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Abstract

Double diffusive natural convection of nanofluid is commonly found in renewable
energy engineering. However, nowadays our understanding on its fundamental char-
acteristics is still limited. Especially, three crucial questions on its fundament have
not been answered yet: (1) its performance not only in laminar regimes but also
beyond laminar regimes, (2) the influence of the ratio of buoyancy forces on heat
and mass transfer, (3) the correlation among the dimonsionless quantities which
describe the features of this kind of convection. The present work tries to reveal the
characteristics of double diffusion natural convection of nanofluid over a wide range,
from laminar regimes to turbulent regimes, with the aid of numerical experiments.
It is observed that the behavior of nanofluid in the laminar regimes is different from
that in the turbulent regimes. Some conclusions presented in previous literatue for
laminar double diffusion of nanofluid may be invalid in its turbulent counterpart.
The effect of the ratio of buoyancy forces on heat and mass transfer of nanofluid
possesses some similarities with the pure base fluid as well as some obvious dif-
ferences. Especially, a power-like correlation among the Nusselt number, Sherwood
number, Rayleigh number, ratio of buoyancy forces and nanoparticl volume fraction
has been extracted for the first time through our numerical experiments.
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1 Introduction

Nanofluid is a mixture of base fluid (e.g. water) and nanometer-sized particles.
The suspending nanoparticles, typically made of metals, oxides, carbides, or
carbon nanotubes, can significantly enhance the thermal conductivity of base
fluid[1,2]. Consequently, as a promising new generation of coolant, nanofluid
has a great potential adopted in many important applications such as micro-
electronics, domestic refrigerator and aircrafts. One can refer to Refs.[3–6] for
the latest progress in this field.

Compared with the available numerous studies on the characteristics of heat
transfer of nanofluid induced by thermal buoyancy [5], the exploration tak-
ing effects of compositional buoyancy into account is quite limited, although
compositional buoyancy exists and plays an important role in many industri-
al applications utilizing nanofluid, such as solar energy industry[7]. Esfahani
and Bordbar [8] perhaps are some of the pioneers on this topic. In Ref.[8],
they investigated laminar double-diffusive natural convection heat transfer
enhancement in a square enclosure filled with various nanofluids by numeri-
cal simulation. The influences of the nanoparticle volume fraction, Rayleigh
and Lewis number on the Nusselt and Sherwood number were discussed. Later,
Parvin et al. [9] numerically analyzed the flow and natural convection patterns
of water-Al2O3 nanofluid in a partially heated enclosure. In their study, the
nanoparticle volume fraction varies from 0 to 0.2 with the Rayleigh number up
to 106. Through their work, it is very clear that the distributions of isotherms
and iso-concentrations depend closely on the position of active walls of the
cavity. Recently, laminar double diffusion in a solar collector using water-CuO
nanofluid was modelled in Ref. [10]. The cross section of the solar collector is
triangular. The authors revealed the incident angle of the solar collector influ-
enced the performance of heat and mass transfer of nanofluid significantly. The
above publications all focus on the behavior of double diffusion of nanofluid
confined by a closed container. The double diffusive convection in a nanoflu-
id layer was firstly reported by Nield and Kuznetsov [11,12]. They discussed
the onset and thickness of such layer through analytical study. In succession,
the same authors extended their discussion to a porous medium saturated by
nanofluid [13]. More recently, Beg and Tripathi [14] conducted a theoretical
study on double diffusive convection in nanofluid through a deformable chan-
nel. Through the work, the authors tried to deepen our understanding on the
usability of nanofluid in physiological areas.

Through the above literature survey it is clear that at least three fundamental
questions on double diffusion of nanofluid are not answered yet: firstly, the
characteristics of double diffusion of nanofluid beyond laminar regimes; sec-
ondly, the influence of the ratio of buoyancy forces on heat and mass transfer;
and thirdly, the correlation among the Nusselt/Sherwood number, Rayleigh
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Fig. 1. Configuration of the computational domain and boundary conditions.

number and nanoparticle volume fraction under double diffusive natural con-
vection. The goal of this paper is to answer these three critical questions with
the aid of a comprehensive numerical experiment.

2 Investigated domain and boundary conditions

In this work, double diffusion in a square cavity [8,15] is adopted as it is a
good research prototype to reply the above questions. The investigated domain
and boundary conditions are illustrated by Fig.1. The dimensionless length of
each side of the square cavity is unity. The dimensionless temperature and
concentration on the hot wall and cold wall read Th = 0.5, Yh = 0.5 and
Tc = 0.5, Yc = 0.5, respectively. The top and bottom walls of the investigated
domain are adiabatic. The gravity g is downward. The investigated domain
and boundary conditions are identical to that in Ref.[15] where one can find
the more detailed description on this investigated domain.

3 Governing equations

For nanofluid simulation, generally there are two ways: single phase and two-
phase modelling [16]. In the former approach it is assumed that the suspending
nanoparticles are in thermal equilibrium with the base fluid and there is no ve-
locity slip between the solid particles and base fluid. Therefore the solid-liquid
mixture can be treated as a kind of Newtonian fluid. However, in the latter,
the discrete phase and continuum phase are described in a Lagrangian and
a Eulerian scheme, respectively. Although it is physical sound over broader
ranges than single phase approach, two-phase modelling suffers from a higher
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requirement on computational resources. If the solid volume fraction is small
enough, single phase simplification can provide acceptable predictions for the
heat transfer and hydrodynamic properties of nanofluid with cheaper com-
putational cost. Consequently, single phase approach is popularly utilized for
simulating double-diffusive natural convection of nanofluid [8–10]. The present
study is also based on this approach.

To date there have been three categories of numerical methods to investi-
gate flows beyond laminar regimes: Reynolds averaged Navier-Stokes equa-
tions (RANS), large eddy simulation (LES) and direct numerical simulation
(DNS). Among them, LES is much cheaper than DNS regarding computation-
al cost and can capture more turbulence details than RANS. As a result, in
the present work LES is employed to numerically analyze double diffusion of
nanofluid.

With the aid of the normalizing process introduced in Ref.[15], the correspond-
ing dimensionless governing equations in the LES framework read[8,15]

∇ · u⃗ = 0 (1)

∂u⃗

∂t
+ u⃗ · ∇u⃗ = −∇p+ νe∆u⃗− Pr(T −NY )

g⃗

|⃗g|
(2)

∂T

∂t
+ u⃗ · ∇T = αe∆T (3)

∂Y

∂t
+ u⃗ · ∇Y = De∆Y (4)

where νe, αe and De are the effective viscosity, thermal and solutal diffusivity,
respectively. p is the pressure, ρ is the density T is the temperature and Y is
the concentration. u⃗ = (u, v) is the velocity vector. The gravity g⃗ downward.
N is the ratio of buoyancy forces, Ra is the Rayleigh number and Pr is the
Prandtl number.

In the single phase approach for nanofluid simulation, the influences of addi-
tion of nanoparticles into base fluid are reflected by the change of viscosity
and thermal conductivity of fluid [16,17]. Nowadays there are a number of
models to predict these fundamental physical properties of nanofluid [16] and
it has been found that the numerical results depend closely on the adopted
models [17]. Even for laminar flow, the trends of numerical predictions may
be completely inverse as a result of different models of viscosity and thermal
conductivity used in simulation [17]. Unfortunately, until now there is still no
consensus on this issue [16]. To avoid the uncertainties, the physical properties
of water-SiO2 nanofluid obtained through experimental measure[18], rather
than by the models [16], are adopted in this work.
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4 Numerical method

The lattice Boltzmann (LB) LES model, developed in our previous work [15],
for turbulent double diffusion simulation is adopted in this study.

The evolution equation for the flow field reads

gk(x⃗+ ce⃗k∆t, t+∆t)− gk(x⃗, t) = Ωk(g) + ∆tFk (5)

where gk(x⃗, t) is the distribution function associated with the fluid particle
moving with the discrete velocity e⃗k. c = ∆x/∆t is the fluid particle speed.
∆x and ∆t are the lattice grid spacing and the time step, respectively. The
term Fk is a forcing term accounting for the body force experienced by the fluid
particle, and Ωk(g) is the discrete collision operator. For multiple-relaxation-
times (MRT) models, the collision operator is given by

Ωk(g) = −
∑
j

(M−1SM)jk(gj − g
(eq)
j ) (6)

where g
(eq)
j is the discrete equilibrium distribution function and S = diag(τ0, τ1, ..., τk−1)

−1

is a non-negative diagonal matrix. For the D2Q9 model

e⃗k =


(0, 0) : k = 0

(cos (k − 1) π/2, sin (k − 1) π/2) : k = 1, 2, 3, 4
√
2 (cos (k − 5)π/2 + π/4, sin (k − 5)π/2 + π/4) : k = 5, 6, 7, 8

S = diag(1, 0.2, 0.1, 1, 1.2, 1, 1.2, 1/τ, 1/τ) and the transform matrix M reads

M =



1 1 1 1 1 1 1 1 1

−4 −1 −1 −1 −1 2 2 2 2

4 −2 −2 −2 −2 1 1 1 1

0 1 0 −1 0 1 −1 −1 1

0 −2 0 2 0 1 −1 −1 1

0 0 1 0 −1 1 1 −1 −1

0 0 −2 0 2 1 1 −1 −1

0 1 −1 1 −1 0 0 0 0

0 0 0 0 0 1 −1 1 −1



(7)
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and

g
(eq)
k = ωkρ[1 +

ce⃗k · v⃗
c2s

+
(ce⃗k · v⃗)2

2c4s
− |v⃗|2

2c2s
] (8)

where ω0 = 4/9, ω1∼4 = 1/9 and ω5∼8 = 1/36. cs = c/
√
3 is the sound speed.

For consistency, the forcing terms Fk should be given by

Fk = M−1(I− 1

2
S)MjkF k (9)

where

F k = ωk[
ce⃗k · F⃗
c2s

+
(ce⃗k · v⃗)(ce⃗k · F⃗ )

c4s
− v⃗ · F⃗

c2s
] (10)

and I is the unity matrix. The velocity v⃗ is defined as

v⃗ =
∑
k≥0

ce⃗kgk +
∆t

2
F⃗ (11)

where

F⃗ ≡ Pr(T −NY )
g⃗

|⃗g|
(12)

The effective kinematic viscosity is determined by

νe = (τ − 0.5)c2s∆t (13)

and νe can be split into two parts:

νe = ν0 + νt (14)

where ν0 = PrRa−0.5 is the initial kinetic viscosity, and the turbulent eddy
viscosity νt is obtained by

νt = (C∆)2(|ϕ̄|2 + Pr

Prt
∇(T −NY ) · g⃗

|⃗g|
)1/2 (15)

In the above equation, the constant C is the so-called Smagorinsky constant
and Prt represents the turbulent Prandtl number. ∆ is the filter width. |ϕ̄| is
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the magnitude of the large scale strain rate tensor

|ϕ̄| =
√
2ϕ̄αβϕ̄αβ (16)

where ϕ̄αβ = (∂αūβ + ∂βūα)/2 , and the over bar indicates filtered values. As
shown by Ref.[15], after some tedious algebraic operations one can get:

τ = τ0 +
(C∆)2

c2s∆t

(
|ϕ|2 + Pr

Prt
∇(T −NY ) · g⃗

|⃗g|

)1/2

(17)

where τ0 = ν0/(c
2
s∆t) + 0.5.

The evolution equation for the temperature field reads

fj(x⃗+ ce⃗j∆t, t+∆t)− fj(x⃗, t) = −τ−1
Θ [fj(x⃗, t)− f

(eq)
j (x⃗, t)] (18)

where τΘ is the dimensionless relaxation time for temperature field and

f
(eq)
j =

T

b
[1 + b

e⃗j · u⃗
2c

] (19)

where b is the number of discrete velocity directions for the temperature field
[15]. The temperature T is obtained in terms of the distribution function by

T =
∑
j

fj (20)

The effective thermal diffusivity αe is given by

αe = 2c2(τΘ − 0.5)∆t/b (21)

Similar as νe, the effective thermal diffusivity αe also can be split into two
parts:

αe = α0 + αt (22)

α0 = Ra−0.5 is the initial thermal diffusivity. The turbulent thermal diffusivity
αt = νt/Prt. And

τΘ = τΘ0 +
bDt

2c2∆t
(23)
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where τΘ0 = bα0/(2c
2∆t) + 0.5.

The evolution equation for the concentration field reads

hj(x⃗+ ce⃗j∆t, t+∆t)− hj(x⃗, t) = −τ−1
D [hj(x⃗, t)− h

(eq)
j (x⃗, t)] (24)

where τD is the dimensionless relaxation time for concentration field and

h
(eq)
j =

Y

b
[1 + b

e⃗j · u⃗
2c

] (25)

where b is the number of discrete velocity directions for the concentration field
[15]. The concentration Y is obtained in terms of the distribution function by

Y =
∑
j

hj (26)

The effective solutal diffusivity De is given by

De = 2c2(τD − 0.5)∆t/b (27)

The effective solutal diffusivity De also can be split into two parts:

De = D0 +Dt (28)

D0 = LeRa−0.5 is the initial solutal diffusivity, where Le is the Lewis num-
ber. The turbulent solutal diffusivity Dt = νt/Sct, where Sct is the turbulent
Schmidt number. Consequently

τD = τD0 +
bDt

2c2∆t
(29)

where τD0 = bD0/(2c
2∆t) + 0.5.

The same as that in Ref.[15], in the present study, we employ the D2Q5 lattice
model to solve the scalar fields, namely b = 5 in Eqs.(19) and (25). The values
of C, Prt and Sct are identical with that in Ref.[15], too.
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Fig. 2. Comparison of the Nusselt number for various nanoparticle volume fraction
when Ra = 107.

5 Numerical validation

The reliability of the present LB-LES approach for turbulent double diffusion
simulation has been demonstrated in Ref.[15], where the Rayleigh number
varies from 107 to 1011. Therefore, in this section we only validate its ap-
plicability for nanofluid. For this purpose, natural convection of water-SiO2

nanofluid in a square enclosure proposed in Ref.[18] is adopted. Figure 2 illus-
trates the variation of the averaged Nusselt number (Nu) with the nanoparticle
volume fraction (φ) when Ra = 107. The predictions obtained by the present
approach agree well with that in Ref. [18], which demonstrates the accuracy
of our numerical approach for nanofluid simulation.

6 Results and discussions

In the present study, we simulate double-diffusive convection of water-SiO2

nanofluid in a square cavity with 105 ≤ Ra ≤ 1010 and 0 ≤ N ≤ 2. In Ref.[18]
the physical properties of water-SiO2 nanofluid, which obtained through ex-
perimental measure, were provided only for 0 ≤ φ ≤ 0.04, so this work also
focuses on the same range. When Ra ≤ 109 the grid resolution 128 × 128 is
employed while 256 × 256 for Ra = 1010. Our previous study [15] has shown
that such grid resolutions are fine enough to capture the sophisticated physical
structures.

Figure 3-8 depict the isotherms, iso-concentrations and stream lines of double-
diffusive convection of water-SiO2 nanofluid over a wide range, from laminar
regimes (Ra < 107) to fully turbulent regimes (Ra ≥ 109). While Ra = 105

(Fig.3), the patterns of isotherms, iso-concentrations and stream lines are
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strictly symmetrical respect to the center of the square cavity. The isotherms
and iso-concentrations are nearly vertical except in the vicinity of the center
of the domain, which indicates the heat being transferred dominantly by con-
duction at low Rayleigh number. In addition, stable stratification of isotherms
and iso-concentrations occurs near the vertical walls. There are two small
vortices appear around the center of the enclosure. As the Rayleigh number
increases,replacing conduction, convection becomes being the predominant
heat transfer mechanism. Accordingly, the isotherms and iso-concentrations
emerge horizontally in the cavity except in the neighbourhood of the bound-
aries (Fig.4). Especially, the symmetry begins to be broken even in the lam-
inar regime Ra = 106, which can be illustrated very clearly by the plot of
stream lines: a third vortex has formed in the core region and the two vor-
tices surrounding it are not point symmetric any longer. In the transitional
regimes (107 ≤ Ra ≤ 108) (Figs.5-6), the isotherms and iso-concentrations
become straighter in the core of the cavity and sharper near the vertical wall-
s. The vortices expand quickly with the Rayleigh number enhancing. Albeit
the isotherms and iso-concentrations seem to keep point symmetric still, the
pattern of stream lines has lost its symmetry obviously: two large flow struc-
tures near the top-left corner and bottom-right corner are only similar with
each other, rather than point symmetric. After a comparison between the
flow field at Ra = 107 and that at Ra = 108, one can find that such sim-
ilarity will be undermined further by the emerging fine irregular vortices at
higher Ra. The double diffusion natural convection becomes turbulent since
Ra = 109. As plotted by Fig.7, there appears clear stratification of isotherms
and iso-concentrations along the vertical direction within almost the whole
domain except the very thin layers attached on the vertical walls. It is diffi-
cult to find large similar flow structures under this situation, except near the
top-left corner and bottom-right corner. When Ra reaches 1010 (Fig.8), the
double diffusion becomes complete chaos. The enclosure is full of small-scale
flow structures. Even the stratification of isotherms and iso-concentrations has
been destroyed by them, especially near the corners. As shown by these plots,
for double diffusion natural convection of nanofluid within a square cavity,
the patterns of isotherms are always identical to that of iso-concentrations, in
spite of whatever Ra being.

Figure 9 shows the averaged temperature and velocity profiles at the mid-
sections of the cavity for various Ra. These profiles form some waviness. It
is clear that against Ra increasing, the temperature difference in the core of
the domain becomes diminishing. Since Ra > 107, the temperature profiles
within the core region of the cavity are nearly overlapped with each other.
Only in the laminar regime Ra = 105, there is sufficient temperature gradient
to maintain heat conduction in the center of the enclosure. Then the temper-
ature ”waves” move rapidly towards the boundaries and are flattened with
ascending Ra until Ra = 109. In the turbulent regimes (Ra ≥ 109), the tem-
perature ”peaks” begin to rise with Ra increasing, which indicates again the
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Fig. 3. (a) isotherms (b) iso-concentration and (c) stream lines for Ra = 105,
φ = 0.04 and N = 0.5.

heat transfer mechanism of double diffusion of nanofluid in turbulent regimes
is quite different from that in laminar regimes. In the turbulent regimes, heat
conduction predominates just within the very thin layers attached with the
vertical walls and heat transfer becomes more intensively in the boundary
layers with Ra increasing. The vertical velocity profiles also can demonstrate
such transition. Here we must correct one conclusion drawn in a previous pub-
lication [9]. In Ref.[9], the authors claimed that nanofluid would move with
greater velocity for a higher Ra while the waviness would decrease for low-
er values of Ra. According to Fig. 9 (b), it is clear that such conclusion is
questionable. The peak vertical velocity at Ra = 107 is obviously lower than
that at Ra = 106, although within the transitional regimes (107 ≤ Ra ≤ 108)
the maximum value of vertical velocity ascends slightly with Ra. Especially,
as the double diffusion natural convection of nanofluid reaches the turbulent
regimes (Ra ≥ 109), the peak values of vertical velocity keep down against
Ra increasing, which means nanofluid within the boundary layers will move
more slowly at higher Ra. Such unusual phenomena result from the combined
effects of vertical solid walls and boundary layers. Therefore there is no u-
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Fig. 4. (a) isotherms (b) iso-concentration and (c) stream lines for Ra = 106,
φ = 0.04 and N = 0.5.

niversal characteristic over the whole range varying from laminar regimes to
turbulent regimes except that the zone with obvious vertical movement of flu-
id is compressed quickly against Ra enhancing. Figure 9 (c), which plots the
horizontal velocity profile, can further support our viewpoint. As shown by
Fig. 9 (c), the maximum value of horizontal velocity diminishes monotonically
against Ra and horizontal motion of working fluid becomes weakly along the
mid-section. Taking the stream lines plotted in Figs. 3-8 into account, one
can find that during the transition from laminar double diffusive convection
of nanofluid to its turbulent counterpart, the regular large-scale circulation
of working fluid will be replaced by numerous relatively lower speed irregular
vortices scattered in the whole cavity. Consequently, intensive heat and mass
transfer of nanofluid can take place almost across the whole domain with the
aid of these irregular vortices, which can be demonstrated by Fig.10. Figure
10 illustrates the corresponding Nusselt number and Sherwood number. Nu
and Sh both are monotonic increasing functions of Ra. In the laminar regimes
(Ra ≤ 106),Nu and Sh increase slowly with Ra. Then they are enhanced more
and more sharply, especially in the turbulent regimes Ra ≥ 109. Quite differ-
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Fig. 5. (a) isotherms (b) iso-concentration and (c) stream lines for Ra = 107,
φ = 0.04 and N = 0.5.

ent from the double diffusion in pure base fluid (air) [15], due to the existence
of nanoparticle, the Sherwood number in the present investigated domain is
always smaller than the Nusselt number. The difference between Nu and Sh is
not apparent when Ra ≤ 106. However, the gap between them becomes more
and more significant as Ra ascending. It implies heat transfer is enhanced
more intensively than mass transfer at higher Ra.

Figure 11-13 illustrate the averaged temperature and velocity profiles at the
mid-sections of the cavity at Ra = 105, Ra = 107 and Ra = 109 with various φ.
They are the representatives of the laminar regimes, transitional regimes and
turbulent regimes, respectively. Although the profiles of vertical velocity and
temperature both vary gradually with φ, the influences of nanoparticles on
them are different. The increasing nanoparticle volume enhances the conduc-
tive properties of working fluid while suppresses some motion strength of base
fluid near the vertical walls as the existence of nanoparticles can increase the
effective thermal conductivity of the mixture as well as its effective viscosity.
The profiles of horizontal velocity of nanofluid are changed slightly in the lam-
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Fig. 6. (a) isotherms (b) iso-concentration and (c) stream lines for Ra = 108,
φ = 0.04 and N = 0.5.

inar and transitional regimes while significantly in the turbulent regimes when
more nanoparticles are added into the working fluid. In the laminar regimes,
the movement of nanofluid near the center of the cavity is enhanced with in-
creasing φ. However, beyond the laminar regimes, the motion of nanofluid in
the vicinity of the core region is suppressed against φ ascending. Although
they seem very complicated and irregular, the phenomena can be explained
by the change of effective viscosity of nanofluid in a universal way. It is well-
known that the viscosity of fluid always tries to diminish velocity gradients in
flow. To show clearly the role of effective viscosity of nanofluid, we should ask
the aid from the stream lines plotted in Figs. 3-8. When Ra = 105, there is
only one large circulation in the cavity, so there are significant velocity differ-
ences along both the vertical and the horizontal direction at the mid-section.
Nanofluid with a higher effective viscosity (corresponding to a bigger φ) can
reduce the velocity differences more effectively. The corresponding phenomena
are to flatten the velocity ”waviness” more obviously by relative higher speed
circulation in the vicinity of the core, as depicted by Fig. 11(a)-(b). While be-
yond the laminar regimes, the flow splits into two or more relative large-scale
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Fig. 7. (a) isotherms (b) iso-concentration and (c) stream lines for Ra = 109,
φ = 0.04 and N = 0.5.

vortices (e.g. two large vortices at Ra = 107). Accordingly, the mid-section
becomes the interface of these vortices, where fluid tries to keep stationary.
Consequently, nanofluid with a higher effective viscosity will hamper the mo-
tion of flow in this zone more obviously. The corresponding phenomena are
to flatten the velocity ”waviness” through relative lower speed motion, as il-
lustrated by Fig. 12(a)-(b). Furthermore, Fig. 13(a) implies the flow pattern
of double diffusion of nanofluid in turbulent regimes is sensitive to φ when
nanoparticle load is small.

Figure 14 depicts the variation of the Nusselt and Sherwood number with
different nanoparticle volume fraction. In Ref.[8], the authors found in laminar
diffusion convection of nanofluid the Nusselt number would increase with φ
while the Sherwood number would decrease against φ. Our results demonstrate
this conclusion is still valid beyond laminar regimes. Moreover, the influences
of addition of nanoparticles on heat and mass transfer are clearer at higher
Ra: when Ra = 105, the variation of Nu and Sh is slight while it becomes
significant at Ra = 109. Moreover, over the whole range investigated in the

15



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(a)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(b)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(c)

Fig. 8. (a) isotherms (b) iso-concentration and (c) stream lines for Ra = 1010,
φ = 0.04 and N = 0.5.

present work, Nu and Sh vary nearly linearly with φ. Comparison with the
enhancement of addition of nanoparticles on heat transfer, the attenuation on
concentration diffusion by nanoparticles is relatively weak.

In order to clearly show the effects of the ratio of buoyancy forces on double
diffusion of nanofluid, we choose Ra = 105 as the representative. Figure 15
depicts the isotherms, iso-concentrations and stream lines when Ra = 105,
φ = 0.04 and N = 1.5. It is clear that Fig.15 is a mirror of Fig. 3 where
N = 0.5. When N < 1, the thermal buoyancy is stronger than the composi-
tional buoyancy and dominates the direction of motion of convection, so the
circulation is clockwise. And vice versa, as N > 1, the compositional buoy-
ancy outweighs its thermal counterpart and consequently the circulation is
counterclockwise. It is more clear with the aid of Fig.16, in which the corre-
sponding vertical and horizontal velocity at the mid-sections of the cavity are
presented. In addition, as N approaches unity, the motion of nanofluid is being
suppressed because the driven force, which results from the difference between
the compositional buoyancy and the thermal buoyancy, becomes vanishing. No
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Fig. 9. Distributions of (a) temperature (b) vertical velocity and (c) horizontal
velocity at the mid-sections of the cavity for various Ra with φ = 0.04 and N = 0.5.
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Fig. 10. Variation of Nu and Sh for various Ra when φ = 0.04 and N = 0.5.
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Fig. 11. Profile of (a) vertical velocity (b) horizontal velocity and (c) temperature
at the mid-sections of the cavity for various φ with Ra = 105 and N = 0.5.

doubt, heat and mass transfer of double diffusion of nanofluid will be weak-
ened when N approaches unity, as illustrated by Fig.17. Another interesting
result revealed by this figure is that Nu and Sh in laminar double diffusion of
nanofluid will not be zero even when N = 1, which is quite different from the
numerical predictions for pure base fluid (air) [19]. We will discuss it in detail
below.

Table (1)-(12) list the computed average Nusselt number and Sherwood num-
ber in various Ra, N and φ. According to these data, one can find that the
Sherwood number keeps constant for all φ when N = 1.0 at a given Ra al-
though the Nusselt number increases very slightly with φ when N = 1.0 at a
given Ra. When Ra ≤ 107, the minimums of Nu at a given φ are identical.
Moreover, it can be observed that the lowest values of Sh are 1.21 for almost
all cases when Ra ≤ 107. The similar phenomena repeat when Ra ≥ 109. Be-
yond the laminar regimes, Nu and Sh both are bigger than zero when N = 1,
which is consistent with the discovery in Ref.[15,20]. Through a standard data
fitting process, the following power-like correlation among Nu/Sh, Ra, N and
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Fig. 12. Profile of (a) vertical velocity (b) horizontal velocity and (c) temperature
at the mid-sections of the cavity for various φ with Ra = 107 and N = 0.5.

φ can be extracted:

Table 1
The computed average Nusselt number at the hot wall when Ra = 105.

N = 0 N = 0.5 N = 1.0 N = 1.5 N = 2.0

φ = 0 4.31 3.65 1.20 3.65 4.31

φ = 0.01 4.39 3.74 1.25 3.74 4.39

φ = 0.02 4.54 3.91 1.32 3.91 4.54

φ = 0.03 4.76 4.13 1.41 4.13 4.76

φ = 0.04 4.94 4.31 1.49 4.31 4.94

Nu = a× (1 + b× φ)× (Ra× | 1−N |)c + d× φ+ e (30)

and

Sh = a× (1− b× φ)× (Ra× | 1−N |)c + d (31)
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Fig. 13. Profile of (a) vertical velocity (b) horizontal velocity and (c) temperature
at the mid-sections of the cavity for various φ with Ra = 109 and N = 0.5.

Table 2
The computed average Sherwood number at the hot wall when Ra = 105.

N = 0 N = 0.5 N = 1.0 N = 1.5 N = 2.0

φ = 0 4.31 3.65 1.20 3.65 4.31

φ = 0.01 4.25 3.63 1.21 3.63 4.25

φ = 0.02 4.17 3.59 1.21 3.59 4.17

φ = 0.03 4.08 3.54 1.21 3.54 4.08

φ = 0.04 4.02 3.50 1.21 3.50 4.02

The coefficients in the above two equations have been listed in Table 13-14.
One can find the coefficients vary slightly when Ra < 107, which implies that
in the laminar regimes, the heat and mass transfer mechanism does not change
significantly.
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Fig. 14. Variation of Nu and Sh for various φ with N = 0.5 and (a) Ra = 105 (b)
Ra = 107 and (c) Ra = 109.

Table 3
The computed average Nusselt number at the hot wall when Ra = 106.

N = 0 N = 0.5 N = 1.0 N = 1.5 N = 2.0

φ = 0 8.77 7.16 1.21 7.16 8.73

φ = 0.01 8.95 7.32 1.25 7.32 8.91

φ = 0.02 9.29 7.62 1.32 7.62 9.25

φ = 0.03 9.73 7.99 1.41 7.99 9.71

φ = 0.04 10.11 8.31 1.49 8.31 10.10

7 Conclusion

Double diffusive natural convection of nanofluid is commonly found in re-
newable energy industry. However, the related studies on its fundamental
characteristics are quite sparse, especially beyond the laminar regimes. As
emphasized in the latest review paper [4], the insight into the performance of
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Fig. 15. (a) isotherms (b) iso-concentration and (c) stream lines for Ra = 105,
φ = 0.04 and N = 1.5.
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Table 4
The computed average Sherwood number at the hot wall when Ra = 106.

N = 0 N = 0.5 N = 1.0 N = 1.5 N = 2.0

φ = 0 8.77 7.16 1.21 7.16 8.73

φ = 0.01 8.67 7.10 1.21 7.10 8.63

φ = 0.02 8.52 6.99 1.21 6.99 8.48

φ = 0.03 8.35 6.86 1.21 6.86 8.33

φ = 0.04 8.22 6.75 1.21 6.75 8.21

Table 5
The computed average Nusselt number at the hot wall when Ra = 107.

N = 0 N = 0.5 N = 1.0 N = 1.5 N = 2.0

φ = 0 16.30 13.57 1.21 13.57 16.30

φ = 0.01 16.65 13.87 1.25 13.87 16.65

φ = 0.02 17.30 14.42 1.32 14.42 17.32

φ = 0.03 18.16 15.11 1.41 15.11 18.16

φ = 0.04 18.89 15.70 1.49 15.70 18.89

nanofluid in turbulent regimes arises a challenge not only in academic research
but also in energy engineering. To deepen our understanding in this important
area, the present work tries to reveal the heat and mass transfer mechanism of
double diffusion of nanofluid over a quite broad range, from laminar regimes
to turbulent regimes, for the first time. It is observed that the influences of ad-
dition of nanoparticles into base fluid are quite different between the laminar
regimes and turbulent regimes. Some conclusions drawn from laminar double
diffuiosn of nanofluid may be invalid in its turbulent counterparts. We try to
explain these complicated phenomena through a universal way. In addition,
the influence of the ratio of buoyancy forces on the performance of double dif-
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Table 6
The computed average Sherwood number at the hot wall when Ra = 107.

N = 0 N = 0.5 N = 1.0 N = 1.5 N = 2.0

φ = 0 16.30 13.57 1.21 13.57 16.30

φ = 0.01 16.14 13.43 1.21 13.43 16.13

φ = 0.02 15.89 13.22 1.21 13.22 15.88

φ = 0.03 15.59 12.96 1.21 12.96 15.58

φ = 0.04 15.35 12.76 1.21 12.76 15.35

Table 7
The computed average Nusselt number at the hot wall when Ra = 108.

N = 0 N = 0.5 N = 1.0 N = 1.5 N = 2.0

φ = 0 30.18 24.88 2.36 24.88 29.88

φ = 0.01 30.92 25.55 2.44 25.55 30.71

φ = 0.02 32.20 26.47 2.58 26.47 32.08

φ = 0.03 33.63 27.39 2.75 27.39 32.23

φ = 0.04 35.16 28.51 2.91 28.51 34.74

Table 8
The computed average Sherwood number at the hot wall when Ra = 108.

N = 0 N = 0.5 N = 1.0 N = 1.5 N = 2.0

φ = 0 30.18 24.88 2.36 24.88 29.88

φ = 0.01 29.95 24.75 2.36 24.75 29.75

φ = 0.02 29.53 24.27 2.36 24.27 29.41

φ = 0.03 28.85 23.50 2.36 23.49 28.51

φ = 0.04 28.58 23.17 2.36 23.17 28.24

Table 9
The computed average Nusselt number at the hot wall when Ra = 109.

N = 0 N = 0.5 N = 1.0 N = 1.5 N = 2.0

φ = 0 52.97 45.47 2.12 45.44 52.99

φ = 0.01 54.21 46.45 2.19 46.58 54.21

φ = 0.02 56.48 48.46 2.31 48.45 56.46

φ = 0.03 59.50 50.93 2.47 50.90 59.54

φ = 0.04 62.06 52.98 2.61 53.03 62.19

fusion convection of nanofluid is reported for the first time, too. We find that
a new interesting phenomenon in nanofluid which is obviously different from
the pure base fluid. Finally, an original power-like correlation on the heat and
mass transfer in double diffusion of nanofluid is extracted through our compre-
hensive numerical experiments. The resutls presented in this study can answer
some critical fundamental questions in double diffusive natural convection in
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Table 10
The computed average Sherwood number at the hot wall when Ra = 109.

N = 0 N = 0.5 N = 1.0 N = 1.5 N = 2.0

φ = 0 52.97 45.47 2.12 45.44 52.99

φ = 0.01 52.52 44.99 2.12 45.12 52.52

φ = 0.02 51.79 44.45 2.12 44.42 51.77

φ = 0.03 51.04 43.69 2.12 43.67 51.08

φ = 0.04 50.44 43.06 2.12 43.10 50.55

Table 11
The computed average Sherwood number at the hot wall when Ra = 1010.

N = 0 N = 0.5 N = 1.0 N = 1.5 N = 2.0

φ = 0 68.96 65.94 2.12 65.94 68.91

φ = 0.01 71.03 67.85 2.19 67.87 71.03

φ = 0.02 74.81 71.30 2.31 71.36 74.80

φ = 0.03 79.69 75.65 2.47 75.65 79.66

φ = 0.04 83.81 79.42 2.61 79.41 83.76

Table 12
The computed average Sherwood number at the hot wall when Ra = 1010.

N = 0 N = 0.5 N = 1.0 N = 1.5 N = 2.0

φ = 0 68.96 65.94 2.12 65.94 68.91

φ = 0.01 68.81 65.73 2.12 65.75 68.81

φ = 0.02 68.59 65.38 2.12 65.43 68.60

φ = 0.03 68.37 64.90 2.12 64.90 68.34

φ = 0.04 68.12 64.55 2.12 64.54 68.08

Table 13
Coefficients in Eq.(30).

a b c d e

Ra = 105 0.14 5.1 0.266 4.4 1.2

Ra = 106 0.18 5.1 0.266 4.4 1.2

Ra = 107 0.2 5.1 0.266 4.4 1.2

Ra = 108 0.201 4.5 0.266 16.58 2.25

Ra = 109 0.205 4.5 0.266 12.6 2.1

Ra = 1010 0.215 5.5 0.251 12.6 2.1

detail and therefore accelerate the industrial application of nanofluid in the
relevant fields, such as solar energy.
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Table 14
Coefficients in Eq.(31).

a b c d

Ra = 105 0.15 -3.0 0.266 1.21

Ra = 106 0.19 -1.8 0.266 1.21

Ra = 107 0.21 -2.2 0.266 1.21

Ra = 108 0.21 -2.5 0.266 2.36

Ra = 109 0.211 -1.9 0.266 2.1

Ra = 1010 0.218 -0.1 0.251 2.12
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