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Abstract

A framework for the development ofaccurate yet computationally efficient numerical models is proposed in this work,within

the context of computational model validation. The accelerated computation achieved herein relies on the implementation

of a recently derived multiscale finite element formulation, able to alternate between scales of different complexity.In

such a scheme, the micro-scale is modeled using a hystereticfinite elements formulation. In the micro-level, nonlinearity

is captured via a set of additional hysteretic degrees of freedom compactly described by an appropriate hysteric law, which

gravely simplifies the dynamicanalysis task. The computationalefficiency of the scheme is rooted in the interaction between

the micro- and a macro-mesh level, defined through suitable interpolation fields that map the finer mesh displacement field

to the coarser mesh displacement field. Furthermore, damagerelated phenomena that are manifested at the micro-level

are accounted for, using a set of additional evolution equations corresponding to the stiffness degradation and strength

deterioration of the underlying material. The developed modeling approach is utilized for the purpose of model validation;

firstly, in the context of reliability analysis; and secondly, within an inverse problem formulation where the identification

of constitutive parameters via availability of acceleration response data is sought.
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1. Introduction

Engineering simulation is an essential feature accompanying the design, manufacturing and operational life of every engi-

neered structure. However, and despite the refinement and complexity that such simulations might entail, these are not

routinely validated, largely due to the computational costassociated with the multiplicity of parallel runs involved. This

inadequacy comes in direct disagreement with the recent advances both in monitoring methodologies as well as in compu-

tation potential. The former has provided engineers with low-cost means of assessing structural performance, both during

the construction phase as well as during the operational of astructural system. Significant feedback is therefore collected

from the system at hand, which may then be utilized for selecting, updating and/or validating candidate computational

models.

A significant source of complexity within computation stemsfrom the potential multi-phase nature of materials com-

prising the system to be analyzed. Multiphase materials, also known as composites, fit the profile of emerging material

solutions calling for enhanced computation. In most industrial cases, the main volume of a composite consists of a single

material (e.g. the matrix) that acts as a basis where a numberof reinforcing materials are added. The distribution of the

reinforcement within the matrix can be either fully prescribed, as in the case of layered composites, or random, as in the

case of fibre reinforced matrices. This process of mechanically combining constituent materials baring different properties

results into a highly heterogeneous structure. Due to the advanced material properties of the resulting medium, composites

are widely used in numerous applications. Research effortscurrently focus on developing and manufacturing composites

with enhanced mechanical properties (e.g. high stiffness to weight ratios, high damping, negative Poisson’s ratio andhigh

toughness1) and reduced implementation and maintenance costs2–4. Recent advances in fields such as bioengineering,

nano-mechanics and electronics also stress the need for designing new composites with optimal material properties5,6.

Nonetheless, prior to proceeding with design refinement appropriate methodologies need to be developed, for validating

the numerical models simulating these solutions .

∗Corresponding author; e-mail: chatzi@ibk.baug.ethz.ch



3

Model validation7 may be carried out via two distinct routes, which however canbe intertwined. The first path is through

numerical validation,also referred to as numerical verification8, in the sense that most practical models to be employed

are usually inferred by adopting a number of simplifying assumptionsin an effort to reduce the required computational

toll. A first step toward validating such models is through comparison with either benchmark analytical solutions, or

when this is not possible, with more refined/higher dimensional numerical solutions, which may be considered as a closer

approximation of the true system. If the reduced order model successfully reproduces the desired response with a sufficient

level of accuracy, lying below some acceptable threshold, it may then be adopted for the forward simulation of the system

at hand. The second route, which is invaluable within the context of standardization of the validation approach, is through

experimental validation as noted in9–11. This route relies on the use of actual structural feedback,i.e., through experimental

or field measurements of structural response under static ordynamic loads.

Indeed, when it comes to composites, significant effort has been allocated in developing simulation models that comply

with experimentally measured response, via an inverse problem formulation12. In past years, several methods have been

introduced along the lines of the so-called mixed numerical-experimental techniques for the successful modeling of polymer

based materials and composite reinforcing textiles13,14. The anisotropic and heterogeneous nature of these materials turns the

direct determination of stiffness parameters into an arduous task. Conventional methods are based on direct measurements

of strain fields15, presenting several drawbacks such as boundary effects, sample size dependencies and difficulties in

obtaining homogeneous stress/strain fields16. As an alternative, indirect methods based on modal test data have become

more popular in recent years. These are based on measurements of structural response and the comparison between the

experimentally identified eigen-frequencies of a structure and those obtained through a numerical analysis employinga

finite element model17–19. This inverse problem formulation can lead to an estimate ofthe macroscopic material parameters

of the composite materials, which are generally impossibleto standardize in tables or databases as they are dependent on

diverse factors such as the geometrical arrangement of the laminates, constituent materials used, manufacturing process etc.

Independent of whether a direct or indirect method is employed, a forward model of the structure is required for deriving

those parameters that are deemed as uncertain, most commonly those pertaining to the effective moduli.

However, the sensitivity of the identified parameters to thesize of the testing specimen20,21 imposes a strong constraint

on the required size of the underlying finite element model leading to computationally intensive problems22. To reduce

the computational cost, multiscale simulation approacheshave been introduced23–25. Two main variants of computational

multiscale analysis methods can be identified, namely the multiscale homogenization methods26 and multiscale finite

element methods (MsFEMs)27.

Homogenization methods are based on averaging strain and energy conjugate stress measures over a predefined space

domain, defined as a Representative Volume Element (RVE)28. Although homogenization methods are based on a strong

and robust mathematical background, they rely on the assumption of scale separation and local periodicity of the underlying

micro-structure. Many structures however usually fail to adhere to these assumptions, due to the non-periodic nature of the

imposed boundary and loading conditions that lead to non-periodic stress and strain fields as well as the non-deterministic

distribution of heterogeneities within them. To overcome these deficiencies the multiscale finite element method has been

introduced. In this, the macro-scale of the structure is discretized into a set of coarse elements. These coarse elements are

further discretized into sets of nested meshes. Next, a set of interpolation functions is evaluated, mapping micro- to macro-

displacement components . The MsFEM method has been extensively used in flow simulation analysis27,29. Recently the

Enhanced Multiscale Finite Element method (EMsFEM) has been formulated to address the linear and nonlinear response

of heterogeneous materials30 under static loads.

Dynamic forces and repeated cyclic loading beyond a material’s elastic limit often lead to damage accumulation and

therefore to nonlinear response, which further complicates the implementationof the aforementionedEMsFEM framework.

Damage initiates at the micro-level, through the propagation of inherent micro-discontinuities, and manifests itself at the

meso- and macro-scale, finally resulting in the gradual reduction of the strength and stiffness of the structure, which is
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observed at the macro-scale. Within this framework, the hysteretic multiscale finite element method (HMsFEM) has been

introduced in recent work of the authors31, which forms a tool for significantly reducing the computational cost of nonlinear

dynamic analysis of complex structures.According to this approach, inelasticity is accounted for at the fine mesh level

using the hysteretic formulation of finite elements32. The latter is based on the definition of a set of additional degrees of

freedom regulating the evolution of the plastic component of elemental deformation. Since inelasticity is treated as adegree

of freedom, the element stiffness matrix remains unchangedthroughout the whole analysis. As a result, the evaluation of

the micro-basis functions is also performed once. The evolution of the additional degrees of freedom is constrained by

a set of additional equations that account for the constitutive behavior of the underlying material. A smooth plasticity

model is employed to describe the evolution of plastic strains at the micro-scale. The computational merits of the hysteretic

multiscale finite element method have been discussed withina reliability framework in33,34. Herein, damage accumulation

is also accounted for, by introducing an additional set of internal variablesaccounting for the gradual degradationof the

material’s unloading stiffness as well as the deterioration of the material’s yield limit.

In the work presented herein, the previously introduced HMsFEM approach serves as the tool for model validation,

under a stochastic setting, in twotypesof problems. The first application pertains to a reliabilityanalysis problem, where

structural response is quantified in a probabilistic sense using a Monte Carlo approach.The proposed modeling methodology

is in this case verified against a refined, albeit computationally intensive, FE model. Composites are intrinsically multiscale

materials where uncertainties stemming at the smaller, constituent, scale greatly affects the behaviour of the larger, structural,

scale35,36. Thus, the stochastic analysis of such materials under conditions of extreme loading is of paramount importance in

order to quantify the probability of failure of the correspondingstructure. Since the reliability analysis of structures per-se is

a computationally intense procedure, it is pointed out thatmultiscale models37 should be preferred over standard stochastic

FEM procedures38, in an effortto reduce the complexity of the implemented computational model without adverse effects

on the desired accuracy. The second application pertains toan inverse problem formulation, where the identification of

the uncertain material parameters of a composite structure, namely, the structural stiffness and strength at the levelof the

constituents, is sought, based on recorded acceleration response from limited structural nodes.

The paper is structured as follows. In the next section, the Enhanced Multiscale Finite Element Method (EMs-

FEM) is overviewed. Next, the constitutive model implemented at the micro-scale is presented in the section titled

Micro-scale Constitutive modeling. The model presented herein is an extension of the smooth model presented by

the authors in32 accounting for damage phenomena relating to cyclic loads, i.e. the degradation of the material stiff-

ness and the deterioration of the corresponding yield strength. This material model is then implemented within the

enhanced multiscale finite element scheme and the corresponding derivations are presented in the section entitled

The hysteretic multiscale finite element method with damage. Although straightforward, the use of the additional damage

operators is not trivial as it affects both the evolution equation of the plastic deformation tensor as well as the out-of-balance

forces of the micro-elements. The section titledComputational Model Validationbriefly discusses the computational tools

that are here adopted for the purpose of model validation, from both a numerical and experimental standpoint. Finally,

illustrative applications are presented in theExemplary Implementationssection validating the proposed derivations and

demonstrating the computational advantages of the developed framework, firstly under the scope of reliability assessment

and, secondly, within the context of an inverse problem formulation.

2. The enhanced multiscale finite element method

2.1. Overview

EMsFEM is based on the definition of a set of nested finite element meshes as explained in30. The interaction between

subsequent mesh levels is defined through the numerical derivation of corresponding interpolation fields that map the finer

mesh displacement field to the coarser mesh displacement field. In Fig. 1(a), the case of a two-phase solid composite
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structure is presented for brevity. The composite comprises a matrix and a set of reinforcing cells. Based on the distribution

of the cells within the matrix, a fine discretization scheme is defined, consisting of 384 linear hex-elements and 663 nodes

that correspond to 1989 degrees of freedom.

Depending on the micro-structure’s periodicity, patternsof heterogeneity can be recognized and sets of micro-elements

can be grouped into clusters,which will herein be denoted as Representative Volume Elements or RVEs. The convex-hull

of each cluster defines a coarse-element (or macro-element)that surrounds the fine-meshed RVE substructure. In Fig.1

two distinct patterns are identified and the corresponding RVEs are presented in Fig.1(c) and1(d). The set of coarse

elements results in the definition of the coarse mesh presented in Fig.1(e). This mesh consists of 8 coarse elements and 30

macro-nodes that correspond to 90 macro-degrees of freedom(dofs).

According to EMsFEM, instead of performing a finite element analysis on the fine mesh (Fig.1(a)), a numerical

interpolation schemeTi is evaluated for each RVE(i). The latter maps the displacementsum of the corresponding micro-

nodes, defined within the micro-domainΩm, onto the macro-displacementuM field, defined in the macro-domainΩM .

With respect to Fig.1(f), the fine mesh the displacement of a micro pointp is described by relation (1) below

um = {um vm wm}
T
|(x,y,z) (1)

The continuous micro-displacement field introduced in relation (1) can be interpolated at the micro-nodal points using a

standard displacement based FE interpolation scheme as in39

um = [N ]mdim (2)

where

dim =
{

um(1) vm(1) · · · vm(8)

}T

︸ ︷︷ ︸

1x24

(3)

is the nodal displacements vector of theith micro-element, and[N ]m is the displacement based interpolation matrix of the

hex-element.

Since the structure defined in Fig.1(e) is a discrete macro-representation of the physical model consisting of the RVEs,

the macro-displacement component within each RVEdiM can be defined accordingly as the discrete set such that

diM =
{

uM(1) vM(1) · · · vm(8)

}T

︸ ︷︷ ︸

1x24

(4)

where(i) stands for theith macro-node of the coarse mesh.

The subscriptm is used throughout this manuscript to denote a micro-measure, while the capitalM is used to denote

a macro-measure of the indexed quantity. The enhanced multiscale Finite Element method is based on the numerical

derivation of a relation between the discrete micro-displacement field introduced in equation (3) and the coarse element

discrete displacement field introduced in relation (4).

2.2. Micro to Macro displacement interpolation scheme

The micro-scale basis functions are calculated so as to furnish a mapping of the micro-displacement components to the

corresponding coarse element macro-displacement components. This is achieved by solving a homogeneous equilibrium

problem over the domainΩm of the coarse element. The enhanced multiscale finite element method relies on the definition
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Fig. 1. The MsFE modeling scheme

of the following interpolation scheme where the micro-displacement components are evaluated with respect to the macro-

displacement components as:

um(j) =
nMacro∑

i=1

NijxxuMi
+

nMacro∑

i=1

NijxyvMi

+
nMacro∑

i=1

NijxzwMi

vm(j) =
nMacro∑

i=1

NijxyuMi
+

nMacro∑

i=1

NijyyvMi

+
nMacro∑

i=1

NijyzwMi

wm(j) =
nMacro∑

i=1

NijxzuMi
+

nMacro∑

i=1

NijyzvMi

+
nMacro∑

i=1

NijzzwMi

(5)

whereum(j), vm(j), wm(j) are the displacement components of thejth micro-node,j = 1...nmicro wherenmicro the

number of micro nodes within the coarse element. Furthermore, nMacro is the number of macro-nodes of the coarse

element anduMi
, vMi

, wMi
are the displacement components of the macro-nodes of theith coarse-element.

The quantitiesNijxx, Nijxy ,Nijyy , Nijzz , Nijxz . Nijyz are the micro-basis interpolation functions. These interpolate

the displacement components of thejth micro-node to the macro-displacement components of the correspondingith coarse

element.

Equation (5) is derived in matrix form as:

{d}m(i) = [N ]m(i) {d}M (6)

where{d}m(i) is the nodal displacement vector of theith microelement,[N ]m(i) is the matrix containing the micro-

basis shape function values at the nodes of theith micro-element. Furthermore,{d}M is the vector of the macro-node
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displacements. Denoting{d}m the(3nmicro × 1) vector of the micro-mesh nodal displacements, the following relation is

established:

{d}m = [N ]m {d}M (7)

Matrix [N ]m in equation (7) is a315× 24 matrix containing the components of the micro-basis shape functions evaluated

at the nodal points(xj , yj , zj) of the micro-mesh. Each column of matrix[N ]m corresponds to a deformed configuration

of the RVE where the corresponding macro-degree of freedom is equal to unity and all the rest macro-degrees of freedom

are equal to zero.

The micro-basis functions are derived as the solution of theboundary value problem defined in equation (8) below

[K]RVE {d}m = {/0}

{d}S =
{
d̄
}

(8)

where[K]RVE denotes the stiffness matrix corresponding to the coarse element,{d}S is the vector containing the nodal

degrees of freedom lying along the boundaryS of the coarse element and
{
d̄
}

is a vector of prescribed displacements.

Vector{/0} is the zero vector. The coarse element stiffness matrix is assembled via the standard finite element method39.

The application of the prescribed boundary conditions and the solution of the boundary value problem of equation (8) is

performed herein using the Penalty method40.

The accuracy of the method depends on the proper choice of theassumed boundary conditions for the evaluation

of the micro-basis functions and is naturally dictated by the kinematics of the problem at hand, as well as the size of

the coarse element. Different methodologies exist including the linear, periodic and oscillatory boundary conditions with

oversampling. Further details can be found in30,41.

3. Micro-scale Constitutive modeling

In this Section, the constitutive model governing the material behaviourat the micro-scale is presented. The model presented

herein is derived on the basis of the theory of classical plasticity, also introducing a set of additional material parameters

accounting for the smoothness of the transition from elastic to plastic loading and from plastic loading to elastic unloading.

Furthermore, two damage operators are introduced corresponding to the degradation of the unloading stiffness and the

deterioration of the material yield strength due to cyclic loading induced damage.

3.1. Smooth hysteretic modeling

The hysteretic formulation of finite elements32 is implemented herein to account for the nonlinear dynamic behavior of

materials at the micro-scale. In this, a mixed interpolation scheme is considered for both the displacement and the plastic

component of the strain tensor. An evolution relation is extracted from the latter based on the additive decomposition of

the total strain tensor into a reversible elastic and an irreversible inelastic component42:

{ε̇}m(i) =
{
ε̇el
}

m(i)
+
{
ε̇pl
}

m(i)
(9)

where{ε}m(i) is the total strain tensor,
{
εel
}

m(i)
is the tensor of the elastic, reversible, strain and

{
εpl
}

m(i)
is the plastic

strain tensor whilem (i) indexes theith micro-element within the coarse element. A vectorial notation is employed for the

stress and strain tensors while the(.) symbol denotes differentiation with respect to time. In classical elasto-plasticity, the
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elastic component of the strain tensor
{
εel
}

m(i)
is directly related to the current stress{σ}m(i) through the Hooke’s law

{σ̇}m(i) = [D]m(i)

{
ε̇el
}

m(i)
(10)

where[D]m(i) is the elastic constitutive matrix43. Additionally, an evolution law is considered for the plastic component

of deformation, generically defined as:

{
ε̇pl
}

m(i)
= F

({
εel
}

m(i)
,
{
ε̇el
}

m(i)
, {σ}m(i)

)

(11)

whereF is an hysteretic operator44,45.

In this work, the hysteretic operator is defined on the grounds of a multi-axial smooth plasticity model32 based on the

assumptions of rate-independent associative plasticity46. Within such a framework, the evolution of the plastic strain tensor

is defined as
{
ε̇pl
}

m(i)
= H1H2 [R] {ε̇}m(i) (12)

whereH1 andH2 are smoothened Heaviside functions defined by the followingrelations, namely:

H1 =

∣
∣
∣
∣
∣
∣

Φ
(

{σ}m(i) , {η}m(i)

)

Φ0

∣
∣
∣
∣
∣
∣

N

, N ≥ 2 (13)

and

H2 = β + γsgn
(

Φ̇
)

(14)

In equation (13) Φ = Φ
(

{σ}m(i) , {η}m(i)

)

denotes the yield criterion,Φ0 the yield limit,N determines the rate at which

the yield criterion reaches its peak value whileβ andγ are material parameters that define the stiffness at the point of

unloading. The time derivative of the yield function in equation (14) is derived from the following expression

Φ̇ =
∂Φ

∂{σ}m(i)

˙{σ}m(i) +
∂Φ

∂{η}m(i)

˙{η}m(i) (15)

Matrix [R] in equation (12) is a strain interaction matrix defined as

[R] = {α}Q {α}
T
[D] (16)

where

Q =
(

−{b}
T
G
(

{η}m(i) ,Φ
)

+ (α)
T
[D] {α}

)
−1

(17)

and column vectors{α} and{b} are defined as

{α} = ∂Φ
/

∂ {σ}

and

{b} = ∂Φ
/

∂ {η}

respectively, whileG
(

{η}m(i) ,Φ
)

is defined herein as the hardening function.The associated kinematic hardening rule

assumes the following form

{η̇}m(i) = λG
(

Φ, {η}m(i)

)

(18)
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whereλ̇

λ̇ =
{
ε̇pl
}

m(i)

∂Φ

∂ {σ}m(i)

is the plastic multiplier defined in the work of Lubliner46.

Since the yield function in relation (13) depends on the back-stress a second equation is also introduced for the evolution

of that stress with respect to the strain:

{η̇} = H1H2G
(

{η}m(i) ,Φ
) [

R̃
]

{ε̇}m(i) (19)

where
[

R̃
]

is the defines the hardening interaction as

[

R̃
]

= Q {α}T [D] (20)

Equations (9) and (10) imply that during unloading the material stiffness is constant and equal to the elastic one.

3.2. Cyclic loading induced damage

The model presented in the section titledSmooth hysteretic modelingis enhanced herein to account for damage effects.This

is accomplished by introducing two additional internal parameters within the hysteretic finite element scheme accounting

for the degradation of the elastic material stiffness and the deterioration of the yield limit. These parameters are accompanied

by a set of corresponding evolution equations that depend onthe hysteretic energy accumulated over time. The relations

are based on the derivations introduced in47, where a proof is also derived for the thermodynamic admissibility of the

corresponding material model.

The elastic stiffness degradation parameter is introducedat the stress-strain relation (10):

{σ̇}m(i) = vη [D]m(i)

{
ε̇el
}

m(i)
(21)

wherevη is a degradation parameter that is equal to unity as long as the material has not yielded and increases with plastic

deformation. The following generic expression is thus defined:

v̇η = Kη

(
Ehm(i)

)
(22)

whereEhm(i) is the hysteretic energy of theith micro-element.

Solving equation (9) for
{
ε̇el
}

and substituting into equation (21) the following relation is finally derived:

{σ̇}m(i) = vη [D]m(i)

(

{ε̇}m(i) −
{
ε̇pl
}

m(i)

)

(23)

where the total stress tensor comprises a function of the total and plastic strain tensors and the degradation parameter. For

the purpose of this work, a constant rate stiffness degradation rule is considered and thus relation (22) is expressed as

.
vη = cη

cη|Eh=0 = 1.0

}

⇒ vη = 1.0 + cηEhm(i) (24)

wherecη is a material parameter.
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i ci hi

1 280e6 kPa 850
2 100e3 kPa 500
3 50e3 kPa 8
4 1e3 kPa 5
5 0.1 kPa 1

Table 1: Chaboche model parameters

Yield deterioration is accounted for by introducing parameter vs into the yield related smooth Heaviside function1

defined in relation (13)

H1 = vs

∣
∣
∣
∣
∣
∣

Φ
(

{σ}m(i) , {η}m(i) s
)

Φ0

∣
∣
∣
∣
∣
∣

N

, N ≥ 2 (25)

where in generalvs is a function of the hysteretic energy accumulated within the element

v̇s = Kv

(
Ehm(i)

)
(26)

A constant rate evolution law is also considered in this work, thus the variation of the strength deterioration parameter vs
is defined as

.
vs = cs

vs|Eh=0 = 1.0

}

⇒ vs = 1.0 + csEhm(i) (27)

wherecs is a user defined material parameter.

3.3. Example

To better demonstrate the influence of the hysteretic parameters implemented in the model, the case of steel bar under

uniaxial tension is considered. The elastic modulus of the bar isEs = 210GPa and the initial yield stresssy = 235MPa.

The following parameters are considered for the smooth model, namelyn = 2 andβ = γ = 0.5. A von-Mises yield

criterion is considered. Two cases of hardening are examined. In the first, linear kinematic hardening is considered with

the hardening modulusH = 4GPa. The hardening functionG in relation (18) is therefore defined as

G = 4
∂Φ

∂ {σ}

In the second case, a Chaboche additive nonlinear kinematichardening rule is considered48, where hardening function is

defined as:

G =
∂Φ

∂σ

(
5∑

1

2

3
hi −

√

2

3
ciη

)

(28)

The model parameters for the Chaboche kinematic hardening are presented in Table1.

The bar is subjected to sinusoidal imposed strain accordingto the following equation

ε =
0.01

π
sin(πt)

First, the analysis is performed considering no degradation effects, thus settingcη = cs = 0 in equations (24) and (27)

respectively. The resulting stress-strain diagrams are presented in Fig.2.
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Fig. 2. Stress-strain diagrams - no degradations

Next, stiffness degradation and strength deterioration are taken into account by settingcη = 0.0000002 andcs =

0.000001 respectively. The corresponding results are presented in Fig. 3.

−0.4 −0.2 0 0.2 0.4
−400

−300

−200

−100

0

100

200

300

400

Normal Strain εxx [%]

N
o

rm
al

 S
tr

es
s 

[M
p

a]

Chaboche

Linear

Fig. 3. Stress-strain diagrams - stiffness degradation/ strength deterioration

4. The hysteretic multiscale finite element method with damage

In this Section the derivation of the governing equations ofthe Hysteretic Multiscale Finite Element method is presented.

Based on a variational formulation introduced in the micro-scale and using the constitutive model introduced in the

previous Section, the micro-element governing equations are established. Next, using the micro to macro numerical mapping

procedure, these governing equations are mapped to the macro-scale where solution is performed.

4.1. Micro-scale discrete formulation

The hysteretic multiscale finite element method is naturally derived from the rate form of the Principle of Virtual Work49

presented in equation (29) ∫

Ve

{ε}
T

m(i) {σ̇}m(i) dVe = {d}
T

m(i)

{

ḟ
}

m(i)
(29)
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whereVe is the volume of the discrete element,{d}m(i) is the vector of nodal displacements and
{

ḟ
}

m(i)
is the vector of

energy conjugate nodal forces. Substituting equation (9) into the variational principle (29) the following relation is derived:

∫

Ve

{ε}Tm(i)vη[D]m(i)

(

{ε̇}m(i) −
{
ε̇pl
}

m(i)

)

dVe =

= {d}
T

m(i)

{

ḟ
}

m(i)

(30)

Following algebraic manipulations and by considering thatvη ≥ 1.0, the following expression is derived:

Iel − Ipl =
1

vη
{d}

T

m(i)

{

ḟ
}

m(i)
(31)

where

Iel =

∫

Ve

{ε}
T
m(i)[D]m(i){ε̇}m(i)dVe (32)

and

Ipl =

∫

Ve

{ε}
T
m(i)[D]m(i)

{
ε̇pl
}

m(i)
dVe (33)

In this work, the isoparametric interpolation scheme is considered for the displacement field

{d}m(i) = [N ] {u}m(i) (34)

where [N ]m(i) is the shape function matrix. The corresponding strain-displacement relation is derived through

compatibility39 and assumes the following form

{ε}m(i) = [B] {u}m(i) (35)

where[B] is the strain-interpolation matrix.

An additional interpolation scheme is introduced for the plastic deformation

{
ε̇pl
}

m(i)
= [N ]e

{
ε̇plcq
}

m(i)
(36)

where
{
εplcq
}

m(i)
is the vector of stains measured at properly defined collocation points and[N ]e is the corresponding

interpolation matrix.

Substituting relations (35) and (36) onto equation (30), the following relation is derived

[
kel
]

m(i)

{

ḋ
}

m(i)
−
[
kh
]

m(i)

{
ε̇plcq
}

m(i)
=

1

vη

{

ḟ
}

m(i)
(37)

where
[
kel
]

m(i)
=

∫

Ve

[B]
T
[D]m(i) [B] dVe (38)

is the element elastic stiffness matrix while
[
kh
]

m(i)

[
kh
]

m(i)
=

∫

Ve

[B]
T
[D]m(i) [N ]e dVe (39)
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is the hysteretic matrix. Both
[
kel
]

m(i)
and

[
kh
]

m(i)
are constant. Nonlinearity is introduced at the additionalcollocation

points where the evolution of plastic deformations is measured. This evolution can be generically defined in the form of

equation (11).

In the case of the composite structure presented in Figure1, the element elastic stiffness matrix
[
kel
]

m(i)
coincides with

the24× 24 stiffness matrix of the 8-node brick element50. The dimension of the hysteretic matrix
[
kh
]

m(i)
depends also

on the number of collocation points. Considering the case where full integration is performed and the collocation points

are chosen to coincide with the Gauss point would result in a24× 48 hysteretic matrix.

4.2. Micro to Macro transformation

Considering zero initial conditions, without loss of generality, the rates in equation (38) can be dropped resulting in:

[
kel
]

m(i)
{d}m(i) −

[
kh
]

m(i)

{
εplcq
}

(i)
=

1

vη
{f}m(i) (40)

Substituting equation (6) into equation (40) and pre-multiplying with[N ]
T

m(i) the following is attained:

[
kel
]M

m(i)
{d}M −

[
kh
]M

m(i)

{
εplcq
}

(i)
=

1

vη
{f}

M

m(i) (41)

where
[
kel
]M

m(i)
= [N ]

T

m(i)

[
kel
]

m(i)
[N ]m(i) (42)

is the elastic stiffness matrix of theith micro-element mapped onto the macro-element dofs while
[
kh
]M

m(i)
is the micro-

element hysteretic matrix of theith evaluated as:

[
kh
]M

m(i)
= [N ]

T

m(i)

[
kh
]

m(i)
(43)

Finally, {f}Mm(i) in equation (41) is the equivalent nodal force vector of the micro-element mapped onto the coarse

element nodes (macro-nodes).

{f}Mm(i) =
1

vη
[N ]Tm(i) {f}m(i) (44)

Equation (41) maps the micro-element equilibrium equation establishedin equation (40) from the micro-scale to the

macro-scale. The micro-displacement components{u}m(i) are mapped onto their macro-counterparts through relation

(6). Consequently, the elastic micro-constitutive behavioris communicated across scales through the EMsFEM numerical

mapping. Inelasticity is accounted for in the micro-scale throughthe evolution of themicro-plastic deformation quantities
{
εplcq
}

(i)
and mapped onto the macro-scale through the transformed hysteretic matrix

[
kh
]M

m(i)
.

Relations (42) and (43) are then assembled at the macro-scale to derive the coarse element equilibirum equation which

assumes the following form

[K]
M

CR(j) {d}M = {f}M − {fh}M (45)

where[K]
M

CR(j) is the equivalent stiffness matrix of the coarse element derived as

[K]
M

CR(j) =

i∑

1

[
kel
]M

m(i)
(46)



14 Journal name ()

while {f}M is the corresponding nodal force vector assembled from the contributions of the mapped micro-nodal force

components defined in relation (44) and{fh}M is the force vector of the plastic components evaluated as

{fh}M =

mel∑

i=1

[
kh
]M

m(i)

{
εplcq
}

m(i)
(47)

Equation (45) is derived upon enforcing the energy equivalence principle between the deformation energy of the coarse

element and the deformation energy of the corresponding micro-mesh31. This is not an assumption of the method, but a

relation that is directly derived from the fact that the coarse element is a mathematical entity whose mechanical properties

are only defined at the micro-scale. Having defined the equivalent coarse element elastic stiffness and hysteretic matrices,

the direct stiffness method is implemented to finally derivethe governing equations at the structural level. Defining as

ndofM the number of the free macro-degrees of freedom, the equations of motion of the structure assume the following

form

[M ]
{

Ü
}

M
+ [C]

{

U̇
}

M
+ [K] {U}M = {P}M (48)

The coarse mesh(ndofM × 1) nodal load vector{P}M in relation (48) is derived as

{P}M = {F}M + {Fh}M (49)

where{F}M is the(ndofM × 1) vector of externally applied loads and{Fh}M is the(ndofM × 1) hysteretic load vector

assembled for the whole structure. Matrices[M ], [C] and [K] are the(ndofM × ndofM ) mass, viscous damping and

elastic stiffness matrix of the structure evaluated at the coarse mesh.

Equations (48) are complemented by the micro-plastic strain evolution equations:

{

Ėpl
cq

}

m
= [H ] {ε̇cq}m (50)

where the vector

{

Ėpl
cq

}

m
=
{ {

ε̇plcq
}

m(1)
· · ·

{
ε̇plcq
}

m(mel)

}T

(51)

contains the plastic strains evaluated at the collocation points of each micro-element and

{

Ėcq

}

m
=
{

{ε̇cq}m(1) · · ·
{
ε̇cq
}

m(mel)

}T

(52)

Matrix [H ] in relation (50) is a block diagonal matrix:

[H ] =







A(1) [0]

[0]
. . .

A(mel)







(53)

whereA(1) = H1m(1)H2m(1)[R]m(1) andA(mel) = H1m(mel)H2m(mel)[R]m(mel)

Any type of numerical integration method is applicable for solving the equations of motion (48). In this work, the HHT

numerical integration algorithm is coupled with a Newton-Raphson iterative scheme for treating nonlinearity. Equations

(50) are treated at the micro-element level by means of the cutting-plane algorithm although more robust approaches such

as the Radial Return mapping algorithm can also be implemented. Since the solution of the global equations of motion

is performed at the coarse element level, downscaling of theresulting macro-displacements{U}M is required in order to
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derive the corresponding strain increments at themicro-scale. The computational aspects of the methodology presented

herein are described in detail in31.

5. Computational Model Validation

As aforementioned, validation of computational models maybe discussed in relation to two main directions, namely, the

numerical verification and the experimental validation approach.Within the context of computational model validation,

we herein exemplify both instances (a) via cross-comparison of the proposed HMsFEM approach to a reference fine-mesh

model; and (b) via validating the proposed model in an inverse formulation employing (simulated) structural testing data.

5.1. Numerical Verification via Monte Carlo Simulation

Within the scope of what is discussed herein, it is evident that as the complexity of the system increases, the formulation

of exact models becomes a challenging task. In validating the efficacy of the assumptions and simplifications that need

be adopted, the Monte Carlo method comprises a useful tool for reliability prediction. Unlike many other mathematical

models, system complexity is not a hindrance for this approach, which can handle dynamic systems of an imprecise nature.

This is particularly useful in the case of a reliability analysis, which entails processes of a probabilistic nature. These

processes usually analyze the effects of the combination oftwo or more input random variables onto the probability

distribution of certain output random variables. In approaching such a problem one could resort to either analytical methods

or to Monte-Carlo simulation. In the analytical approach, the probability distributions associated with the output are derived

via analytical formulations, which involvethe probability distribution functions (PDFs) associatedwith the input. Since

such a straightforward formulation is cumbersome depending on the problem at hand, Monte Carlo simulation offers a

valuable alternative.Following this approach,a sample space of the input parameter is generated via use of a randomnumber

and knowledge of its PDF. By repeating this process for a large number of input samples, a picture of the distribution of the

output random variable is attained, which ultimately leadsinto statistical estimates of parameters of interest, e.g.mean and

standard deviation of failure probability, or maximum inter-storey drift ratios. Through a variety of implementations, the

Monte Carlo simulation has surfaced as a robust and widely applied method in determining the reliability of a structural

component or system51,52. A more detailed explanation of the Monte-Carlo simulationwithin the scope of structural

reliability is given in53. Nonetheless, it should be noted that, depending on the sizeof the computational model and the

corresponding random variable space direct Monte Carlo simulation may require a huge amount of computational resources.

To mitigate this, hybrid or semi-analytical methods54 have been developed.

Due to its flexibility in handling loosely defined problems, as well as its ease of implementation, the Monte Carlo method

is applied in the example cases presented herein forverifying the proposed model. In what is of interest in this work, the

sample space of the problem parameters comprises not only the structural’s system properties, but also the precision ofthe

numerical model itself. In the first application presented in the section titledExemplary Implementations, the sensitivity of

the performance of a composite system is assessed with regard to both aforementioned aspects, namely, the stiffness and

strength parameters of the separate constituents, as well as the use of solver (fine-mesh FEM versus HMsFEM).

5.2. Experimental Validation

The second and most critical means of model validation is viadirect comparison of the model predictionagainstthe actual

system response, either this is pertinent to scaled laboratory experiments or to field testing of large-scale structural systems.

In materializing such a goal, System Identification methodsprovide a valuable toolkit for updating uncertain models of

structural systems based on direct feedback from the systemitself55,56. The recent technological advances further enable

the extraction of information from structures via production of low-cost sensor arrays, which may be readily deployed
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on structures for either a short- or long-term basis, offering structural feedback in various forms, includingacceleration,

velocity, displacement, or strain measurements57.

The rich amount of data gathered from monitoring deployments can be used in an inverse problem setting for identifying

structural characteristics, which are not precisely known a-priori, as well as for updating, or even selecting,appropriate

simulation models. The second case-study of the applications section discusses such an inverse problem formulation, where

the goal is to infer the characteristic properties of the constituents, i.e., stiffness and strength, based on limited information

of vibrational response in the form of acceleration measurements. The measurements are obtained via simulation of a

dynamic testing process for the composite aluminum panel that is here used as an example test case.

The identification algorithm that is here implemented for joint state and parameter estimation is the Unscented Kalman

Filter (UKF), which has been extensively utilized in previous works of the authors58–60 but additionally appears in further

works relating to inverse analysis61. The UKF is a Bayesian approximation which enables the simulation of nonlinear

behavior via approximation of the state as a Gaussian randomvariable (GRV), represented by a structured set of deterministic

points known as the Sigma Points. The interested reader is referred to the works of Julier and Uhlmann62, and Wan and

van der Merwe63 for theimplementation details.

In the joint state and parameter identification regime, the filter’s structure is of the following form in the discrete-time

domain:
{

xk+1

θk+1

}

=

{

F (xk, θk,uk)

θk

}

+wk

yk = H(xk, θk,uk) + vk

(54)

wherexk is the state variable vector comprising the displacements,dk, and velocities,̇dk, of a structural system undergoing

dynamic loading,θk are the time invariant parameters that are considered to be unknown or uncertain,uk is the exogenous

input (load) vector,wk is a zero mean Gaussian process noise vector with a pre-specified covariance matrixQk, yk is the

observation vector, andvk is the zero mean Gaussian measurement noise vector with corresponding covariance matrixRk.

The process noise reveals the confidence placed into the accuracy of the system representation, i.e., the model of

the system. The observation noise on the other hand reveals the confidence placed in the acquired measurement. The

tuning of these quantities is critical depending on the taskat hand. Additionally, functionsF , H represent the system and

observation model respectively. The flexibility of the UKF lies in the ability to incorporate loosely defined functions.In

the implementation presented herein the developed HMsFEM framework is utilized as the model simulating the system

response (functionF ), whereas a fine-mesh FEM is utilized for extraction of the measurement quantities,yk. The latter

correspond to acceleration time histories at certain nodesof the structure. As this process is a stochastic one, involving

numerous parallel forward simulations for each discrete sigma point, the ability to use a reduced order model of the system,

which however is able to provide sufficient accuracy, is of the essence.

As discussed in the next section, the HMsFEM approach furnishes an invaluable tool for accurate yet accelerated

computation, especially suited for problems of structuralreliability or inverse formulations, that are concomitantto structural

model validation.

6. Exemplary Implementations

6.1. Monte Carlo Validation

A sensitivity and reliability analysis pertaining to the dynamic response of a heterogeneous structuredescribed by uncertain

material properties,is performed in this Section. A fine meshed model serves as thedetailed reference simulation, utilized

for numerically verifying a reduced order forward model developed via the proposed HMsFE method. An aluminum sheet
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Fig. 4. (a)Model Definition(b) Finite Element mesh

is considered, reinforced with two steel strips (Fig.4(a)). The length, width and height of the beam areLm = 200cm,

bm = 0.5cm andhm = 50cm respectively. The height of the steel strips ishf = 5cm. The constituents are assumed to be

elastic-perfectly plastic with deterministic Poisson ratiosνa = 0.33 andνs = 0.3 for the aluminum and steel respectively.

Non Degrading material For verification purposes, no damageis considered in this case setting and the results of the

proposed multiscale formulation are compared to results derived by running the fine meshed model in Abaqus commercial

code64. The elastic moduli and the corresponding yield stresses ofthe materials are considered to be random variables.

The Log-Normal distribution is used for all random variables with corresponding mean valuesEma = 70GPa and

fya = 214MPa for the aluminum andEms = 200GPa andfys = 235MPa for the steel. The following deterministic

load is considered

p(t) = 20000tsin(πt)kPa

The fine meshed finite element model, presented in Fig.4(b), consists of 1600 linear quadrilateral plane stress elements

with a total of 3358 free degrees of freedom. The multiscale finite element model is formulated by 16 plane stress coarse

elements. The corresponding representative RVE consists of 100 plane stress elements. The periodic boundary condition

assumption is used to evaluate the micro-basis interpolation functions.

A total 5000 Monte Carlo iterations is performed for the FEM and HMsFEM case and by considering a Latin Hypercube

sampling scheme. It should be stressed that different random seeds and, as a result, different sets of random variables are

used for each model class, in order to obtain an unbiased comparison. The derived data sets of the effective elastic stiffness

evaluated from the response of the FEM and HMsFEM analysis cases are presented in Fig5(a)and5(b)respectively. This

effective value is calculated as the slope of the elastic region of the force-displacement diagram for the first cycle of loading.

Furthermore, the histograms of the maximum displacements are presented in Fig.6, providing in this way a measures that

quantifies structural response under loads that push the system into the plastic region, thereby serving as a tool for assessing

structural reliability. In both cases, the relative deviation between the statistical parameters of the corresponding parametric

PDEs is lower than 0.5%.

Degrading material In this case, the variability of the strength deterioration and stiffness degradation parameters is also

considered. To better illustrate their effect on the dynamic response of the structure, the following, constant amplitude,

sinusoidal excitation is considered in this case

p(t) = 250000sin(πt)kPa

The random variables in this case are the elastic moduli, yield stress and the stiffness degradation and strength deterioration

parameters of the constituents.A uniform proposal distributionis considered for all variables and the limit values considered

are presented in Table2.
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Fig. 6. Maximum Displacement Histogram(a)FEM (b) HMsFEM

Variable Min Max
Ema 62500000 kPa 67500000 kPa
fya 200000 kPa 242000 kPa
cηm 2.5e-7 2.5e-6
csm 5.0e-7 5.0e-6
Es 200000000 kPa 231000000 kPa
fys 225000 kPa 247500 kPa
cηs 2.5e-7 2.5e-6
css 5.0e-7 5.0e-6

Table 2: Random Variable limit values



19

-800

-600

-400

-200

0

200

400

600

800

-150 -100 -50 0 50 100 150

T
o

ta
l 

A
p

p
li

ed
 F

o
rc

e 
(K

N
)

Displacement (mm)

FEM

HMsFEM

Fig. 7. Degrading Material: Force Displacement Loops (MeanValues)

In Fig. 7, the total applied force versus the center-point axial displacement at the tip of the cantilever is presented. The

results obtained from the two procedures are practically identical. In this case, the analysis conducted using the HMsFEM

procedure concluded in 900 sec while the corresponding analysis time using the standard FEM procedure was 4626 sec,

amounting to a significant reduction in the computational toll involved.

In this case 2000 Monte Carlo simulations were performed foreach one of the solution approaches. Contrary to the

case examined in the non-degrading material case, the same pool of random variables is considered for both cases. The

derived results are again compared in terms of the estimatedPDFs of the response variables.

In Fig. 8 the histograms of the derived maximum displacements are presented for the case of the HMsFEM and FEM

analysis respectively.The HMsFEM approach results in a marginally stiffer configuration as compared to the FE method. The

same trend is also revealed form the histograms of the residual displacement presented in Fig.9 for the multiscale and finite

element methods respectively. This discrepancy is due to the approximate nature of the micro to macro interpolation scheme

introduced in relation (5) and the numerical implementation of the periodic boundarycondition assumption introduced on

the coarse elements. The divergence from the “exact” finite element model is less than 2%. The mathematical framework

of the multiscale finite element method41 provides appropriate theorems to verify that this error is bounded.

6.2. Inverse Problem Formulation

In this example, a structure similar to the previous composite panel is revisited, under the prism of parameter identification.

Model validation in this case is ensured via the compliance of the proposed model with the results obtained via, the

simulated in this case, testing procedure. The aluminum sheet of Figure4(a)is once again considered with a length, width
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and height ofLm = 200cm, bm = 0.3cm andhm = 50cm respectively. The height of the steel strips ishf = 5cm. A

concentrated mass of15tn is attached on the free end of the beam. A random pressure loadis applied at the free end of this

setup. The loadp(t) is obtained via filtering a white noise processwp(t) ∼ NID(0, σ2
e), with NID denoting a Normally

Independently Distributed process with the indicated meanand variance.wp(t) is filtered using a low-pass filter with a

5Hz cut-off frequency. This type of load, illustrated in Figure11, allows for the simulation of a simple testing procedure

driven by means of a suitable shaker device with an appropriate stinger, exerting an axial load on the lumped15tn mass.

The goal is to utilize information from the structure in the form of acceleration measurements obtained at a finite

set of sensor locations, nine in total, as indicated in Figure 10, in order to identify the properties of the constituents

involved. The four constitutive parameters, namely the elastic stiffness and yield stress of each of the two constituents, are

considered as unknown a-priori or, more precisely, as uncertain. An “off" initial assumption is made on the values of these

parameters, which is utilized as the initial condition to befed into the UKF algorithm. The corresponding initial values are

θ
0
1 = Ema = 87.5GPa,θ0

2 = fya = 267.5MPa for the aluminum andθ03 = Ems = 241.5GPa,θ0
4 = fys = 211.5MPa

for the steel. The true parameter values are on the other handset as:θ1 = Ema = 70GPa, θ2 = fya = 210MPa for

aluminum andθ3 = Ems = 210GPa, θ4 = fys = 235MPa for steel.
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Fig. 12. Observed Node 3 velocity time-history estimate (blue) versus actual value (red).

A reference forward analysis is performed in ABAQUS, employing a fine mesh; this serves as the “actual” response,

utilized here as the equivalent of an experimental testing process. Therefore, the measurement vectoryk, comprising nine

acceleration data sets to be fed into equation (54) of the UKF, is herein generated via an independent numerical simulation.

The crucial component lies in the utilization of the forward(or process) model for the UKF. As explained earlier, the

UKF is formulated using a discrete set of samples, termed theSigma Points. The number of these Sigma Points equals

2 ∗L+ 1, whereL is the size of the augmented state of the system. For a joint state-parameter identification problem, this

augmented vector comprises the system’s displacements andvelocities at every degree of freedom, as well as the unknown

parameters (four in this example). It therefore becomes evident, that if one is to utilize a finely meshed model construed

in ABAQUS, the dimension of the system would be too large for numerical computation. Even more importantly, due to

memory limitations, there exists a critical matrix size, and therefore an associated mesh refinement, for which calculations

would be prohibited.

A means for solving this problem is delivered through the proposed HMsFEM approach. In what follows, the process

and observation functions denoted asF , H in (54) are substituted by the HMsFEM solver between successive time steps.

A coarse mesh of 24 nodes is utilized, bringing the state dimension down to a dimensionL = 2 ∗ 24 + 4 = 52. The

corresponding Sigma Point set therefore comprises a total of 2L + 1 = 105 components. Furthermore, the Sigma Point

analyses are in fact independent, allowing for the parallelexecution of these forward runs. The identification processis

consequently initiated with the following settings for thefilter. An initial covariance of the state,Px, of the order of1e−13

is assigned. The process and observation noise covariance matrices,Qk andRk respectively, are set as a diagonal with

diagonal components equal to1e− 13 and1e− 5 correspondingly. For facilitating the filter implementation, and avoiding

numerical errors, the parameter values are normalized witha target values set at 0.01 for all four constitutive parameters.

The results of the identification process are summarized in Figures12-15. Figures12-13 summarize the velocity

predictions of the filter for both an observed (node #3), i.e., monitored via a virtual sensor, as well as an unobserved (node

#21) degree of freedom. It is noted that in both cases, the filter furnishes a very accurate estimation of the corresponding

nodal velocities. Nonetheless, an integration error, which can also be related to the selected level of process noise, is

noticeable in the displacement estimates. This accumulation of integration errors resulting in displacement drifts is not

uncommon in system identification, as noted in65, nonetheless this does not create a hindrance in the particular inverse

problem solution.
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Fig. 13. Unobserved Node 21 velocity time-history estimate(blue) versus actual value (red).
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Fig. 15. Unobserved Node 21 displacement time-history estimate (blue) versus actual value (red).

The primary target of this inverse formulation is the extraction of the true parameters that characterize the structural

properties, i.e., the stiffness and strength characteristics. Figure16 indicates the convergence of the parameter estimation

to the true, “normalized” parameter value which is set to 0.01 (unitless) for all time-invariant variables involved. The

successful utilization of the filter is enabled through the implementation of the proposed multiscale scheme. For the purpose

of comparison, it is mentioned that on a PC fitted with an Inteli7 processor and 32 GB of RAM, utilizing all 4 cores, the

time allocated for the analysis was approximatelly 4 hrs. Ifthe ABAQUS model were to be employed using the Finite

Element mesh presented in Figure4(b), a prohibitive total time of 4 days would be delivered. It is therefore pointed out,

that the appropriate combination of advanced modeling tools with appropriate identification and uncertainty quantification

techniques enables the validation of computational mechanics models seeking to accurately reproduce structural response.

This is of particular significance in the case of nonlinear hysteretic response, where the cost of computation forms a major

concern.

7. Conclusions

A computational framework is presented in this work for the efficient simulation of nonlinear hysteretic response of multi-

phase systems, within the context of model validation. The Hysteretic Multiscale Finite Element Method (HMsFEM) is

implemented where themicro-scaleis modeled using a hysteretic finite element approach. In this inelasticity is introduced

at the micro-scale via properly defined hysteretic degrees of freedom. These evolve according to a generic multiaxial

smooth hysteretic law accounting also for damage induced phenomena. The developed modeling approach is utilized for

the purposes of model validation; firstly, in the context of reliability analysis through cross-assessment against a fine-

meshed model developed in an independent analysis program (ABAQUS); and secondly, for an inverse problem where

the identification of constitutive parameters via availability of acceleration response data is sought. The derived results

demonstrate the potential of adopting the proposed approach as a computationally accelerated, yet sufficiently accurate,

surrogate model in problems of nonlinear dynamic analysis of heterogeneous structures; a problem which by default

comprises a computationally challenging task. The proposed approach provides a means of assessing model credibility, as

well as testing the validity of adopted assumptions concerning not only the model structure,but additionally the characteristic

properties of associated models. The adoption of enhanced and cost-effective simulation approaches in the validation
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Fig. 16. Constitutive parameters estimates versus the reference (normalized) value (black line).

process can grease the wheels of the process chain from design, through manufacturing and production, to operation and

maintenance.
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