
 1 

Title 

 

Mathematical modelling of antimicrobial resistance in agricultural waste 

highlights importance of gene transfer rate 

 

Running Title 

 

Mathematical model of antimicrobial resistance 

 

Authors 

 

Michelle Baker, Jon L. Hobman, Christine E. R. Dodd, Stephen J. Ramsden and Dov 

J. Stekel* 

 

School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK 

 

*Corresponding author: dov.stekel@nottingham.ac.uk 

 

Key Words 

 

Antimicrobial resistance, AMR, horizontal gene transfer, mathematical model, 

dairy slurry 

 

Abstract 

 

Antimicrobial resistance is of global concern. Most antimicrobial use is in 

agriculture; manures and slurry are especially important because they contain a 

mix of bacteria, including potential pathogens, antimicrobial resistance genes 

and antimicrobials. In many countries, manures and slurry are stored, especially 

over winter, before spreading onto fields as organic fertilizer. Thus these are a 

potential location for gene exchange and selection for resistance. We develop and 

analyze a mathematical model to quantify the spread of antimicrobial resistance 

in stored agricultural waste. We use parameters from a slurry tank on a UK dairy 
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farm as an exemplar. We show that the spread of resistance depends in a subtle 

way on the rates of gene transfer and antibiotic inflow. If the gene transfer rate is 

high, then its reduction controls resistance, while cutting antibiotic inflow has 

little impact. If the gene transfer rate is low, then reducing antibiotic inflow 

controls resistance. Reducing length of storage can also control spread of 

resistance. Bacterial growth rate, fitness costs of carrying antimicrobial 

resistance and proportion of resistant bacteria in animal faeces have little impact 

on spread of resistance. Therefore effective treatment strategies depend 

critically on knowledge of gene transfer rates.  

 

 

 

Introduction 

 

Antimicrobial resistance is of growing global concern (Wise et al. 1998, Tenover 

2006, Ashbolt et al. 2013). While much research has concentrated on resistance 

arising in humans as a result of antibiotic usage, it is widely acknowledged that 

resistance in agriculture is a major challenge (Khachatourians  1998, Allen et al. 

2010, Heuer et al. 2011, Ashbolt et al. 2013). Veterinary use of antimicrobials, 

especially in swine, poultry, beef and dairy production, has led to increased 

levels of resistance to such antimicrobials, as detected in manures, slurries, and 

soil to which these have been applied (Khachatourians  1998, Teuber 2001, 

Byrne-Bailey et al. 2009, Cook et al. 2014, Fahrenfeld et al. 2014). The resulting 

risks are the emergence, selection for and exposure to multiple antimicrobial 

resistant human and animal pathogens, with considerable medical and economic 

consequences (Ashbolt et al. 2013).  

 

Farm slurry tanks are of particular interest because they contain a mix of fecal 

bacteria, (including potential pathogens), antibiotics and other antimicrobials, 

which are then stored for considerable periods of time. Analyses of correlation 

between presence of some resistance genes (tet, sul, erm) and presence of 

corresponding antibiotics in both slurry lagoons (Zhang et al. 2013) and 

laboratory stored pig-manure (Joy et al. 2014) have shown varied results, with 
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both positive (Zhang et al. 2013, Joy et al. 2014) and negative (Zhang et al. 2013) 

correlations between presence of different resistance genes and their 

corresponding antibiotics under different conditions. This variation might reflect 

the wide range of environments, bacterial species and mobile genetic elements 

involved. Our own microbiological studies have shown considerable resistance 

to antibiotics, both currently and previously used on the farm, with at least two 

thirds of cultured E. coli strains demonstrating multiple antibiotic resistance 

(Ibrahim  et al. 2016), including to beta lactamase antibiotics. These led us to 

hypothesise that the combination of fresh fecal matter, antibiotics and storage 

time within the slurry tank could provide an ideal environment for the 

emergence of antimicrobial resistant populations of bacteria. Moreover, because 

of the mechanism of action of beta lactamase antibiotics, the observed genetic 

resistance could suggest that it is selected for because the cells are growing. 

 

Mathematical models for spread of antimicrobial resistance in bacterial 

populations have successfully explored the balance between the fitness 

advantage to hosts of resistance against the cost to hosts of plasmid carriage 

(Levin et al. 1997, Stewart et al. 1998, Bootsma et al. 2012). While models have 

mainly been applied in clinical or community settings (Levin  et al. 2014), some 

modelling has been carried out for waste water (Sharifi et al. 2013), survival of 

resistant bacteria in slurry-amended soils (reviewed in Ongeng et al 2014), and, 

of particular relevance for this study, for selection for plasmid-mediated 

cephalosporin resistance in E. coli in cattle gut (Volkova et al. 2012, Volkova et al. 

2013).  The latter have shown persistence of resistance in these environments 

driven by horizontal and vertical gene transfer.  

 

In this work we describe and analyze a mathematical model for the spread and 

selection of antimicrobial resistant bacteria in a slurry tank of a typical high 

performance UK dairy farm. In common with Volkova et al.  (2012), we focus on 

spread of resistance genes through mobile genetic elements such as plasmids 

(Davies 1997, Krone et al. 2007). These pose a greater environmental risk than 

chromosomal resistance because resistance can spread between organisms, 
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between species, and from a non-pathogenic reservoir to potential pathogens 

(Heuer et al. 2011, Jechalke et al. 2014a, Jechalke et al. 2014b).  

 

The main purpose of this model is to identify the factors to which emergence of 

resistance is most sensitive, and thus inform future research studies and 

potential interventions. We use parameters taken from a dairy farm in the East 

Midlands of the UK as a model system for this work, although the mathematical 

model is developed in a way to be generally applicable. We choose default 

parameter values from both literature and farm conditions, which are relevant to 

E. coli populations, since these are a sentinel species for antimicrobial resistance 

(AMR), a major source of mastitic infection in dairy cattle on the studied farm, 

and of particular potential concern to human health (Pfeifer et al. 2010, Liu et al. 

2015). However, we expect there to be considerable microbial diversity within 

the slurry tank and the model is applicable to any bacterial species, with 

appropriate parameter values. An important part of the analysis is to explore 

behaviour of the model to a wide range of possible parameter values, which 

could represent different bacterial species or mobile genetic elements. Moreover, 

the model could be applied to different dairy farms by using different parameter 

values, and could be adapted to study stored manures from other farm animal 

species. 

 

We simulate how the population of resistant bacteria changes over realistic 

timescales, and consider how variations in the parameter values may alter these 

time courses. Through parameter variation and sensitivity analysis we are able 

to draw conclusions about the importance of the model parameters, which could 

potentially be used in identification of control measures to limit emerging 

antimicrobial resistance. We conclude by discussing the significance of this 

model and implications for future research and analysis in this area. 

 

Materials and methods 

 

Dairy Farm Background 
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The farm is a typical high performance dairy farm in the UK.  It has been chosen 

for study because it holds detailed veterinary records of every dose of antibiotic 

treatment given to each and every animal. It has a herd of circa 200 dairy cows; 

because milking is done by an automated milking system (‘AMS’) the animals are 

housed indoors for the majority of the year. Annual average milk yields per cow 

in milk vary depending on a number of factors, including forage quality; current 

(2015) average yield is 10,700 litres per year. Each cow produces approximately 

63kg of waste per day. To reduce the quantity of slurry requiring storage, solids 

are mechanically separated and the remaining liquid, containing only about 5% 

solids, is then pumped into an on-site slurry tank and stored for field spreading. 

The slurry tank has a capacity of 3 million litres and is generally emptied after 

circa 90 days, either into a slurry lagoon by means of a pipeline, or taken directly 

to fields for spreading. Cattle slurries are useful as a source of Nitrogen, 

Phosphate and Potash: standard figures for these nutrients for mechanically 

separated slurries are given by Chambers et al. (2001) as 3.0, 1.2 and 3.5 kg per 

m3 respectively.  

 

 

Mathematical model 

 

The mathematical model describes homogeneous populations of antimicrobial 

resistant (R) and antimicrobial sensitive (S) bacteria, in the host range of a single 

type of plasmid that transfers resistance. It is based upon that of Volkova et al. 

(2012) for antibiotic resistance in the cattle gut. As in that model, it uses two 

ordinary differential equations (ODEs) to describe the dynamics of growth, gene 

transfer and selection of antimicrobial resistance in these two populations. While 

this model is necessarily a simplification, we demonstrate that it is extremely 

useful for identifying the key factors behind emergence of resistant populations, 

and the model’s simplicity also makes it more readily generalizable to other 

systems, or extendable to models with different types of bacterial hosts, 

antibiotics or plasmids. 
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As in Volkova et al. (2012) we assume that the sensitive and resistant 

populations can grow within the tank, and for large populations, could grow to a 

carrying capacity (Nmax) associated with the availability of nutrients; when the 

population reaches the carrying capacity there is no net growth.  We use a 

standard logistic growth term which combines both slowing/cessation of growth 

and cell death into a single coefficient. The effect of antibiotic on the bacteria is 

modelled as a reduction in the growth rate, with Hill-function dependence on the 

concentration of antibiotic. Carriage of antibiotic resistance incurs a fitness cost 

(α) on the host bacteria. Sensitive bacteria may become resistant to antibiotics in 

the presence of resistant bacteria by means of horizontal gene transfer. Since the 

tank receives a constant inflow of fresh slurry each day, including bacteria, there 

is an inflow term of both sensitive and resistant bacteria. Our model differs from 

that of Volkova  et al.  in several important ways. We eliminate the outflow term, 

since there is no outflow from the slurry tank; the tank is emptied when the 

slurry is spread on the fields, and this is not included in our model. Instead, we 

explicitly model the increasing volume of the slurry in the tank. We include a 

model for the amount of antibiotic in the tank, with constant in-flow with the 

slurry, and first order degradation kinetics, where the degradation rate would 

depend upon the type of antibiotic.  This gives an exponential function describing 

antibiotic concentration in time. Finally, we use parameter values more relevant 

to our system, as will be described in subsequent sections. Thus the model 

equations are: 

 

max

1 (1 )S

dS N SR
r E S

dt N N


  

 
     

 
 (1) 

 

max

(1 ) 1 R

dR N SR
r E R

dt N N


 

 
     

 
 (2) 

 

where 
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N S R   (3) 

 

( ) IV t V t   (4) 
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 
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 

 (8) 

 

The meaning of each of the parameters is summarised in Table 1. In the next 

sections, we describe how we obtain values or realistic ranges of values for each 

of the parameters. As described in the Results, we carry out sensitivity analysis 

for many parameters to check how sensitive the model is to realistic variation. 

 

Bacterial parameters 

 

The model considers homogeneous populations of unspecified bacteria that 

would be within the host range of the plasmid transferring resistance. Generally, 

we use default parameter values relevant for E. coli, because our experimental 

work has focussed on identifying resistance in E. coli populations as a sentinel 

species (Ibrahim et al. 2016). However, the model would be applicable to any 

bacterial population capable of growing under these conditions, which 
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undergoes conjugative plasmid transfer and where there are no barriers to the 

transmission of plasmids, e.g. other Enterobacteriaceae. by using different 

parameter values.  

 

In the model we have a parameter for the maximal specific growth rate of the 

bacteria (r). Typical generation times for E. coli in optimal laboratory conditions 

are around 20 to 30 minutes. In slurry systems these are likely to be 

considerably longer, although the specific growth rate, r, of E. coli in dairy slurry 

has not been published in the literature. Volkova et al. (2012) use a slower 

growth rate (0.17 hr-1 equivalent to a generation time of 4.16 hours) than in 

laboratory conditions to account for competition within the gut.  This is based on 

an experimental model of E. coli growth in the large intestine of a mouse, and is 

commensurate with measurements of growth rate of E. coli  O157:H7 in low 

carbon fresh water of 0.19 hr-1  (Vital et al. 2008). Godwin and Slater (1979) and 

Levin et al. (1979), both studying antibiotic resistance, found faster growth rates 

in laboratory conditions, 0.69-0.9 hr-1 and 0.86 hr-1 respectively. In earlier work, 

Curds (1971) used a growth rate of 0.5 hr-1 for modelling sewage bacteria in an 

activated-sludge process. We choose to use the same growth rate (0.5 hr -1) in 

this work as this appears to be an appropriate compromise between the rates 

seen in ideal conditions and those seen in very low carbon or  highly competitive 

environments. As will be seen later, the modelling results are not sensitive to the 

value of this parameter, justifying this (or any other suitable) choice of this 

parameter value.  

 

In addition to the proliferation described above, horizontal gene transfer is a 

major source of antibiotic resistance in bacteria. In the dairy slurry tank we 

expect to find a diverse range of bacteria, and gene transfer on a range of 

plasmids between different bacterial types is well documented. Hence, we would 

expect to find significant variation in the rate of horizontal gene transfer. 

Subbiah et al. (2011) reported experimental work looking at E. coli bla-CMY2 

plasmids from dairy cattle. In this work, they found that the transfer rate varied 

significantly depending on the plasmid considered. The Volkova model uses a 

gene transfer rate, , of  0.004 hr-1 based on this work and we start with a rate of 
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similar magnitude to Volkova (β=0.001) and then explore model behaviour for a 

wide range of variation in this parameter, which could be thought of as 

representative of different plasmid types. 

 

Several sources have measured the fitness cost of resistance to a range of 

antibiotics in E. coli (Godwin and Slater 1979, McDermott et al. 1993, Subbiah et 

al. 2011). The range of fitness costs spans 0-30%. There is also a growing 

consensus that initial fitness costs evolve to reduce over time by compensatory 

mechanisms as discussed in Andersson and Levin (1999). In line with our stated 

objective to keep the model simple, we use a constant value of the fitness cost. 

Given that we are considering relatively long time scales, compared to many 

laboratory experiments, we choose to use a fitness cost, , at the lower end of the 

range, and choose a value of 0.1 (10%) to allow for compensatory mutations 

over the long time scales. We also consider in later sections how changes to the 

fitness cost affect the model results. 

 

 

Slurry tank parameters 

 

We calculate an estimate for the rate of slurry inflow, , based on estimates of 

slurry production and dairy wash volumes given by the Agriculture and 

Horticulture Development Board (DairyCo. 2010, cost effective slurry storage 

strategies on dairy farms, Kenilworth, UK) and farm specific data. An adult dairy 

cow deposits approximately 63 litres of faecal/urinary waste per day. Removal 

of solid waste from this can reduce the volume by up to 15%. We also account for 

an additional 20 litres of water per cow per day from washing, that also enters 

the slurry system. Hence based on the 200 cow herd we estimate an inflow of 

14710 litres of slurry per day, which we assume is pumped in continuously 

through the day giving an hourly rate of 613 l hr-1. 

 

Our data shows the levels of E. coli in the slurry tank are consistently in the same 

range of 2–6 x 104 per mL as Reithaler et al. (2003) found for sewage. Reithaler 

et al. (2003) also reported approximately 40% of E. coli  strains resistant to at 
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least one antibiotic. This range is in line with the E. coli concentrations detected 

in cattle slurry in work by Fenlon et al. (2000) where an E. coli count of 5.3 x 104 

CFU ml-1 was found in slurry that was to be spread on land, and Sawant et al. 

(2007) who found multi-drug resistance in 40% of E. coli isolates from healthy 

lactating dairy cattle. Many other papers reference bacterial loads of specific 

strains of E. coli (particularly pathogenic strains), however here we wish to 

consider the total E. coli count, since non-pathogenic strains may provide a 

reservoir for resistance genes. Additionally we often find co-selection of 

antibiotics due to genetically linked elements (Herrick et al. 2014). Here we use 

the parameters from Reithaler et al. (2003) of  = 6 x 104 CFU ml-1 and  = 0.4 

(i.e. 40%); although the value of 40% appears to be high, we later consider 

sensitivity of the model to wide variation of this value and it turns out to have 

very little impact on the results. 

 

The capacity of the slurry tank on this dairy farm is 3 million litres. When this is 

emptied there is always a small amount of residue left in the tank. We estimate 

this to be 5% of the total capacity, hence we assume an initial slurry volume of 

1.5 x 105 litres. The initial concentration of antibiotics in the slurry tank is 

relatively unknown. For simplicity we assume that the initial concentration of 

antibiotic in the tank at the beginning of the simulations is zero. 

 

In the farm under study, the overwhelming majority of antibiotic treatment is for 

mastitis, and is injected directly to the udder. As is common practise in the UK, 

milk from mastitic udders is discarded into the slurry, and this is the main source 

of antibiotics in slurry. Therefore we calculate the rate of antibiotic inflow, , 

using the amount of waste milk we expect to be entering the slurry tank and 

published data on antibiotic residues found in waste milk. Brunton et al. (2014) 

tested for antibiotic residues in waste milk, after Cefquinome treatment, destined 

to be fed to calves from a single UK dairy, with 550 cows. They found 

Cefquinome in the waste milk at an average concentration of 0.746 mg l-1. In a 

wider study by Randall et al. (2014), 103 UK dairy farms were sampled, with an 

average Cefquinome concentration of 1.4 mg l-1 and a range of 0.006 - 4.6 mg l-1. 

Since Cefquinome has been one of the main antibiotics used to treat mastitis on 
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the farm in this model, we use the mean from the wider study (1.4 mg l-1) and 

multiply this by the amount of waste milk we expect per hour to give a rate of 

antibiotic inflow. We assume that during treatment for mastitis, milk is 

withdrawn from supply for a period of 5 days, as per treatment guidelines, 

resulting in 176 litres of waste milk per case of mastitis. A case of mastitis occurs 

on average every three days on this particular farm, giving a rate of milk waste as 

2.4 l hr-1. Hence the rate of antibiotic inflow is 3422 g hr-1.  This parameter 

value could be modified to take into account different sources of antibiotics, e.g. 

through faeces or urine, associated with different farming practises, and disease 

burden. 

 

We assume that antibiotics will degrade though a natural decay process within 

the slurry tank, hence we model this with an exponential decay term. Dolliver 

(2008) found degradation rates of antibiotics in composting conditions to vary 

between 1 and 23 days, depending upon the antibiotic type, although 

cephalosporins were not studied. Wang and Yates (2008) reported half-lives for 

Oxytetracycline, a different type of antibiotic, to range between 8 (relatively 

short timescales) and 56 (relatively long timescales) days in laboratory 

experiments depending on moisture content. Jaing et al. (2010) found 

cephalosporins to degrade in lake surface water with half lives of 2.7 to 18.7 

days. Here we use an antibiotic half life of 10 days, equivalent to a decay constant 

of 0.0029 hr-1.  

 

We have no data at present on the carrying capacity for bacteria in the slurry 

tank. However, given the amount of nutrients in the slurry we expect it to be 

large, and not a limiting factor in the model. For this reason we use a value of 

1010 CFU l-1 for all bacteria based on the typical stationary phase populations of 

E. coli in laboratory conditions. We multiply this value by the tank slurry volume 

to give the total carrying capacity at any time t. In effect, this means that the 

bacterial population is free to proliferate. 

 

Emax model parameters 
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The Emax model determines the effect of the antibiotics in the tank on the 

growth of bacteria. Thus the model is relevant to beta lactamase type antibiotics 

and other classes of antibiotics that impact upon cell growth. We use an Emax 

parameter of 2 and a Hill coefficient of 2 as in the Volkova model. We take the 

MIC values from published product information for Cobactan (cefquinome), 

which is commonly used on the study farm. Hence we choose MICS to be 0.008 g 

ml-1 and MICR to be 2 g ml-1 

(http://www.vmd.defra.gov.uk/ProductInformationDatabase/Default.aspx). The 

model could be used for other antibiotics by varying the values of the Emax and 

MIC parameters. 

 

Simulations 

 

We simulate the model using the ODE45 solver in Matlab v7.12.0 for our default 

parameter values (Table 1) to produce time courses of the model variables, 

slurry tank volume and amount of antibiotics in the tank over time. We also 

calculate the proportion of resistant bacteria in the model as R/N. For all 

simulations we initialise the model with an effectively sterile tank (R = S = 1 to 

avoid division by zero errors in the gene transfer term), however the model is 

relatively insensitive to the initial amount of bacteria in the tank. 

 

We produce both single- and two-parameter variation plots by conducting 

multiple simulations as described above. For each simulation we vary either one 

or two parameters within the range given in Table 1, and record the variable 

values at t = 90 days. For each parameter we run between 50 and 100 

simulations, with a uniform distribution of parameter values. 

 

Sensitivity analysis 

 

We conduct a global sensitivity analysis of four of the model parameters 

() as well as the length of time that slurry is stored. We take 3000 

randomly chosen points in parameter space, within the feasible range (see Table 

1) varying the five parameters of interest but keeping the other parameters 
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fixed.  We conduct a local one-at-a-time sensitivity analysis of the model at each 

of the 3000 points. We measure the relative sensitivity using the function  

 

/

/
kS

k k

  


  

 

where  is the feature being measured and k is the parameter being changed. We 

measure the proportions of sensitive and resistant bacteria in the slurry tank 

and plot these as box plots. 

 

 

Results 

 

Slurry tank conditions increase absolute and relative numbers of 

antimicrobial resistant bacteria 

 

For our default parameters, we see that initially the numbers of both resistant 

and sensitive bacteria increase (Figure 1B and C). Whilst the resistant bacterial 

population continues to grow, the sensitive population reaches a peak (at t=74 

days) then declines rapidly. This is also reflected in the proportion of resistant 

bacteria in the tank, which increases from 0.2 to 1 (Figure 1D). At t=90 days 

approximately 62% of the bacterial population is resistant to antimicrobials, 

which is significantly greater than the 40% resistance at inflow. This is an 

important time point since we expect the slurry tank to be emptied after 90 days 

and put to agricultural use. 

 

 

With these parameters, if the slurry tank is allowed to fill to maximum capacity 

(3 million litres), which we expect to take approximately 200 days, 94% of the 

bacterial population is modelled to be resistant. These proportions of resistant 

bacteria are far in excess of the proportion present in the slurry inflow, hence the 

conditions in the slurry tank can potentially exert a selective pressure on the 

bacterial populations’ increasing antimicrobial resistance. 
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Rate of horizontal gene transfer determines effectiveness of preventative 

measures to control resistance 

 

Increased antimicrobial resistance is seen when , the rate of horizontal gene 

transfer, is set at 0.001 hr-1. In reality, this rate is likely to vary considerably, 

between different bacteria, different mobile genetic elements, and in different 

conditions, e.g. suspension vs biofilm, different temperatures or pH. Hence we 

considered what happens to the proportion of bacterial resistance as  is altered 

within a realistic range. Figure 2A shows proportion of resistant bacteria at 90 

days as the rate of horizontal gene transfer  varies. The rate of horizontal gene 

transfer makes no significant difference to the population size. For small rates ( 

< 10-4 hr-1) the proportion of resistant bacteria is lower than that at inflow 

(20%). However, further reductions to  result in no further reduction to the 

amount of resistance seen. If  is increased above 10-4 hr-1 the amount of 

resistance increases to a maximum of 100%. 

 

 

 

The different behaviours of the system as  changes affect the types of behaviour 

we see as we also vary other parameters. Figure 2B shows that as we vary the 

antibiotic inflow parameter, , we see decreased antimicrobial resistance. 

However, this is highly dependent upon the rate of horizontal gene transfer. We 

have two clear regions of different behaviours as we vary the rate of antibiotic 

inflow () together with  (Figure 2C). Where we have a high value of , reducing 

gene transfer rate has a large impact on the level of antibiotic resistance in the 

tank, while changing the rate of antibiotic inflow in the slurry tank makes little 

difference. At lower  ( < 10-4 hr-1) reducing antibiotic inflow has a large impact 

on the proportion of resistant bacteria, while reducing gene transfer has little 

impact. Whilst we have only considered changes of  and  here, parameter 
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variations for some of the other parameters can be found in the Appendix, and 

show a similar dependence on the value of  

 

 

Resistance control measures should focus on horizontal gene transfer, 

antibiotic inflow and the length of time the slurry is stored 

 

A global sensitivity analysis of the realistic parameter space shows the 

importance of key parameters in the model (Figure 3). The most sensitive 

parameter is the length of time that slurry is stored in the slurry tank.  

 

 

The rate of horizontal gene transfer is also a very sensitive parameter in the 

model, as expected from parameter variation. Figure 3 shows it is the second 

most sensitive model parameter, both in its median sensitivity gain and also in 

the range of sensitivity it exhibits. Since this parameter is also one of the most 

uncertain in the model it would be of critical importance to get a better measure 

of this parameter, through experimental measures, before any resistance control 

measures were recommended or implemented. Figure 2 showed that the value of 

the horizontal gene transfer rate could, in some parameter regimes, make a large 

difference to the amount of resistance seen in the slurry tank. Hence, changes to 

this rate could be an extremely effective way of reducing antimicrobial resistance 

seen in the slurry.  

 

The sensitivity analysis shows that the model is relatively insensitive to the 

fitness cost, the proportion of resistant bacteria in the slurry inflow and the 

growth rate of the bacteria. Hence, measures aimed at changing these 

parameters are unlikely to be as effective as changes to the rates of horizontal 

gene transfer or antibiotic inflow. This would also suggest that, when devising a 

more sophisticated model, experimentally derived estimates of these parameters 

are less crucial and estimates from literature may suffice.  

 

Discussion 
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We have developed a model to describe populations of antimicrobial sensitive 

and resistant bacteria in a slurry tank on a typical high performance UK dairy 

farm. We include terms for population growth, slurry inflow, fitness costs, 

horizontal gene transfer and selective pressure due to antibiotic use. The 

parameter values we use for the model are derived mainly from published 

literature, with a small number based on specific details from the dairy farm 

studied. The farm specific values (herd numbers, milk volume, mastitic incidence 

rates) are fairly typical of UK high performance dairy farms (Langford et al. 

2009), and the model could be readily adapted to other dairy farms with stored 

slurry through changing parameter values. Moreover, the model could also be 

adapted for other farm animal species where manure is stored, for example 

swine or poultry. The model predicts that the proportion of bacteria showing 

antimicrobial resistance increases during the three month storage period. This 

increase is driven partly by horizontal gene transfer and partly by selection, as 

evidenced in Figure 2B. Even with no antibiotic inflow, the proportion of 

antibiotic resistant bacteria is predicted to be as high as 60%. As the flow of 

antibiotic into the tank is increased, so too does the proportion of resistant 

bacteria, indicative of selection for resistance. This result is concordant with 

other models associated with experimental data (Bootsma  et al. 2012), including 

that of Volkova et al. (2012), whose model matches the experimentally observed 

rise in the proportion of Ceftiofur-resistant E. coli in cattle gut during treatment. 

 

Through analysis of one- and two-parameter variations in the model we have 

shown that the rate of horizontal gene transfer is of critical importance to both 

the amount of resistance seen in the slurry tank and also to the effectiveness of 

changes to other parameters. An unexpected outcome of the model is that two 

distinct behaviours emerge for different potential values of gene transfer rate, 

consistent with other reported rates (Zhong et al. 2010, Subbiah et al. 2011, 

Volkova  et al. 2012). If gene transfer rate is high, then resistance is best 

controlled through its reduction, and reducing selection through antibiotic 

inflow has little impact. However, if gene transfer rate is low, then resistance is 

best controlled by reducing antibiotic inflow, and reducing gene transfer has 
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little impact. Due to limited experimental research and the inherent variability of 

the gene transfer rate, this parameter is one of the least certain parameter values 

within this model, and therefore it is not clear which of these two behaviours is 

realistic. In particular, the first of these behaviours is unexpected and challenges 

the current view that resistance is primarily driven by the level of antimicrobial 

exposure. This warrants experimental study to investigate this further. 

Moreover, there is little published on how best to reduce the gene transfer rate 

in practise. Measures might include physical measures, such as increased stirring 

of the slurry tank or more efficient filter pressing to remove a greater proportion 

of solids so that there would be less substrate for biofilm formation. 

Alternatively, chemical measures, such as the addition of additives that might 

reduce plasmid spread or biofilm production, could be employed.  

 

On a technical note, the value of the horizontal transfer parameter is model-

dependent. Our model, following Volkova  et al. (2012), has a saturating term for 

plasmid transfer, with the total population in the denominator. Other models, for 

example as used by Zhong  et al. (2010), use a mass action term. These authors 

report a range of transfer rates between 10-8 and 10-15 hr-1. However, to compare 

these rates with ours, it is necessary to multiply them by the total bacterial 

population density, and thus the transfer rates used are indeed comparable.  

 

That said, gene transfer is likely to be extremely complex, with variations 

between different species, mobile genetic elements, bacteriophage, bacteria 

found in biofilm or suspension, as well as variability due to environmental 

factors such as temperature, pH and eukaryotic predation (Johnsen and Kroer 

2007, Subbiah et al. 2011, Bellanger et al. 2013). We anticipate that more 

detailed modelling that includes biological, environmental and spatial complexity 

would be warranted and give results with greater predictive value (Krone et al. 

2007, Hellweger and Bucci 2009, Merkey et al. 2011). 

 

A global sensitivity analysis confirmed the importance of an accurate estimate 

for the gene transfer rate parameter, showing it to be one of the most sensitive 

model parameters. It also showed that the length of time that slurry is stored in 
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the slurry tank is also of utmost importance. While there may be changes in 

slurry storage that could reduce gene transfer rate, changing storage times may 

be difficult in practise. EU legislation requires storage from September to 

January, depending on soil type, to mitigate against environmental loss of 

nutrients. However, in all countries, it is not possible to apply manure or slurry 

to frozen ground, so storage over winter is likely to remain an essential practise. 

 

The model outputs are not sensitive to the proportion of resistant bacteria 

entering the tank, the fitness cost of carrying resistance or the growth rate of the 

bacteria. This confirms the importance of a model at the level of the whole slurry 

tank, rather than studies focusing on antimicrobial resistance at individual cow 

level. Control measures at the individual cow level would likely be ineffective at 

changing the amount of resistance emerging from the slurry tank after storage 

periods of several months. This also suggests that measuring resistance at the 

individual cow level, or indeed changes in fitness due to carriage of antibiotic 

resistance genes, may be less important than, say, measuring rates of horizontal 

gene transfer. Growth rate is known to be affected by factors, including strain, 

temperature and pH (Johnsen and Kroer 2007, Bellanger et al. 2013); indeed 

there is conflicting evidence as to whether E. coli strains can survive in the open 

environment (reviewed in Fremaux  et al. 2008, van Elsas  et al. 2011), grow  

(Vital et al. 2008, Sharifi et al. 2014), or decline (Semenov  et al. 2008, Ongeng et 

al. 2014). These studies are further compounded by the fact that cells could enter 

a viable but nonculturable state (Na et al. 2005). In the case of the slurry tank in 

this study, we are consistently able to isolate E. coli bacteria (Ibrahim et al. 

2016), with widespread resistance to beta lactamase antibiotics, suggesting 

some level of survival or growth. The model itself in fact includes both cell 

growth and death, and it is possible that alternative parameter values may be 

more relevant for different environmental conditions. Moreover, environmental 

factors (Johnsen and Kroer 2007, Bellanger et al. 2013), segregation loss, growth 

rate (Merkey et al. 2011) and antibiotic concentration (Jeters et al. 2009), may all 

impact upon horizontal gene transfer rates. These factors are not included in the 

model, and their inclusion could lead to increased importance of both growth 

rate and antibiotic inflow to spread of resistance. 
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The model assumption of spatial homogeneity in the slurry tank is unlikely to 

hold in the real system. A more realistic, spatially accurate model would be 

needed to make testable predictions of the impact of gene transfer on 

antimicrobial resistance and possible measures to counter this. A more complex 

model could also include biofilms, pH gradients and temperature variations as 

these have been shown to be important considerations in determining spread of 

resistance (Johnsen and Kroer 2007, Bellanger 2013). At present, we also have 

little data on the rate at which degradation of cephalosporins may take place in 

these conditions, and the literature search revealed a wide range of degradation 

rates for other antibiotic groups. For this reason it is important that future 

modelling takes this into account, and experimental measures of cephalosporin 

(and other veterinary antibiotics) degradation in the slurry tank would be 

particularly useful. Other antibiotics, e.g. sulfonomides or tetracycline, can be 

sequestered in organic matter and slowly released. These processes could be 

included in more detailed models (Müller et al. 2013). 

The model also assumes that the only source of antibiotics is from discarded milk 

from antibiotic treated mastitic udders. While this assumption is reasonable for 

the farm under study, the value of the antibiotic inflow parameter would need to 

be different for the model to be applied to farms with different veterinary 

practises, for example to take into account antibiotic inflow from faeces or urine.  

 

In the model we present here we neglect the microbial biodiversity within the 

slurry tank. We assume that the bacteria are all of the same type, and select 

parameters relating to E. coli since we know this is a major cause of 

environmental mastitis in UK dairy cattle (Bradley 2002). However, 

Streptococcus uberis is another major cause of contagious mastitis and a wide 

range of different bacteria can be found in the faecal matter of dairy cattle.  

Additionally the slurry tank is open to the environment and could contain 

bacteria from other sources. Some of these bacteria will be better suited to the 

slurry tank conditions, hence competition will exist between different bacteria, 

as well as the transfer of resistance between different types and strains of 

bacteria via mobile genetic elements. Bacterial population dynamics will also be 
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impacted on through phage infections and predation by protozoa, nematodes 

and other occupants of the slurry. For this reason it is essential to build an 

accurate model of the population dynamics of bacteria within stored manures 

and slurries and to include such complexities in order to develop effective 

control measures.  

 

This theoretical model of the slurry tank dynamics shows that emerging 

antimicrobial resistance in agricultural manures and slurries is a legitimate and 

well-founded concern. Despite the simplifying assumptions, the model is able to 

point to key parameters which should be given extensive consideration both in 

experimental studies and in a fuller, more realistic and predictive model. Further 

research in the area is crucial to prevent new antimicrobial resistant pathogens 

entering the human food supply chain, soil and water supplies. 
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Figure 1 (A) Antibiotic mass, (B) number of resistant bacteria, (C) number of sensitive bacteria, 

and (D) number of resistant bacteria relative to total bacteria, all against time for parameter 

values specified in Table 1. We assume constant increase in slurry volume and antibiotic 

amount. The numbers of resistant bacteria increase and dominate the bacterial population in the 

tank. The tank is normally emptied after 90 days so the longer time scale would not normally be 

observed. 
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Figure 2 (A) Total number of bacteria and number of resistant bacteria relative to total bacteria 
against differing values of the gene transfer rate β. Whilst the overall number of bacteria 
remains the same, the amount of resistance increases with increasing gene transfer. (B) Total 

number of bacteria and number of resistant bacteria relative to total bacteria against differing 
rates of antibiotic inflow θ. The total number of bacteria remains constant whilst the proportion 
of resistant bacteria decreases with decreasing antibiotic inflow. (C) Two parameter variation 
plot showing the number of resistant bacteria relative to total bacteria against variations in gene 
transfer rates and amount of antibiotic inflow. The white dashed lines show the parameter 
values at which β and θ are fixed in A and B. In all plots the other parameter values are 
specified in Table 1 and results are plotted at t = 90 days. The two parameter plot clearly shows 
two regions of different behaviour depending on β. For a high β we have a region where 
resistance is best controlled by reducing gene transfer, while changes to antibiotic inflow make 
no difference to the level of resistance. For low β we have a region where reducing the rate of 
antibiotic entering the slurry tank would reduce the amount of antimicrobial resistance, while 
changing gene transfer rate has little impact. 
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Figure 3 Boxplots of a global one-at-a-time sensitivity analysis of the relative sensitive and 
resistant bacteria numbers to a ±1% change in the parameters: growth rate (r), gene transfer 
rate (β), fitness (α), rate of antibiotic inflow (θ), proportion of resistant bacteria in inflow (ρ) 

and length of slurry storage. The length of slurry storage and gene transfer rate are consistently 
the most sensitive parameters, both in terms of the median sensitivity value and in the range of 
sensitivities seen as we vary the nominal parameter set. Rate of antibiotic inflow is also a 
relatively sensitive model parameter. The proportion of resistance is insensitive to growth rate, 
fitness cost and the proportion of resistant bacteria in the slurry inflow. 
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Table 1: The parameters in the system given by Equations 1-8, their 

interpretation and typical values. 

 

Parameter Description Typical value (and 

range) 

Source 

r Specific growth rate of 

E. coli 

0.5 (0.17 – 0.9) hr-1 Curds(1971),Godwin 

and Slater 

(1979),Levin et al. 

(1979) 

 Gene transfer term 0.001 (10-9 – 10-2) 

hr-1 

Subbiah et al. 

(2011),Volkova et al. 

(2012) 

 Rate of slurry inflow 613 l hr-1 DairyCo (2010) 

 Concentration of 

bacteria in slurry 

inflow 

2 x 107 CFU l-1 Reinthaler et al. 

(2003) 

 Proportion of resistant 

bacteria in inflow 

0.4 Reinthaler et al. 

(2003)  

 Resistance fitness cost 

as fraction of r 

0.1 (0 – 0.3) Godwin and Slater 

(1979), McDermott 

et al. (1993), 

Subbiah et al. (2011) 

VI Initial volume in slurry 

tank 

150000 l  

AI Initial concentration of 

antibiotics in tank 

0 g  

 Rate of antibiotic 

inflow 

3422 g hr-1 Randall et al. (2014) 

Emax Maximum effect of 

antibiotics on bacterial 

growth 

2 Volkova et al. (2012) 

H Hill coefficient in Emax 2 Volkova et al. (2012) 
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model 

MICS MIC for sensitive 

bacteria 

8 g l-1 VMD-DEFRA (2012) 

MICR MIC for resistant 

bacteria 

2000 g l-1 VMD-DEFRA (2012) 

 Carrying capacity of 

liquid slurry 

1010 CFU l-1  

γ Decay rate of 

antibiotics 
0.0029 hr -1 

Dolliver et al. 

(2007), Jiang et al. 

(2010) 
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