160 g m-2 yr-1 (note that the maximum is 

uncertain by an order of magnitude) (Sur et al., 2010). Similar data also exists for two other 

sites (Patterson, 2011; Stagner, 2008). In principle, DAR could also be estimated from loess–

palaeosol deposits under an assumption of layers correlating to orbital cycles (Soreghan et al., 

2014). 

At present, however, all of this data is confined to the palaeotropics, spans Late 

Carboniferous to Early Permian time, and is two orders of magnitude less abundant than 

DAR data at the Last Glacial Maximum (Maher et al., 2010).  Consequently, if coal and 

lignite, like peat, could be used to estimate DAR, the extant quantitative record of dust prior 

to the Quaternary could be greatly expanded. This greater volume of data would allow dust to 

be considered in models of global processes for times as early as 350 Ma, when the first coals 

were deposited. 

Using carbon accumulation rates from Holocene peat in conjunction with realistic 

rates of dust deposition, Large and Marshall (2014) showed that the titanium concentration in 

Cenozoic coal and lignite, and therefore a high proportion of the inorganic matter in coal, can 

be accounted for by atmospheric dust deposition into the precursor peat. Conversely, we 

propose that given coal composition data of sufficient geographic extent and a reasonable 

estimate of the carbon accumulation rate in the precursor peat, it should be possible to 

constrain mineral dust deposition rates and map global patterns of dust deposition.  



The Permian is an ideal period to test this proposal. During the Permian, globally 

extensive mid to high-latitude peat deposits accumulated across the supercontinent Pangea 

and the continental configuration was relatively stable (Langford et al., 1992). Over the 

course of the Early Permian, the subtropical arid belts expanded to meet at the Equator 

(Boucot et al., 2013). From that point, the zones of aridity were relatively stable (Scotese, 

2001). Widespread loess deposits near the Equator in the Early Permian and Middle Permian 

(Soreghan et al., 2008a) as well as other indicators of widespread tropical and subtropical 

aridity (Boucot et al., 2013) strongly suggest that Permian peat deposits must have been 

exposed to dust transported from arid dust source regions that spanned the low latitudes. 

Particularly useful from this perspective is the laterally contiguous Gondwana coal belt that 

extended from Brazil to Australia (Langford et al., 1992).  

Regional differences in Gondwana coal, notably high concentrations of dispersed 

inorganic matter (ash) in coal from Brazil, South Africa and India are attributed to locally 

variable deposition processes (Glasspool, 2003; Jha et al., 2014; Silva and Kalkreuth, 2005). 

This has resulted in multiple local coal deposition models, none of which consider that 

regional variations in the concentration of inorganic matter in the coal may have been 

primarily determined by patterns of global atmospheric dust deposition.  Also, an incomplete 

understanding of the large scale controls on coal ash content is likely to have profound 

consequences for coal exploration and mine development, where ash concentration is an 

important determinant of coal quality.   

Our approach is to collate data on the average concentration of inorganic matter in 

Permian coal and determine whether this data displays a global pattern consistent with 

qualitative and quantitative climate modelling. Locally independent syn- and post-

depositional processes cannot explain a global pattern, and we postulate that the only 

plausible explanation for such a pattern is global atmospheric dust transport and deposition.  



Coal derived dust accumulation rates are then compared to the results of quantitative 

simulations of Permian dust deposition in greenhouse and icehouse conditions as well as the 

limited dust accumulation rate data available from other sources and the implications 

discussed. 

2. Methods. 

2.1 Basis for determining DAR from coal. 

This approach assumes that the major lithophile elements (Si, Al, Mg, Fe, Ca, Mn, K, 

Na, Ti) that constitute the bulk of the inorganic constituents in coal (Bragg et al, 1998; Tewalt 

et al, 2010) originate predominantly from silicates and oxides in atmospheric dust.  This 

assumption refers to the origin of the elements not to the association of these elements in the 

coal with mineral matter, organic matter etc. which can be highly variable (Ward, 2002). 

Other sources of inorganic elements in coal are shallow and deep groundwater (syn- and post-

deposition) and water borne clastic sediment, both of which are controlled by local not global 

processes and should therefore not display global trends. Furthermore, water borne clastic 

deposition rates in coal forming environments (floodplains, estuaries and deltas) are typically 

in the range 0.02 to 1 mm per year (Einsele, 2000) which at typical bulk soil densities of 1200 

to 1600 g/cm3 corresponds to mass deposition rates of 24 to 1600 g/m2/yr. Given a realistic 

estimate of time and carbon balance (Large and Marshall, 2014) the supply of clastic matter 

to peat at all but the lowest of these rates (<35 g/m2/yr) could not result in the production of 

coal, and even the lowest of these rates would produce a poor quality coal.   

The measure we use for these elements is the reported ash concentration generated by 

high temperature ashing (Vassilev and Tascon, 2003) a process that converts the elements 

back to oxides. Some more volatile elements are lost during high temperature ashing 

(Vassilev and Tascon, 2003) but the major lithophile elements are preserved.  



Many elements present in mineral dust, which has an average composition (Lawrence 

and Neff, 2009) similar to upper continental crust, are potentially soluble in wet, acidic peat-

forming environments so ideally a highly insoluble lithophile element such as titanium should 

be used as a measure of dust deposition. However, only 280 samples were found with 

reported titanium concentrations. This reduction in sample size would severely limit the 

extent and resolution of the data, so we have used the ash concentration in the coal rather than 

titanium. In support of this approach, atmospheric dust has been shown to be relatively stable 

in peat (Zaccone et al., 2013) and ash concentration correlates positively with the 

concentration of titanium (Fig. 1); evidence that the ash is dominated by lithophile elements 

introduced into the peat during deposition.       

A major uncertainty is the assumption that Holocene carbon accumulation rates are 

applicable in the Permian. The basis for this assumption is that carbon accumulation rates are 

primarily determined by the balance between productivity and decay in the precursor peat 

which in turn is determined by climate (Clymo et al., 1998). Given that Permian 

palaeoclimate and soil productivity in Gondwana appear to have been similar to that found in 

the peat bearing boreal and temperate regions of the Northern Hemisphere today (Gibbs et al., 

2002; Retallack, 1999) and that the C3 photosynthetic pathway dominated both systems 

(Beerling and Woodward, 2001) this seems a reasonable assumption. More importantly this 

assumption is clear and the approach used is easily adapted by applying different quantitative 

models of the link between carbon accumulation rate, flora and climate to the collated data.  

As bounds to the uncertainty, we consider the consequence of halving or doubling the peat 

carbon accumulation rate. 

2.2 Calculation of coal derived DAR. 



In a particular coal the rate of mineral dust deposition is calculated using the ash 

concentration, the palaeolatitude and the concentration of carbon on a dry ash free basis. 

Palaeo-latitude determined using PaleoGIS is used in conjunction with a linear model of the 

latitudinal variation in peat carbon accumulation rate (Large and Marshall, 2014) to estimate 

the long-term carbon accumulation rate in the precursor Permian peat. The proportion of 

carbon lost during the transformation of peat to coal is determined by modelling the 

relationship between the mass of carbon lost and the dry ash-free carbon concentration of the 

coal (Large and Marshall, 2014).  In combination the measure of carbon input and carbon 

loss enable the time required to accumulate a given mass of carbon and associated ash to be 

calculated and hence calculation of the mineral dust accumulation rate required to account for 

the inorganic matter in the coal.  

Carbon accumulation rate in the precursor Permian peat is calculated using a linear 

regression to a graph of Holocene peat carbon accumulation rate versus latitude (Large and 

Marshall, 2014). The proportion of the carbon lost during coalification is determined relative 

to a woody peat starting composition which on a dry ash free basis contains 58.6%  carbon,  

5.4% hydrogen and 34.7% oxygen (Large and Marshall, 2014).  The proportion of carbon 

remaining is then determined assuming that during coalification all carbon is lost as methane 

and carbon dioxide.  The trend of carbon loss was empirically fitted to the observed trend in 

coal composition with increasing rank plotted on a van Krevelen diagram of O/C vs. H/C 

(Large and Marshall, 2014). The proportion of carbon retained in the coal relative to the 

original peat is then expressed via the fourth order polynomial fit to a graph of carbon 

concentration in the coal on a dry ash free basis vs. the proportion of carbon retained relative 

to that in the precursor peat. 

p= 33.332c4 - 117.25c3+155.18c2-92.699c+21.733 



p = proportion of C remaining relative to that in precursor peat 

c = concentration of carbon in the coal on a dry ash free basis 

2.3 Generation of Permian Coal Database 

A coal geodatabase (Supplementary Table 1, Table 2 and Supplementary Database 

References) containing ash concentration, current latitude and longitude and the estimated 

deposition rates of mineral dust, iron and phosphorus from 759 Permian coals from across 

Pangea was created in ESRI ArcGIS 10.1 and transformed using the UTIG Kungurian epoch 

(272-283 Myr) plate model in PaleoGIS to provide a palaeolatitude and palaeolongitude 

position for each data point.  A mid-Permian Kungurian palaeogeography was chosen as at 

this time Gondwana peatland was at its most contiguous (Langford et al., 1992). 

Stratigraphically, Brazilian and South African coals were deposited during the Artinskian-

Kungurian, Indian coals during the Artinskian-Kungurian and Capitanian-Wuchiapingian 

with Australian coals encompassing the entire Permian (Langford et al., 1992; Fig. 2).  In the 

Northern hemisphere, US coals and N. China coals were deposited in the Asselian- 

Artinskian and South China coals represent Wuchiapingian-Changhsingian deposition 

(Fig.2).  Extensive Russian Permian coal deposits (some as thick as 20m) are under-

represented within the dataset primarily due to lack of exploitation leading to very little 

published coal quality data (Thomas, 2013). In selecting data multiple values from a single 

location were averaged and values that encompassed known sediment partings within the coal 

were excluded.  Where coal carbon concentration data was missing an average value for coal 

from the same region was used.   

2.4 Data Contouring 



The contouring method applied is the standard ordinary kriging method in the ArcGIS 

Geostatistical Analyst Toolbox. Prior to analysis the data was checked for normality and the 

presence of global trends. Second order trend removal was applied to account for a strong E-

W trend and a lesser N-S trend. This second order trend observed is the trend expected from 

patterns of global dust transport. Once detrended, ordinary kriging was then applied to the 

residuals and the prediction surface contour maps created.  Post kriging the model was 

optimised by accounting for anisotropy in the existing spherical semivariogram.  The 

resulting prediction map was cross-validated to examine whether the model was reasonable 

for contour map production and a standard error map was produced (Fig. 3). Greatest errors 

are seen within low sample density regions; reflecting the sporadic nature of the geological 

record (Fig. 3).  Interpolations were clipped to data points in order to limit displayed results 

to areas with sufficient data coverage and the least uncertainty.  Variable uncertainty within 

the contoured area is illustrated on contoured plots of standard error (Fig. 3). 

2.5 Dust deposition modelling 

To simulate dust deposition during the Permian, multiple simulations were performed 

with the Community Climate System Model version 3 (CCSM3) at a T31 resolution (3.75°); 

configured for an Asselian–Sakmarian palaeogeography; and under a diversity of greenhouse 

gas levels, sea level, and glacial extent. These simulations were run to approximate energetic 

balance between the ocean and atmosphere under a uniform aerosol forcing. These 

simulations and the range of climates within them are fully described by Heavens et al. 

(Heavens et al., 2015). This study focuses on two of these simulations: 

greenhouse.noglaciation (a simulation corresponding to a warm greenhouse interval with 

pCO2 = 2500 ppmv and no land ice) and icehouse.glaciation.polar (a simulation 

corresponding to an icehouse interval with pCO2 = 250 ppmv, a large ice sheet near the South 

Pole, and a small ice sheet in northern Angara).   



 Using these simulations as an initial condition, the emission, transport, and deposition 

of radiatively passive dust (0.1—10 µm in size) was simulated using a modified version of 

the model routines used by Mahowald et al. (2006b) and Yoshioka et al. (2007). These 

combine the Dust Entrainment and Deposition (DEAD) model (Zender et al., 2003a) and the 

Model of Atmospheric Transport and Chemistry (MATCH) (Luo et al., 2003).  

 Following the observations of Okin (2008) that dust emission can come from more 

vegetated regions than previously believed the dust emission routines of Mahowald et al. 

(2006b) were modified by increasing the vegetation area index (VAI) threshold for emission 

from 0.1 m2 m-2 to 0.3 m2 m-2. Second, the size distribution of the emitted dust was modified 

to agree with the observationally validated physical model of Kok (2011): 0.1—1.0 µm 1.1%; 

1.0—2.5 µm 8.7%; 2.5—5.0 µm 27.7%; and 5.0—10.0 µm 62.5%. Mahowald et al. (2006a) 

made the following assignment of the emitted flux to bins: 0.1—1.0 µm 3.8%; 1.0—2.5 µm 

11%; 2.5—5.0 µm 17%; and 5.0—10.0 µm 67%. 

  The model routines also were modified to better represent interactions between 

climate, vegetation, and dust emission. The simulations reported by Heavens et al. (2015) 

only use two vegetation maps to account for the effect of vegetation on moisture transport, 

albedo, and aerodynamic roughness. While the model climate is weakly sensitive to the 

choice of vegetation map (Heavens et al., 2015), dust emission in the model is strongly 

sensitive to vegetation cover. Therefore, not accounting for changes in vegetation due to 

climate would mute the simulated dust cycle’s sensitivity to climate. At the same time, fully 

changing the vegetation map would slightly change the climate. Therefore, the simulations 

were modified so that the vegetation cover thresholds for dust emission would be based on 

the biomes predicted by the equilibrium vegetation model BIOME4 (Kaplan et al., 2003) 

when forced by the model climate. However, the vegetation input to the model that was 

relevant to moisture transport, albedo, and aerodynamic roughness was left unchanged. 



 The dust emission formulations in the model predict dust emission under the 

assumption that dust-containing sediment is always available across the entirety of the grid 

cell. In fact, such sediment is heterogeneously distributed on the Earth (Ginoux et al., 2001). 

Therefore, dust cycle simulations typically multiply the predicted dust emission by a 

geographically varying soil erodibility factor (sometimes called a source function, S) (Ginoux 

et al., 2001; Mahowald et al., 2006b). This factor can be estimated on theoretical grounds 

(Zender et al., 2003b) or by tuning the model to match observations (Mahowald et al., 

2006b). However, this factor cannot be estimated for the Permian on theoretical grounds 

without higher resolution palaeotopographic information than available. Moreover, there is 

insufficient observational information other than the coal-derived data to tune a model. 

Therefore, S was set to 0.0651, the average value on land for the Earth’s current geography 

according to the geomorphic hypothesis (Zender et al., 2003b). 

 For purposes of comparison with the coal derived data, the output of the model was 

shifted 30 degrees west to better align the palaeogeography used for compiling the data. The 

dust deposition and dust emission data were scaled so that dust deposition in the 

palaeogeographic location of western Brazil (24° S, 117.5° W in the shifted reference frame) 

is 32 g m-2 yr-1. This adjustment increases global dust deposition and emission by 81 % in the 

greenhouse interval simulation and by 7.6% in the icehouse interval simulation. 

  

3. Results and Discussion 

Ash concentration in the coal (Fig. 4A) displays a systematic longitudinal decrease 

from West to East across Gondwana.  Highest average ash concentrations (30-45%) occur in 

South America, intermediate concentrations in Southern Africa (20-30%) and India (10-30%) 

and the lowest concentrations in Australia and Antarctica (<15%). In western Gondwana ash 

concentrations also increase northwards.  Variable, locally controlled deposition processes 



cannot explain the presence of this systematic global pattern. In the northern hemisphere ash 

concentrations are low at higher latitude (<10%), higher in the tropics (10-30%) and highest 

(30-40%) in low latitude coal from the western continental interior.  

Coal-derived DAR (Fig 4B) reach 25 g m-2 yr-1 close to western Pangea and decrease 

systematically away from these regions. The assumed latitudinal gradient in peat carbon 

accumulation rate produces strong latitudinal gradients in the rate of dust deposition over 

Gondwana. In size, shape and extent the magnitude and pattern of dust deposition over 

Gondwana is similar to what would be expected from a large dust plume centred on the 

Tropic of Capricorn. 

Simulated dust emission during greenhouse.noglaciation conditions (Fig. 5A) predicts 

dust source regions concentrated in equatorial western Pangea, with a distinct secondary 

source region located within central-west Antarctica.  The icehouse.glaciation.polar emission 

simulation (Fig. 5B) also predicts major dust source regions in equatorial western Pangea 

with secondary dust source regions along south-west Pangea and in Angara. Unlike the 

greenhouse.noglaciation simulation it does not predict an Antarctic source region which is 

primarily attributed to ice cover.  

Simulated DAR in both the greenhouse.noglaciation (Fig 6A) and the 

icehouse.glaciation.polar simulations (Fig. 6B) are highest in western Pangea decreasing 

westward as expected from the westward transport of dust from areas of dust emission.  In 

the greenhouse.noglaciation simulation the extent of the Gondwana and Euramerica dust 

plume is more limited than during icehouse conditions likely due to the effects of increased 

vegetation and therefore decreased erodability.  In this simulation relatively low DAR are 

predicted in North China, whereas in the icehouse.glaciation.polar simulation the Angaran 

dust source is much stronger augmenting dust transport eastward.  Another difference 



between the two simulations is the lack of an Antarctic dust plume in the 

icehouse.glaciation.polar simulation reflecting glaciation in this area at this time.  

Comparison between the coal derived DAR data and simulated DAR data is 

inherently uncertain due to the indefinite nature of Permian source characteristics used in the 

simulations (as detailed in the methodology).  However, the source characteristics are based 

on reasoned assumptions derived from the best currently available data.  Comparison, 

however tentative, is made on this basis and can be revised in light of better or different 

source characteristics.   Another important caveat is that the coal data can only represent 

regions and periods during which peat could accumulate and therefore does not represent 

drier or dustier conditions during which peat accumulation would be impossible. Over a 

certain DAR threshold of about 35 g m-2 yr-2 virtually any coal formed would be uneconomic 

(> 50% ash), probably under-reported and peat would be replaced by loess type deposits. 

Coal-derived DAR (Fig 4B) and both the simulated DAR (Fig. 6) produce broadly 

similar dust deposition rates (0.01 – 30 g m-2 a-1) which fall within the Neogene/Modern 

range. Simulated DAR exceeds this range in the centre of arid regions, where very high dust 

deposition rates and aridity preclude coal formation.  

The greenhouse.noglaciation simulation and coal-derived DAR are similar in western 

Pangea with the exception that the coal-derived data shows extension of the equatorial 

Gondwana dust plume further south than simulated.  This may indicate that dust source 

regions extended down the western edge of Gondwana, a pattern that is present within the 

icehouse.glaciation.polar simulation.  This may be attributed to the presence of a colder 

coastal current during the earlier part of the mid Permian when western coals were still 

forming under conditions of low CO2. In support of this, earlier and more arid Permian 

deposits that dominate data from the USA and Brazil, have lower Ti concentrations in the 



coal ash. These lower Ti concentrations are closer to values expected in mean upper 

continental crust and consistent with lower intensity chemical weathering in the early 

Permian (Yang et al., 2014).   

A key difference between the simulation and coal-derived DAR data is the lack of 

evidence for a significant Antarctic dust source in coal-derived DAR data.  This may be due 

to a number of reasons including that the Antarctic region was glaciated, less arid than the 

simulation suggests or that the latitudinal gradient used in carbon accumulation is incorrect. 

The latter suggestion is considered unlikely as even when doubled the coal-derived DAR 

rates remain well below those predicted by the simulation.  The best fit for the coal-derived 

DAR data is produced within the icehouse.glaciation.polar simulation (Fig. 6B). In this 

simulation the Antarctic dust source is very small, indicating that the period of eastern 

Gondwanan coal formation may represent a cooler period that favoured water storage in 

peatland and the associated accumulation of carbon and that Antarctica was glaciated and/or 

blanketed by extensive vegetation that suppressed dust emission.       

Another discrepancy between the greenhouse.noglaciation simulation (Fig. 6A) and 

coal-derived DAR maps/icehouse.glaciation.polar simulation (Fig. 4B; 6B) is the extent to 

which the Angaran Shield is a dust source. Coal-derived DAR and the simulated 

icehouse.glaciation.polar DAR maps indicate that North China and most particularly the later 

South China coals experienced consistently elevated dust deposition during their formation.  

In the case of North China this may reflect strengthening and extension of the Angaran shield 

dust plume, possibly reflecting a propensity of the region to be eroded and generate silt sized 

particles.  In support of this, the Ti concentrations in these coals are undifferentiated from 

most Pangean coal (Fig.1) indicating a similar general crustal dust source. In contrast to 

North China, ash in coal from South China is more Ti-enriched (Fig.1). This may be due to 

the known volcanic influence (Dai et al., 2012) and formation at low latitude both of which 



should result in more weathered Ti-enriched dust source regions and depositional 

environments (Yang et al., 2014).  A volcanic influence might also explain what appear to be 

two distinct trends within the South China data (Fig.1), one Ti enriched and the other aligned 

with global trend observed in Permian coal data from the other regions.  Inorganic coal data 

from Brazil also occurs in two distinct clusters (Fig.1.), one that aligns with the global trend 

and another that may indicate the influence of a titanium depleted ash. The titanium depleted 

ash could represent less weathered material closer in composition to average upper 

continental crust (Li, 2000) which could be dust sourced under colder conditions or may 

represent a fluvial clastic influence. 

While the simulated DAR magnitude was scaled to match coal DAR in west Brazil 

(see Methods), this adjustment was small enough to suggest that the simulated magnitude of 

DAR is within a factor of 2 of the coal DAR. Therefore, coal-derived dust deposition rates 

match the expected deposition rates for a planet with the average soil erodibility factor of the 

present day, that is, covered with dust in the same proportion as today. This result suggests 

that surface dust availability was not radically different in the Permian than today. However, 

theoretical calculations as well as observationally-constrained simulations of Pleistocene and 

Holocene dust deposition suggest that soil erodibility is extremely heterogenous (Zender et 

al., 2003b; Mahowald et al., 2006b), so any conclusions drawn from this result must be 

considered tenuous. 

The consequence of doubling or halving peat carbon accumulation rates is to double 

or halve dust deposition rate respectively.  Doubling dust deposition produces maximum rates 

in excess of 40 g m-2yr-1. Currently, values of this magnitude (Mahowald et al., 2006b) only 

occur in areas too arid to support peat formation (Yu et al., 2010).  It therefore seems unlikely 

that peat carbon accumulation rates were significantly higher than those observed in the 

Holocene.  Halving dust deposition rate produces values that still fall within the global range 



of values encountered in temperate climates and at high latitude today (Mahowald et al., 

2006b). However, whether the values are halved or doubled, the conclusion that ash 

concentrations in Permian coal display global patterns consistent, in magnitude and scale, 

with a mineral dust origin remains unchanged.   

Different dust deposition rates would only be expected if the physical process of dust 

generation, atmospheric entrainment and transport were very different in the Permian.  Wind 

speed which exercises a strong control on dust entrainment and transport (Mahowald et al., 

2014) is predicted to have been in a range similar to present day values during the Permian 

(Gibbs et al., 2002) and the similarity between estimated Permian and modern dust deposition 

rates supports this prediction.  A possible confounding factor is whether or not the peatland 

productivity is linked to the dust supply.  If this were the case then mineral dust deposition 

rates may have been underestimated in areas of high dust deposition rate and vice versa.  If 

present it is unlikely that this effect would be substantial as it has not been observed in 

peatland today. 

 In one instance, the coal derived data also can be compared with DAR estimates from 

other techniques. From Late Carboniferous/Early Permian coals from 5° N  80° W in 

equatorial Pangea, dust accumulation rates of 16–25 g m-2 yr-1 are inferred. This is fully 

consistent with the high dust deposition rates estimated for an offshore atoll in western 

equatorial Pangaea during Early Permian glacial intervals (Sur et al., 2010). Early Permian 

dust deposition rates in the interior of western equatorial Pangaea can be estimated from 

loess–palaeosol couplets in the Maroon Formation (Soreghan et al., 2014). If it is assumed 

that these couplets represent obliquity cycles of 43 kyr, their characteristic thickness is 2 m, 

and their density is 2000 kg m-3,, the inferred dust deposition rate averages 93 g m-2 yr-1, a 

high deposition rate that would be expected for a dust sink in the arid continental interior. 



That the dust deposition rate in coals to the east of this area is closer to that in offshore areas 

may imply greater distance from the dust source region.         

4. Implications and Conclusions 

A remarkable aspect of the observations is the presence of a pattern in coal data that 

spans a considerable period (Fig. 2); 47 Myr for the entire Permian dataset and 27 Myr for the 

Gondwana coal data.  This would not be expected if concentrations of atmospheric dust and 

source regions displayed high spatial and temporal variability. The presence of this pattern 

implies the existence of prolonged stable dust plumes during periods of Permian peat 

deposition. The stability of these dust plumes also implies significant and sustained 

windborne dust and phytonutrient load to the Palaeo-Tethys that could have contributed to 

eutrophication and development of anoxia in this enclosed marine basin, a process considered 

by some to have contributed to the end-Permian mass-extinction (Knoll et al., 2007).  

Another important conclusion is that the global processes of dust deposition can 

reasonably account for the large scale differences in coal ash concentration during the 

Permian. Inevitably this leads to the consideration of what might be achieved at higher 

resolution with a more refined stratigraphy within single coal seams or successive seams. In 

combination with a reasoned estimate of the time, which in the case of a 1.5m thick, mid-

latitude, bituminous coal could represent more than 100 kyr, it should be possible to resolve 

variable DAR over the duration of the coal seam(s) and associated climate cycles.  

Furthermore coal could, in principle, also yield geochemical data on dust provenance. 

From an economic perspective, the dominant dust control upon coal quality is likely 

to have consequences for hydrocarbon and coal exploration.  In the case of Permian coal, a 

combination of global palaeoclimatic and palaeogeographic factors would appear to render 

large areas incapable of producing high quality coal.  With further high resolution study 



within developed coal basins, lower dust intervals may be identified and targeted for future 

exploration and mine expansion.  In the case of economically important oceanic anoxic 

events, a better knowledge of the amount, timing and distribution of aeolian derived nutrient 

load to restricted basins may also be of use in identifying and understanding the distribution 

of hydrocarbon source rocks.    

In summary these results demonstrate the capacity to use coal deposits to constrain 

patterns and quantify rates of dust deposition. This opens the door to using coal to explore, at 

higher resolution, the climatic and environmental effect of changes in Permian dust load, 

including the role of dust in the Permian deglaciation. More significant is the potential to use 

coal derived dust records in conjunction with other climate proxies and models to extend our 

understanding of the role of atmospheric dust in biogeochemical cycles and palaeoclimate 

from the Quaternary to the Carboniferous.  
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Figure Captions: 

Fig. 1 – Plot of titanium concentration vs. ash concentration showing regression lines and 

statistical summary for different regions within the dataset.  Data from South China displays 



evidence of a markedly different trend interpreted as being indicative of the reported 

influence of titanium enriched volcanic ash on this coal (Dai et al., 2012).  Data from Brazil 

occurs in two clusters, one that aligns with the global trend and another that may indicate the 

influence of a titanium depleted source. (2 Column Colour) 

Fig. 2 – Stratigraphic context of the Permian coal samples used in this study after Langford et 

al., 1992. Gradational fading of the shaded bars represents decreasing seam thickness and 

abundance. C = Carboniferous, Trias = Triassic, Gz = Gzhelian, Wuchia = Wuchiapingian, 

Ch = Changhsingian, Ind = Induan (2 Column Colour) 

Fig. 3 - Map of the standard error in the ash concentration prediction surface contour maps 

(Fig. 1). The same pattern of uncertainty applies to the derived map of dust (Fig. 4B). (2 

Column Greyscale) 

Fig. 4 - Contoured prediction surface maps of A) ash concentration and B) calculated dust 

accumulation rate. Maps are plotted on the mid-Permian Kungurian continental 

configuration. (2 Column Colour) 

Fig. 5 - Simulated dust emission rates under A) greenhouse.noglaciation and B) 

icehouse.glaciation.polar conditions. Maps are plotted on the mid-Permian Sakmarian-

Artinskian continental configuration.  Arid marks correspond to mean annual precipitation < 

400 mm. This is the boundary between sub-arid and sub-humid conditions chosen by Rea 

(1994). (2 Column Colour) 

Fig. 6 - Simulated DAR under A) greenhouse.noglaciation and B) icehouse.glaciation.polar 

conditions. Maps are plotted on the mid-Permian Sakmarian-Artinskian continental 

configuration. Arid marks correspond to mean annual precipitation < 400 mm. This is the 

file:///C:/Users/ear5cjm/Downloads/Marshall%20and%20Large%20Dust%20Gondwana%20Research%20paper%20v.11.docx%23_ENREF_7


boundary between sub-arid and sub-humid conditions chosen by Rea (1994). (2 Column 

Colour) 

Supplementary Table 1 –Collated ash data on global Permian coal deposits. 

Supplementary Table 2 – Collated titanium data on global Permian coal deposits 

Supplementary References – References to the source of all data in Table 1. 
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