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Abstract 

Jatropha curcas seed cake is a viable feedstock for co-firing with coal as it has the 

advantages of being renewable, carbon-neutral and sourced from a versatile plant. 

Torrefaction, a mild pyrolysis treatment by heating in a N2 atmosphere, was 

investigated as a technique to improve the thermochemical properties of the biomass, 

primarily the higher heating value (HHV). The temperature and holding time were 

varied in the ranges of 200-300
°
C and 0-60 min, respectively, to form a 5-level full-
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factorial experimental matrix. An optimum envelope of torrefaction parameters was 

identified in the range of <5 min at >280
°
C to >45 min at 220-250

°
C under a heating 

rate of 10
°
C/min. This results in an enhancement of the HHV from 24 MJ/kg to more 

than 27 MJ/kg, which is within the range of coal, while maintaining an energy yield 

higher than 90%. The relationships between the HHV and the proximate fixed carbon 

content as well as the elemental CHO content were also investigated. Through 
13

C 

NMR (nuclear magnetic resonance) spectroscopy, hemicellulose was determined as the 

most volatile component, undergoing decomposition before 250
°
C while cellulose only 

degraded fully in the 250—300
°
C range and lignin decomposition spanned from 200

°
C 

to beyond 300
°
C. 
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1. Introduction 

The development of alternatives to replace fossil fuels as the primary global energy 

source is gaining recognition as an issue of utmost importance. The major drivers 

behind the move away from fossil fuels are emissions releases from fossil fuels 

combustion and the non-renewable nature of the fuels. The combustion of fossil fuels 

worldwide generates copious amounts of greenhouse gases in particular carbon dioxide 

which contribute to global warming. Meanwhile, the non-renewable nature of fossil 

fuels means that the fuel reserves are finite; some estimates have projected that coal 

would only last another century [1,2]. 
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Among the various alternative energy technologies, biomass co-firing stands out 

since it allows for the use of existing infrastructure without extensive modifications. 

Biomass in itself has the advantages over fossil fuels of being relatively carbon-neutral 

over the entire life cycle and also being renewable if sourced from sustainable 

plantations. Biomass co-firing with coal provides an immediate and practical solution to 

mitigating coal usage since coal plants of several hundred MW can be utilised in 

contrast to the 20-100 MW capacity of current biomass-only plants; the initial capital 

costs of building new plants are also avoided and biomass co-firing is considered one of 

the least costly alternative energy sources [3,4]. Co-firing also has the added advantage 

over coal of having enhanced ignition characteristics [5], and the flexibility over 

biomass-only plants of being less affected by seasonal availability of biomass [6]. 

There is a large variation in properties within the different types of biomass, and 

these can also vary widely from those of coal. It is this variation that is responsible for 

the technical constraints on co-firing. Closing this gap between the properties would 

diminish the need for specialised handling and combustion equipment, and would allow 

a higher proportion of biomass to be used in the co-firing blend [7].  The properties in 

question are thermochemical as well as physical – biomass has a higher moisture 

content, lower energy density and different grindability characteristics compared to coal 

[8–10].  

Therefore, it is imperative to investigate pre-treatment techniques which would 

overcome some of the unfavourable characteristics of biomass and hence bring its 

behaviour closer to that of coal. One such technique is torrefaction, which involves a 

non-combustive mild pyrolysis reaction which occurs when the biomass is heated in an 

inert atmosphere (typically N2) to a temperature between 200
°
C and 300

°
C [11]. 
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Torrefaction increases the calorific value of the biomass, and this is one of most 

important benchmarks of the process; this in turn has a positive effect on the energy 

density of the biomass [12]. The process inevitably reduces the moisture content of the 

fuel, but also has the effect of making it more hydrophobic, i.e. its susceptibility to 

absorb moisture is reduced [13,14]. In addition to this, torrefaction has been shown to 

alleviate the poor grindability of biomass, which is an important outcome since it allows 

a uniform particle size distribution in the coal-biomass blend to be attained using 

existing milling/handling systems [15,16].  

Jatropha curcas is a species of shrub which is gaining recognition as a potential 

source of renewable energy in the form of biodiesel, as evidenced by the increasing 

number of Jatropha plantations that have been set up in (sub)tropical regions worldwide 

for this purpose [17]. The plant has a number of features that make it an appealing 

proposition as a bioresource – it can grow in annual rainfall conditions up to 1500 mm, 

is able to withstand extended periods of drought [18] and is resistant to most pests [19],  

as well as grows and propagates rapidly [20]. Furthermore, its toxicity ensures a lack of 

competition with the food industry, which is an issue faced by sources of bioenergy 

such as palm oil and sugar cane [21]. Due to its adaptability to tropical and arid 

conditions, it is found natively and in plantations in Central America, Africa, India, 

China and Southeast Asia [22]. 

The primary driver behind current interest in Jatropha curcas is biodiesel 

production using the oil from the seeds. To date, there have been many studies on the 

utilisation of Jatropha curcas oil as biodiesel feedstock. However, the oil content of the 

seed is typically less than 40%, and only 60-80% of this is extracted using conventional 

mechanical methods [23–25]. It follows then that the solid residue left after oil 
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extraction (seed cake) still amounts to a significant amount of biomass, and a useful 

quantity of bioenergy could potentially be extracted from this waste product via co-

firing. Nevertheless, co-firing of this seed cake is liable to the aforementioned 

complications due to potential differences in properties with coal.  

There is a substantial gap in the research with respect to comprehensive 

characterisation, subsequent pre-treatment and evaluation of Jatropha curcas seed cake 

as a viable feedstock for combustion and/or co-firing. With the increasing recognition of 

Jatropha seed oil as a viable biodiesel feedstock, an investigation into utilising the 

resulting seed cake in this manner would be a worthwhile undertaking. This study 

investigates the upgrading of certain fuel properties of Jatropha curcas seed cake via 

torrefaction, to increase its viability for co-firing. In addition to the thermochemical 

changes such as the proximate and ultimate composition and higher heating value 

(HHV), 
13

C nuclear magnetic resonance (NMR) spectroscopy is used to investigate the 

structural changes taking place during the torrefaction process. 

 

2. Materials and methods 

2.1. Material  

Jatropha curcas seeds were provided by ACGT Sdn. Bhd. (Malaysia). They were 

dried for 24 h in an oven at 105
°
C, and double wrapped in large plastic bags before 

shipping to Nottingham, UK. 55 kg of the seeds were sent to an external facility 

(Statfold Seed Oil Ltd.) for oil extraction using an expeller press. 48.5 kg of solid 

residue (seed cake) were obtained, corresponding to an oil yield of 12%. This is lower 

than the oil yield of 28-40% reported in the literature [19,26,27]. The seed cake 
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appeared to consist of two distinct components – hard, dark, rod-like structures in a soft, 

oily, loose soil-like matrix. The latter comprised approximately ¾ by weight of the total 

seed cake, and was the primary focus of this study. 

2.2. Torrefaction experimental matrix 

A 5-level full-factorial (triplicated) design of experiment was used. The tested 

torrefaction temperatures  were 200
°
C, 225

°
C, 250

°
C, 275

°
C and 300

°
C, while the tested 

holding times used were 0 min, 15 min, 30 min, 45 min and 60 min. The run order was 

randomised using Minitab 17 statistical software, which was also used for the 

subsequent data analysis. Including the replicates, a total of 75 torrefaction runs were 

carried out. 

2.3. Torrefaction methodology 

Torrefaction of the seed cake was carried out using a horizontal tube furnace (HTF). 

The HTF used was a TSHH 11/90/457 model manufactured by Elite Thermal Systems. 

It is a split-type furnace with a tube diameter of 90 mm and a heated zone length of 457 

mm, which can reach a maximum temperature of 1100
°
C. A quartz reactor tube with an 

internal diameter of 60 mm was placed within the furnace. End seals were fitted to the 

two open ends of the reactor tube, and a N2 gas supply was connected to one end. A 

rotameter enabled the gas flow rate to be controlled. 

For each torrefaction run, 25 g (±0.5 g) was measured into a ceramic “weighing 

boat”. The weighing boat was placed in the middle of the reactor tube and both ends of 

the tube were sealed using rubber bungs. The N2 supply was switched on and set to 2 

L/min. After the N2 flow had been running for 5 min (to ensure that O2 is purged out of 

the reactor tube), the furnace was switched on. For each run, a constant ramp of 
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Eqn 1 

10
°
C/min was used until the required torrefaction temperature was reached, followed by 

an isothermal period for the necessary holding time. 

Immediately after the run was completed, the controller switches off the furnace and 

the hood of the furnace was opened to accelerate cooling. When the temperature readout 

reached 100
°
C, the N2 supply was switched off and the sample was removed from the 

reactor tube. The sample was reweighed after it had cooled down to room temperature, 

and transferred to an airtight plastic bag for storage until subsequent analyses were 

carried out. The post-run procedure was standardised across all runs regardless of 

torrefaction temperature and holding time, since the pyrolysis process would continue to 

occur at the elevated temperatures during the cooling phase. 

The mass yield following each torrefaction run was calculated using Eqn 1. 

𝑚𝑎𝑠𝑠 𝑦𝑖𝑒𝑙𝑑 =
𝑓𝑖𝑛𝑎𝑙 𝑚𝑎𝑠𝑠

𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑚𝑎𝑠𝑠
𝑥 100% 

 

2.4. Proximate analysis 

Thermogravimetric analysis (TGA) was used to determine the proximate 

composition of the seed cake, i.e. the moisture, volatile matter (VM), fixed carbon (FC) 

and ash content. The fundamental concept behind this technique is that the biomass 

sample undergoes mass loss in several consecutive stages as it is heated. These stages 

correspond to the different proximate components of the biomass being lost (moisture, 

VM, FC in that order), with the residual mass being the ash content. The TGA unit used 

was a TA Instruments Q500.  
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Eqn 2 

The TGA runs employed a thermal profile which was constructed based on the 

British Standards guidelines for proximate analysis of biomass (BS EN 14774, BS EN 

15148, BS EN 14775). Under a N2 flow of 100 ml/min, the sample was heated to 105
°
C 

at 10
°
C/min, held at that temperature for 40 min, and then further heated to 905

°
C at 

20
°
C/min. After an isothermal period at 905

°
C for 7 min, the sample was cooled to 

550
°
C at 20

°
C/min. Following this, the gas supply was switched to air flowing at 100 

ml/min, and the sample was held at 550
°
C for 120 min. 

Seven samples of untorrefied biomass were subjected to the TGA to determine the 

mean proximate composition, while each torrefied sample was analysed once and the 

mean proximate composition calculated from the triplicate torrefaction runs. 

2.5. Calorimetry 

An IKA C5000 bomb calorimeter was used to measure the higher heating value 

(HHV). The untorrefied biomass was measured three times and the mean calculated, 

while each torrefied sample was measured once and the mean calculated using the 

values from the triplicate torrefaction runs.  

The energy yield was calculated using Eqn 2: 

𝑒𝑛𝑒𝑟𝑔𝑦 𝑦𝑖𝑒𝑙𝑑 =
𝐻𝐻𝑉 𝑜𝑓 𝑡𝑜𝑟𝑟𝑒𝑓𝑖𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒 𝑥 𝑓𝑖𝑛𝑎𝑙 𝑚𝑎𝑠𝑠

𝐻𝐻𝑉 𝑜𝑓 𝑟𝑎𝑤 𝑠𝑎𝑚𝑝𝑙𝑒 𝑥 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑚𝑎𝑠𝑠
 𝑥 100% 

2.6. Ultimate analysis 

The ultimate analysis was carried out in line with the relevant British Standards 

guidelines (BS EN 15104). A Thermo Scientific FlashEA 1112 elemental analyser was 

used for the measurement. The instrument consists of a furnace where the solid sample 

undergoes complete combustion in the presence of oxygen. Elemental C, H, N, S are 



9 

 

Eqn 4 

Eqn 5 

Eqn 6 

Eqn 3 

oxidised to CO2, H2O, NOx, SO2, and the NOx is subsequently reduced to N2. The gases 

are then passed through a chromatographic column. Integration is performed on the 

resulting chromatogram to determine the percentage by weight of C, H, N, S. The O 

content can then be calculated by difference. 

The analysis was performed on untorrefied and torrefied biomass. There were five 

replicates for the untorrefied biomass. With respect to the torrefied biomass, three 

samples for each temperature-time combination were analysed (for temperatures 200
°
C, 

250
°
C, 300

°
C and holding times 0 min, 30 min, 60 min), i.e. the replicates in this case 

illustrate any variation between  torrefaction runs carried out under identical conditions.  

The moisture content of each sample, determined earlier by TGA, was used to 

calculate the C, H, N, content on dry basis, by using the following equations:  

𝐶𝑑𝑟𝑦 = 𝐶𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑𝑥
100

100−𝑀
 

𝐻𝑑𝑟𝑦 = (𝐻𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 −
𝑀

8.937
) 𝑥

100

100−𝑀
 

𝑁𝑑𝑟𝑦 = 𝑁𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑𝑥
100

100−𝑀
 

where M is the moisture content. 

The O content (dry basis) was then calculated using the following equation, based 

on the assumption that the C, H, N, O, moisture and ash content add up to unity.  

𝑂𝑑𝑟𝑦 = 100 − 𝐶𝑑𝑟𝑦 − 𝐻𝑑𝑟𝑦 − 𝑁𝑑𝑟𝑦 − 𝐴 

where A is the ash content as determined by TGA. 
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2.7. 13
C Nuclear magnetic resonance (NMR) spectroscopy 

Solid-state 
13

C NMR spectroscopy was conducted on untorrefied and selected 

torrefied samples. Three samples of untorrefied biomass, and three samples each from 

biomass torrefied at three temperatures (200
°
C, 250

°
C, 300

°
C all at 60 min) were 

analysed for a total of 12 runs. A high-power cross polarisation (CP) sequence was used 

along with proton decoupling on a Bruker Avance 200 NMR instrument. The resonance 

frequency for 
13

C was 50 MHz. The sample was spun at approximately 5 kHz and 2500 

scans were accumulated for each run. Tetrakis(trimethylsilyl)silane (TKS), which has a 

chemical shift of 3.5 ppm, was used with each sample run for calibration.  

 

3. Results and discussion 

3.1. Biomass characterisation 

The mean measured properties of the untreated biomass are shown in Table 1. The 

mean HHV is calculated from triplicate measurements. The proximate and ultimate 

analyses are based on 7 replicate runs. The standard deviation (SD) and coefficient of 

variation (CV) are also shown. The CV is the SD expressed as a percentage of the mean. 

Since the mean values for each element vary significantly, the CV provides a more 

useful representation of the relative variability. 

Among the proximate composition, the moisture content has the largest CV. Since 

the mean measured moisture levels are relatively low, even a variation which is small in 

absolute terms (a range of 0.96%wt) results in a relatively large CV. This justifies the 

use of dry ash-free (DAF) basis when presenting the VM and FC content data since it 
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omits the variability introduced by the moisture content.  This is reflected in the 

relatively low CV obtained for the DAF VM and DAF FC data. 

With respect to the dispersion of the ultimate analysis data, the CV is lowest for C 

(although this can partly be attributed to its relatively high mean value). The moderately 

high CV for O is expected since the dry basis O content is calculated using five 

variables (C, H, N, moisture, ash), and hence the dispersion present in each of these 

variables has an effect on the calculated value.  However, the highest CV by a 

significant margin was for the N content. A possible explanation is that different parts 

of the seed would have a wide variation in N content due to the presence/absence of 

proteins in them, which contain a significant proportion of N. Even after milling and 

mixing, this variation would present itself as inhomogeneity within the seed cake. Table 

2 shows the measured C, H, N along with their corresponding CV for both the untreated 

seed cake and 2,5-Bis(5-tert-butyl-2-benzo-oxazol-2-yl)thiophene (BBOT), which is the 

reference material used for calibration of the instrument. The measured value of the 

BBOT deviates from the reference value specified by its manufacturer by 0.2% or less, 

and its CV is below 1%. This confirms the accuracy and precision of the measurement 

technique for the ultimate analysis, leaving the inhomogeneity of the seed cake as the 

most plausible explanation for the variation in measured values.  

3.2. Mass yield, HHV, energy yield 

Fig. 1 shows the interaction effects of the torrefaction temperature and holding time 

on the mean mass yield, HHV and energy yield. The error bars represent the standard 

errors of the mean values.  
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The mass yield decreases with increasing torrefaction intensity, i.e. increasing 

torrefaction temperature and holding time. This would be the expected observation, 

since more moisture and volatiles would be lost as the sample is exposed to a higher 

temperature for a longer time. It can be seen that discounting the 0 min holding time, 

the mass yield shows an approximately linear decrease with increasing temperature; as 

the temperature is increased from 200
°
C to 300

°
C, the mass yield drops by an average of 

35% in these runs. A linear regression model for the non-0 min mass yield data resulted 

in an R
2
 value of 94.1%. For the holding time of 0 min however, a different trend is 

seen. Here, the mass yield decreases at a much lower rate than the non-0 min runs as the 

temperature is increased. However, the trend is non-linear with the rate increasing at 

higher torrefaction temperatures. The 0 min holding time reflects the torrefaction 

occurring during the heating and cooling segments of each run, since the “holding time” 

variable only represents the isothermal residence time. Since a constant heating rate was 

used for all runs, the sample is exposed to elevated temperatures for a longer time when 

the torrefaction temperature is higher. This would result in a greater mass loss due to 

moisture of volatiles, and result in a curve with an increasing negative gradient. 

The HHV responds inversely to the mass yield, i.e. the HHV increases with 

escalating torrefaction intensity. This is in fact a primary driver for the consideration of 

torrefaction as a biomass pre-treatment technique. This increase has been explained in 

literature on the basis that torrefaction results in a loss of VM. VM lost from biomass 

consists of hydrogen gas and light hydrocarbons which have a low C content compared 

to H [28]. Hence, there is a substantially greater amount of H and O lost during 

torrefaction than there is C [29,30]. This is reflected in the increased FC and elemental 

C content observed in the proximate and ultimate analyses of torrefied Jatropha which 
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Eqn 7 

will be discussed subsequently in Sections 3.3 and 3.4. There is a reduction in the H/C 

and O/C ratios, and since the C-H and C-O bond energies are lower than that of C-C, 

this results in an increase in the calorific value of the biomass [31,32]. 

Excluding the 0 min runs, the HHV shows an approximate direct proportionality to 

the temperature up to ~275
°
C. A linear regression fit in this segment resulted in an R

2
 

value of 89.2%. The curves flatten beyond this temperature; this effect becomes more 

pronounced as the holding time increases. The mean HHV (taking into account all 

holding times excluding 0 min) increases by only 0.64% when the temperature is 

increased from 275
°
C to 300

°
C. Hence, using temperatures in excess of 275

°
C would not 

be beneficial as far as the HHV is concerned.  

Table 3 shows how the enhancement of the HHV of Jatropha curcas seed cake 

compares with that of some other types of biomass [33–37]. All results are at conditions 

of 250
°
C and 30 min. Although other variables such as heating rate and particle size 

make a direct comparison less meaningful, the results in Table 3 illustrates the range of 

possible outcomes of the torrefaction process on different biomass types at seemingly 

similar conditions – the HHV enhancement varies from 1% to as much as 30% while 

that of Jatropha is 16%. Thus, the HHV enhancement obtained for Jatropha is within 

the range of outcomes reported in the literature. 

A regression analysis of the measured HHV in terms of the mass loss – obtained by 

subtracting the mass yield from unity – showed a linear fit with an R
2
 value of 91.9%. 

The following regression equation was obtained:  

𝐻𝐻𝑉 (𝑀𝐽/𝑘𝑔) =  24.55 + (0.15  𝑥 𝑚𝑎𝑠𝑠 𝑙𝑜𝑠𝑠 (%)) 
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Similar linear trends were reported by Almeida et al. [38] and Peng et al. [39]  

following the torrefaction of softwood and Eucalyptus wood and bark, respectively . 

The corresponding regression coefficients obtained by Peng et al. [38] were 19.48 and 

0.15, which are similar to those presented in Eqn 7. Carrying out the regression using 

the mass loss instead of the mass yield results in an equation in which the constant is 

approximately equal to the HHV of the untorrefied biomass, which is 24.06 MJ/kg (see 

Table 1). This feature of the regression equation was highlighted by Almeida et al. [39]. 

The energy yield is a function of the mass yield and the HHVs of the untorrefied 

and torrefied biomass, as shown in Eqn 2; the energy yield is directly proportional to 

both the mass yield and the HHV of the torrefied biomass since the HHV of the 

untorrefied biomass is considered a constant. As the torrefaction intensity is increased, 

the drop in the energy yield implies that the enhancement in the HHV is insufficient to 

compensate for the decreasing mass yield. For all non-0 holding times, the energy yield 

drops at a higher rate as the temperature is increased. When the holding time is 0 min, 

the trend shows a higher degree of irregularity; the energy yield shows a marked drop 

only when the torrefaction temperature is increased beyond 275
°
C. The mean energy 

yield (calculated from all non-0 holding times) decreases by 5.5 % when the 

temperature is increased from 200
°
C to 250

°
C, but drops by a further 14.6 % when the 

temperature is increased to 300
°
C. 

Table 4 shows the results from an ANOVA (analysis of variance) test that was 

carried out on the mass and energy yields as well as the HHV. The 0 min holding time 

was excluded from the analysis. A p-value greater than 0.05 indicates that a factor or 

interaction between factors has a statistically significant effect on the response, i.e. mass 

yield, HHV, energy yield. For all three responses, the interaction between temperature 
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and time is not significant, i.e. the effect of the temperature on the response is not 

dependent on the holding time, and vice versa. This is reflected in Fig. 1, where the 

non-0 min curves are approximately parallel to each other.  

The p-values for the temperature and time (main effects) are all 0.000. This 

indicates that when considered independently, both factors have a significant effect on 

the responses. This independent effect is illustrated in the main effects plots for the 

three responses in Fig. 2, which show the mean response for each value of one factor, 

irrespective of the other factor. A striking feature of the plots is that the temperature has 

a substantially larger effect than the holding time; this is true for all three responses, i.e. 

the mass yield, HHV and energy yield. This observation is corroborated by the F-values 

in Table 4, since a larger F-value is indicative of a more dominant factor. 

3.3. Fixed carbon (FC) content 

The proximate analysis from the TGA yielded the moisture, VM, FC and ash 

contents of the samples. The VM and FC measurements were converted to DAF basis 

so to eliminate the variability introduced by the moisture and ash content. Since the 

DAF VM and DAF FC are by definition inversely proportional to each other (since the 

four components of the proximate analysis should add up to unity), only the DAF FC is 

presented.  

Fig. 3 shows the variation of the DAF FC with torrefaction temperature. 

Torrefaction at higher intensities causes the DAF FC to increase. At the median holding 

time of 30 min, the DAF FC content increases by 65%. At the extreme holding times of 

0 min and 60 min, it increases by 25% and 90%, respectively. At higher temperatures, 

there is a greater loss in the VM; it can be postulated that this is due to the initiation of 
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certain decomposition pathways which require higher activation energies. As stated in 

Section 3.2, the lost volatiles consist mostly of low-C molecules, and hence a lower 

fraction of C is lost from the biomass compared to other elements. This would lead to an 

increase in the FC content. 

A method to estimate the HHV of solid fuels using their proximate analysis can 

prove to be useful tool; proximate analysis using TGA is a common initial 

characterisation of a fuel while accurate measurement of the HHV requires additional 

equipment. There have been several past studies which have derived expressions for 

carrying this out [40–43]. In the present case, four regression models were applied to 

investigate the relationship between the DAF FC content and HHV, and the predicted 

R-square (pred-R
2
) value and standard error of regression (S value) were used to 

determine the efficacy of each model. The higher pred-R
2
 value is desirable, as it is an 

indicator of how well the model can predict a removed observation. Compared to the 

standard R
2
 value, the pred-R

2
 prevents over-fitting noise into the model. The S value 

indicates the average distance from the observed points to the fitted line, and a lower 

value is preferred in this case. Table 5 shows the pred-R
2
 and S values corresponding to 

the four models, along with the equation coefficients (a, b, c, d). The four models were: 

 Linear:   HHV = a + b*(DAF_FC)   Eqn 8 

 Linear logarithmic:  HHV = a + b*ln(DAF_FC)   Eqn 9 

 Quadratic:  HHV = a + b*(DAF_FC) + c*(DAF_FC)
2
  Eqn 10 

 Cubic:   HHV = a + b*(DAF_FC) + c*(DAF_FC)
2
 + 

d*(DAF_FC)
3
         Eqn 11 
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The quadratic and cubic functions possess the best pred-R
2
 and S values. However, 

the quadratic function would be the more desirable option since it contains one less term 

and is the less complex equation of the two.  

3.4. Ultimate analysis 

Fig. 4 shows the variation with torrefaction temperature of C, H, N, O content (% by 

weight, dry basis) of the torrefied seed cake. The error bars illustrate the standard errors 

associated with the calculated means. A clear pattern cannot be identified in the 

variation of the N and H content. There is a significant overlap in the error bars due to 

the large variation between the replicates. A similarly large variability was observed in 

the N content of the untorrefied biomass and an explanation for this was discussed 

earlier in Section 3.1.  

This overlap is also observed in the C and O content, albeit to a lesser degree. 

However, some distinct trends can be observed in this case. With increasing torrefaction 

intensity, the C content increases while the O content decreases. As the temperature is 

increased from 200
°
C to 300

°
C, there is an approximately linear increase in the C 

content by 14%, while the O content decreases by 33%. The trend in C content confirms 

previous findings of increasing FC content (from the proximate analysis obtained from 

TGA, Section 3.3), and can be traced to the loss of low-C volatiles during the 

torrefaction process. However, the reducing O content indicates that the volatiles lost 

also contain a significant proportion of O in their molecular structure. Another 

observation is that the torrefaction temperature has a more pronounced effect on both 

the C and O content than the holding time; there is substantial overlapping between the 

30 min and 60 min curves. This observation is expected since it is a trend that has been 

observed throughout the study (mass and energy yields, HHV, DAF FC content).  
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Table 6 shows the p-values from the ANOVA test. These values confirm that the 

torrefaction temperature and holding time have a statistically significant effect on the C 

and O content. The high p-values for the temperature and time factors for H and N 

further strengthen the conclusion that the dispersion among the data is too great to 

extract a statistically reliable trend from it. Meanwhile, the high p-values for the 

temperature*time interaction for C and O indicate a statistically insignificant interaction 

between the two factors, i.e. a change in the holding time does not change how the 

temperature influences the response (C or O content). This is reflected in the relatively 

parallel gradients observed in Fig. 4(a) and 4(d). 

Fig. 5(a) and 5(b) are van Krevelen diagrams which show the H/C ratio plotted 

against the O/C ratio; the torrefied and untorrefied seed cakes have been included, 

grouped by temperature and holding time in Fig. 5(a) and 5(b), respectively. These 

diagrams have been used in literature as a tool to characterise the thermochemical 

properties of fuels. Fig. 5(c) shows the typical positions of biomass and coal on such a 

diagram. Coal occupies the lower-left section of the diagram, and it is desirable for the 

biomass in question to be in this vicinity since it indicates similar thermochemical 

properties to coal (which would be beneficial for the ultimate aim of co-firing). It can be 

seen from Fig. 5(a) that increasing the torrefaction temperature causes the points to shift 

towards the lower-left direction, which is the required outcome of the torrefaction 

process. However, Fig. 5(b) shows a wide dispersion of points when grouped according 

to holding time, further reinforcing the conclusion that holding time has a less 

significant effect on the properties of the biomass than the torrefaction temperature. 
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3.5. 13
C NMR spectroscopy 

Fig. 6 shows the NMR spectra for the untorrefied and torrefied biomass, with that of 

one sample selected from each level of torrefaction. Assignment of the peaks was done 

using the existing literature while taking into account the fact that an uncertainty of ±2 

ppm can exist. The sharp peak at 3.5 ppm is caused by the standard TKS which was 

used for calibration of the spectrum.  

A typical 
13

C biomass spectrum can be broadly grouped into four sections [44]: 

 >160 ppm : carboxylic C 

 110 ppm – 160 ppm : aromatic C 

 46 ppm – 110 ppm : carbohydrate C 

 <46 ppm : aliphatic C 

 The peaks at approximately 21 ppm and 171 ppm are assigned to acetyl groups in 

hemicellulose [11,45,46]. The group of peaks between 62 ppm and 103 ppm are due to 

C1 to C6 atoms, predominantly of cellulose although hemicellulose also makes a 

contribution [11,47]. The cluster of peaks between 110 ppm and 160 ppm are attributed 

to aromatic rings in lignin [47,48] while the broad shoulder at approximately 52—56 

ppm is assigned to the methoxyl group of lignin [47,49]. In the untreated biomass, 

cellulose appears to be the most abundant component, followed by hemicellulose and 

lignin. 

Following torrefaction at the lowest temperature of 200
°
C, degradation can be 

observed across the spectrum. The most significant losses are of the hemicellulose-only 

peaks (acetyl groups) and the carbohydrate region. Due to the overlap of hemicellulose 

and cellulose signals in the carbohydrate region (62—110 ppm), the extent of individual 
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cellulose and hemicellulose decomposition cannot be determined with certainty; 

however, Neupane et al. [11] attributed most of this decomposition to hemicellulose . A 

flattening is observed in the 110—160 ppm region, indicating that lignin decomposition 

has occurred; methoxyl lignin has also undergone degradation. Despite these changes in 

intensity, the overall shape of the spectrum is still comparable to that of the untorrefied 

biomass.  

After torrefaction at 250
°
C, more significant changes have occurred. The 

hemicellulose has almost completely decomposed, although a degree of cellulose is still 

present. The most noteworthy observations are the appearance of two new broad peaks 

centred around 26 ppm (aliphatic region) and 125—126 ppm (aromatic region). Overall, 

lignin decomposition has not progressed drastically since the 200
°
C torrefaction.  

It is evident that torrefaction at 300
°
C has changed the structure of the biomass 

comprehensively. Both hemicellulose and cellulose have undergone complete 

decomposition. The spectrum is now dominated by the aforementioned two broad 

peaks; these represent the aliphatic and aromatic products of the torrefaction reaction, 

since their growth occurred parallel to the decomposition of the cellulose peaks. 

Although not immediately evident due to the overlap by the aromatic product peak 

around 125—126 ppm, the shoulder at approximately 140 ppm and the slight bump at 

approximately 54 ppm indicates that the lignin has still not completely decomposed. 

From this analysis, it can be seen that hemicellulose is the most volatile component 

present and undergoes significant decomposition between torrefaction temperatures of 

200
°
C and 250

°
C. Cellulose is comparatively more stable, and although it starts 

degrading below 250
°
C, complete decomposition only occurs between 250

°
C and 
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300
°
C. Lignin undergoes decomposition over a wide range of temperatures, starting 

from as low as 200
°
C and continuing beyond 300

°
C. These results are in line with other 

13
C NMR studies carried out on other types of torrefied biomass including bamboo [50], 

beech wood [51] and loblolly pine [11]. The phenomenon of decreasing aliphatic and 

aromatic signals under mild conditions, followed by the increase thereof at higher 

temperatures was also reported by Neupane et al. [11]. This study proposed that this 

was due to aliphatic and aromatic C-C and C-H bonds being formed from the 

decomposition products by way of polymerisation and recondensation products.  

3.6.  Practical implications 

The key driver behind torrefaction in the context of this study is the enhancement of 

the HHV. Coal used in power plants would typically have a HHV in the range of 27-32 

MJ/kg [52]. To support co-firing, it would be desirable to bring the HHV of the biomass 

to within this range. A higher HHV also implies that the energy density is higher, and 

this is advantageous in terms of storage and transport. When carried out at higher 

intensities, the torrefaction process was able to increase the HHV of the Jatropha seed 

cake to ~30 MJ/kg. However, the energy yields at these torrefaction conditions are less 

than 80% (see Fig. 7(a) and 7(b)). A low energy yield would be undesirable from an 

energy efficiency standpoint and could potentially make the process economically 

unviable. Hence, the torrefaction conditions should be chosen so that neither the HHV 

nor the energy yield is excessively compromised. 

Fig. 7(c) was generated by overlaying the selected regions of the two contour plots 

in Fig. 7(a) and 7(b), with an energy yield greater than 90% and a HHV greater than 27 

MJ/kg. The unshaded region depicts the range of torrefaction conditions which would 

satisfy both these conditions. The possible combinations of torrefaction temperature and 
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holding times range from <5 min at >280
°
C to longer holding times (~45 to 60 min) at 

lower temperatures (220
°
C to 250

°
C). These guidelines are valid for the conditions 

under which the torrefaction was performed, most significantly under a heating rate of 

10
°
C/min.  

The cost of the torrefaction process in terms of energy required by the furnace and 

the cost of the N2 supply should also be taken into account in a practical implementation 

of the process. The cost implications of using low temperature/long holding time versus 

high temperature/short holding time have to be investigated further, and would be 

dependent on the torrefaction rig used. This would allow the desirable parameter range 

to be narrowed down further, and the process to be optimised in a more comprehensive 

manner. Measurement of energy expenditure was considered beyond the scope of this 

study, particularly because it is at a laboratory scale and any results thus obtained would 

not be scalable directly to a full-scale torrefaction plant. A few studies focusing on the 

economic aspects of torrefaction have been conducted in the recent past [53,54]. 

Typically, the energy cost of the torrefaction process is offset by the improvement in 

grindability and energy density which in turn reduce milling and transport costs. 

However, this would depend on a careful design and implementation of the system 

taking into account factors such as the transport distances, mode of transport and the 

energy source for the pre-treatment processes. 

It is important to adopt a holistic approach when assessing the suitability of a certain 

type of biomass for co-firing. Torrefaction aims to improve the thermophysical and 

physical characteristics of the fuel. However, there are other considerations as well, 

chief among which is chemical composition of the biomass. The typically high 

inorganic content of biomass is one of the major detractors to biomass combustion as it 
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is responsible for a host of ash-related problems. Leaching is touted as a pre-treatment 

option to mitigate these issues; the authors have previously carried out a study on 

applying this technique to Jatropha curcas seed cake [55]. Another aspect that has to be 

explored is the combustion behaviour of Jatropha curcas seed cake, including 

devolatilisation and char combustion characteristics. This is considered an avenue for 

future research. 

4. Conclusions 

The fundamental parameters used for the optimisation of the torrefaction process are 

the HHV and energy yield, which respond inversely to each other. An envelope of 

torrefaction conditions exists – ranging from <5 min at >280
°
C to >45 min at 220

°
C-

250
°
C when a heating rate of 10

°
C/min is used  – where a HHV greater than 27 MJ/kg 

can be obtained while maintaining an energy yield greater than 90%. The increase in 

measured elemental C content and proximate DAF FC content corroborated the 

theoretical explanation for the increase in HHV as the torrefaction intensity was 

increased. The 
13

C NMR analysis provided insight into the structural changes occurring 

during the torrefaction process, with hemicellulose proving to be the most volatile 

lignocellulosic component followed by cellulose and lignin. Complete decomposition of 

hemicellulose and cellulose occurred by 250
°
C and 300

°
C, respectively, while lignin 

continued to decompose beyond 300
°
C. Throughout the study, the torrefaction 

temperature was demonstrated to be a more dominant factor than the holding time.  
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Table 1. Characterisation results of untorrefied Jatropha curcas seed cake. 

 Mean SD CV (%) 

Moisture 3.86 % wt 0.45 11.74 

Dry ash 4.44 % wt 0.15 3.37 

DAF VM 82.99 % wt 1.17 1.43 

DAF FC 16.99 % wt 1.18 6.47 

HHV 24.06 MJ/kg 0.13 0.52 

Dry C 56.34 % wt 0.57 1.00 

Dry H 7.59 % wt 0.39 5.13 

Dry N 4.25 % wt 1.13 26.60 

Dry O 30.93 % wt 2.12 6.86 
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Table 2. Measured C, H, N content of untorrefied seed cake and BBOT reference 

material. 

  Seed cake 

BBOT 

(measured) 

BBOT 

(reference) 

C Mean (% wt) 56.79 72.70 72.53 

 SD 0.57 0.26 - 

 CV (%) 1.00 0.35 - 

     

H Mean (% wt) 7.56 6.08 6.09 

 SD 0.39 0.04 - 

 CV (%) 5.19 0.65 - 

     

N Mean (% wt) 4.28 6.51 6.51 

 SD 1.14 0.04 - 

 CV (%) 26.60 0.54 - 
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Table 3. Comparison of HHV enhancement obtained in recent torrefaction studies. 

Reference Biomass 

HHV 

enhancement 

Current study Jatropha curcas 16% 

[33] Waste wood 2% 

[34] Leucaena leucocephala (woody biomass) 1% 

[35] Lauan (woody biomass) 30% 

[36] Pine chips 9% 

[36] Logging residue 13% 

[37] Rice straw 5% 

[37] Rape stalk 7% 
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Table 4. p- and F-values from ANOVA test of mass yield, HHV and energy yield 

data. 

 p-value F-value 

temp time temp*time 

interaction 

temp time 

Mass yield 0.000 0.000 0.221 1039.51 60.48 

HHV 0.000 0.000 0.060 305.33 14.43 

Energy yield 0.000 0.000 0.327 231.62 22.54 
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Table 5. Coefficients and test statistics from regression analysis of HHV and DAF 

FC content. 

 Linear Linear 

logarithmic 

Quadratic Cubic 

pred-R
2
 79.98% 82.69% 83.77% 83.62% 

S 0.8834  0.8240   0.7968   0.7846   

a 20.30 3.723 12.80 26.11 

b 0.3046 7.587 0.9274 -0.7096 

c - - -0.01219 0.05258 

d - - - -0.0008260 
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Table 6. p-values from ANOVA test of elemental dry C, dry H, dry N and dry O. 

 p-value 

temperature time temperature*ti

me interaction 

C 0.000 0.000 0.747 

H 0.012 0.114 0.009 

N 0.051 0.293 0.002 

O 0.000 0.002 0.372 
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Fig. 1. Variation with torrefaction time of (a) mass yield, (b) HHV, (c) energy yield. 
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Fig. 2. Main effects plots of (a) mass yield, (b) HHV, (c) energy yield. 

(a) 

(b) 

(c) 
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Fig. 3. Variation with temperature of DAF FC content (error bars indicate standard 

errors).  
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Fig. 4. Variation with temperature of elemental (a) dry C, (b) dry H, (c) dry N, (d) 

dry O. 
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Fig. 5. van Krevelen diagrams of (a) torrefied Jatropha seed cake grouped by 

holding time, (b) torrefied Jatopha seed cake grouped by temperature, (c) various solid 

fuels [31]. 
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Fig. 6. 
13

C NMR spectra for (a) untorrefied Jatropha seed cake and Jatropha seed 

cake torrefied for 60 min at (b) 200
0
C, (c) 250

0
C, (d) 300

0
C. 
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Fig. 7. Contour plots of (a) HHV, (b) energy yield, (c) overlay of HHV and energy yield 

(EY). 
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