Abstract

Aframework for the development of accurate yet computatiigrefficient numerical models is proposed in this work hirit

the context of computational model validation. The acatst computation achieved herein relies on the implementat
of a recently derived multiscale finite element formulatiahle to alternate between scales of different complehity.
such a scheme, the micro-scale is modeled using a hysténétcelements formulation. In the micro-level, nonlingar

is captured via a set of additional hysteretic degrees efliven compactly described by an appropriate hysteric lavgiwh
gravely simplifies the dynamic analysis task. The componatiefficiency of the scheme is rooted in the interactionben

the micro- and a macro-mesh level, defined through suitakdegolation fields that map the finer mesh displacement field
to the coarser mesh displacement field. Furthermore, danedgted phenomena that are manifested at the micro-level
are accounted for, using a set of additional evolution eéqoatcorresponding to the stiffness degradation and dineng
deterioration of the underlying material. The developedialimg approach is utilized for the purpose of model valaat
firstly, in the context of reliability analysis; and secopdkithin an inverse problem formulation where the idenéfion

of constitutive parameters via availability of accelesatresponse data is sought.
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1. Introduction

Engineering simulation is an essential feature accompartitie design, manufacturing and operational life of evegi-e
neered structure. However, and despite the refinement anglegity that such simulations might entail, these are not
routinely validated, largely due to the computational @sstociated with the multiplicity of parallel runs involveihis
inadequacy comes in direct disagreement with the receatreds both in monitoring methodologies as well as in compu-
tation potential. The former has provided engineers withémst means of assessing structural performance, botigdur
the construction phase as well as during the operationastrbiatural system. Significant feedback is therefore ctale
from the system at hand, which may then be utilized for silgctupdating and/or validating candidate computational
models.

A significant source of complexity within computation stefream the potential multi-phase nature of materials com-
prising the system to be analyzed. Multiphase materiads, lhown as composites, fit the profile of emerging material
solutions calling for enhanced computation. In most indalstases, the main volume of a compaosite consists of aesingl
material (e.g. the matrix) that acts as a basis where a nuaflseinforcing materials are added. The distribution of the
reinforcement within the matrix can be either fully prebed, as in the case of layered composites, or random, as in the
case of fibre reinforced matrices. This process of mechiymambining constituent materials baring different peojes
results into a highly heterogeneous structure. Due to tharagkd material properties of the resulting medioomposites
are widely used in numerous applications. Research effartently focus on developing and manufacturing compssite
with enhanced mechanical properties (e.g. high stiffreggeight ratios, high damping, negative Poisson’s ratiolsgd
toughnes$) and reduced implementation and maintenance &dstRecent advances in fields such as bioengineering,
nano-mechanics and electronics also stress the need fignafgsnew composites with optimal material properties
Nonetheless, prior to proceeding with design refinementapjate methodologies need to be developed, for valigatin
the numerical models simulating these solutions .

* Corresponding author; e-mail: chatzi@ibk.baug.ethz.ch



Model validation’ may be carried out via two distinct routes, which howevermaimtertwined. The first path is through
numerical validationalso referred to as numerical verificatignn the sense that most practical models to be employed
are usually inferred by adopting a number of simplifyinguasptionsin an effort to reduce the required computational
toll. A first step toward validating such models is through congmariwith either benchmark analytical solutions, or
when this is not possible, with more refined/higher dimemsimumerical solutions, which may be considered as a closer
approximation of the true systeitfithe reduced order model successfully reproduces thestr® sponse with a sufficient
level of accuracy, lying below some acceptable threshbidaly then be adopted for the forward simulation of the system
at hand. The second route, which is invaluable within theexdrof standardization of the validation approach, is tigto
experimental validation as noted’m’. This route relies on the use of actual structural feedldaekthrough experimental
or field measurements of structural response under statigramic loads.

Indeed, when it comes to composites, significant effort leeslallocated in developing simulation models that comply
with experimentally measured response, via an inversd@moformulation?. In past years, several methods have been
introduced along the lines of the so-called mixed numesgsg@erimental techniques for the successful modeling lyfper
based materials and composite reinforcing textiles The anisotropic and heterogeneous nature of these niatarias the
direct determination of stiffness parameters into an andtask. Conventional methods are based on direct measuteme
of strain fields®, presenting several drawbacks such as boundary effeclsaize dependencies and difficulties in
obtaining homogeneous stress/strain fi€ldas an alternative, indirect methods based on modal testltsate become
more popular in recent years. These are based on measuseofistiuctural response and the comparison between the
experimentally identified eigen-frequencies of a struetamd those obtained through a numerical analysis emplaying
finite element model~°. This inverse problem formulation can lead to an estimate@macroscopic material parameters
of the composite materials, which are generally imposgibtandardize in tables or databases as they are depemdent o
diverse factors such as the geometrical arrangement afieates, constituent materials used, manufacturinggsoetc.
Independent of whether a direct or indirect method is engdow forward model of the structure is required for deriving
those parameters that are deemed as uncertain, most coynimase pertaining to the effective moduli.

However, the sensitivity of the identified parameters tcsilze of the testing speciméiv' imposes a strong constraint
on the required size of the underlying finite element modadileg to computationally intensive problemsTo reduce
the computational cost, multiscale simulation approatiaes been introduceéd?°. Two main variants of computational
multiscale analysis methods can be identifisdmely the multiscale homogenization methddand multiscale finite
element methods (MSFEMS)

Homogenization methods are based on averaging strain @ngyectonjugate stress measures over a predefined space
domain, defined as a Representative Volume Element (RVEBJthough homogenization methods are based on a strong
and robust mathematical background, they rely on the assomgf scale separation and local periodicity of the ungad
micro-structure. Many structures however usually faildbere to these assumptions, due to the non-periodic ndttire o
imposed boundary and loading conditions that lead to noiogie stress and strain fields as well as the non-detertignis
distribution of heterogeneities within them. To overcoimese deficiencies the multiscale finite element method hars be
introduced. In this, the macro-scale of the structure isréiized into a set of coarse elements. These coarse elearent
further discretized into sets of nested meshes. Next, & gaegpolation functions is evaluated, mapping micro- taaro-
displacement components . The MSFEM method has been esggnssed in flow simulation analysis’®. Recently the
Enhanced Multiscale Finite Element method (EMsFEM) has li@enulated to address the linear and nonlinear response
of heterogeneous materialsunder static loads.

Dynamic forces and repeated cyclic loading beyond a méteeiastic limit often lead to damage accumulation and
therefore to nonlinear response, which further complitite implementation of the aforementioned EMsFEM framé&wor
Damage initiates at the micro-leyéhrough the propagation of inherent micro-discontingjtead manifests itself at the
meso- and macro-scale, finally resulting in the gradual cédu of the strength and stiffness of the structwriich is
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observed at the macro-scale. Within this framework, thedmgtic multiscale finite element method (HMsFEM) has been
introduced in recent work of the authérswhich forms a tool for significantly reducing the computatl cost of nonlinear
dynamic analysis of complex structuréscording to this approach, inelasticity is accounted fotha fine mesh level
using the hysteretic formulation of finite elemefitsThe latter is based on the definition of a set of additiongreles of
freedom regulating the evolution of the plastic componéatemental deformation. Since inelasticity is treated dsgree

of freedom, the element stiffness matrix remains unchatigedighout the whole analysis. As a result, the evaluatfon o
the micro-basis functions is also performed once. The ¢ulwof the additional degrees of freedom is constrained by
a set of additional equations that account for the constéuiehavior of the underlying material. A smooth plasyicit
model is employed to describe the evolution of plastic sai the micro-scale. The computational merits of the hgste
multiscale finite element method have been discussed wéttetiability framework in®*“, Herein, damage accumulation
is also accounted for, by introducing an additional set térimal variablesccounting for the gradual degradatiofithe
material’'s unloading stiffness as well as the deterioratibthe material’s yield limit.

In the work presented herein, the previously introduced HEAd approach serves as the tool for model validation,
under a stochastic setting, in twygpesof problems. The first application pertains to a reliabitityalysis problem, where
structural response is quantified in a probabilistic sess®a Monte Carlo approachhe proposed modeling methodology
is in this case verified against a refined, albeit computatipintensive, FE modelComposites are intrinsically multiscale
materials where uncertainties stemming atthe smallestitorent, scale greatly affects the behaviour of the lasgarctural,
scale’™°, Thus, the stochastic analysis of such materials undeitionslof extreme loading is of paramountimportance in
order to quantify the probability of failure of the corresiing structure. Since the reliability analysis of struegper-se is
a computationally intense procedure, it is pointed outtinatiscale model$’ should be preferred over standard stochastic
FEM procedure¥’, in an effortto reduce the complexity of the implemented computatioradehwithout adverse effects
on the desired accuracy. The second application pertaias toverse problem formulation, where the identification of
the uncertain material parameters of a composite struataraely, the structural stiffness and strength at the lef/e
constituents, is sought, based on recorded acceleragpomee from limited structural nodes.

The paper is structured as follows. In the next section, theaBced Multiscale Finite Element Method (EMs-
FEM) is overviewed. Next, the constitutive model impleneshtit the micro-scale is presented in the section titled
Micro-scale Constitutive modelingThe model presented herein is an extension of the smoottelnprdsented by
the authors i’ accounting for damage phenomena relating to cyclic loadsthie degradation of the material stiff-
ness and the deterioration of the corresponding yield gtherirhis material model is then implemented within the
enhanced multiscale finite element scheme and the corrdsmpuaerivations are presented in the section entitled
The hysteretic multiscale finite element method with damadfbough straightforward, the use of the additional damag
operatorsis not trivial as it affects both the evolution&tipn of the plastic deformation tensor as well as the otltadénce
forces of the micro-elements. The section tittedmputational Model Validatiohriefly discusses the computational tools
that are here adopted for the purpose of model validatiom) footh a numerical and experimental standpoint. Finally,
illustrative applications are presented in theemplary Implementatiorsection validating the proposed derivations and
demonstrating the computational advantages of the desélspmework, firstly under the scope of reliability assessim
and, secondly, within the context of an inverse problem fdation.

2. The enhanced multiscale finite element method

2.1. Overview

EMSFEM is based on the definition of a set of nested finite etdérmmeshes as explained®in The interaction between
subsequent mesh levels is defined through the numericabdien of corresponding interpolation fields that map therfin
mesh displacement field to the coarser mesh displacemetht lireFig. 1(a), the case of a two-phase solid composite



structure is presented for brevity. The composite compagmatrix and a set of reinforcing cells. Based on the digiidh
of the cells within the matrix, a fine discretization schesdéfined, consisting of 384 linear hex-elements and 663mnode
that correspond to 1989 degrees of freedom.

Depending on the micro-structure’s periodicity, patteriiseterogeneity can be recognized and sets of micro-elsmen
can be grouped into clustenghich will herein be denoted as Representative Volume Etgmor RVEsThe convex-hull
of each cluster defines a coarse-element (or macro-eleitiattyurrounds the fine-meshed RVE substructure. InLFig.
two distinct patterns are identified and the correspondivisRare presented in Fig(c) and1(d). The set of coarse
elements results in the definition of the coarse mesh predémFig.1(e). This mesh consists of 8 coarse elements and 30
macro-nodes that correspond to 90 macro-degrees of fregdiufs).

According to EMSFEM, instead of performing a finite elemenélgsis on the fine mesh (Fig(a)), a numerical
interpolation schemg; is evaluated for each RVE). The latter maps the displacementg of the corresponding micro-
nodes, defined within the micro-domdi},,, onto the macro-displacement, field, defined in the macro-domainy, .
With respect to Figl(f), the fine mesh the displacement of a micro peiig described by relatiorl] below

Um = {um Um W }T |(az,y,z) (1)

The continuous micro-displacement field introduced inti@fa(1) can be interpolated at the micro-nodal points using a
standard displacement based FE interpolation scheme‘as in

U = [N, d;, (2)

where .
d:n:{ Um(l) Um(1) " Um(®) } )

1x24

is the nodal displacements vector of themicro-elementand[N], , is the displacement based interpolation matrix of the
hex-element.

Since the structure defined in Fife) is a discrete macro-representation of the physical homsisting of the RVES,
the macro-displacement component within each R¥(Ecan be defined accordingly as the discrete set such that

) T
dh:{ Upr(1) Ym) - Um(8) } (4)

1x24

where(i) stands for thé,;, macro-node of the coarse mesh.

The subscriptn is used throughout this manuscript to denote a micro-measinile the capital\/ is used to denote
a macro-measure of the indexed quantity. The enhancedscrlki Finite Element method is based on the numerical
derivation of a relation between the discrete micro-disphaent field introduced in equatio8) @nd the coarse element
discrete displacement field introduced in relatidh (

2.2. Micro to Macro displacement interpolation scheme

The micro-scale basis functions are calculated so as tasfummmapping of the micro-displacement components to the
corresponding coarse element macro-displacement commfiéis is achieved by solving a homogeneous equilibrium
problem over the domaifl,,, of the coarse element. The enhanced multiscale finite efemethod relies on the definition
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Fig. 1. The MsFE modeling scheme

of the following interpolation scheme where the micro-thsgment components are evaluated with respect to the macro
displacement components as:

N Macro MNMacro
um(]): Z Nijwﬂiu]\/fi—’— Z Nijwy'U]\/Ii
= naraero
+ Z Nijwzw]\/fi

NMacro nzlv?azlcro
vm@) = 2 Nijeyuns, + l; Nijyyvm,

B Nifacro ®)

+ Z Nijyzwlb[i

MNMacro nz\?alcw“o
W) = 2 Nijzzunm, + Z:l Nijy=vm;,

N Macro
+ 21 Nijzzw]\/fi

=

whereu,, ), Um(j), Wm(;) are the displacement components of jpe micro-node,;j = 1...nmicro Wheren,ic., the
number of micro nodes within the coarse element. Furthegmoy; ..., iS the number of macro-nodes of the coarse
elementand:y,, va,, was, are the displacement components of the macro-nodes ofitltearse-element.

The quantitiesV;jza, Nijay, Nijyy, Nijz=, Nijzz. Nijy- are the micro-basis interpolation functions. These irtke
the displacement components of thgmicro-node to the macro-displacement components of thresponding; h coarse
element.

Equation b) is derived in matrix form as:

{d}, ) = [N] iy {d} (6)

where{d},,, is the nodal displacement vector of thig microelement[N]  , is the matrix containing the micro-
basis shape function values at the nodes ofifhenicro-element. Furthermoréd} ,, is the vector of the macro-node



displacements. Denoting!}, , the (3nm.r0 x 1) vector of the micro-mesh nodal displacements, the follgwedation is
established:

{d},, = [N],, {d} oy (7)

Matrix V], in equation {) is a315 x 24 matrix containing the components of the micro-basis shapetions evaluated
at the nodal pointéz;, y;, z;) of the micro-mesh. Each column of matfiX],, corresponds to a deformed configuration
of the RVE where the corresponding macro-degree of freedaqual to unity and all the rest macro-degrees of freedom
are equal to zero.

The micro-basis functions are derived as the solution obthendary value problem defined in equati@hifelow

[K]RVE {d}m = {Q’}
(8)
{d}s = {J}

where[K] ,,, » denotes the stiffness matrix corresponding to the coaeseesit,{d} . is the vector containing the nodal
degrees of freedom lying along the boundaref the coarse element ar{di} is a vector of prescribed displacements.
Vector {(#} is the zero vector. The coarse element stiffness matrixssrabled via the standard finite element metfiod
The application of the prescribed boundary conditions &edsblution of the boundary value problem of equati®ng
performed herein using the Penalty metfiod

The accuracy of the method depends on the proper choice afsthiemed boundary conditions for the evaluation
of the micro-basis functions and is naturally dictated by kinematics of the problem at hand, as well as the size of
the coarse element. Different methodologies exist inclgdhe linear, periodic and oscillatory boundary condgiavith
oversampling. Further details can be found'iti.

3. Micro-scale Constitutive modeling

Inthis Section, the constitutive model governing the mateehaviour at the micro-scale is presented. The modsénited
herein is derived on the basis of the theory of classicalipiais also introducing a set of additional material pasiars
accounting for the smoothness of the transition from eddstplastic loading and from plastic loading to elastic @dimg.
Furthermore, two damage operators are introduced comegmpto the degradation of the unloading stiffness and the
deterioration of the material yield strength due to cyabading induced damage.

3.1. Smooth hysteretic modeling

The hysteretic formulation of finite elementss implemented herein to account for the nonlinear dynarattalvior of
materials at the micro-scale. In this, a mixed interpolaioheme is considered for both the displacement and thicplas
component of the strain tensor. An evolution relation igaoted from the latter based on the additive decomposition o
the total strain tensor into a reversible elastic and anénsible inelastic componetit

{etn) = {éel}m(i) + {épl}m(i) ©)

where{c}, ;) is the total strain tensofz'} | is the tensor of the elastic, reversible, strain gndl } . is the plastic
strain tensor whilen () indexes the,;, micro-element within the coarse element. A vectorial noteis employed for the
stress and strain tensors while thesymbol denotes differentiation with respect to time. Irsslaal elasto-plasticity, the
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elastic component of the strain tens{@ﬁl}m(i) is directly related to the current stress}m(i) through the Hooke’s law

{d}m(i) = [D]m(i) {éel}m(i) (10)

Where[D]m(i) is the elastic constitutive matrix. Additionally, an evolution law is considered for the plastomponent

of deformation, generically defined as:

{épl}m(i) =7 ({Eel}m(i) ; {éel}m(i) ; {U}m(i)) (11)

where.Z is an hysteretic operatt*®.

In this work, the hysteretic operator is defined on the grewfch multi-axial smooth plasticity modélbased on the
assumptions of rate-independent associative plasticiyithin such a framework, the evolution of the plastic stit@insor
is defined as

{épl}m(i) = HyH; [R] {é}m(i) (12)

whereH; and H, are smoothened Heaviside functions defined by the followétagions, namely:

@ ({0} b)) |
g 1) m(i
Hy - m((go Tm@) | N s (13)
and
Hy = 8+ vsgn (@) (14)

In equation {3) ® = ¢ ({J}m(i) , {n}m(i)) denotes the yield criterio® the yield limit, N determines the rate at which
the yield criterion reaches its peak value whileand~ are material parameters that define the stiffness at the pbin
unloading. The time derivative of the yield function in etjaa (14) is derived from the following expression

*= 3{U}m( ) BTy o a{77}m @) gy (13)
Matrix [R] in equation {2) is a strain interaction matrix defined as
R = {a} Q{a}" [D] (16)
where -
Q= (~1}" G ({0 (e @) + (@) [D] {}) (17)

and column vector§a} and{b} are defined as
{a} = 0D / 9{o}
and

{v} =00 [0 {n}

respectively, whileZ ({n}m(i) ,
assumes the following form

@) is defined herein as the hardening function.The associdtetatic hardening rule

{1}y = AG ((I), {U}m(i)) (18)



where\

x o .pl (9(1)
A= {er }m(i) {0}t

is the plastic multiplier defined in the work of Lublirfér
Since theyield function in relatiori 8) depends on the back-stress a second equation is alsoing@d tbr the evolution
of that stress with respect to the strain:

{nt = HiH>G ({n}m(i) 7‘1’) {R} {ehna) (19)

where {R} is the defines the hardening interaction as

7] = @{a}" D) (20)

Equations 9) and (LO) imply that during unloading the material stiffness is dan$ and equal to the elastic one.

3.2. Cyclic loading induced damage

The model presented in the section tittedooth hysteretic modelingenhanced herein to account for damage effects. This
is accomplished by introducing two additional internalgraeters within the hysteretic finite element scheme acaaynt
for the degradation of the elastic material stiffness ardittterioration of the yield limit. These parameters arem@@anied
by a set of corresponding evolution equations that depentimhysteretic energy accumulated over time. The relations
are based on the derivations introduced jiwhere a proof is also derived for the thermodynamic admilggilof the
corresponding material model.

The elastic stiffness degradation parameter is introdatéte stress-strain relatiofd):

{6}y = 0 [Pl €7}y &

wherev, is a degradation parameter that is equal to unity as longeam#tierial has not yielded and increases with plastic
deformation. The following generic expression is thus asfin

vy = Ky (Enm(i)) (22)

whereE,,,,; is the hysteretic energy of thg, micro-element.
Solving equation9) for {¢°} and substituting into equatio{) the following relation is finally derived:

{d}m(i) = Upy [D]m(i) ({é}m(i) - {épl}m(i)) (23)

where the total stress tensor comprises a function of tiaédot plastic strain tensors and the degradation pararieter
the purpose of this work, a constant rate stiffness degi@daile is considered and thus relatid®) is expressed as

Uy = ¢y

_10 } = v, =10+ CnEhm(i) (24)

E,p=0

wherec, is a material parameter.
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7 C; hz

1 280e6 kPa 850
2 100e3kPa 500
3 50e3 kPa 8
4 1le3 kPa 5
5 0.1 kPa 1

Table 1: Chaboche model parameters

Yield deterioration is accounted for by introducing paréene, into the yield related smooth Heaviside functipn
defined in relation13)

) o ({U}m(i) ) {U}m(i) 5) "

Hi = v, . N>2 (25)
%)

where in general is a function of the hysteretic energy accumulated withaglement

A constant rate evolution law is also considered in this wtrles the variation of the strength deterioration paramete
is defined as
Vs = C
s = vs = 1.0+ ¢sEpm(i) (27)
Vs| g, —o = 1.0

wherec; is a user defined material parameter.

3.3. Example

To better demonstrate the influence of the hysteretic pasmanplemented in the modehe case of steel bar under
uniaxial tension is considered. The elastic modulus of Hréd¥’; = 210G Pa and the initial yield stress, = 235M Pa.
The following parameters are considered for the smooth modenelyn = 2 andg = v = 0.5. A von-Mises yield
criterion is considered. Two cases of hardening are examineghe first, linear kinematic hardening is consideredwit
the hardening modulud = 4G Pa. The hardening functio’ in relation (L8) is therefore defined as

0

“=Y

In the second case, a Chaboche additive nonlinear kinetmatitening rule is consideréd where hardening function is

0P [~ 2 \F
G = o (21: ghi — gcm) (28)

The model parameters for the Chaboche kinematic harderéngrasented in Table
The bar is subjected to sinusoidal imposed strain accotditige following equation

defined as:

0.01
= " g t
€ - sin(mt)
First, the analysis is performed considering no degradagdftects, thus setting, = c¢; = 0 in equations £4) and @7)

respectively. The resulting stress-strain diagrams aeqmted in Fig2.
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Fig. 2. Stress-strain diagrams - no degradations

Next, stiffness degradation and strength deterioratientaken into account by setting = 0.0000002 andc, =
0.000001 respectively. The corresponding results are presenteid)irB8F
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Fig. 3. Stress-strain diagrams - stiffness degradatioaehgth deterioration

4. The hysteretic multiscale finite element method with dgena

In this Section the derivation of the governing equationthefHysteretic Multiscale Finite Element method is presént
Based on a variational formulation introduced in the miscaie and using the constitutive model introduced in the
previous Section, the micro-element governing equatioesstablished. Next, using the micro to macro numericayimap
procedure, these governing equations are mapped to the+seale where solution is performed.

4.1. Micro-scale discrete formulation

The hysteretic multiscale finite element method is natydgirived from the rate form of the Principle of Virtual Wadrk
presented in equatio9)

/Ve {E}ZL@') {d}m(i) dVe = {d}zl(i) {f}m(i) (29)
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whereV, is the volume of the discrete elemefit}, , ;) is the vector of nodal displacements a{lﬂ} o is the vector of
energy conjugate nodal forces. Substituting equapm(o the variational principleZ9) the following relation is derived:

[, nmalPla (e — ) v =

, (30)
= {d}m) {f}m(i)
Following algebraic manipulations and by considering that 1.0, the following expression is derived:
Fa ~ m——{m@{}m (31)
where
el = /Ve {5}31(1-) (D], ) (€} dVe (32)
and
/‘&} Dl {7}, )0V (33)
In this work, the isoparametric interpolation scheme issidered for the displacement field
{d}m(i) = [V] {“}m(i) (34)

where [N]m(i) is the shape function matrix. The corresponding straipldiement relation is derived through
compatibility*° and assumes the following form

{E}m(i) = [B] {u}m(i) (35)

where[B] is the strain-interpolation matrix.
An additional interpolation scheme is introduced for thesgit deformation

{épl}m(i) {ecq m(1 (36)

Where{sgfl (i) is the vector of stains measured at properly defined coilmtatoints andN], is the corresponding
interpolation matrix.

Substituting relations3’) and (6) onto equation0), the following relation is derived

6o {8}~ 0 o = - {7, (37)

where
5]y = [ 181" D1, B1aV: (38)

e

is the element elastic stiffness matrix while" | )

[kh]m(i) = / [B]T [D]m(i) [N], dVe (39)

e
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is the hysteretic matrix. Bothk*!| m(sy @Nd (k"] (s re constant. Nonlinearity is introduced at the additi@edbcation
points where the evolution of plastic deformations is meaduThis evolution can be generically defined in the form of
equation {1).

Inthe case of the composite structure presented in Fijuhe element elastic stiffness matfkf‘l} (i) coincides with
the24 x 24 stiffness matrix of the 8-node brick elementThe dimension of the hysteretic matrik” | (i) depends also
on the number of collocation points. Considering the casere/full integration is performed and the collocation psint

are chosen to coincide with the Gauss point would resultih a 48 hysteretic matrix.

4.2. Micro to Macro transformation

Considering zero initial conditions, without loss of gealiy, the rates in equatior88) can be dropped resulting in:

1
el h !
[k ]m(i) {d}m(i) o [k }m(i) {qu}(i) - E {f}m(i) (40)
Substituting equatiorg] into equation 40) and pre-multiplying witr{N]ﬁ(i) the following is attained:
1M M 1 M
[k qm(i) {d}n — [kh]m(i) {5551 @) E s (41)
where
€. M T e
[k l]m(i) = [Ny [* l}m(i) [Ny (42)

is the elastic stiffness matrix of thig, micro-element mapped onto the macro-element dofs V\{hi’@jf(i) is the micro-
element hysteretic matrix of theg, evaluated as:
h M T h
[k }m(i) = [N]m(i) [k ]m(i) (43)
Finally, {f}%(i) in equation 41) is the equivalent nodal force vector of the micro-elemeapped onto the coarse

element nodes (macro-nodes).
(P = 5 Wik Py (44)

Equation #1) maps the micro-element equilibrium equation establishesjuation 40) from the micro-scale to the
macro-scale. The micro-displacement componém}sm(i) are mapped onto their macro-counterparts through relation
(6). Consequently, the elastic micro-constitutive behald@ommunicated across scales through the EMSFEM numerical
mapping. Inelasticity is accounted for in the micro-schl@tighthe evolution of themicro-plastic deformation quantities
{etl ;) @hd mapped onto the macro-scale through the transformeerbyis matrix[kh]f(i).

Relations 42) and @3) are then assembled at the macro-scale to derive the cdanserg equilibirum equation which
assumes the following form

(Kot {dtar = {f = {fntar (45)

where[K]gR(j) is the equivalent stiffness matrix of the coarse elemerivedias

[K]gR(j) - Z [kel]f(i) (46)
1
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while {f},, is the corresponding nodal force vector assembled fromahgibutions of the mapped micro-nodal force
components defined in relation4) and{ f, },, is the force vector of the plastic components evaluated as

Mel

HAYEDY [kh]f(i) {5 m(3) “n

i=1

Equation ¢5) is derived upon enforcing the energy equivalence priedigitween the deformation energy of the coarse
element and the deformation energy of the correspondingoam@sh’. This is not an assumption of the methbdt a
relation that is directly derived from the fact that the aeaelement is a mathematical entity whose mechanical gieper
are only defined at the micro-scat¢aving defined the equivalent coarse element elastinesf and hysteretic matrices,
the direct stiffness method is implemented to finally detlve governing equations at the structural level. Defining as
ndo f; the number of the free macro-degrees of freedom, the eeqsatiomotion of the structure assume the following
form

{0} +101{0} +IK{U}, ={P}y (48)

The coarse mesfndofas x 1) nodal load vectof P}, in relation @8) is derived as

{P}M = {F}M + {Fh}M (49)

where{F'},, is the(ndofar x 1) vector of externally applied loads afd}, },, is the(ndofar x 1) hysteretic load vector
assembled for the whole structure. Matri¢é$], [C] and [K]| are the(ndofys x ndofar) mass, viscous damping and
elastic stiffness matrix of the structure evaluated at tre@se mesh.

Equations 48) are complemented by the micro-plastic strain evolutiomegigns:

(B8} =1H () (50)

where the vector

(e =1 o }T (51)

contains the plastic strains evaluated at the collocatintp of each micro-element and

. T
(B}, ={ by b | 52
Matrix [H] in relation €0) is a block diagonal matrix:

A1) [0]
[H] = 0] g (53)
‘Q{(mez)

wheres/(1) = Hip) Hom(1)[R],,, 1) @A) = Him(m,) Hom(m.) [B]
Any type of numerical integration method is applicable folvgng the equations of motior8). In this work, the HHT

m(mel)

numerical integration algorithm is coupled with a NewtoapRson iterative scheme for treating nonlinearity. Eaunesti
(50) are treated at the micro-element level by means of thengfilane algorithm although more robust approaches such
as the Radial Return mapping algorithm can also be implesde®@ince the solution of the global equations of motion
is performed at the coarse element level, downscaling ofebielting macro-displacemer{t&’},, is required in order to
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derive the corresponding strain increments atrttiero-scale The computational aspects of the methodology presented
herein are described in detailih

5. Computational Model Validation

As aforementioned, validation of computational models fnayliscussed in relation to two main directions, namely, the
numerical verification and the experimental validationrapgh.Within the context of computational model validation,
we herein exemplify both instances (a) via cross-compaii$the proposed HMsFEM approach to a reference fine-mesh
model; and (b) via validating the proposed model in an ireéosmulation employing (simulated) structural testingeda

5.1. Numerical Verification via Monte Carlo Simulation

Within the scope of what is discussed herein, it is evideat 8% the complexity of the system increases, the formulatio
of exact models becomes a challenging task. In validatiegefficacy of the assumptions and simplifications that need
be adopted, the Monte Carlo method comprises a useful tookfiability prediction. Unlike many other mathematical
models, system complexity is not a hindrance for this apghrpahich can handle dynamic systems of an imprecise nature.

This is particularly useful in the case of a reliability ayss, which entails processes of a probabilistic natureséh
processes usually analyze the effects of the combinatidw@for more input random variables onto the probability
distribution of certain output random variables. In apgiiag such a problem one could resort to either analyticéthots
or to Monte-Carlo simulation. In the analytical approable,probability distributions associated with the outpetderived
via analytical formulationswhich involvethe probability distribution functions (PDFs) associavgth the input. Since
such a straightforward formulation is cumbersome dependinthe problem at hand, Monte Carlo simulation offers a
valuable alternative. Following this approach, a sampdespf the input parameteris generated via use of a randoringrum
and knowledge of its PDF. By repeating this process for a&latgnber of input samples, a picture of the distribution ef th
output random variable is attained, which ultimately leiadis statistical estimates of parameters of interest,;aean and
standard deviation of failure probability, or maximum instorey drift ratios. Through a variety of implementasothe
Monte Carlo simulation has surfaced as a robust and widgdliespmethod in determining the reliability of a structural
component or system®”. A more detailed explanation of the Monte-Carlo simulatigithin the scope of structural
reliability is given in°°. Nonetheless, it should be noted that, depending on theo$ittee computational model and the
corresponding random variable space direct Monte Carlalsition may require a huge amount of computational ressurce
To mitigate this, hybrid or semi-analytical methcdbave been developed.

Due to its flexibility in handling loosely defined problems yeell as its ease of implementation, the Monte Carlo method
is applied in the example cases presented hereindidfying the proposed moddih what is of interest in this work, the
sample space of the problem parameters comprises not enjrtictural’s system properties, but also the precisidhef
numerical model itself. In the first application presentethie section titledExemplary Implementationthe sensitivity of
the performance of a composite system is assessed withdreghoth aforementioned aspects, namely, the stiffness and
strength parameters of the separate constituents, assnbk aise of solver (fine-mesh FEM versus HMSFEM).

5.2. Experimental Validation

The second and most critical means of model validation islivect comparison of the model predictiagainsthe actual
system response, either this is pertinent to scaled ladigraxperiments or to field testing of large-scale strudsystems.

In materializing such a goal, System Identification methpawide a valuable toolkit for updating uncertain models of
structural systems based on direct feedback from the syitsetfv>>°. The recent technological advances further enable
the extraction of information from structures via prodaotof low-cost sensor arrays/hich may be readily deployed
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on structures for either a short- or long-term basiering structural feedback in various forms, includicreleration,
velocity, displacement, or strain measurements

The rich amount of data gathered from monitoring deploymean be used in an inverse problem setting for identifying
structural characteristicsvhich are not precisely known a-prigms well as for updatingor even selectingappropriate
simulation models. The second case-study of the appliteiiection discusses such an inverse problem formulattoerev
the goal is to infer the characteristic properties of thestiturents, i.e., stiffness and strength, based on limitéatination
of vibrational response in the form of acceleration measergs. The measurements are obtained via simulation of a
dynamic testing process for the composite aluminum pa@é¢isthere used as an example test case.

The identification algorithm that is here implemented fanjstate and parameter estimation is the Unscented Kalman
Filter (UKF), which has been extensively utilized in pravéovorks of the author§®" but additionally appears in further
works relating to inverse analysis The UKF is a Bayesian approximation which enables the sitiarl of nonlinear
behavior via approximation of the state as a Gaussian randdable (GRV), represented by a structured set of detesiign
points known as the Sigma Points. The interested readefeiged to the works of Julier and Uhimafinand Wan and
van der Merwé® for theimplementation details.

In the joint state and parameter identification regime, tier's structure is of the following form in the discretent

domain:
Xpe1 | _ F(xp,0p,uy) -
Ori1 0y (54)

Vi = H(xp, 0, ug) + Vi

wherex;, is the state variable vector comprising the displacemdntsand velocitiesdy,, of a structural system undergoing
dynamic loading@;, are the time invariant parameters that are considered takveown or uncertaingy, is the exogenous
input (load) vectory, is a zero mean Gaussian process noise vector with a prefisgemvariance matriQy, yy. is the
observation vector, ang, is the zero mean Gaussian measurement noise vector witsspoimding covariance matrxy,.

The process noise reveals the confidence placed into thesaycaf the system representation, i.e., the model of
the system. The observation noise on the other hand revealsonfidence placed in the acquired measurement. The
tuning of these quantities is critical depending on the tddkand. Additionally, function$’, H represent the system and
observation model respectively. The flexibility of the UK&d in the ability to incorporate loosely defined functioims.
the implementation presented herein the developed HMsR&aMdwork is utilized as the model simulating the system
response (functioi’), whereas a fine-mesh FEM is utilized for extraction of thesugement quantitiegy,. The latter
correspond to acceleration time histories at certain noflfse structure. As this process is a stochastic one, iimvglv
numerous parallel forward simulations for each discrefmsi point, the ability to use a reduced order model of theegyst
which however is able to provide sufficient accuracy, is eféssence.

As discussed in the next section, the HMSFEM approach faesisan invaluable tool for accurate yet accelerated
computation, especially suited for problems of structteti#bility or inverse formulations, that are concomitergtructural
model validation.

6. Exemplary Implementations

6.1. Monte Carlo Validation

A sensitivity and reliability analysis pertaining to therdymic response of a heterogeneous strudeseribed by uncertain
material propertiess performed in this Section. A fine meshed model serves adatadled reference simulatiputilized
for numerically verifying a reduced order forward model éleyped via the proposed HMsFE methéah aluminum sheet
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is considered, reinforced with two steel strips (Fga). The length, width and height of the beam drg = 200cm,
b, = 0.5¢m andh,,, = 50cm respectively. The height of the steel strip&ijs= 5¢m. The constituents are assumed to be
elastic-perfectly plastic with deterministic Poissonaai, = 0.33 andr, = 0.3 for the aluminum and steel respectively.

Non Degrading material For verification purposes, no dansgensidered in this case setting and the results of the
proposed multiscale formulation are compared to resuligettby running the fine meshed model in Abagus commercial
code’. The elastic moduli and the corresponding yield stressdeomaterials are considered to be random variables.
The Log-Normal distribution is used for all random variablgith corresponding mean valués,, = 70GPa and

fya = 214M Pa for the aluminum and?,,,; = 200G Pa and f,; = 235M Pa for the steel. The following deterministic
load is considered

p(t) = 20000tsin(wt)kPa

The fine meshed finite element modalesented in Figl(b), consists of 1600 linear quadrilateral plane stress elesnent
with a total of 3358 free degrees of freedom. The multiscalésfielement model is formulated by 16 plane stress coarse
elements. The corresponding representative RVE congid¢80plane stress elements. The periodic boundary conditio
assumption is used to evaluate the micro-basis interpolétinctions.

A total 5000 Monte Carlo iterations is performed for the FEM &MSFEM case and by considering a Latin Hypercube
sampling scheme. It should be stressed that different rarsd®ds and, as a result, different sets of random variatdes a
used for each model class, in order to obtain an unbiasedasop. The derived data sets of the effective elastiastis
evaluated from the response of the FEM and HMsSFEM analysisscare presented in Fisga)and5(b) respectively. This
effective value is calculated as the slope of the elastioregf the force-displacement diagram for the first cycleoaiding.
Furthermore, the histograms of the maximum displacemeatsrasented in Fid, providing in this way a measures that
quantifies structural response under loads that push thensyisto the plastic region, thereby serving as a tool foessiag
structural reliability. In both cases, the relative deisiathetween the statistical parameters of the correspgmpdirametric
PDEs is lower than 0%.

Degrading material In this case, the variability of the stytlh deterioration and stiffness degradation paramedeatso
considered. To better illustrate their effect on the dyrarasponse of the structure, the following, constant armnngbdit
sinusoidal excitation is considered in this case

p(t) = 250000sin(7t)kPa

The random variables in this case are the elastic moduld gteess and the stiffness degradation and strength detgon
parameters of the constituemsuniform proposal distributiois considered for all variables and the limit values consde
are presented in Tabiz



18

Journal name ()

1000

1000
800 800 |
600 | — — «=0.389, p=0.135, 6=0.019 600 k
3 3 — — x=0.394, p=0.133, 0=0.019
= =
g 400 | £ 400}
< <
v ¥
200 200
0 — 0
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
Elastic Stiffness [MN/mm] Elastic Stiffness [MN/mm)]
(@) (b)
Fig. 5. Elastic Stiffness Histograta) FEM (b) HMsFEM
300 250
- -'-
250 200
200 | — — p=4.250, 6=0.524 l
—  — u=4.220,6=0.523' 150 '
8 150 3 |
B =
E £ 100
£ 100 @
50} 50 h ‘
. ol 1Y
1 2 4 5 6 1 2 3 4 5 6
Max Displacement [mm]

3
Max Displacement [mm]

@

(b)

Fig. 6. Maximum Displacement Histografa) FEM (b) HMSFEM

Variable Min Max
FEa 62500000 kPa 67500000 kPa
fya 200000 kPa 242000 kPa
Com 2.5e-7 2.5e-6
Csm 5.0e-7 5.0e-6
Es 200000000 kPa 231000000 kPa
fys 225000 kPa 247500 kPa
Cns 2.5e-7 2.5e-6
Css 5.0e-7 5.0e-6

Table 2: Random Variable limit values
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In Fig. 7, the total applied force versus the center-point axialldisgment at the tip of the cantilever is presented. The
results obtained from the two procedures are practicadigtidal. In this case, the analysis conducted using the HIW&F
procedure concluded in 900 sec while the correspondingsisdime using the standard FEM procedure was 4626 sec,
amounting to a significant reduction in the computationkineolved.

In this case 2000 Monte Carlo simulations were performeaémh one of the solution approaches. Contrary to the
case examined in the non-degrading material chgesame pool of random variables is considered for bothscd$e
derived results are again compared in terms of the estinfRid&d of the response variables.

In Fig. 8 the histograms of the derived maximum displacements asepted for the case of the HMsFEM and FEM
analysis respectivelfhe HMsSFEM approach results in a marginally stiffer confagion as compared to the FE method. The
same trend is also revealed form the histograms of the ralgidkplacement presented in F&for the multiscale and finite
element methods respectively. This discrepancy is duetagproximate nature of the micro to macro interpolatioestd
introduced in relation%) and the numerical implementation of the periodic boundandition assumption introduced on
the coarse elements. The divergence from the “exact” fitgi@ent model is less than 2%. The mathematical framework
of the multiscale finite element methtidorovides appropriate theorems to verify that this errooisrizied.

6.2. Inverse Problem Formulation

In this example, a structure similar to the previous conmegsnel is revisited, under the prism of parameter ideatifio.
Model validation in this case is ensured via the complianfcthe proposed model with the results obtained via, the
simulated in this case, testing procedurie aluminum sheet of Figurga)is once again considered with a length, width
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and height ofL,,, = 200c¢m, b, = 0.3cm andh,,, = 50cm respectively. The height of the steel stripsis = 5cm. A
concentrated mass 05¢n is attached on the free end of the beam. A random pressuréslaaglied at the free end of this
setup. The loag(t) is obtained via filtering a white noise process(t) ~ N1D(0,0?), with NID denoting a Normally
Independently Distributed process with the indicated meassoh variancew, (t) is filtered using a low-pass filter with a
5H z cut-off frequency. This type of load, illustrated in Figurg allows for the simulation of a simple testing procedure
driven by means of a suitable shaker device with an appr@wstanger, exerting an axial load on the lum@édn mass.
The goal is to utilize information from the structure in trarh of acceleration measurements obtained at a finite
set of sensor locations, nine in total, as indicated in FEdw; in order to identify the properties of the constituents
involved. The four constitutive parameters, namely thetedatiffness and yield stress of each of the two constitjeme
considered as unknown a-priori or, more precisely, as taiceAn “off" initial assumption is made on the values ofshe
parameters, which is utilized as the initial condition tdfée into the UKF algorithm. The corresponding initial vaduege
0! = B, = 87.5GPa, 03 = f,, = 267.5M Paforthe aluminumand = E,,, = 241.5GPa, 8} = f,; = 211.5M Pa
for the steel. The true parameter values are on the othersetrak9, = E,,, = 70GPa, 0> = f,, = 210M Pa for
aluminum ands = E,,,; = 210G Pa, 04 = f,s = 235M Pa for steel.
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A reference forward analysis is performed in ABAQUS, empigya fine mesh; this serves as the “actual” response,
utilized here as the equivalent of an experimental testioggss. Therefore, the measurement vegigicomprising nine
acceleration data sets to be fed into equatiaf) ¢f the UKF, is herein generated via an independent numesiivalation.

The crucial component lies in the utilization of the forwdod process) model for the UKF. As explained earlier, the
UKF is formulated using a discrete set of samples, termedbthma Points. The number of these Sigma Points equals
2x L + 1, whereL is the size of the augmented state of the system. For a jeitg-parameter identification problem, this
augmented vector comprises the system’s displacementetouities at every degree of freedom, as well as the unknown
parameters (four in this example). It therefore becomedeeij that if one is to utilize a finely meshed model construed
in ABAQUS, the dimension of the system would be too large famerical computation. Even more importantly, due to
memory limitations, there exists a critical matrix sized @nerefore an associated mesh refinement, for which céilcoga
would be prohibited.

A means for solving this problem is delivered through thepsed HMsFEM approach. In what follows, the process
and observation functions denotediasH in (54) are substituted by the HMSFEM solver between successhedteps.

A coarse mesh of 24 nodes is utilized, bringing the state dgio@ down to a dimensioh = 2 x 24 + 4 = 52. The
corresponding Sigma Point set therefore comprises a tb@al - 1 = 105 components. Furthermore, the Sigma Point
analyses are in fact independent, allowing for the parakekution of these forward runs. The identification proégss
consequently initiated with the following settings for fileer. An initial covariance of the stat®,, of the order ofie — 13

is assigned. The process and observation noise covariaaite®s,Q; andR, respectively, are set as a diagonal with
diagonal components equalte — 13 andle — 5 correspondingly. For facilitating the filter implementatj and avoiding
numerical errors, the parameter values are normalizedantitinget values set at 0.01 for all four constitutive paranset

The results of the identification process are summarizedgnres12-15. Figures12-13 summarize the velocity
predictions of the filter for both an observed (node #3), it@nitored via a virtual sensor, as well as an unobservedno
#21) degree of freedom. It is noted that in both cases, the filrnishes a very accurate estimation of the correspgndin
nodal velocities. Nonetheless, an integration error, tvfuan also be related to the selected level of process naise, i
noticeable in the displacement estimates. This accuroulati integration errors resulting in displacement drifisot
uncommon in system identification, as noted’imonetheless this does not create a hindrance in the dartiouerse
problem solution.
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The primary target of this inverse formulation is the exti@t of the true parameters that characterize the structura
properties, i.e., the stiffness and strength charadiesigtigurel6 indicates the convergence of the parameter estimation
to the true, “normalized” parameter value which is set talQunitless) for all time-invariant variables involved. &h
successful utilization of the filter is enabled through theliementation of the proposed multiscale scheme. For thpoge
of comparison, it is mentioned that on a PC fitted with an Iimgdrocessor and 32 GB of RAM, utilizing all 4 cores, the
time allocated for the analysis was approximatelly 4 hrshé& ABAQUS model were to be employed using the Finite
Element mesh presented in Figu@), a prohibitive total time of 4 days would be delivered. Ithetefore pointed out,
that the appropriate combination of advanced modelingtadh appropriate identification and uncertainty quarsdtiien
techniques enables the validation of computational méchamodels seeking to accurately reproduce structurabresp
This is of particular significance in the case of nonlineasthyetic response, where the cost of computation forms armaj
concern.

7. Conclusions

A computational framework is presented in this work for tffeeent simulation of nonlinear hysteretic response oftiaul
phase systems, within the context of model validation. Tlstétetic Multiscale Finite Element Method (HMSFEM) is
implemented where thmicro-scalds modeled using a hysteretic finite element approach. fitielasticity is introduced

at the micro-scale via properly defined hysteretic degrédeeedom. These evolve according to a generic multiaxial
smooth hysteretic law accounting also for damage induced@inena. The developed modeling approach is utilized for
the purposes of model validation; firstly, in the context eliability analysis through cross-assessment againstea fin
meshed model developed in an independent analysis progkBAQJUS); and secondly, for an inverse problem where
the identification of constitutive parameters via avaliabbf acceleration response data is sought. The derivedlte
demonstrate the potential of adopting the proposed appragaa computationally accelerated, yet sufficiently adeyura
surrogate model in problems of nonlinear dynamic analysiseberogeneous structures; a problem which by default
comprises a computationally challenging task. The progpapproach provides a means of assessing model credibgity
well as testing the validity of adopted assumptions coringmot only the model structure, but additionally the closg&stic
properties of associated models. The adoption of enhamedast-effective simulation approaches in the validation
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process can grease the wheels of the process chain fronnd#sigugh manufacturing and production, to operation and
maintenance.
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