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Abstract

In three experiments rats were given nonreinforced preexposure to an auditory
stimulus, after which this stimulus and a second, novel cue were paired with food.
Lower rates of conditioned responding were observed to the preexposed stimulus
across the three experiments, indicative of latent inhibition. The degree to which
animals used these cues to time the occurrence of food delivery was also examined.
Paradoxically, the response slopes - indicating the rate of increase in responding
over the course of the CS - were greater for the preexposed than for the novel cues,
consistent with the suggestion that the preexposed stimulus exerted greater
temporal control. Moreover, this was the case irrespective of whether the duration
of the cue during preexposure differed from that during conditioning. These results
suggest that although CS preexposure retards conditioning, it may enhance timing.

The findings are discussed in terms of current models of conditioning and timing.



Conditioning - learning that an environmental cue (conditioned stimulus, or
CS) reliably signals an outcome (an unconditioned stimulus or US, often of
motivational value) - is found across the animal kingdom. It is indicated by an
elevation of conditioned responding during CS presentation, indicating increased
anticipation of the US. However, other kinds of learning also occur during
conditioning tasks. For example, animals learn to use the CS to time US occurrence:
when the CS is of a fixed duration, subjects respond at increasingly high rates as the
time of US delivery approaches (e.g. Kirkpatrick & Church 2000); moreover, if the CS
is presented for an extended period without reinforcement, there is a peak of
responding at the point at which the US would normally occur, resulting in an
inverted-U, Gaussian-type function (Roberts, 1981).

Although conditioning and timing have been shown to occur side-by-side in
the same task (e.g. Balsam, Drew & Yang, 2002; Kirkpatrick & Church, 2000), the
theoretical frameworks devised to explain these effects have tended to focus on one
of the two phenomena (e.g. Gallistel & Gibbon 2000; Jennings et al., 2013;
Kirkpatrick 2014; Kirkpatrick & Church, 1998; Savastano & Miller 1998). Theories of
conditioning are often associative, attributing it to the formation of an association
between the mental representations of the CS and the US, allowing presentation of
the CS to activate the US representation and elicit a conditioned response. Such
theories offer little explanation of timing effects (except for real-time models - see
below). In contrast, some timing theories do offer an account of conditioning, but as
a by-product of the timing process (see Kirkpatrick, 2014 for a recent review). For

example, hybrid time-based models assume that the CS is represented in a form that



varies as a function of time!, which allows the time of reinforcement to be accurately
encoded. In contrast, information-processing models assume that conditioning
stems from sensitivity to temporal information in the conditioning episode. For
example, scalar expectancy theory (Gibbon & Balsam, 1981; cf. Rate Expectancy
Theory, Gallistel & Gibbon, 2000) assumes the animal computes the difference
between the expected time to reinforcement in the presence of the CS, and in its
absence; if the former value exceeds the latter by some criterion, the decision is
made to respond (cf., Balsam & Gallistel, 2009; Kirkpatrick & Church, 2003).

Because of the theoretical gulf between associative and time-based accounts
of conditioning, phenomena central to the associative perspective have been largely
neglected by timing theories. One example is latent inhibition - that nonreinforced
preexposure to a stimulus retards acquisition of conditioned responding to that
stimulus, relative to a nonpreexposed cue (Lubow & Moore, 1959). Many associative
theories interpret latent inhibition as a retardation in learning, resulting from a drop
in the associability of the CS (e.g. Mackintosh 1975; MclLaren & Mackintosh, 2002;
Pearce & Hall 1980; Wagner 1981). This may occur either as a function of the
predictive ability of the CS (Mackintosh 1975; Pearce & Hall 1980), or the degree to
which it is predicted, either by the context (Wagner 1981), or by elements of the
stimulus itself (cf. McLaren & Mackintosh, 2002). Others view it as a performance
effect, produced by competition between a CS-->nothing association formed during

preexposure and the CS-->US association established during conditioning (Bouton,

! For example, because CS onset initiates a series of memory traces (Machado,
1997), or activity in a series of oscillators with different periods (Church &
Broadbent, 1990), or some other time-based process that uniquely defines different
portions of the CS (see also e.g. Grossberg & Schmajuk, 1989; Staddon & Higa, 1996)



1993; Savastano, Yin, Barnet & Miller, 1998). Time-based accounts of conditioning, in
contrast, say little about nonreinforced preexposure. Hybrid models typically focus
on the temporal relation between specific states of the CS representation and
reinforcement, while although information-processing theories assume information
is gathered over a broad time window, which could include the preexposure phase
(e.g. Balsam & Gallistel, 2009; Gallistel and Gibbon 2000), it is unclear whether they
predict latent inhibition. For example, according to SET nonreinforced preexposure
increases the expected time to reinforcement both in the presence of the CS and in
its absence, leaving the ratio of these values unchanged relative to an untreated
control group? (see also RET: Gallistel & Gibbon, 2000).

Our aim was thus to examine the effect of stimulus preexposure on timing.
While most associative theories do not account for timing explicitly, they could
explain it by assuming that different portions of the CS condition to different degrees
according to their proximity to the US; conditioning would therefore be at a
maximum at the point of US delivery. This interpretation suggests that any factor
retarding acquisition of conditioning will also retard acquisition of timing. Other
associative theories have been formulated to incorporate timing directly; for
example, the temporal coding hypothesis (Matzel, Held & Miller, 1988) proposes
that associations incorporate information about the CS-US pairing - including the
temporal relationship between them (e.g. Barnet, Grahame & Miller 1993; Barnet,
Cole & Miller 1997; Blaisdell, Denniston & Miller 1998). Although temporal coding

does not explicitly address latent inhibition, if stimulus preexposure were to produce

2 whereas a control group that is simply placed in the context would, according to
this account, learn faster than either of these conditions.



an association between the CS and no outcome, it would predict that the duration of
the stimulus would also be encoded. When the CS is then paired with the US,
potential for competition between these two associations arises (e.g. Bouton, 1993),
which these authors have argued is the source of latent inhibition (cf. Savastano et
al., 1998). Temporal coding thus predicts that this interference, and hence latent
inhibition, will be greater when the duration of the CS during preexposure and
conditioning match - and the same might also apply to timing ability.

In contrast, time-based theories of conditioning make no clear predictions.
While hybrid models say little about nonreinforced exposure, information processing
models like SET predict that timing occurs only after conditioned responding has
been acquired (although see e.g. Balsam, Drew & Yang, 2002; Kirkpatrick & Church,
2000). Thus if they could predict latent inhibition they should also predict
retardation of timing - but it is not clear they can predict latent inhibition in the first
place.

In summary, the temporal coding hypothesis predicts that timing will be
retarded by preexposure, and that this effect will be maximal when the duration of
the stimulus during preexposure matches that during conditioning. Associative
theories interpreting latent inhibition as an effect on learning may also predict it will
retard timing (e.g. Mackintosh 1975; MclLaren & Mackintosh, 2002; Pearce & Hall
1980; Wagner 1981), although (compared to temporal coding) the boundary
conditions of this are unspecified. Finally, time-based theories of conditioning make
no clear predictions about the effect of preexposure on either conditioning or timing

effects.



Experiment 1

In the first experiment two groups of rats were preexposed to an auditory CS,
after which this and a second, novel cue were each reinforced after 40s with two
food pellets. We anticipated preexposure would result in latent inhibition - slower
learning to the preexposed than to the novel CS. The groups' treatment differed in
the preexposure phase. Although both groups received the same total duration of CS
exposure, for Group Same CS presentations were always of a fixed, 40-s duration,
exactly as during conditioning, whereas for Group Different the preexposed CS
varied in duration from trial to trial according to a uniform distribution with an
average of 40s), such that it was either longer or shorter than, but never equal to,
40s. Thus Group Different - unlike Group Same - did not have any experience of the

conditioning duration (see Table 1).

INSERT TABLE 1 ABOUT HERE

In both groups we anticipated seeing latent inhibition - slower acquisition of
conditioned responding to the preexposed CS - and we expected it to be similar in
magnitude because total CS exposure was equated: Ayres et al. (1992) found this
factor was the most important determinant of the degree of latent inhibition, and
that matching the CS duration during preexposure and conditioning had little effect
(contrary to the predictions of temporal coding). But the key issue was whether
preexposure would also impair learning to time the duration of the preexposed CS -

and if so, whether this would depend on the temporal properties of preexposure. If



timing is impaired whatever the duration of the CS during preexposure, then timing
the preexposed cue should be similarly affected in both groups; but if it depends on
preexposure to the conditioning duration (as temporal coding predicts), then timing
should be worse in Group Same, but not in Group Different. To assess timing we
computed the rate of conditioned responding in each 1-s bin of the CS, and
computed the slope of this function. Timing would be evident as an increase in rate
of conditioned responding as US delivery approaches, resulting in positive slopes. In
contrast, if there is no timing (as is found, for example, early in training or when the
stimulus is of variable duration), response rates are steady over the course of the CS,
and slopes are close to zero (e.g. Jennings et al., 2013)>. As we were interested in the
effect of latent inhibition on timing, it was critical that we could demonstrate a
reliable latent inhibition effect. Although preexposure retards conditioning, it
typically does not reduce asymptotic levels of responding, meaning latent inhibition
is a transient phenomenon that dissipates with extended testing. For this reason we
restricted the number of training sessions, so that asymptotic levels of responding
had not been reached. However, orderly response slopes do not develop
immediately, but require a certain amount of training to emerge. Thus we tested the
animals at around the point at which responding was just about to asymptote, which

in the experiments that follow was between 4 to 6 training sessions.

3 We did not use the peak procedure to evaluate timing as latent inhibition is a
transient phenomenon, and this method can require a large number of trials to
generate sufficient data; latent inhibition is also context-specific, and the
introduction of peak trials could produce a context change that would further
attenuate the effect.



Method

Subjects:

Subjects were 16 male Lister hooded rats (Charles River UK) with a mean free-
feeding weight of 330 g (range: 305-350 g). The rats were weighed daily and their
daily food ration restricted such that they were gradually reduced to 85% of their
free-feeding weights before the start of the experiment. They were maintained at
this level throughout training, their target 85% level being adjusted weekly according
to a growth curve so that their target weights increased gradually over the course of
the experiment. Water was freely available in the home cages. They were
maintained on a 12-hour light/dark cycle, with the lights turned on at 7am, and
temperature was maintained at 21°C (+1); the humidity was 60% (+10%). There were

8 animals per group.

Apparatus:

All conditioning and testing procedures were conducted in 8 identical chambers (20
x 24 x 30 cm), each of which was situated in a ventilated, noise-attenuating shell (74
x 38 x 60 cm) (MED Associates). Each chamber was equipped with a speaker for
delivering auditory stimuli, a houselight, a foodcup and two jewel lights, one situated
on each side of the food cup. The houselight was not employed. A speaker, located
on the right side of the back wall of the chamber on the opposite wall from the food
cup, could deliver two 70-dB auditory stimuli (scale A, measured near the food

hopper), a white noise and a 10-Hz click. A pellet dispenser (Model ENV-203)
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delivered 45-mg Noyes (Improved Formula A) pellets into the food cup. Each head
entry into the food cup was recorded by breaking an infra-red photobeam and
recorded as a response. Med-PC for Windows (Tatham & Zurn, 1989), running on a

PC, controlled experimental events.

Procedure

Preexposure: All subjects received ten sessions of preexposure, each
comprising 42 presentations of stimulus A (which for half the subjects in each group
was the noise, and for the remainder the click). For subjects in Group Same
presentations of A had a fixed duration of 40s on every trial. For subjects in Group
Different the 42 presentations of A were of variable durations drawn without
replacement from a uniform distribution, with a mean duration of 40s: thus each
block of six trials comprised CS presentations of the following durations: 20, 28, 36,
44, 52 and 60s, and there were seven blocks per session. The intertrial interval in this
and the conditioning phase comprised a fixed interval of 130s plus a variable interval

drawn from an exponential distribution with a mean of 60s (i.e. 130+~60s).

Conditioning: During this stage all subjects received 40 trials per session: 20
of these presentations were with CS A, to which they had been preexposed, and 20
to the novel B. For animals for which A had been the click, B was the noise, and vice
versa. All CS presentations were of 40-s duration, and were preceded by a 40-s preCS
period, which was a portion of the ITI during which responding was also recorded.
Each CS presentation was immediately followed by the delivery of two food pellets,

and the two trial types were intermixed in a semi-random order. There were five
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sessions in this stage.

Data Treatment

Mean response rates during each type of trial were obtained by computing
the total number of responses made during each CS type in each session, and during
the corresponding preCS periods, and converting to responses per minute (rpm).
Conditioned responding in each session was indexed by a difference score - the
mean response rate during each type of CS after subtraction of the rate during the
corresponding preCS periods. This provided a measure of the degree to which CS

presentation elevated conditioned responding over background levels.

Timing: The total number of responses occurring in each successive 1-s time
bin of each type of CS, pooled over all the conditioning sessions, was computed, and
the rate of responding in each bin calculated for each rat. The resultant distributions
were smoothed by taking an average over successive 5-sec bins (i.e. bins 1-5, 2-6
etc), to reduce the influence of transient variation in responding (e.g. Church et al.,
1994; Tam et al., 2013; Matell et al., 2014). These rates were then normalized
(divided by the total number of responses for that rat) to give the percentage of
responses in each 1-s time bin, to ensure each animal contributed equally to the
shape of the functions regardless of its response rate. Then a linear function was
fitted to each normalized response function, and the slope determined from the
best-fitting linear curve for each rat (linear fits provide a good characterization of
response rates over CS duration: Jennings et al. 2007; cf. Kirkpatrick & Church 2000).

A higher slope score, relative to a low or negative score, indicates that a greater
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proportion of an individual’s head-entry responses are distributed towards the end
of the CS, consistent with temporally accurate anticipation of US delivery; thus, slope
was used as an estimate of temporal control (Kirkpatrick & Church, 2000; Jennings &
Kirkpatrick 2006).

Data were analysed using analysis of variance; significant interactions were
explored with simple main effects analysis, using the pooled error term. Partial eta
squared ("r]pz) and its 95% confidence interval (Cl) were given for significant effects

and interactions in the ANOVAs.

Results
No data were collected during the preexposure stage.

Conditioning: The results of the conditioning phase are shown in Figure 1:

INSERT FIGURE 1 ABOUT HERE

Rates of responding to the preexposed cue appeared lower than to the novel
stimulus in Group Same, indicating latent inhibition; this was less evident in Group
Different. ANOVA with preexposure (preexposed or novel), session and group (Same
or Different) as factors revealed a significant main effect of session F(4, 56) = 54.33,
p <.001, MSe = 13.89, "r]pz =.79, Cl = [.67, .84], which interacted with preexposure
F(4, 56) = 3.01, p < .026, MSe = 5.94, npz =.18, Cl = [.00, .30]; nothing else was
significant, largest F(1, 14) = 3.89, p = .069, MSe = 24.29, npz =.22 for the
Preexposure x Group interaction. Further analysis of the Preexposure x Session

interaction revealed a significant effect of preexposure on session 2, F(1, 70) = 14.43,
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p <.001, MSe = 9.61, but on no other session, largest F(1, 70) =1.12, p =.293, MSe =
9.61 for session 3.

The Preexposure x Group interaction, although not significant (p = .069) is
consistent with latent inhibition being weaker in Group Different, as is suggested in
Figure 2; indeed after four sessions the Preexposure x Group interaction was
significant, p = .039, and a significant latent inhibition effect was found in Group
Same, F(1,14) =7.72, p = .015, MSe = 5.66, npz = .47, but not in Group Different, F <
1. Thus there is evidence that latent inhibition was weaker in Group Different, at
least after four sessions.

The mean rate of preCS responding in each session was 4.36, 6.43, 4.50, 3.70
and 2.84 rpm for Group Same, and 6.10, 9.60, 7.33, 5.80, and 5.49 for Group
Different. ANOVA with group and sessions as factors revealed only a significant
effect of sessions, F(4, 56) = 12.56, p < .001, MSe = 5.66, np2 = .47, Cl =[.24, .58];
nothing else was significant, largest F(1, 14) = 3.38, p = .09, MSe = 73.44 for the main

effect of group.

Timing: The smoothed response rates, averaged over all five sessions, are shown in
the top panel of Figure 2. Response rates appeared lower to the preexposed than to
the novel cue in Group Same, but this difference was not apparent in Group
Different. This reflects the pattern seen in Figure 1 and again suggests a more
marked latent inhibition effect in Group Same than in Group Different. There was
also some suggestion that the difference in response rate between the start and the
end of the CS was greater for the preexposed cue in Group Same than in the other

conditions. This pattern was evident in the averaged slope data (lower panel of
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Figure 2), where it may be seen that the mean slope for the preexposed CS in Group
Same appeared higher than for the other conditions, which did not seem to differ
substantially. ANOVA with CS and group as factors confirmed that there was a
significant interaction between these two factors, F(1, 14) = 6.62, p = .022, MSe =
.0001, npz =.32, Cl = [.00, .58], and simple main effects tests revealed a difference
between preexposed and novel CSs in Group Same, F(1, 14) =7.57, p =.016, MSe =

.0001, but not in Group Different, F < 1.

INSERT FIGURE 2 ABOUT HERE

Discussion

We anticipated equal latent inhibition in both groups; yet, although
statistically this was the case after five sessions, the effect in Group Different was
numerically weak, and after four sessions latent inhibition was actually present only
in Group Same. There are reasons to expect such a difference. It is well established
that latent inhibition is context-specific: if a stimulus is preexposed and conditioned
in distinctly different contexts, then latent inhibition is attenuated, compared when
the context of preexposure and conditioning is the same (Channell & Hall, 1983). If in
Group Different the change between experiencing many stimulus durations during
the preexposure phase to just one during conditioning constituted such a context
change, this would have reduced the magnitude of latent inhibition observed.

But there are alternative explanations. First, as we saw above, the temporal
coding hypothesis predicts greater latent inhibition when the durations of the

preexposed and conditioned CSs match (Matzel et al., 1988). Although previous
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studies have reported that this factor has little effect on latent inhibition (Ayres et
al., 1992), they used only fixed duration stimuli, and so the result we observed could
be related to the fact that the preexposed cue in Group Different was variable.
There are other ways using a variable CS could influence latent inhibition. For
example, according to the Pearce-Hall model (1980), latent inhibition results from a
drop in associability of stimuli that are reliably followed by no consequence.
Although this model makes no assumptions about the temporal structure of a
stimulus, one common associative approach is to conceptualise each CS as a set of
shorter elements, corresponding to successive time bins that are activated in a fixed
sequence after CS onset (e.g. Konorski, 1948; Wagner & Rescorla, 1972; cf. Pavlov,
1927; Vogel et al., 2003). In a CS that is always of the same duration, the first
element will reliably predict the second, which will reliably predict the third and so
on. Thus, each element is being reinforced by the next according to a continuous
reinforcement schedule; hence, while the associability of the final element will fall
because it reliably predicts no consequence, that of preceding elements could also
fall because each reliably predicts the element that follows it. In contrast, if CS
duration varies from trial to trial, each element is no longer reliably followed by the
next - and this will result in the individual stimulus elements maintaining their
associability, which could therefore reduce or eliminate the latent inhibition effect.
An attempt to discriminate between these possibilities was the aim of Experiment 2.
The second notable finding was the effect of preexposure on timing. Contrary
to our expectation, no impairment in temporal control was observed - rather, the
mean slope of the preexposed CS was greater in Group Same. Thus, the group that

showed the most robust latent inhibition effect also displayed greater temporal
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control after preexposure in these animals. Experiment 2 also aimed to replicate this

finding.

Experiment 2

Two groups of rats, Group Same and Group Different, were preexposed to
two stimuli, A and a control stimulus C (see Table 1). For Group Same, A was
preexposed at a fixed 20s duration, and C with a variable duration that was either
longer or shorter but never equal to 20s. Group Different received the converse
arrangement, A being variable and C fixed. Then both groups were conditioned to A,
and also to a novel cue B, both with a fixed 20s duration. We reduced the mean CS
duration from 40s to 20s to equate the total amount of stimulus exposure with that
given in Experiment 1. Although this also halved the amount of preexposure given to
the target stimulus A, previous work has shown that this is more than enough
required to give a robust latent inhibition effect.

As all animals experienced stimuli of both variable and fixed durations during
preexposure, this should equate the similarity of the preexposure and conditioning
contexts more closely than in Experiment 1. Thus, if the apparent failure to observe
robust latent inhibition in Group Different of Experiment 1 was due to a context
change for Group Different but not Group Same, then latent inhibition should be
equally strong in both groups in the present study. But if it was due to the change in
the temporal nature of the to-be-conditioned stimulus between preexposure and
test (cf. Matzel et al., 1988), or the ability of variable stimulus presentations to

maintain associability during preexposure (cf. Pearce & Hall, 1980), then latent
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inhibition should be greater in Group Same than in Group Different, just as in the

previous experiment.

Method
Subjects and Apparatus:
Subjects were 16 male Lister hooded rats (Charles River UK) with a mean free-
feeding weight of 352 g (range: 329-372 g). They were housed and food restricted
exactly as in Experiment 1. The apparatus was identical to that of Experiment 1,

except for the addition of a third auditory stimulus, a 75-db 4-kHz tone.

Procedure:

Preexposure: Subjects received ten sessions of preexposure, each comprising
42 presentations of A, and 42 of C. A and B were counterbalanced between the click
and the noise, as in Experiment 1, and C was always the tone. The trials were
arranged in 12-trial blocks, each comprising 6 presentations of A and 6 of C. For
subjects in Group Same presentations of A had a fixed duration of 20s on every trial,
while C's duration was drawn without replacement from one of the following
durations: 10, 14, 18, 22, 26 and 30s. For Group Different these treatments of A and
C were reversed. The intertrial interval in this and the conditioning stage comprised
a fixed interval of 40s and a variable interval drawn from an exponential distribution

with a mean of 40s (40+~40s).

Conditioning: The five conditioning sessions each comprised 20 trials with A
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and 20 with B, intermixed in a semi-random order. Both stimuli were presented at a
fixed 20-s duration, and followed by the delivery of two food pellets; the 20s period

of the ITl immediately preceding each CS presentation constituted the preCS period.

Data Treatment This was identical to that in the previous experiment.

Results

Conditioning: The results of the conditioning phase, summarised in Figure 3, suggest
that latent inhibition was present in both groups; ANOVA with preexposure
(preexposed or not), session and group (Same or Different) as factors revealed a
significant main effect of preexposure F(1, 14) = 7.54, p = .016, MSe = 16.84, npz =
.35, CI = [.01, .60], and also of session F(4, 56) =39.91 p < .001, MSe = 19.58, npz =
.74, Cl = [.59, .80]; nothing else was significant, largest F(4, 56) = 1.37, p = .255, MSe

=19.58.

INSERT FIGURE 3 ABOUT HERE

The mean rates of preCS responding in each sessions were 5.00, 8.63, 7.28,
6.10 and 4.86 rpm for Group Same, and 4.42, 11.44, 5.63, 7.76, and 4.98 for Group
Different. ANOVA with group and sessions as factors revealed a significant main
effect of sessions, F(4, 56) = 12.45, p < .001, MSe = 11.78, npz = .47, Cl =[.24, .58];
nothing else was significant, largest F(4, 56) = 2.15, p = .087, MSe = 11.78 for the

Session x Group interaction.
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Timing: The smoothed response rates, averaged over all five sessions, are shown in
the upper panel of Figure 4. Responding at the start of the preexposed stimuli
appeared to be lower than to the novel cues, an effect that dissipated as the CS
continued; this is consistent with the preexposed stimulus having steeper slope

functions than those for the novel cues.

INSERT FIGURE 4 ABOUT HERE

A similar conclusion was suggested by the averaged slope data (Figure 4
lower panel): slopes were higher for preexposed than for novel cues in both groups.
ANOVA with preexposure and group as factors revealed a significant main effect of
preexposure, F(1, 14) = 4.92, p = .044, MSe = .006, partial r]Z =.26, Cl =[.00, .54];
nothing else was significant, Fs < 1. Thus, the response slopes were greater following

the preexposure treatment consistent with a higher level of temporal control.

Discussion

Just as in Experiment 1, Group Same was conditioned to a stimulus duration
which they had experienced during preexposure to that CS, while Group Different
was not. In this study, unlike in Experiment 1, robust latent inhibition - lower rates of
conditioned responding to the preexposed cue - was evident in Group Different. The
main difference was that in the present experiment both groups had experience of

variable duration stimuli during preexposure, which aimed to equate preexposure
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and conditioning contexts more closely for Group Different than was the case in
Experiment 1. The fact that minimising the likelihood of context-specificity in Group
Different allowed the emergence of strong latent inhibition suggests that this was
the factor reducing the size of this effect in Experiment 1, rather than because
preexposure to a variable stimulus maintains its associability (Pearce & Hall, 1980),
or because a match between CS durations in preexposure and conditioning
maximises latent inhibition (Matzel et al., 1988). That the degree of latent inhibition
observed is little affected by a mismatch in stimulus duration between preexposure
and conditioning is consistent with previous findings by Ayres et al. (1992).

The present experiment also replicated the finding from Experiment 1 that
the mean slope of the response distributions was greater for the preexposed than
for the novel cues - and this was true in both groups. This result is not consistent
with the predictions of the conditioning theories outlined above, none of which
predicted the enhancement in temporal control that such a difference seems to
reflect. In Experiment 1 this effect was evident in Group Same although not in Group
Different - despite the fact that both underwent stimulus preexposure. But in
Experiment 1 latent inhibition appeared markedly smaller in Group Different, an
effect that was supported by analysis of the data after four sessions. The suggestion
is that the enhancement in the slope of the response function might be a by-product
of latent inhibition itself.

We argued above that if learning to time depended on successful association
formation, then theories viewing latent inhibition as a retardation in association
formation (e.g., Pearce & Hall, 1980; Mackintosh, 1975; MclLaren & Mackintosh,

2002; Wagner, 1981) might also predict a deficit in timing. But this analysis, although
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perhaps plausible at face value, is possibly naive. Associative theories often consider
the CS as being composed, at least in part, of constituent elements that are activated
in a consistent temporal sequence (Vogel et al., 2004). If early portions of the CS
condition less effectively than later ones, this would result in increasing levels of
conditioned responding as the US approaches, and produce the characteristic timing
function. The steeper slope observed in the preexposed CS could, then, be
interpreted in terms of differential latent inhibition accruing to the various portions
of the CS. If more latent inhibition were suffered by initial portions of the CS than by
later ones, this could selectively retard conditioning at the start of the CS, and
produce the pattern of results we observed; discussion of potential mechanisms for
this will be taken up below. Alternatively, the effects of latent inhibition might be
less evident when levels of responding are lower - such as at the start of the CS,
which will condition less well because the US is temporally distant. Both suggestions
require us to assume that conditioning, and perhaps also latent inhibition, can occur
relatively independently to earlier and later portions of the CS.

One aspect of our results could help us to evaluate this suggestion. In Group
Same all temporal elements of the CS would have been preexposed on the same
number of occasions, as the entire stimulus was present on every preexposure trial.
In contrast, for subjects in Group Different, preexposure trials with the target
stimulus were either longer or shorter than the to-be-conditioned stimulus, so that
while earlier elements of the CS were present on every preexposure trial, later ones
were not. If the degree of latent inhibition to a CS element is determined by the
amount of preexposure it receives, then these earlier portions should have

conditioned less well than the later ones, accentuating the slope of the response
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function. This analysis predicts that the slope for the preexposed cue should have
been greater in Group Different than in Group Same.

Although there was no evidence of this, it may be that the previous
experiments were insufficiently sensitive to detect such a difference. The
discrepancy in preexposure between the start and the end of the stimulus in Group
Different was not that great - the first quarter of the CS was present on 100% of the
preexposure trials, and the final quarter on approximately 67%, a difference of only
33%. Moreover, it is possible that latent inhibition produced by this amount of
preexposure was close to ceiling, making differences difficult to detect. The aim of
the third experiment was to replicate the effect of preexposure on timing, and at the

same time enhance the chances of observing the contribution of such a mechanism.

Experiment 3

Experiment 3a

Experiment 3a was a replication of Experiment 2, but with some
modifications (see Table 1). First, preexposure was altered to increase the difference
in exposure to the initial and final portions of the CS. Two groups of rats, Group
Same and Group Different, were both preexposed to A and C. For Group Same A was
always of 20s duration, whereas C was 10s on half the occasions it was presented,
and 30s on the remainder. Group Different experienced the converse arrangement.

Then, as in Experiment 2, both groups were conditioned to A and a novel stimulus B,



23

both of which were followed by food after 20s.

For Group Different the first quarter of the 20-s CS was present on 100% of
the preexposure trials, and the final quarter on 50%, giving a discrepancy of 50% -
greater than the 33% differential in Experiment 2. In addition, the total amount of
preexposure was halved from that in Experiment 2; this aimed to reduce the
possibility that latent inhibition was close to ceiling, potentially masking any

differences that might be present.

Method
Subjects and Apparatus:
Subjects were 16 male Lister hooded rats (Charles River UK) with a mean free-
feeding weight of 296 g (range: 276-310 g). They were housed and food-restricted

exactly as in Experiment 1. The apparatus was identical to that of Experiment 1.

Procedure:

Preexposure: All subjects received ten sessions of preexposure, each
comprising 20 presentations of stimulus A, and 20 of stimulus C, intermixed in a
semi-random order. For subjects in Group Same presentations of A had a fixed
duration of 20s on every trial, while C's duration was 10s on half the occasions on
which it was presented, and 30s on the remainder. For subjects in Group Different

these arrangements were reversed (see Table 1). In all other respects this stage was
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identical to that of the previous experiment.

Conditioning: Conditioning sessions were identical to those of the previous

experiment. There were six sessions in this stage.

Data Treatment: In the conditioning stage one rat from Group Same was identified
as an outlier, responding substantially more to the preexposed cue than to the novel
cue®, and so was omitted from all subsequent analyses. Moreover, possibly as a
result of the deliberately reduced number of preexposure trials, latent inhibition was
less robust in the present experiment, only being evident after six sessions; thus the
data from six rather than five conditioning sessions are considered in the analyses
below. In all other respects data analysis was identical to that of the previous

experiment.

Results

Conditioning: The results of the conditioning phase are shown in Figure 5:

INSERT FIGURE 5 ABOUT HERE

Latent inhibition was again apparent in both groups: ANOVA with

* A latent inhibition score was derived for each rat, by subtracting response rates to
the preexposed cue from those to the novel cue, summed over all the conditioning
sessions. This score was more than two standard deviations below the mean for this
animal.
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preexposure (preexposed or not), session and group (Same or Different) as factors
revealed a significant effect of preexposure F(1, 13) = 6.41, p =.025, MSe = 36.27, "r]pz
=.33, ClI = [.00, .59] and also of session, F(5, 65) = 26.13 p <.001, MSe = 45.61, npz =
.67, Cl = [.50, .73]; nothing else was significant, largest F(5, 65) = 1.83, p =.120, MSe
=15.38.

The mean rates of preCS responding in each sessions were 9.60, 6.36, 12.98,
9.84, 7.35 and 8.65 rpm for Group S, and 10.94, 5.57, 12.10, 11.22, 11.59 and 8.87
for Group D. ANOVA with group and sessions as factors revealed only a significant
effect of sessions, F(5, 65) = 5.64, p < .001, MSe = 25.31, np2 =.30, Cl =[.09, .42];
nothing else was significant, largest F(5, 65) = 1.06, p = .388, MSe = 25.21 for the

Session x Group interaction.

Timing: The smoothed response rates, averaged over all six sessions, are shown in
the upper panel of Figure 6. In Group Same responding was lower to the preexposed
than to the novel cue at the start of the CS, but this difference dissipated over the
course of the stimulus; in contrast, in Group Different responding appeared to be
lower to the preexposed cue throughout the entire stimulus. Moreover, any
differences between the two groups were in responding to the novel CS - the timing
functions for the preexposed CSs were approximately superimposed. The averaged
slope data are presented in the lower panel of Figure 6; slopes were again higher for
the preexposed cues, evidenced by a significant effect of preexposure, F(1, 13) =
5.25, p =.039, MSe = .007, npz =.29, Cl = [.00, .56]; although this effect seemed
clearer in Group Same, the Group x Preexposure interaction was not significant F(1,

13) =2.17, p = .164, MSe = .007. Nothing else was significant, F < 1.
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INSERT FIGURE 6 ABOUT HERE

Discussion

In this experiment latent inhibition was again similar in the two groups. We
also replicated the effect on temporal control shown in the previous experiments:
response function slopes were significantly greater for the preexposed cues in both
groups of animals.

Nonetheless there was no evidence that this enhancement in slope was more
pronounced in Group Different; if anything the effect was weaker in these animals.
Thus Experiment 3b tried a more extreme strategy to facilitate observation of this
effect. It may be that any preexposure to a portion of the CS produces enough latent
inhibition to make differences in conditioning difficult to observe, and that the only
way to observe a gradation in conditioning to different portions of the CS is to
ensure that one portion is preexposed while the other is not. This logic motivated
Experiment 3b. All subjects were preexposed to one cue, A. For Group Same
presentations of A were either of 10- or 40-s duration, with an equal number of
each. Group Different received the same number of preexposure trials, but all
stimulus presentations were of 25-s duration, thus equating total duration of
exposure in the two groups. In the conditioning phase all rats were conditioned to
both A and the novel cue B, with presentations of both stimuli being followed by
food after 40s.

Subjects in Group Different never experienced a stimulus longer than 25s
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during the preexposure phase; thus, although the first quarter of A was preexposed
on 100% of trials in both groups, the end of the 40s CS was preexposed in Group
Same, but never in Group Different - making the difference in preexposure to the
first and last quarters of the conditioned duration 100%. We also increased the
amount of preexposure from the reduced level given in the previous experiment, to
maximise this differential effect. Finally, there was no preexposure to stimulus Cin
the present experiment, to preclude any generalisation of latent inhibition obscuring
the results. For example, if subjects in Group Different had been preexposed to C
with durations of 10 and 40s (in parallel with Experiment 3a), the final portion of
stimulus C would have been preexposed, even if the final portion of A had not. If this
were to generalise more effectively to A, which had also been experienced during
the preexposure phase, than to B, which had not, this might minimise the
differential latent inhibition between the start and the end of stimulus A at test in

Group Different.’

Experiment 3b
Method
Subjects and Apparatus:

Subjects were 16 male Lister hooded rats (Charles River UK) with a mean free-

> This strategy introduced the risk of there being a greater context change between
preexposure and test for Group Different, which had never experienced a 40s
stimulus before the conditioning phase, than in Group Same, which had. But
conversely subjects in Group Same experienced two stimulus durations during
preexposure, but only one at test - meaning that in this respect it underwent a
greater context change between preexposure and test than subjects in Group
Different, which experienced only one stimulus duration throughout. It was hoped
that these effects would offset each other, and roughly equate the similarity
between preexposure and test contexts in the two groups.
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feeding weight of 405 g (range: 364-436 g). They were housed and food-restricted

exactly as in Experiment 1. The apparatus was identical to that of Experiment 1.

Procedure:

Preexposure: All subjects received ten sessions of preexposure, each
comprising 40 presentations of stimulus A. A and B were counterbalanced between
click and noise, as in the previous experiments. For Group Same presentations of A
had a fixed duration of 40s on half the trials and 10s on the remainder; these trials
were intermixed in a semi-random order. For subjects in Group Different all CS
presentations were of 25s duration. The intertrial interval comprised a fixed interval
of 115s and a variable interval drawn from an exponential distribution with a mean
of 60s. In all other respects this stage was identical to that in the previous

experiments.

Conditioning: Conditioning sessions were identical to those of Experiment 1.

There were four sessions in this stage.

Data Treatment This was identical to that of the previous experiments. The total
duration of preexposure of the target stimulus A was 166 minutes, considerably
more the 66 minutes of exposure given in Experiment 3a. This might be expected to
increase the levels of latent inhibition and thus allow it to be observed at an earlier
point in training - and this proved to be the case. Thus the data were analysed over

four sessions in the present experiment.
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Results

Conditioning: The results of the conditioning phase are shown in Figure 7:

INSERT FIGURE 7 ABOUT HERE

Robust latent inhibition was apparent in both groups; ANOVA with
preexposure (preexposed or not), session and group (Same or Different) as factors
revealed a significant effect of session, F(3, 42) = 47.10, p < .001, MSe = 17.45, npz =
.77, Cl = [.61, .83], preexposure F(1, 14) = 13.03, p = .003, MSe = 14.16, npz =.48,Cl =
[.08, .69], and interaction between these two factors, F(3, 42) = 6.88 p =.001, MSe =
4,59, npz =.33, Cl = [.08, .48]; nothing else was significant, largest F(1, 14) =1.14, p =
.305, MSe = 4.59.

The mean rates of preCS responding in each session were 4.16, 8.46, 5.44,
and 4.13 rpm for Group Same, and 4.02, 8.10, 4.05, and 3.03 for Group Different.
ANOVA with group and sessions as factors revealed only a significant effect of
sessions, F(3, 42) =19.53, p <.001, MSe = 7.41, npz =.58, Cl = [.34, .69]; nothing else

was significant, Fs < 1.

Timing: The smoothed response rates, averaged over all four sessions, are shown in
the upper panel of Figure 8. As in Experiment 3a, there was no obvious sign that
conditioning at the end of the CS was greater in Group Different than in Group Same

- the difference in responding to preexposed and novel cues appeared greater in
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Group Same than in Group Different across the entire course of the CS.

The slope data are shown in the lower panel of Figure 8; once again slopes
were higher for the preexposed cues: ANOVA with preexposure and group as factors
revealed a significant effect of preexposure, F(1, 14) = 4.62, p = .049, MSe = .001, npz

=.25, ClI = [.00, .53]; nothing else was significant, Fs < 1.

INSERT FIGURE 8 ABOUT HERE

Discussion

The results of Experiment 3b mirrored those of Experiment 3a: regardless of
whether subjects had experienced the conditioning duration during the preexposure
phase, they showed equivalent latent inhibition, and equivalent enhancement in the
slope of the preexposed cue's response function. Despite the greater differential
exposure to the start and end portions of the CS in Group Different relative to that in
Group Same, there was no sign that this influenced the pattern of results.

We argued above that an associative analysis could explain the enhancement
in temporal control after CS preexposure in a number of ways, provided it assumes
that the CS can be conceptualised as comprising independent elements that occur in
a fixed temporal order, and can suffer latent inhibition and undergo conditioning
relatively independently. But if this were the case, one would expect that artificially
manipulating the amount of exposure to different portions of the CS could produce
differential amounts of latent inhibition, and hence differential levels of

conditioning. We could not find any evidence for such an effect, which casts doubt
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on this assumption.

General Discussion

Taken together the results from all four experiments supported the assertion
that when latent inhibition was obtained, the slope of the preexposed stimulus was
higher than that of the novel cue. In Experiments 2, 3 and 4 we found lower levels of
responding to the preexposed than to the novel stimulus, and this was accompanied
by greater values of slope for the preexposed cue. The results from Experiment 1
were slightly more complex, in that for Group Different there was a latent inhibition
effect® but no difference in slope. However, numerically the latent inhibition effect
seemed weak in these animals, and analysis of the data after four rather than five
training sessions suggested that neither latent inhibition nor an effect of
preexposure on slope was present in this group. Taken together these results are
consistent with the proposal that the latent inhibition effect produced by stimulus
preexposure is accompanied by an increase in temporal control.

However, one potential reservation with this conclusion relates to the
inevitable confound between the slope differences we observed and response rate -
in all the experiments we examined slope at a point in training at which latent
inhibition was present. This raises the possibility that, because response rates were

higher to the novel than to the preexposed CSs, a ceiling effect in responding to the

® more precisely, there was a preexposure x sessions interaction that did not interact
with group; we did not examine latent inhibition in Group Different separately.
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novel stimulus could have been responsible for the shallower slopes observed to this
cue. To examine this possibility we conducted six further training sessions in
Experiment 3b, and examined how slopes changed in the later parts of training. The
conditioning scores and timing slopes were computed as described above, but in five
2-session blocks; the resultant data are presented in Figure 9. First, it is evident from
the data in the top panel that latent inhibition is most apparent in the first two
training blocks; thereafter the main difference seems to be higher rates of
responding in Group Same. The slopes, shown in the lower panel, do not show the
same pattern, in that they do not appear to asymptote but continue increasing as
training progresses. There is also an indication of higher slopes in the preexposed
cues, but only in the first two training blocks. The data from the first two blocks
correspond to the data that were analysed above; analysis of the data from the final
three blocks is presented here. ANOVA performed on the conditioning scores, with
preexposure (preexposed or not), block and group (Same or Different) as factors
revealed no significant effects or interactions, largest F(1, 14) = 3.75, p = .07, MSe =
112.28 for the effect of group; neither the effect of block nor any interaction with
this factor was significant. This confirms the suggestion that response rates were at
asymptote during these final training blocks. A corresponding analysis for the slopes
revealed a significant main effect of block, F(2, 28) =5.21, p =.012, MSe = .001, npz =
.27, Cl = [.02, .47], confirming that slopes were still increasing, and this interacted
with preexposure and group, F(2, 28) = 6.52, p = .005, MSe = .001, npz =.32,Cl=[.04,
.51]; nothing else was significant, Fs < 1. The interaction was explored further with
two group x block analysis conducted on the slopes for the preexposed and

nonpreexposed cues. For the preexposed cues this revealed a significant main effect
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of block, F(2, 28) = 8.44, p = .001, MSe < .001, npz =.38, Cl = [.08, .56]; nothing else
was significant, largest F(1, 14) = 1.18, p = .30, MSe < .003. A corresponding analysis
for the nonpreexposed cues revealed nothing significant, largest F(2, 28) =2.31, p =
.12, MSe < .001. In other words, despite the fact that response rates had reached
ceiling in both preexposed and nonpreexposed cues, slopes continued to increase,
but only for the preexposed stimuli. This is not the pattern that would be predicted if
the higher levels of slope in the preexposed cues had been due to a ceiling effect in

responding to the novel CS.

INSERT FIGURE 9 ABOUT HERE

Thus the present results suggest that latent inhibition training does not
impair temporal control - but that in fact preexposure to a stimulus appeared to
enhance the ability of subjects to track the time to US delivery. Furthermore, in most
cases this was unrelated to the temporal distribution form or duration of the cue
that was preexposed - the effect was equally evident regardless of whether or not
the subjects are preexposed to the conditioning duration. Finally, we found no
evidence that the timing response function was an emergent property of differential
latent inhibition to the end of the cue - casting doubt on the suggestion that a CS
may be conceptualised as a fixed sequence of independently conditionable
elements. Even when the start of the conditioned CS had been preexposed but the
end was completely novel - which should foster greater conditioning to the end than
to the start of the CS - there was no evidence that this resulted in greater values of

slope. It should be noted that we were only able to manipulate exposure to the end
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of the cue, not to its onset, so it is still logically possible that our effects stemmed
from a differential loss of associability at the start of the preexposed stimuli. This is
particularly suggested in Experiment 2, for which the smoothed response rates in
each 1-s bin of the stimuli appeared lower in the preexposed than the novel cues at
the start of training, differences which disappeared in later portions of the stimulus
(top panel of Figure 4); however the other experiments did not show such a clear
pattern in this regard (top panel of Figures 2, 6 and 8). Moreover, if differential
exposure to the start of the CS could bias the response slope function, then one
might expect manipulations in exposure to the end of the CS to have a similar effect,
and yet we found no evidence of this in Experiment 3. Nonetheless, this possibility
must remain as a possible alternative interpretation of our results.

Of course our conclusion of better temporal control relies solely on the slope
measure employed in these studies. Although a greater difference in differential
responding between the start and end of the CS seems indicative of more accurate
timing, it would be far more convincing if we could demonstrate the effect with
different measures of timing ability (for example, the peak procedure). However,
obtaining good data from the peak procedure requires a considerable amount of
training, and in the current studies this would mean training beyond the point at
which latent inhibition had dissipated. Moreover, the peak procedure entails
introducing a significant number of longer, nonreinforced trials, which could
potentially create a context change, which would also attenuate the latent inhibition
effect.

These results do not fit easily within any theoretical framework. The only

associative models of conditioning that offer an explanation of timing do so by
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conceptualising stimuli in the componential manner we have described above, as (at
least in part) a fixed sequence of constituent elements (e.g. Sutton & Barto, 1990;
Vogel, Brandon & Wagner, 2003). In principle these theories could explain the
enhancement in temporal control after preexposure in terms of differential latent
inhibition in different portions of the CS. For example, Vogel et al. (2003) proposed a
specific componential way of describing the CS, but the learning rules they employed
are based on those of Wagner's SOP model. According to this account (e.g. Wagner,
1981; cf. McLaren & Mackintosh, 2002), latent inhibition occurs because the CS
comes to be predicted by other cues, either those of the experimental context or of
the stimulus itself; the stronger these associations the stronger the latent inhibition
effect. Moreover, the model can also predict that such associations will form more
effectively at the start of the stimulus. Wagner's SOP theory assumes that initial
presentation of the CS leaves the stimulus in an active state that is highly associable,
but with time it lapses into a secondary activation state in which it cannot act as a CS
or a US in excitatory associations. This would predict that both the experimental
context and elements of the stimulus itself will become more strongly associated
with the start of the CS than the end, resulting in the start of the CS suffering more
latent inhibition. But if such a mechanism were responsible for the enhancement of
temporal control produced by preexposure, one should be able to produce such
differential latent inhibition artificially, as we attempted in Experiments 3a and 3b.
Yet these manipulations appeared to have no effect on the slope of the response
function.

The alternative accounts of timing fare no better; for example, although the

temporal coding hypothesis (e.g. Barnet, Arnold & Miller, 1991) can, with added
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assumptions, explain latent inhibition, it regards timing as a by-product of
conditioning, rather than independent of it. Thus it is hard to see how preexposure,
which results in conditioning being less effective in producing the conditioned
response, should have the opposite effect on timing. Finally there is also, as we
noted above, a large class of time-based models that have been adapted to explain
conditioning effects - but it is not clear such accounts can predict latent inhibition,
let alone the effect of preexposure on timing. It seems our results present a
potential theoretical challenge to theories of both conditioning and timing effects.
In summary, many of the studies that seek to investigate how conditioning
and timing interact have focused on learning processes engaged during training that
involves reinforcement (e.g. Kirkpatrick & Church 1998; although see e.g. Savastano
& Miller, 1998). Although this focus has led to a rapid expansion in time-based
theories (see Kirkpatrick, 2014 for a recent review), learning phenomena such as
latent inhibition, where training occurs in the absence of reinforcement, have
tended to be neglected. In this sense the results presented above are completely
novel, and also challenging: theoretical models, irrespective of the tradition from
which they derive, are unable to adequately account for our findings. Nevertheless,
as noted by Kirkpatrick (2014), the speed at which models in the field are evolving

suggests that these findings may fuel further theoretical development.
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Table 1. In all experiments Group Same were preexposed to the conditioning

duration, whereas Group Different were not. In Experiments 1, 2 & 3a Group

Different experienced durations (variable (var) in Experiments 1 and 2, fixed (fix) in

Experiment 3a) that were either longer or shorter than, but never the same as, the

fixed durations experienced by Group Same. In Experiment 3b Group Different only

experienced durations that were shorter than those experienced by Group Same.

Total exposure duration was always identical in the two groups.

Experiment | Group Preexposure Conditioning

Same A (fix 40)

1 A (fix 40) ->food B (fix 40)->food
Different A (var 40)
Same A (fix 20) C (var 20)

2 A (fix 20) ->food B (fix 20)->food
Different A (var 20) C (fix 20) (fix 20) ->foo (fix 20)->foo
Same A (20) C(10,30)

20) - B (20)-

3a Different | A (10,30) C (20) A (20) ->food - B (20)->food
Same A (10, 40)

3b A (40) ->food B (40)-->food
Different A (25)
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Figure 1: Group mean difference scores (response rate during CS - response rate
during preCS period) for the preexposed (preexp) and novel (nov) CSs in each of the
five conditioning sessions (11-15) of Experiment 1. Error bars show standard error of

the mean.
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Figure 2: Group mean scores for Group Same (S) and Different (D) for the
preexposed (preexp) and novel (nov) CSs from the conditioning sessions (11-15) of
Experiment 1. Upper panel: Smoothed response rates in each 1-sec bin. Lower panel:

Slopes. Error bars represent standard error of the mean.
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Figure 3: Group mean difference scores (response rate during CS - response rate
during preCS period) for the preexposed (preexp) and novel (nov) CSs in each of the
five conditioning sessions (11-15) of Experiment 2. Error bars represent standard

error of the mean.
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Figure 4: Group mean scores for Group Same (S) and Different (D) for the
preexposed (preexp) and novel (nov) CSs from the conditioning sessions (11-15) of
Experiment 2. Upper panel: Smoothed response rates in each 1-sec bin of the
preexposed (preexp) and novel (nov) CSs. Lower panel: Slopes. Error bars represent

standard error of the mean.
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Figure 5: Group mean difference scores (response rate during CS - response rate
during preCS period) for the preexposed (preexp) and novel (nov) CSs in each of the
six conditioning sessions (11-16) of Experiment 3a. Error bars represent standard

error of the mean.
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Figure 6: Group mean scores for Group Same (S) and Different (D) for the
preexposed (preexp) and novel (nov) CSs from the conditioning sessions (11-16) of
Experiment 3a. Upper panel: Smoothed response rates in each 1-sec bin. Lower

panel: Slopes. Error bars represent standard error of the mean.
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Figure 7: Group mean difference scores (response rate during CS - response rate
during preCS period) for the preexposed (preexp) and novel (nov) CSs in each of the
four conditioning sessions (11-14) of Experiment 3b. Error bars represent standard

error of the mean.
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Figure 8: Group mean scores for Group Same (S) and Different (D) for the

preexposed (pre) and novel (nov) CSs from the conditioning sessions (11-14) of

Experiment 3b. Upper panel: Smoothed response rates in each 1-sec bin. Lower

panel: Slopes. Bars show standard error of the mean.
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Figure 9: Group mean scores for Group Same (S) and Different (D) for the
preexposed (preexp) and novel (nov) CSs from the total, ten conditioning sessions
(11-20) of Experiment 3b. The data are presented in 2-session blocks. Group mean
difference scores (response rate during CS - response rate during preCS period) for
the preexposed (preexp) and novel (nov) CSs. Lower panel: Group mean slopes for

preexposed and novel cues.



