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Many quantum theories of gravity propose Lorentz violating dispersion relations of the form
w = |k| f(\k\/M*), with recovery of approximate Lorentz invariance at energy scales much below M, .
We show that a quantum field with this dispersion predicts drastic low energy Lorentz violation in
atoms modelled as Unruh-DeWitt detectors, for any f that dips below unity somewhere. As an
example, we show that polymer quantization motivated by loop quantum gravity predicts such
Lorentz violation below current ion collider rapidities.
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Introduction. — Although local Lorentz invariance
is a pillar of modern physics, there exist serious propos-
als emerging from quantum theories of spacetime that
Lorentz invariance may be broken at sufficiently high en-
ergies [I]. The challenge for such proposals is twofold: to
recover approximate Lorentz invariance in the well tested
low energy regime, and to make predictions through
which the violation could conceivably be observed.

If a Lorentz violating theory contains an explicit en-
ergy scale M, that characterizes the violation, such as
the Planck energy, it might seem straightforward to se-
cure approximate Lorentz invariance at energies much
below M,. However, in quantum field theory (QFT),
the effective low energy theory can reveal unexpected
imprints of the theory’s high energy structure [2]. For
example, a Lorentz violation that is superficially associ-
ated with a large energy scale can become observable at
arbitrarily low energies via the renormalization of a loga-
rithmically divergent loop diagram [3]. There is a similar
result for the Casimir effect [4].

The purpose of this paper is to show that such an un-
expected low energy imprint occurs in the response of a
simplified atom, modeled as an Unruh-DeWitt (UDW)
detector [B 6], coupled to a class of Lorentz violating
quantum field theories in four-dimensional Minkowski
spacetime.

The theories we consider have a dispersion relation
which in the preferred frame reads

wie = [k f(|k|/M.), (1)

where k is the spatial momentum, wyy is the correspond-
ing energy, the positive constant M, is the energy scale
of Lorentz violation, and f is a smooth positive function
on the positive real line, with the property that f(z) — 1
as x — 04. (We set ¢ = h = 1.) This dispersion relation
is approximately Lorentz invariant for |k|/M, < 1.
Despite this low energy recovery of Lorentz invariance,
we find that, for any f that dips below unity somewhere,
transitions in an inertial UDW detector are strongly
Lorentz violating at arbitrarily low transition energies. If
fe = inf f satisfies 0 < f. < 1, the signature of the viola-

tion is a sudden enhancement in the rate of spontaneous
de-excitations and a sudden emergence of spontaneous
excitations when the detector’s rapidity exceeds the crit-
ical value §. := artanh(f.). Crucially, S, is independent
of M,.

As an application, we show that this class of Lorentz
violating theories includes a scalar field quantized in
the polymer quantization framework [THIZ], a method
motivated by the loop quantum gravity (LQG) pro-
gram [I3] T4]. For the polymer quantized scalar field,
we find that large Lorentz violation occurs above the
critical rapidity 5. ~ 1.3675, a value well below 5 ~ 3
attained by ions at the Relativistic Heavy Ion Collider
(RHIC) [I5). Given the close correspondence between
the Unruh-DeWitt detector and an atom interacting with
the electromagnetic field [16 [17], the absence of observa-
tions of Lorentz violation at the RHIC therefore provides
a strong constraint on the possible families of modified
dispersion relations.

Field theory with wmodified dispersion rela-
tion. — We consider a real scalar field ¢ that admits
a decomposition into spatial Fourier modes such that a
mode with spatial momentum k # 0 is a harmonic os-
cillator with the angular frequency wjy , where f is
a smooth positive function on the positive real line. To
allow sufficient generality, we will for the moment leave
the small argument behaviour of f unspecified, and we
include in the Fourier decomposition the density-of-states
weight factor

P = d([k|/M,) [(2m)3 (k] 7, 2)

where d is a smooth complex-valued function on the pos-
itive real line. If f(z) = 1 and d(z) = 272, the field is
the usual massless scalar field.

The central object that will be needed below is the
Wightman function in the Fock vacuum. It is given by

Gt x:t',x) = / Ak | ppg 2 €M t==10) (3

where the distributional character is encoded in the limit
€ — O+.



Model atom: UDW detector. — We probe the field
with a linearly-coupled two-level UDW detector [5] [6].
This detector model captures the essential features of an
atom interacting with the electromagnetic field [I6] [17],
and it has been widely used to analyze motion effects in
quantum field theory (for recent reviews see [18-20]).

The detector is pointlike and moves on the worldline
x(7) where 7 is the proper time. The coupling strength
is proportional to the switching function x(7), which is
non-negative and smooth, and falls off sufficiently rapidly
at 7 — *o0. In first-order perturbation theory, the prob-
ability of the detector to make a transition from the state
with energy 0 to the state with energy © (which may be
positive or negative) is then proportional to the response
function, F(Q) = [drdr’ x(1)x(r") e X T=TOW(r,7'),
where W is the pullback of the scalar field’s Wightman
function to the detector’s worldline.

When both the trajectory and the quantum state of
the field are stationary, W(r,7’) depends on its argu-
ments only through the difference 7 — 7/, and we may
convert F into the transition rate per unit time by pass-
ing to the limit of adiabatic switching and factoring out
the effective total duration of the detection. While this
procecure is subtle [I9, 21, 22], for the present pur-
poses we may consider the specific switching function
family x(7) = 7~ Y40~ Y2exp[—72/(20?)], where the
positive constant o is the effective duration of the in-
teraction, and the normalization factor ¢—'/2 provides
the conversion from transition probability to transition
rate. For finite o the transition rate is given by F(Q2) =
7. ds e/ (40?) g=ils W(s,0). Passing to the limit in
which o is large compared with 1/|Q and with the
timescales over which W varies, we obtain

oo
F(Q) = / ds e " W(s,0). (4)
—0o0
We shall use equation in the analysis that follows.
Inertial detector. — We consider a detector on the
inertial worldline (t(T), x(T)) = (T cosh 3,0,0, 7 sinh ﬁ),
where (3 is the rapidity with respect to the distinguished
inertial frame. For presentational simplicity we proceed
assuming B > 0, but it can be verified by a separate
analysis that the 8 = 0 transition rate is equal to the
B — 0 limit of the results given below.
From and we obtain

%)
/ ds / d3k ‘P\k| |2 e*’i(Qer\k\ cosh S—kg sinh 3)s
—oc0

47 >
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sinh 3 Jo 24
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M, >
= m/o dg |d(9)|2
X @(gsinhﬁ —[(Q/M,) + gf(9) cosh6|), (5)

where we have introduced K = |k| and g = K/M,, and
O is the Heaviside function. Note that M, enters only
as the overall factor and via the combination Q/M,.

The crucial issue in is the behaviour of the argu-
ment of ©: for what values of 2 is the argument of ©
positive for at least some interval of g7 If f(z) > 1
for all z, F(Q2) clearly vanishes for all positive Q: the
detector does not become spontaneously excited. This
is the case for the usual massless scalar field, for which
f(z) =1, d(z) = 2712, and F(Q) = —QO(-Q)/(27)
[23].

We now specialize to f and d for which f(z) — 1 and
|d(z)| — 272 as x — 0, so that the low energy disper-
sion relation and the low energy density of states reduce
to those of the usual massless scalar field. Crucially, we
assume that f dips somewhere below unity. For con-
creteness, we further assume that f. := inf f is positive,
so that 0 < f. < 1. Finally, we assume for simplicity that
d is everywhere nonvanishing. Under these quite broad
assumptions, we now show that F() has markedly dif-
ferent properties for rapidities below and above the crit-
ical value B, := artanh(f,).

Suppose first that 0 < 5 < B.. From the argument
of © in we see that F(€) vanishes for Q@ > 0 but
not for Q < 0: the detector does not become sponta-
neously excited, but it has a nonvanishing de-excitation
rate. This is similar to the ordinary massless scalar field.
The de-excitation rate is not Lorentz invariant, but at
small negative values of Q we find
- 2r

F) =2 {1 + cosh 3 [(1 + cosh(28)) £/(0)

- 2Re(d/(o)/d(o))}h +O(h2)}, (6)

where h = Q/M,, which shows that the Lorentz violation
is suppressed at low energies by the factor Q/M,. At
M, — oo with fixed 2, @ reduces to the de-excitation
rate of a detector coupled to the usual massless scalar
field [23]. This is all as one might have expected.

Suppose then that 5 > §.. Writing again h = Q/M,,
the argument of © in shows that F(€2) is now non-
vanishing for 0 < h < sup,> g[sinh 8 — f(g) cosh 3]: the
detector gets spontaneously excited, at arbitrarily small
positive Q! F(02) has a nonvanishing limit as Q@ — 04,
and the value of this limit is proportional to M, by a
function that depends only on S.

Similar observations for 2 < 0 show that F(Q2) has a
nonvanishing limit as £ — 0_, and the value of this limit
is again proportional to M, by a function that depends
only on f.

We summarize the general result: Suppose that the
dispersion relation is such that the smooth positive-



valued function f on the positive real line satisfies f(z) —
1las ¢ — 04, and f. := inf f satisfies 0 < f. < 1. Sup-
pose further that the density of states is such that the
smooth complex-valued function d on the positive real
line satisfies |d(x)| — 27'/2 as 2 — 0, and is nowhere
vanishing. Then, an inertial UDW detector with rapidity
B > B. = artanh(f.) in the preferred frame, experiences
spontaneous excitations and de-excitations at arbitrarily
low ||, and these transitions occur at a rate proportional
to the Lorentz violation energy scale M.

Example: polymer quantum field theory. —
LQG is one of the approaches to quantum gravity [I3] [14]
currently being studied, with significant application to
cosmology [24], 25] (for reviews see [26, 27]). A key fea-
ture of the LQG formalism is an alternative quantiza-
tion method called polymer quantization. This method
has been applied, beyond its quantum gravity origins, to
mechanical systems and to the scalar field [THIZ]. It is
expected that for matter coupled to gravity in LQG, mat-
ter fields too are to be quantized using this prescription.
Hence it is natural to apply our general result on the
excitation of inertial UDW detectors to polymer quanti-
zation.

We choose the specific implementation of a polymer
quantized scalar field studied in [10], referring therein for
the details, and summarize here the features and results
needed for our analysis. It has been previously observed
[28] that an inertial detector coupled to a polymer quan-
tized scalar field can become spontaneously excited: we
shall establish both the critical rapidity for this to hap-
pen and the magnitude of the effect.

The Wightman function is given by

dgk ik (x—x’
G(t,x;t',x’)z/we (x=x")

X Z ’C4n+3 ‘k|

7ZAE4,,7,+3 |k|)(t t’ 716) (7)

where AEgni3(k|) = [k|fan+3(9), cants(k]) =
|k‘71/2d4n+3(g)3 g = |k|/M*a and the functions f4n+3
and dg,+3 may be expressed in terms of functions that
appear in the theory of Mathieu’s equation. The asymp-
totic expressions at small argument are

Janys(9) = [2n+1) = 3(n+1)2n + 1)g
— %(Qn + 1)(4712 +Tn + 4)g2 + O(gg)],
(8a)
ds(g) égp—% Lg%+ 0(g%)], (8b)
dint3(9) _ / n .

while those at large argument are

fans3(9) =2n+1)?g[1+0(g™ )], (9a)
o) = /2 14067 (9D)

dint3(9) _ o/ _on

T(g) =0(g~™"). (9c)

If the polymer quantization is viewed as coming from an
underlying quantum theory of spacetime, the polymer
energy scale M, may be identified as Planck energy.
The detector’s response F(2) is obtained by applying
formula to each n in @, with f(g) = fants(g) and
d(g) = dan+3(g), and summing over n. From (8) and
we see that f3(g) = 1 as g — 04, f3(g) <1 at small g,
f3(g) > 1 at large g, and |d3(g)] — 272 as g — 0O4;
further, numerical experiments show that f3(g) dips be-
low unity for 0 < g < g, =~ 0.4334, with a unique global
minimum at g = g. ~ 0.2585, such that f3(g.) ~ 0.8781.
The n = 0 contribution to F(£2) is hence precisely of the
type analyzed above, with f. := artanh[f3(g.)] = 1.3675,
exhibiting a drastic low energy Lorentz violation for
B > B.. For n > 0, numerical experiments indicate that
fant3(g) > 1 for all g, consistently with the asymptotic
expressions in and @ This shows that the n > 0
terms in do not contribute to F(2) for @ > 0, and
while these terms do contribute for €2 < 0, the expansions
and @[) show that their effect is subdominant when
—Q/M, is small. At small and large negative values of
we obtain respectively

F(Q) = _% [1 — 2(cosh Bsinh®B) h + O(h)]  (10)
and
F(a) = MVOhB s L oge),

3221

where again h = Q/M,, and the only term in that
contributes to the order shown is the n = 0 term.

Figures show a numerical evaluation of F(2), ex-
pressing € in terms of the dimensionless parameter h.
The scale of the F-axis is in units of M,. The plots use
the n = 0 term in in . For A > 0 the n = 0 term is the
full contribution. For A < 0 the n = 0 term is a lower
bound that becomes sharp as h — 0_. The dramatic
increase in the transition rate as [ increases past . is
apparent in all the plots.

Discussion. — We have shown that an inertial UDW
detector coupled to a scalar field with a dispersion rela-
tion that violates Lorentz invariance at high energies, in a
certain controlled way, exhibits drastic Lorentz violation
at arbitrarily low energies. This violation occurs when-
ever the detector’s velocity in the distinguished frame ex-
ceeds a certain critical rapidity (5., which is independent
of the Lorentz violating energy scale M,.
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FIG. 1: Transition rate for excitations (h > 0) vs. § for h =
0.1 (lowest curve), 0.05, 0.01, 0.05 and 0.01 (highest curve).
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FIG. 2: Transition rate for de-excitations (h < 0) vs. g for
h = —0.1 (highest curve), —0.05, —0.01, —0.005 and —0.001
(lowest curve).

FIG. 3: Transition rate as a function of g and h. The irregu-
larities at small 3 are numerical noise.

The class of theories in which this phenomenon oc-
curs includes a scalar field quantized in the polymer
framework that imports techniques from loop quantum
gravity. For the polymer quantized scalar field we find
B = 1.3675, independently of the polymer mass scale.

The signature of the Lorentz violation is a sudden in-
crease in the rate of spontaneous de-excitations and a
sudden emergence of spontaneous excitations in the de-
tector. Our linear perturbation theory analysis predicts
for these transition rates a magnitude comparable to the
Lorentz-breaking energy scale M,.

As we have assumed the interaction to last much longer
than 1/M,, and since transition probabilities can by def-
inition not be larger than unity, the predicted value for
the transition rate should not be taken literally: what the
perturbative result means is that the transition probabil-
ities grow quickly to order unity, after which a quantita-
tive analysis would need to incorporate the back-reaction
of the detector on the state of the quantum field [19] 29].
Qualitatively, however, we view the linear perturbation
theory result as a reliable indicator of a violent burst of
excitations and de-excitations when the detector’s rapid-
ity exceeds (..

Since the onset of excitations and the increase in the
de-excitations occur when the detector’s velocity exceeds
the group velocity of high frequency waves, the phe-
nomenon can be compared to the the Cerenkov effect.
The surprise is that the effect shows up already at ar-
bitrary small values of the detector’s energy gap, much
below the energies at which the field’s group velocity is
less than the speed of light.

While it may seem paradoxical that a symmetry viola-
tion at high energies can induce large low energy effects,
we emphasize that instances of this kind are known to
occur in quantum field theory [2H4].

The close similarity between an UDW detector and
the dipole moment interaction by which an atom couples
to the quantized electromagnetic field [I6] [17] suggests
that our prediction should apply to atoms or ions moving
with a relativistic velocity, including the ions accelerated
to rapidity 8 =~ 3 at the RHIC. The absence of ob-
served Lorentz violations at the RHIC therefore provides
a strong constraint on the possible families of modified
dispersion relations.

Finally, although we have considered only an inertial
detector, we anticipate that a uniformly linearly accel-
erated detector will exhibit a similar drastic Lorentz vi-
olation after operating so long that its rapidity in the
preferred frame exceeds (.. It is therefore curious that
the Hawking effect appears to be robust to high energy
modifications of the dispersion relation [30], but the re-
sponse of a uniformly accelerated UDW detector, which
in some ways is its equivalence principle dual, is not so
immune.
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