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Abrasive micro-waterjet processing is a non-
conventional machining method that can be used
to manufacture complex shapes in difficult-to-cut
materials. Predicting the effect of the jet on the surface
for a given set of machine parameters is a key element
of controlling the process. However, the noise of the
process is significant, making it difficult to design
reliable jet-path strategies that produce good quality
parts via controlled-depth milling. The process is
highly unstable and has a strong random component
that can affect the quality of the workpiece, especially
in the case of controlled-depth milling. This study
describes a method to predict the variability of the
jet footprint for different jet feed speeds. A stochastic
partial differential equation is used to describe the
etched surface as the jet is moved over it, assuming
that the erosion process can be divided into two main
components: a deterministic part that corresponds to
the average erosion of the jet, and a stochastic part that
accounts for the noise generated at different stages
of the process. The model predicts the variability of
the trench profiles to within < 8%. These advances
could enable abrasive micro-waterjet technology as a
suitable technology for controlled-depth milling.
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1. Introduction2

Abrasive Waterjet (AWJ) machining is a non-traditional machining process that is being3

developed in order to manufacture complex 3D parts with difficult to machine materials. Like4

other non-conventional machining methods, AWJ machining, is a tool-free (i.e. utilises a jet5

plume instead of a contact tool) technique that is cost efficient [1], but also has other important6

advantages such as low cutting forces [2], a non existent heat affected zone, and the ability to7

erode almost any material, independent of its properties [3,4].8

The AWJ process consists of a high speed water jet that accelerates abrasive particles to9

velocities of up to 750m/s [5], depending on the pressure of the pump. The mixture of high-speed10

water and abrasive garnet particles is focused by a nozzle, and this produces a circular high-11

energy jet that can erode the target material. The erosion rate of the process and the shape that12

the jet leaves on the target during AWJ controlled-depth milling can be manipulated by varying13

several parameters, such as the mass flow rate of the abrasive particles, ṁa, the pressure of the14

pump, P, and the feed speed at which the jet is moved, vf . In order to produce a given 3D shape,15

it is therefore necessary to understand the effect of these parameters to determine how to move16

the jet. The limitations imposed by other factors, such as the jet size, which constrains the size17

of features that can be machined, must also be considered. An example of the problem is given18

in figure 1, showing how a single straight jet pass generates a trench. A single straight jet pass19

is regarded as the most basic entity that can be studied, since it is difficult to obtain an isolated20

footprint.21

Figure 1: Sketch of the generation of an abrasive waterjet milled channel. The trench is formed
by the jet as it moves over the workpiece.

The problem of predicting the depth of penetration or, more importantly, the shape of the jet22

footprint, has led to extensive research on predictive models for different abrasive jet processes.23
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A common approach is to use finite element models of multiple particles hitting the surface at24

high velocity [6–8]. These simulations are computationally expensive, which makes the models25

difficult to use when investigating how to machine parts with large features. Significant effort26

has also been put into the development of simplified surface evolution models based on partial27

differential equations to predict the effect of the jet on the workpiece, from early work [9], which28

is an attempt to estimate the effect of powder blasting on glass, to more advanced methodologies29

presented in [10,11]. The main advantage of this methodology is the ability to predict the jet30

footprint without using complex models, leading to more flexible frameworks that can potentially31

be used by the machine operator in real time. One of these alternatives is based on an evolution32

equation whose parameters can be estimated from a small amount of experimental data [11–13].33

The challenge addressed by these methods is to relate the operating parameters, particularly34

the feed speed of the jet, to the average profile of the jet footprint. However, AWJ milling is35

a highly fluctuating process, since several parts of the system undergo significant variations36

during the process. The pressure in the pump is constantly fluctuating, since it has an inherent37

pulsating nature, and this fluctuation affects the water, which influences the mass flow rate and38

the velocities of the abrasive particles when they are entrained into the jet stream. Moreover,39

the entrainment process of these particles into the water leads to instabilities that are ultimately40

reflected on the AWJ milled surface. These variations in the surface can be visualized in the41

example shown in figure 2, in contrast with the diagram of figure 1 where a smooth idealized42

trench is presented.43

Figure 2: Cross section of an AWJ milled trench, showing a distribution of profiles around an
average footprint. The trench was machined at P = 138MPa, vf = 41.67mm/s, ṁa = 0.5g/s, a
nozzle of diameter 0.5mm and garnet abrasive particles of mesh size #220.

The high variability observed in the etched surfaces means that average jet footprint44

predictions, as developed in previous research, cannot provide enough information about the45

system to understand the variabilities of 3D milled surfaces. Such variability has given rise46

to several modelling frameworks that have included stochastic methods to account for such47

fluctuations. An early method consisted of a unit-event based model [14], overlapping several48

damage events that account for impacts with different particle size, velocity and position using a49

probabilistic input. A later model used a similar unit-event framework by adding multiple single50
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particle impacts [15]. More advanced simulation frameworks were introduced for AWJ cutting to51

predict the quality of the cut [16,17]; the process variability is even more important for controlled-52

depth milling, since the fluctuations are directly transferred to the surface. This issue has also53

been addressed using finite element analysis [7,8,18,19], but these methods are computationally54

expensive and cannot be implemented into optimisation routines for designing jet-path strategies.55

None of these alternatives has attempted to estimate the inherent noise of the jet in order to take56

it into account in the surface evolution model. An alternative solution is proposed in [20], but the57

method requires the periodic performance of calibration channels to account for the fluctuations58

in the erosion rate. It is necessary to develop a system that runs independently after an initial59

calibration procedure that requires a minimum set of experimental tests.60

In this paper, a novel approach to predict the variability of the jet footprint at different jet61

feed speeds has been investigated. Furthermore, the proposed methodology aims at providing62

a procedure to estimate the parameters of the model using a reduced amount of experimental63

data. The use of stochastic partial differential equations provides a very flexible framework to64

model the fluctuations of surfaces etched using abrasive waterjet controlled-depth milling. The65

model can be solved numerically using Monte Carlo methods, but it can also be used to estimate66

the statistical information in simple jet passes by solving deterministic equations. This approach,67

together with previous investigations developed by Billingham et al. [13] on how to predict the68

average jet footprint, can readily be extended to larger features generated by multiple jet passes,69

enabling the use of AWJ milling to manufacture 3D complex parts in high performance materials70

with reduced variability. To generate such complex parts, it is necessary to find a jet path that71

will generate the desired shape. Since different strategies, such as random paths or parallel jet72

passes, can be used to obtain the same average surface, there may be more than one suitable path.73

However, each jet path will generate parts with different variability, and therefore a method to74

predict such variations is essential to choose the jet path that will produce optimum results.75

2. Stochastic modelling of AWJM76

An explanation of the proposed model is presented in this section. A short introduction of how77

to predict the evolution of the average jet footprint profile is presented first. Then, each of the78

elements that are proposed to model the fluctuations of the process are explained in detail.79

(a) Prediction of the average jet footprint80

The main idea of the model presented in [12] can be written as81

∂Z(X, t)

∂t
= Ψ(X,Z, t). (2.1)

The aim of using such a model is to determine how the surface of the workpiece Z(X, t), evolves82

when the jet, represented by an etching rate function Ψ(X,Z, t), moves over the surface. To obtain83

the final jet footprint profile, Z(X,T ), (2.1) is solved during the time, T , taken by the jet to84

complete a full pass over a certain line, usually taken as Y = 0 for convenience, as is illustrated85

in figure 3. This approach was extensively validated for multiple experimental parameters and86

is able to simulate overlapping jet passes and non-normal attack angles. The method was only87

designed to predict the average evolution of the system, and the limitations of this model are the88

main motivation of our work.89
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Initial
position

Final
position

t0 = 0 tf = Tvf

Y = 0

Y

X

Figure 3: A full jet pass over a given line is required to simulated the average jet footprint profile.

Taking advantage of the symmetry of the problem when modelling single straight jet passes, r90

is defined as the distance from a given point along Y = 0 to the centre of the jet at any time t,91

r2 =X2 + (vf t)
2. (2.2)

Equation (2.1) can then be rewritten as92

∂Z(X, t)

∂t
= µ(r)g(Z, t), (2.3)

where µ(r) is the etching rate function and g(Z, t) represents the nonlinear effects of the process.93

It has been found that for shallow trenches (i.e. large feed speeds), a linear model can be used to94

predict the average trench profile [21], and therefore the problem can be stated as95

∂Z(X, t)

∂t
= µ(r) for 0< t< T. (2.4)

As will be shown later, this can be inverted to obtain µ(r) by using experimental data from milled96

trenches performed at high feed speeds, Z(X,T ).97

(b) Stochastic model98

In order to cope with the variability of the process, a new framework, based on modelling the99

system using a stochastic partial differential equation is proposed. The proposed equation must be100

capable of accounting for different sources of fluctuations, such as the randomness of the particles101

within the jet and the variability of the pressure in the pump that leads to variations of the mass102

flow and velocities of the particles. In its most general form, this equation is103

dZ = µ(X, Z, t)dt+ f(X, Z, t) [dW (X, t) + dξ(t)] , (2.5)

where X = (X,Y ), µ(X, Z, t) is the deterministic erosion rate function, dW (X, t) represents an104

isotropic Gaussian random field with a given covariance structure (C) [22], dξ(t) is an Ornstein-105

Uhlenbeck process [23], and f accounts for the radial dependence of the variability. Therefore,106

the equation has two stochastic components, dW (X, t) and dξ(t), that model the noise during107

the process. Since the solution of (2.5) at a given time T is not deterministic, one can only study108

either single realisations or the statistical moments of the solution. The model has a deterministic109
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and a stochastic part that play different roles. On the one hand, the deterministic etching rate110

accounts for the average erosion power of the jet. On the other hand, the stochastic terms contain111

information regarding the varying part of the system, and can be used to model the properties of112

such variations. The advantages of this stochastic modelling approach are two-fold: (i) it is a more113

realistic modelling framework to investigate a system with uncertainties and fluctuations; (ii) it114

makes it possible to estimate the bounds of such fluctuations and thereby determine the expected115

quality of the machined features, providing a new tool for further research to minimise these116

deviations without performing extensive experimental tests. Each term of (2.5) will be described117

in detail in the following sections.118

(i) Definition of the random field119

The second term on the right-hand side of (2.5) is a Gaussian isotropic random field [22],120

dW (X, t), whose variables follow a standard normal distribution. The role of this term is to model121

the randomness of the particles within the jet, since it is known that their position within the jet,122

velocity, size and shape are random and this variability is transferred to the milled surface [19]. It123

is considered reasonable to use a Gaussian field to simulate the variability, although other options124

could be considered if there was information about the system that suggested otherwise. The125

field is stationary, so the mean is independent of the position within the jet, and the correlation126

between two points depends only on the distance between them. This correlation structure is used127

because the size of the abrasive particles, which are considered to be the main erosion entities, is128

comparable to the jet size [24]. The particles cannot therefore be considered as point masses, and129

the length-scale of the noise takes this issue into account. One of the assumptions of this model is130

that the random fields are not correlated in time, since the particles hit the surface independently131

in time. Furthermore, it is considered isotropic owing to the symmetry of the problem.132

Conceptually, these properties imply that the random values of points that are close to each133

other are not independent. Mathematically, this field can be decomposed using the eigenvalues134

and eigenfunctions of the correlation kernel, as stated by the Karhunen-Loève theorem [25]. The135

field dW (X, t) has a spectral decomposition:136

dW (X, t) =

∞∑
n=1

√
λnϕn(X, t)dζn(t), (2.6)

where λn and φn are the eigenvalues and eigenfunctions of the correlation kernel of the Gaussian137

random field, and dζn(t) are independent Wiener processes. An example of a realisation of a138

random, field with such characteristics is shown in figure 4a. It must be noted that the sum in139

(2.6) is truncated in order to compute a realisation of a given random field.140

(ii) Mean-reverting stochastic process141

Although the randomness of the particles plays a significant role in the variability of the milled142

trench, it is not the only feature of AWJ milling responsible for the large fluctuations observed in143

the milled surfaces. By modelling only these uncertainties, it was found in [19] that the noise is144

underestimated compared to experimental data. The approach presented here aims to be more145

general, providing mechanisms to account for different sources of fluctuations. For this purpose,146

an Ornstein-Uhlenbeck process is introduced to account for the variability caused by the random147

variations of the system, such as changes in the pressure or instabilities in the entrainment148

process. The term dξ(t) in (2.5) accounts for this process, and is given by149

dξ(t) = θ(ν − ξ(t))dt+ σdη(t). (2.7)

This is a mean-reverting stochastic process where θ, ν and σ are model parameters and dη is a150

Wiener process. An example of a realisation of an Ornstein-Uhlenbeck process is shown in figure151

4b.152
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(a) (b)

Figure 4: Stochastic structures used to model the variability during AWJM controlled-depth
milling. a) Realisation of a Gaussian random field with an exponential correlation kernel. b)
Example of an Ornstein-Uhlenbeck process.

(iii) Radial dependence of the variability153

The model described in this section can be used to predict the variability across the jet footprint154

at different jet feed speeds. However, the parameters of the model are unknown for a given set155

of experimental conditions. Following the ideas developed in [12,13], a framework to estimate156

such parameters from a small number of experimental tests is provided here. The potential of157

this method lies in its ability to calibrate these parameters quickly for any material, jet size,158

equipment and, eventually, other similar processes. A detailed explanation of how to perform159

such estimations is provided in the following section.160

3. Parameter Estimation161

We have developed a procedure to estimate the following attributes: i) the deterministic etching162

rate function, µ(r); ii) the parameters that affect the standard deviation across the trench, σ, θ, b1163

and b2; iii) the correlation structure of the Gaussian field, C. For this investigation, the jet feed164

speed has been restricted to a range where the evolution of the average trench profile has been165

found to be linear, as in [21]. One can then rewrite (2.5) as166

dZ = µ(r, t)dt+ f(r, t) [dW (X, t) + dξ(t)] . (3.1)

Using (3.1), the final surface after one jet pass can be predicted by integrating167

Z(X, T ) =

∫T
0
{µ(r, t)dt+ f(r, t) [dW (X, t) + dξ(t)]}. (3.2)

Since the solution of (3.2) is not deterministic, the required information can only be extracted by168

studying the expectations of this integral. The Itô interpretation has been used throughout this169

work, since the fluctuations that are modelled correspond to discrete pulses (i.e. particle impacts)170

that are independent from each other [26], and therefore information about future events is not171

known at any given moment.172
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(a) Etching rate function173

The etching rate function, µ(r), determines the mean erosion rate of the jet and can be found by174

using the average profile of a single trench [11]. It is therefore necessary to show how to recover175

this method when using a stochastic framework.176

Theorem 3.1. Taking the expected value of the etched surface, represented in (3.2), leads to177

E [Z(X, T )] =

∫T
0
µ(r, t)dt. (3.3)

This recovers the calibration procedure from previous work [12], and allows us to obtain the178

etching rate function µ(r), since the expectations of the two last terms on the right-hand side of179

(3.2) are each zero. The proof of theorem 3.1 is given in the Appendix A.180

(b) Estimating the variability181

The expected value of the surface does not provide information regarding the variability of the182

process. Taking the covariance makes it possible to estimate the other parameters of the model.183

Before doing this, remember that184

σ(X,Y ) =E [(X − E[X])(Y − E[Y ])] =E [XY ]− E [X]E [Y ] . (3.4)

In this case, these terms would be185

X =

∫T
0
µ(r, t)dt︸ ︷︷ ︸

a

+

∫T
0
f(r, t)dξ(t)︸ ︷︷ ︸

b

+

∫T
0
f(r, t)dW (X, t)︸ ︷︷ ︸

c

, (3.5)

and186

Y =

∫T
0
µ(r′, t)dt︸ ︷︷ ︸

a’

+

∫T
0
f(r′, t)dξ(t)︸ ︷︷ ︸

b’

+

∫T
0
f(r′, t)dW (X ′, t)︸ ︷︷ ︸

c′

. (3.6)

In order to compute σ(X,Y ), it is necessary to study187

E [XY ] =E
[
(a+ b+ c)(a′ + b′ + c′)

]
, (3.7)

where the crossed terms are symmetric, such as E
[
ab′
]
=E

[
ba′
]
. This can be addressed term by188

term:189

(i) E
[
aa′
]

190

E
[
aa′
]
=E [X]E [Y ]; (3.8)

and this will cancel out with E [X]E [Y ] in (3.4).191

(ii) E
[
ac′
]

192

E
[
ac′
]
=E [a]E

[
c′
]
+ σ(a, c′) = 0 (3.9)

since E
[
c′
]
= 0 and σ(a, c′) = 0. The same reasoning applies to E

[
bc′
]

and E
[
ab′
]
.193

(iii) E
[
cc′
]

194

This term, which contains the correlated random field, has to be studied carefully. It195

is easier to analyse the simple case of a non-correlated field first, and then include the196

correlation structure.197
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Theorem 3.2. If dW (X ′) is a non-correlated Gaussian random field, then198

E
[
cc′
]
=E

[∫T
0
f(r, t)dW (X, t)

∫T
0
f(r′, t)dW (X ′, t)

]

=

∫T
0
f(r, t)f(r′, t)dt

(3.10)

The proof of theorem 3.2 is shown in Appendix B. Equation (3.10) is useful because it199

provides a mechanism to estimate the covariance matrix in this particular case without200

solving any stochastic integral. However, since an assumption of the model is that the201

random field has a correlation structure, it is necessary to investigate how (3.10) behaves202

in this case.203

Theorem 3.3. If dW (X′) is a correlated Gaussian random field,204

E
[
cc′
]
=

∞∑
n=1

λn

∫T
0
ϕn(X, t)ϕn(X

′, t)f(X, t)f(X ′, t)dt. (3.11)

where ϕn and λn are the eigenfunctions and eigenvalues of the Karhunen-Loève expansion shown205

in (2.6).206

The proof of theorem 3.3 is given in Appendix C.207

(iv) E
[
bb′
]

208

Theorem 3.4. The expression209

E
[
bb′
]
=E

[∫T
0
f(r, t)dξ(t)

∫T
0
f(r′, t)dξ(t)

]
, (3.12)

where dξ(t) is an Ornstein-Uhlenbeck process, can be written as210

E
[
bb′
]
= σ2e(−2θ

∫T
0
f(r,s)ds)

(∫ t
0
eθ

∫t
0
f(r,s)dseθ

∫t
0
f(r′,s)dsf(r, t)f(r′, t)dt

)
. (3.13)

The proof of theorem 3.4 is provided in Appendix D.211

Note that X and X ′ are points along a profile over which the jet has completely passed, such212

as the red line shown in figure 3. This provides enough information to compute the variance, since213

all the points along the chosen profile have been affected by a full jet pass; and for the correlation214

between different points, making it possible to establish the relation between a set of points that215

have been fully impinged by the jet. Therefore, this mechanism makes it possible to compare216

the estimated covariance structure from either experimental and simulated data with an estimate217

obtained by solving a simple deterministic integral. Furthermore, using single profiles to estimate218

the covariance structure is a significant advantage, since the same data can be used to estimate219

the etching rate and other statistical parameters of the problem at the same time.220

Both functions µ and f are assumed to be functions of r, the distance to the centre of the jet.221

The equation to be solved in order to estimate the model parameters for the variability is then222

σ(Z,Z′) =E
[
cc′
]
+ E

[
bb′
]

=

∞∑
n=1

λn

∫T
0
ϕn(X, t)ϕn(X

′, t)f(X, t)f(X ′, t)dt+

σ2e(−2θ
∫T
0
f(r,s)ds)

(∫ t
0
eθ

∫t
0
f(r,s)dseθ

∫T
0
f(r′,s)dsf(r, t)f(r′, t)dt

)
.

(3.14)

The function f(r) can be estimated using only the variance223
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V ar(Z) =

∫T
0
f(r, t)2dt+

σ2e(−2θ
∫T
0
µ(r,s)ds)

(∫T
0
e2θ

∫t
0
µ(r,s)dsµ(r, t)2dt

)
.

(3.15)

Once f(r) is known, the correlation length-scale can be determined making use of the full224

covariance matrix. Both (3.14) and (3.15) can be computed numerically. The strength of this225

framework resides in developing a non-stochastic expression for the covariance matrix that226

accounts for the erosion process, making it possible to use AWJ milled trenches to estimate the227

process variance, f(r), and use it to generate complex shapes. Note that the expected value and228

the covariance can be estimated for single straight passes, but more complex features could be229

investigated approximating (3.2) numerically with the Milstein method [27], and using Monte230

Carlo methods to study the expectations of the generated surface.231

4. Application to abrasive waterjet machining232

The explanation of the model has been kept as generic as possible so far in order to provide a233

consistent framework that could be extended to other problems in energy beam processing [28].234

In this section, the model is illustrated for AWJ milling.235

(a) Correlation structure of the Gaussian random field236

The correlation kernel for the random field is assumed to be Gaussian, since it is expected that237

points that are further away than the size of the particles will have no correlation. This kernel can238

be written, for one dimension, as239

K(x, x′) = e−ε
2(x−x′)2 . (4.1)

The eigenvalue problem for this kernel is240 ∫a
−a

e−ε
2(x−x′)2φ(y)dy= λφ(x), (4.2)

and it can be solved analytically [29]. The eigenvalues are given by241

λi =
αε2n(

α2

2

(
1 +

√(
1 +

(
2ε
α

)2)
+ ε2

))0.5+n
, (4.3)

and the eigenfunctions have the form242

φi(x) =

8

√
1 +

(
2ε
α

)2
√
2nn!

e
−
(√(

1+( 2ε
α )2

)
−1
)
α2x2

2
Hn

 4

√
1 +

(
2ε

α

)2

αx

 (4.4)

with the local length-scale parameter ε, the weigh function ρ(x) = e−α
2x2

that localizes the243

eigenfunctions, and the Hermite polynomials Hn. Since the two-dimensional exponential kernel244

is separable, these 1D results can easily be extended to 2D. The correlation kernel can be written245

as246

C(X,X ′) = e
−
(
ε21(X1−X′

1)
2
+ε22(X2−X′

2)
2
)
, (4.5)

and the eigenvalues and eigenvectors from (4.3) and (4.4) can be used to construct the solutions247

for the multidimensional case,248

φj(X) = φ1i (X1)φ
2
k(X2) , λj = λ1i λ

2
k. (4.6)
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For this model, it is assumed that ε= ε1 = ε2. These assumptions result in a problem that249

depends on the correlation length-scale, ε, while the global parameter α is chosen according to250

the size of the system.251

(b) Radial dependence of the variability252

Since the spatial distribution of particles within the jet is known to be Gaussian [5], a similar253

behaviour is expected for the variability. For this reason, the function f(r; t) has been chosen to254

be Gaussian,255

f(r) = b1e
−2b2(r)2 , (4.7)

where r= r(X; t) has been defined in (2.2). Then, replacing (4.6) and (4.7) in (3.14), and using256

the truncated Karhunen-Loève expansion, one can compute explicit expressions to estimate the257

variance and the covariance. The estimation procedure is then:258

(i) Estimate Cov(Z(X, T ), Z(X ′, T )) using experimental data.259

(ii) Compare these data with the predicted variance, and thereby determine four parameters:260

b1 , b2, θ and σ. This optimization can be performed using a global search method,261

DIRECT-L [30], followed by a local optimization using COBYLA [31] to improve accuracy.262

This can be carried out minimising the cost function263

J1(b1, b2, θ, σ) = ||V arexp(Z)− V arsim(Z)|| , (4.8)

where V arsim(Z) is given by (3.15).264

(iii) Find the correlation length scale, ε−1, that minimises the cost function265

J2(ε
−1) =

∣∣∣∣Covexp(Z,Z′)− Covsim(Z,Z′)
∣∣∣∣ , (4.9)

where Covsim(Z,Z′) is given by (3.14).266

Although computing the covariance can be expensive (i.e. around 40 minutes, although this267

depends strongly on the initial guess), the possibility of computing the variance without taking268

the correlation into account makes it possible to perform the optimization within a reasonable269

time, up to 8 times faster than in the full case. With the tools explained in previous section, it270

is now possible to make use of the model to predict the variability of abrasive waterjet milled271

footprints.272

5. Experimental methodology273

The machine used to generate the experimental data for this work is a Microwaterjet 3-axis274

machine developed by Waterjet AG, which can be used with several cutting systems with nozzle275

diameters from 0.2 to 0.8mm. The equipment is designed to perform high accuracy cutting276

operations (6 0.01 mm), and a positioning accuracy of ±0.003mm. The chosen system has a277

jet diameter of 0.5mm, and is used for this research because of its reduced size compared to278

conventional AWJ nozzles, which are 0.78mm or larger, good repeatability in producing circular279

jets and stability at low pressure (i.e. < 200MPa). These conditions make this equipment ideal to280

test the mathematical concepts presented here. The pressure of the system is provided by a KMT281

streamline SL-V100D ultra-high pressure pump, with a pressure range from 70 to 400MPa.282
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In order to perform AWJ controlled-depth milling, relatively low pressure to control the283

erosion power of the jet was used. For this reason, and based on preliminary experimental work,284

the pressure is set to 138MPa throughout this testing programme. The abrasive particles used285

for this study are BARTON HPX #220.The reliability of the surface measurements is enhanced by286

measuring the milled features in-situ; this significantly reduces the alignment errors that might be287

introduced by moving the workpiece after milling. The channels are measured using a white light288

interferometer with a measurement range of 1.1mm, a spot size of 8µm and an axial resolution of289

25nm. The experimental setup is shown in figure 5.290

Figure 5: Abrasive microwaterjet machine used to perform experimental tests to validate the
model.

P (MPa) 138
ṁa(g/s) 0.5

Nozzle diameter (mm) 0.5
Abrasive mesh size 220

vf (mm/s) 25.00 - 58.33

Table 1: Operating parameters used to calibrate and validate the model.

The model was validated by performing experimental tests on a Titanium based alloy (Ti-6Al-291

4V). The objective of the validation step is to show that by performing two sets of jet passes,292

one at high speed (58.33mm/s) and another at low speed (25mm/s), it is possible to predict the293

variability of the jet footprint at any feed speed within this range. The operating parameters used294

for validation are shown in table 1. In order to gather consistent information on the process, each295

set of parameters has been repeated 10 times, performing jet passes of 70mm length. Figure 6296

shows an example of an abrasive waterjet machined trench and an example of the surface data.297
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Figure 6: Example of one sample with several jet passes. The surface is scanned to extract 3D data
of the abrasive waterjet footprint profiles from experimental data.

The method described in sections 2 and 3 is:298

(i) Perform two jet passes at the highest and the lowest feed speeds.299

(ii) Use the average profile of the shallow trench to estimate the etching rate function, µ(r).300

(iii) Calibrate the parameters of the variability, b1; b2; θ; and σ; using (3.15).301

(iv) Using the expression in (3.14), compute the covariance matrix using the data of the302

shallow trench to estimate the correlation length-scale parameter, ε.303

(v) Perform jet passes at different feed speeds within the proposed range to test the304

predictions performed by the model solving (3.3) for the average profile and (3.15) for305

the variability.306

Note that the last step could also be carried out by performing Monte Carlo simulations solving307

(3.2) numerically. This approach is computationally more expensive, but it can be used to simulate308

larger features with complex jet-paths.309

6. Results and discussion310

The model has been implemented in C++ with extensive use of the linear algebra library311

Armadillo [32] and the optimization package NLopt [33]. This implementation has been312

developed to approximate numerically the integrals in (3.14) and (3.15), and therefore compute313

and minimize the cost functions (4.8) and (4.9) to estimate the parameters of the model. After this,314

the results for single jet passes can be either estimated using (3.14) and (3.15), or alternatively315

using Monte Carlo methods to evaluate (3.2). The computation time required to perform a316

complete test, including calibration and validation of the model is less than 10 minutes with317

a standard computer. This running time is similar to the one required in [12], and could be318

improved drastically by investigating alternative methods to estimate the parameters. Hence,319

the framework developed in this investigation provides a method to predict the jet variability,320

together with the average footprint profile, without increasing the computation costs. This321

technique could therefore be implemented in CAD/CAM applications to enable the improvement322

of the quality of abrasive waterjet milled surfaces.323

In order to test the validity of the model, the results have been compared from different324

perspectives. First, numerical results comparing the predicted and experimental variability of the325
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footprint using the full data set are shown; this includes a comparison of the covariance matrices.326

Second, the statistical properties of single profiles are compared to determine whether the model327

is adequate to describe the effect of the erosion process on the surface. Third, a discussion of328

the effectiveness of the calibration procedure is provided, focusing on how the model depends329

on the quality of the experimental data, since the prediction of the variability can be affected if330

anomalous results are used to estimate the parameters of the model. The values of the parameters331

of the model used is shown in table 2.332

b1 (mm/s) 8.47977

b2

(
mm−2

)
9.41678 · 10−2

σ 8.3552 · 10−2

θ 8.3249 · 10−2

ε−1 (mm) 0.1241

Table 2: Parameters of the model.

(a) Validation of the model333

The results of the model have been tested using 10 sets of milled channels at different feed speeds,334

as shown in table 1. Figure 7 shows the comparison of the average waterjet footprint profile at335

different jet feed speeds. The use of a linear model provides a good estimation of the average336

shape of the footprint, although this may need to be adapted for different materials or more337

complicated features; previous examples [12,13] show how this may be carried out.338

Figure 7: Average kerf profiles at different feed speeds. The shadowed area represents the
standard deviation of the experimental trenches.
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The profiles of the standard deviation across the jet are shown in figure 8a, suggesting that the339

fluctuations of the process can be estimated reasonably well. This is a promising result because340

it implies that the noise can be quantified numerically and, at the same time, the profile of such341

fluctuations can be predicted in advance. This could be potentially used to design smarter jet-342

path strategies that take the surface quality into account. It must be noted that the shape of343

the predicted noise profiles differs from the observed ones near the edges of the trench; this is344

influenced by the choice of f(r), and, therefore, it can be improved by estimating it numerically345

or finding more appropriate functions. Figure 8b shows the value of the integral of the profiles346

shown in figure 8a. This is shown to evaluate how the model performs in order to estimate the347

total noise of the process for single jet passes. It is observed that the model can predict this pattern348

successfully within the range of jet feed speeds presented here.349

The results shown in this section show that the model successfully captures the dependence of350

the standard deviation of the jet footprint on the jet feed speed. The prediction is better at higher351

jet feed speed, and this suggests that there may be non-linear effects below vf = 25mm/s that352

affect the noise when the aspect ratio is larger. This is a limitation of the model presented here,353

and it shows that controlled-depth milling at low jet feed speeds results in large fluctuations,354

making the process difficult to control and therefore not applicable for industrial manufacturing.355
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(a)

(b)

Figure 8: Comparison of predicted and experimental variance at different jet feed speeds. a)
Profile of the variance across the jet footprint. b) Evolution of the uncertainty of the trench profile
with the jet feed speed.
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(b) Properties of the milled surface356

The proposed framework has been proven to be adequate to predict the variability across the jet357

footprint. Another aspect that the model takes into account is the correlation between different358

points in the workpiece, as explained in section 2(b)i, since the capability of predicting the359

statistical properties of the surface is important. Figure 9a shows the estimated covariance matrix360

from a single experimental jet pass, and this can be compared to the estimated covariance from361

the simulated case. It is observed that the model successfully captures the correlation between362

different points within the surface using an exponential correlation kernel. It must be noted that363

this feature could be changed if the process showed different properties, either by using a different364

kernel or by estimating the correlation structure from experimental data.365

(a)

(b)

Figure 9: Comparison of predicted and experimental covariance of abrasive waterjet milled
trenches with a jet feed speed vf = 58.33mm/s. a) Experimental covariance matrix. b) Predicted
covariance with an exponential correlation kernel.

The introduction of the correlation is a key element of predicting statistical information of the366

etched surface, and this feature can provide an insight into the suitability of the process for a given367

application by taking into account such information. However, it must be noted that including368

this effect has a significant computational cost, and it could be removed if it was not relevant for369

a particular problem.370
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(c) Dependence of the method on available data371

The proposal of a stochastic model for AWJ milling acknowledges the high variability inherent372

in the process. The method provided to estimate the parameters of the model relies on the use373

of good quality data to yield the right set of parameters. However, performing only two jet374

passes at different speeds does not yield significant information, since single realisations of non-375

deterministic processes are not meaningful. Figure 10 shows the average results obtained with376

10 data sets, as in figure 8b, together with the experimental result of each individual data set.377

The risk of using a single set of results is clear from the observation of single sets. In figure378

10f, the model would underestimate significantly the noise at low speeds, and this would cause379

an underestimation of the variability for higher jet feed speeds because this result is used for380

calibration. A different case, in 10g, shows that the variability at vf = 50mm/s is lower than at381

vf = 58.33mm/s. Should this jet feed speed interval be the velocity range of interest for a given382

problem, an anomalous result such as this one would yield a completely opposite outcome from383

the pattern that is expected of this process and, eventually, would give unsatisfactory results.384

The purpose of this comment is to explain the limitations of the model, since dealing with385

a stochastic system in a manufacturing process implies that the uncertainties may lead to386

unexpected results in some cases. By using techniques to predict the variability, such as the387

method presented in this paper, one can develop techniques to minimize this risk. At the same388

time, it reinforces the idea that quality and amount of data used for calibration is important, and389

this must be taken into account when implementing a methodology that includes this model.390

Figure 10: Comparison of the average results with individual data sets.
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7. Conclusions391

In contrast to conventional methods that aim to predict the mean depth-of-cut or kerf profile,392

the work presented here proposes a new mathematical framework that is appropriate not only393

to describe the average outcome of AWJ controlled-depth milling, but also for predicting the394

variability of an AWJ machined surface for different operating parameters. The model developed395

in this paper makes it possible to relate theoretical and experimental aspects of the variability396

of the process and it can be implemented into the most advanced AWJ machines to generate 3D397

free-forms with the existing technology. By accounting for the stochastic nature of the process,398

this new approach presents a more realistic model for AWJM since it can be used to enhance the399

capabilities of current AWJ machines by choosing jet path strategies that minimise the variability.400

Moreover, since the model is based on a stochastic partial differential equation that represents the401

evolution of a surface when it is affected by an energy beam, it could be extended to other energy402

beam processing methods. The main conclusions of this work are:403

• Stochastic partial differential equations have been successfully used to reproduce the404

statistical properties of an AWJ etched surface. This provides a consistent mathematical405

framework to predict the variability of AWJ milled trenches to within < 8% error, and406

gives us a tool to overcome one of the most important limitations on this growing407

technology.408

• The combination of correlated Gaussian random fields with a mean reverting stochastic409

process makes it possible to model the different sources of fluctuations in the process,410

such as the randomness of the impact of the abrasive particles and the noise caused by411

the equipment.412

• The development of a new model calibration procedure proves that using the same413

data required to estimate the etching rate function, one can evaluate the variance and414

the correlation length-scale of the process. This maximises the amount of information415

extracted from the experimental data.416

• The use of this method not only makes it possible to predict quantitatively the variability417

of the AWJ milled surfaces for different feed speeds, but also provides a method to418

generate simulated surfaces with similar statistical properties to the experimental ones.419

• This framework is a significant achievement in AWJ machining research, and for other420

energy beam processes, since its implementation into jet-path generation routines can421

help improve the surface quality with existing machines. Since it is a simplified approach,422

it has the advantage of being a fast prediction tool compared with other approaches,423

such as finite element analysis or artificial intelligence methods. Compared with other424

deterministic approaches, this framework could potentially be used to complement425

monitoring methods by including control of the fluctuations of the system, obtaining426

online information about the deviation from the expected machined surface without427

surface measurements.428

Further research is required to integrate this method into modelling frameworks to simulate429

overlapping jet passes and, eventually, into optimization routines to find the most suitable jet-430

paths to enhance the surface quality after the machining process by minimizing the variability of431

the etched features.432
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Appendix A.449

Proof. To prove that the expected values of the stochastic terms in (3.2) are zero, we can analyze450

them independently. Since dW (X) is a correlated Gaussian random field as discussed in section451

i, it has a spectral decomposition given by (2.6). The expected value of this term is therefore452

E

[∫T
0
f(Xi, t)dW (Xi, t)

]
=E

[∫T
0

∞∑
n=1

√
λnϕn(Xi, t)f(Xi, t)dζn(t)

]

=

∞∑
n=1

√
λnϕn(Xi, t)E

[∫T
0
f(Xi, t)dζn(t)

]
,

(A.1)

It can be then shown that, if f is bounded,453

E

[∫T
0
f(Xi, t)dζn(t)

]
=

∫T
0
f(Xi, t)E [dζn(t)] = 0, (A.2)

since dζn(t) represents a Wiener process, therefore proving that the expectation of the term454

representing the random field is zero. The same reasoning can be used for the other term, by455

taking into account that456

E [dξ(t)] = 0, (A.3)

when its mean, ν, and initial value are zero.457

Appendix B.458

Proof. Assume that dW (X ′, t) is uncorrelated noise, and define459

ε=E

[∫T
0
f(X, t)dW (X, t)

∫T
0
f(X ′, t)dW (X ′, t)−

∫T
0
f(X, t)f(X ′, t)dt

]
. (B.1)

It must be proved that ε= 0 [34]. For this, we rewrite it in its discrete form460

ε=E

∑
k

f(X, tk−1)∆Wk

∑
j

f(X ′, tj−1)∆Wj−

∑
k

f(X, tk−1)f(X
′, tk−1)∆tk

] (B.2)

Now decompose the first term on the right-hand side into three terms:461

i)
∑
k<j f(X, tk−1)f(X

′, tj−1)∆Wk∆Wj ,462

ii)
∑
k>j f(X, tk−1)f(X

′, tj−1)∆Wk∆Wj ,463

iii)
∑
k=j f(X, tk−1)f(X

′, tk−1)∆W
2
k .464

The first term can be rearranged as465

E

∑
k<j

f(X, tk−1)f(X
′, tj−1)∆Wk∆Wj

=
∑
k<j

E
[
f(X, tk−1)f(X

′, tj−1)∆Wk∆Wj

]
(B.3)

To simplify, we define466

A= f(X, tk−1)f(X
′, tj−1)∆Wk, B =∆Wj . (B.4)

The expected value of a product is therefore467
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E [AB] =

∫ ∫
abp(a, b)dadb, (B.5)

where the joint probability distribution, p(a, b), has the form p(a)p(b) if A and B are468

independent. Since (B.3) has k < j, ∆Wk and ∆Wj are independent, while the functions f are not469

relevant since they are deterministic. As a result, (B.5) can be written as a product of expectations,470

E[A]E[B] and, by definition,471

E [B] =E
[
∆Wj

]
= 0. (B.6)

The same steps can be followed to prove the same result for the term ii. This simplifies (B.2),472

which becomes473

ε=E

[∑
k

f(X, tk−1)∆Wkf(X
′, tk−1)∆Wk−

∑
k

f(X, tk−1)f(X
′, tk−1)∆tk

]
.

(B.7)

Taking the deterministic functions out of the expectation gives474

ε=
∑
k

f(X, tk−1)f(X
′, tk−1)E

[
∆W 2

k

]
−

∑
k

f(X, tk−1)f(X
′, tk−1)∆tk,

(B.8)

and finally ε= 0, since E
[
∆W 2

k

]
=∆tk, proving Theorem 3.2.475

476

Appendix C.477

Proof. Equation (3.10) can be rewritten using the Karhunen-Loève expansion as478

E [cc′] =E

[∫T
0
f(X, t)

∞∑
n=1

√
λnϕn(X, t)dζn(t)

∫T
0
f(X ′, t′)

∞∑
n′=1

√
λn′ϕn′(X ′, t)dζn′(t)

]
.

(C.1)
This can be manipulated to get479

E [cc′] =E

[∫T
0

∫T
0

∞∑
n=0

∞∑
n=0

f(X, t)f(X ′, t′)
√
λn
√
λn′ϕn(X, t)ϕn′(X′, t)dζn(t)dζn′(t)

]
, (C.2)

and, using the linearity of the expectation,480

σ(Z,Z′) =
∞∑
n=0

∞∑
n=0

√
λn
√
λn′E

[∫T
0

∫T
0
ϕn(X, t)ϕn′(X ′, t)f(X, t)f(X ′, t′)dζn(t)dζn′(t)

]
.

(C.3)
Now, we can obtain equation (3.11) using (3.10) and taking into account that the eigenvectors are481

orthonormal.482

Appendix D.483

Proof. In order to compute this term, we must be able to determine the integral484
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I(T ) =

∫T
0
f(r, t)dξ(t). (D.1)

This can be done by looking at the solution of a more general stochastic differential equation,485

dXt = {a1(t)Xt + a2(t)}+ b2(t)dη(t). (D.2)

The solution for this can be obtained using the change of variable486

d(lnXt) = a1(t)dt, Φt,t0 = exp

∫ t
t0

a1(s)ds, (D.3)

and applying Itō’s lemma to get487

dYt = a2(t)Φ
−1
t,t0dt+ b2(t)Φ

−1
t,t0dη(t), (D.4)

with488

U(t, x) =Φ−1t,t0x, Yt =U(t,Xt), (D.5)

which has the integral form489

Xt =Φt,t0

{
Xt0 +

∫ t
t0

a2(s)Φ
−1
s,t0ds+

∫ t
t0

b2(s)Φ
−1
s,t0dη(s)

}
. (D.6)

We take490

a1(t) =−θf(t) a2(t) = 0 b2(t) = σf(t), (D.7)

and, since Xt0 = 0,491

Xt = σΦt,t0

{∫ t
t0

f(s)Φ−1s,t0dη(s)

}
. (D.8)

Using (D.8), (3.12) becomes492

E
[
bb′
]
= σ2Φ2

T,0 E

[∫T
0
f(r, s)Φ−1s,0dη(s)

∫T
0
f(r′, s)Φ−1s,0dη(s)

]
. (D.9)

Moreover, replacing493

γ(r, s) = f(r, s)Φ−1s,0, (D.10)

it is easy to see that (D.9) can be rewritten as494

E
[
bb′
]
= σ2Φ2

T,0 E

[∫T
0
γ(r, s)dη(s)

∫T
0
γ(r′, s)dη(s)

]
, (D.11)

and this expression is similar to (3.10). From this, we can obtain (3.13) by replacing γ(r, s) and495

Φ.496
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