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Abstract—The second part of this paper presents an A. Predictive Current Control
overview of different control strategies and applicationsfor
matrix converters (MCs) where predictive control techniques In the group of PCC, different have been the imple-
are applied. It will be shown that predictive control is @ antations which are focused to specific applications and

promising alternative to control MCs due to its simplicity S . .
and flexibility to include different constrains in the con-  OPj€ctives. The basic PCC strategy has been presented in

trol for different industrial applications such as renewable  the first part of this paper, where only the load current is
energies, grid interconnection, multi-drives systems cdrol,  controlled [2]. In this case, the cost function includesyonl
among others. In addition, some limitations and weaknesses the error between the load current references and their
of predictive control in MCs such as variable switching — oqhactive predictions but the source currents are highly

frequency, high dependence on the predictive model quality S .
and high computational cost, will be discussed as well as distorted, which is an undesired performance for the MC.

some future trends in control strategies and its applicatie  For this reason, in order to improve the input current

to other topologies or loads. behavior, a new term is included in the cost function,
| ndex Terms—Matrix Converter. Direct Matrix Converter where an instantaneous reactive input power minimization
Indirect Matrix Converter, Power Control, Predictive Con- IS considered, as reported in [3]-[17]. The control scheme
trol, Control Strategies, AC-AC conversion, Modulation  with this implementation is detailed in Fig. 2, where the
Schemes cost function is now defined as:
gk +1) = LNip +7,0Q @
|. INTRODUCTION with Ai, = [if — i8| + |if — ¥ + |if — i2], and AQ =

|Q* — (vsalisp — Vspisa)|. By including this new term, a
Model predictive control (MPC) offers a flexible and significant improvement of the input current performance
better alternative for the control of electrical energytwit is obtained while maintaining the good behavior of the
power electronics converters. This new approach takel®ad current. An important issue here is the weighting
into consideration the discrete and nonlinear nature ofactor selection. There are some guidelines to determine
power converters and drives and promises to have a stronpis value which can be reviewed in [18]. By including the
impact on control in power electronics in the near future.instantaneous reactive power minimization on the input
In the second part of this paper, a review of severakide, is possible to obtain unity power factor. However,
predictive control schemes proposed for different topoloone interesting issue that have been observed is that
gies of MCs and their applications will be presentedthe PCC with reactive power minimization method is
It will be demonstrated that these techniques can beery sensitive to the distortion of the source voltage and
easily implemented by taking advantage of the availabléhe resonance of the input filter and thus, this affects
technologies of digital signal processors. Also limitago the output waveform distortion level, particularly when
and/or weaknesses in a comparison to conventional cottarmonic distortion is existing in the source voltage. One
trol concepts as well as open questions and future trendirawback in the operation of a MC with predictive control
are discussed in the final part of this paper. is the variable switching frequency. Because at every
sampling time is selected a switching state to be applied
to the converter, is possible to have the same optimal
Il. PREDICTIVE CONTROL STRATEGIES AND state for a while, which will produce a variable switching
APPLICATIONS FORMATRIX CONVERTERS frequency and thus, a spread spectrum. This variable
switching frequency, along with disturbances in the source
Based on the review done by the authors, there areoltage, could produce a resonance in the input filter
several implementations of predictive control applied togenerating high distortion on the input current which are
MCs. As indicated in Fig. 1, the most relevant techniqueslso reflected in the output current due to the direct con-
correspond to predictive current control (PCC) and predicnection between input and output sides of the converter. In
tive torque control (PTC). It is possible also to find someorder to solve this problem, in [19]-[22], an input filter
implementations of predictive reactive/active power con+esonance mitigation have been proposed, based on the
trol (PPC), and predictive voltage control (PVC) where ancontrol scheme presented in Fig. 3. Active damping is
LC filter is considered in the output side of the convertera control approach used for achieving an attenuation of
[1]. the resonance, which avoid the disadvantages of using
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Fig. 1. Predictive control strategies applied to MCs.
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Fig. 2. Block diagram of the predictive current control &gy with

; Ao A Fig. 3. Block diagram of the predictive current control &gy with
instantaneous reactive input power minimization.

active damping implementation.

passive damping which has a negative impact on system

efficiency. The main idea of this implementation is toin the predictive control algorithm. Another alternative,
emulate a virtual resistor, which is immune to system pathat minimizes the instantaneous reactive power without
rameter variations, in parallel to the capacitor of the inputhe use of active damping, is to force the source current
filter for reducing the harmonics level without affecting to follow a sinusoidal reference value, regardless the
the first harmonic component. The power converter drawgistortion level at the input side. The block diagram of
a damping current that is proportional to the capacitothis new control method is presented in Fig. 4 and the
voltage. Then, the active damping approach in the matrigost function is defined as:

converter is achieved by passing the harmonic component A .

effects existing in the input side to the output side of glk+1) = Bio + 7ildis 2)
the converter, adding this effect on the reference valuavhere Aiy = |i*, — ¥ ,| + |itg — iP5| + |ifc — 2.

of the output current. For this case, is used the samRBResults shown in [10], [14], [23]-[29] demonstrated that
cost function defined in eq. (1), and the only differenceby imposing a given waveform for the source current,
is given by the way that the output current reference ist is possible to obtain a better performance than an
obtained. As reported in [19]-[22], the performance ofinstantaneous reactive power minimization, reducing the
the system is improved, mitigating the resonance of théotal harmonic distortion (THD) of both input and load
input filter and obtaining a more sinusoidal source currentcurrents, reducing the resonance of the input filter and
This strategy reduces also the power losses comparirmpnsequently, extending the capacitors life-span. The
to the method with resistive damping. The cost of suctsource current reference and its amplitude are obtained
improvement is an inclusion of additional virtual resistorsuch as reported in [10], [14], [23]-[29], and they are
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Fig. 5. Block diagram of the predictive current control &gy for

Fig. 4. Block diagram of the predictive current control &gy with torque and flux control with minimization of the input reaetipower.

imposed sinusoidal input waveform.

converter will have a cost. Therefore, the controller will

defined by: select as optimal, the switching state that involves and
AV + /W22 — 4AR; R, 12/ produces less commutations. With the goal to reduce the

I = TR (3)  switching losses of the converter, a variation for the PCC
method was proposed also in [30]. The idea of this tech-

where\ = 1 — 87 f2CyLy. nique is to predict not only the number of commutations,
i* 4 = I, sin(wst + 0) but also the switching losses that the switching of the

iy = I, sin(wt — 27/3 + 0) (4) Power converter would prqduce, 'and. then', include that

i*o = I, sin(wst + 27/3 + 0) prediction in the cost function, which is defined as:

In [15] is presented an interesting contribution where a
different approach is done to control an induction machine
with PCC with instantaneous reactive power minimiza-
tion. The block diagram of this implementation is shownwhere Al and AvY are variations of the collector
in Fig. 5. There is possible to differentiate a predictivecurrent and collector-emitter voltage of the power tran-
stage that performs PCC and a classic stage that contradsstor 7, respectively. Note that 18 correspond to the
the speed, flux, and torque control using field orienteckighteen switches of a DMC. As reported in [30], by
control (FOC), which provides the reference currents forconsidering these terms in the cost function, an important
the predictive control stage. The cost function is definedncrement in the efficiency of the converter is obtained.
as such as eq. (1). With this strategy, predictive contrsl haAs previously demonstrated, one advantage of model
been demonstrated as a very powerful tool opening newredictive control is the possibility to include several
possibilities in the control of power converters in a verycontrol objectives in the cost function, which could be
simple way. Similarly, a PCC for an induction machinethe current, voltage, reactive power, switching frequency
with an increment of the efficiency and a reduction ofswitching losses, torque, flux, etc. By considering this
switching losses of the converter is proposed in [30]. Thepproach, in [24], a PCC with imposed source current is
control scheme is the same as the diagram shown in Figrroposed and this strategy is enhanced with a common-
5, because only the cost function is modified. In ordemode voltage (CMV) reduction. The control strategy for
to reduce the switching frequency and thus incrementhis implementation is shown in Fig. 6 and the considered
the efficiency of the converter, the idea of the methodcost function is given by:
consists in to include in the cost function the number of ) _
commutations needed to transit from the actual switching gk +1) = Dio + 7ilSis + v [vem(k+ 1) (7)
state being evaluated. This is represented as: where the CMV is defined as.,, = (v, +v,+v.)/3. The
. results showed in [24], demonstrate that just by includin

gk +1) = Bio+ Y84 +Ysw 1 ®) a new term in trEe ]cost function is péssibl?—:‘/ to havéJ
wheren is the number of switches commutations con-simultaneous control of the input and output (source and
sidered by choosing the evaluated state. This new teroad) currents with waveforms according their references
in the cost function means that changing the state of thand with reduction of the CMV.

18
glk+1) = Dig +7,0q + 70 Y NI A0S (6)
i=1
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future sampling period, using the mathematical modeith minimization of the instantaneous input reactive powe

of the input filter and the induction machine (IM). A

PI controller is adopted to generate the reference torque

T for the predictive control algorithm. A mathematical . .

discrete-time model is elaborated to predict the behaviof® 9'Ven as

of the system under a particular switching state, based ong — ATL(k+1) + Y AUk + 1) +v40qs(E+1) (9)

dynamic model for the IM [31]-[33], [45]. This model

is used in our case to predict the stator flux and the As reported in [34]-[38], the method is very simple

electromagnetic torque produced by the machine duringnd effective with a very fast dynamic response of the

the next sampling period. In this case, the cost function iglectrical torque and a decoupled control respect to the

composed of the absolute errors of the predicted torquetator flux control maintaining, at the same time, unity

flux magnitude and reactive input power, resulting in:  displacement power factor for both motoring and regen-

- eration operation modes. All these remarkable character-

9= ATk + 1) + v Av(k+1) ®) istics make PTC a suitable alternative to the well known

where v, and v, are weight factors selected to define direct torque control (DTC) having the advantages of be

the relation between reactive input power, torque andgimpler and consider all the available switching states of

stator flux conditions. In Fig. 8 is presented the samdhe converter. As indicated in Fig. 1, predictive power

strategy but enhanced with instantaneous reactive poweontrol [23], [44] and predictive voltage control [39]—

minimization in order to improve the performance of the[43] have been also implemented in MCs but due to space

converter in the input side. For this case, the cost functiofimitations, these techniques are not analyzed in this work



I1l. L IMITATIONS, WEAKNESSES OPEN QUESTIONS filter capacitors is given by the maximum input current
AND FUTURE TRENDS ripple. The losses and capacitor value are significantly

As well it has been demonstrated that predictive conlower in @ MC than for an equally sized dc-link capacitor
trol is a very powerful alternative to control MCs, this in @ two-level voltage dc-link back-to-back converter (V-
technique also presents some limitations and weaknessd5C) [46]. However, a minimum internal energy storage
Some of them are: needs to be provided in order to meet the dynamic re-
quirements imposed by the load. For high-load dynamics,
extended ridethrough capability, or unconstrained reacti
power compensation, the MC has not yet proved to
be the most appropriate solution. The matrix converter
« High computational cost. should hence be sglected for high freq.uency applications,

where the conduction losses are dominant. However, the

d.f'rA‘S h|gt:]hl(|jghtetd n Pgrttl of thf|s paper,dthe tht prﬁsemscause of electromagnetic interference (EMI) problems
erent advantages In term of size and weight, allowing, , power electronics is fast switching of high currents
the operation with sinusoidal source and load currents

. o . and voltages within the power converter systems. Other
regeneration capa}blllty among others, but desplte all th auses of EMI are supply voltage interruptions, dips
rewards, there exists wo main disadvantages in the. M nbalance, surges and fluctuations that are also reflected
topology (as long as the maximum voltage transfer ratio is

.7~ In the load side because of the direct topology [19], [20].
not needed by the load [46]): the output voltage is I|m|tedIn order to reduce the input current ﬁpplgy t[he]irEpu]t
to 86% of the input, and secondly, any perturbation in the;; '
supply deteriorates the quality of the load side, due to thdlsplacement power factor and other causes of EMI, many

b f st | ts. But tioned | t%olutions have been reported. For example, it is possible
absence ol storage elements. but, as mentioned in f}S select a proper filter resonant frequency, which may

first part of this paper, in order to solve this issue, in [47]Iimit the converter performance because & resonant

has been proposed the implementa.ti.on of a hybrid pc’Wpﬁequency is a function of the system impedance. This
converter which connects an auxiliary voltage SourCqmpedance varies with the operating conditions of the

n th'e. dc-lmlg of the indirect matrix converter (IMC), system. Also, it is possible to adopt a high switching
obtalnlng. un|t.y vo!tage transfer capability even urwlerfrequency. The first solution results in lower THD of the
severe distortions in the source voltage. Additionally, aoutput currents. however the converter losses and the EMI
PCC strategy is proposed in this work for the auxiliary '

It here th t ref S b increase significantly and finally, the converter efficiency
vollage source, wnere he current reterence Is given by gy, hoth solutions decreases [21], [22]. Another suitable
Pl linear controller and predictive control selects theydut

X . ethod consists of emulating a damping resistor placed
cycle for the pulse-width modulator, ensuring balancec{n g ping P

) . . . _—"In parallel with the filter capacitor in such way that the
power in the converter and unity voltage ratio. PredICtIVeharmonic currents caused by the resonances flow through

control can select be used to select the optimum statl s resistor. Active damping improves high quality of

of t_hgl conv$ rter tz contrgltdwecltlyltrt]e tE”n:jarty conltrotl the input currents and the instantaneous reactive power
variable or It can be used to caicuiate the auty CYCI€ Qi ation on the input side. However, this method

be applled for a set of'space vectors to control Ir‘dlrE(?’tlyonly mitigates higher current harmonics resulted from the
the primary control variable by a space vector modulatio

trat The MC topol h Iso limited bil witching operation and cannot ensure a sinusoidal input
strategy. 1he opology has aiso fimited capabl Itycurrent, particularly when the source voltage is distarted
to perform power factor correction or active damping,

. th " ' directl tional to th To overcome these issues, in the implementations done
since he reactive power 1s directly proportional to the,, ;y, predictive control, the term that minimizes the re-
modulation index, amplitude of the input line voltage

. . . active power at the input side is replaced by a direct
and output line current, and inversely proportional to P P P y

control of the source currents. This approach forces the

tShe cgrlrintk-)tqévolt%g? c:]splacEment angle; adt tthet;]:orlvertemput currents to follow the sinusoidal value, regardless o
pecial hybrid moduiation schemes applied 10 e SParsge yisiortion level at the input side [25], [49]. In all the

matrix converter topology have been studied to managg ,gied cases where predictive control has been applied, it

reactive power for a purely reactive loads [48]. However,h
if the instantaneous output currents of the MC are equ%

« Variable switching frequency.

« High dependence on the predictive model quality.
« High sampling frequency.

« Sensitive to variation on the parameters.

as been demonstrated a very good performance, being a
ery simple method for implementation. But in each case,
nly a second ordekC filter has been used. An industrial
type system with a MC should be considered with an

to zero, then no reactive input power can be provide
with any modulation scheme [46]. In MC topologies, the

energy storage Is located at the input filter (despite thi Ml input filter (not only single-stagéC filter), in order
is very small), therefore the MC topology suffer from to provide results which are immediately useful to the

an aging process, limiting the lifetime of the converter..nolustry area. Additionally, there are two major reasons

There is a relation between the capacitor lifetime an4or using an EMI input filters. The first reason is to pre-

the capaqtancg value, palculated In terms of.the volumgem electromagnetic interference of the power electronic
of the dielectric material and the current ripple at a

. ) o . _converter with the integrated electronic systems, and the
given operating voltage. For an specific type of dielectric

terial fing t t d rated volt tsecond reason is to avoid the malfunction of the power
materal, an operating temperature and rated voltage, the, e ey operation caused by sources of electromagnetic
capacitance value, and therefore, the lifetime of the inpu



noise in the surrounds. Also there are some requirements
that the EMI filter has to fulffill: 1]

o Minimum filter attenuation requirement at given fre-
quencies.

« Minimization of input current fundamental displace- [
ment factor.

« Limitation of the volume/energy stored in the filter
components.

« Sufficient passive damping for minimum losses, in
order to avoid oscillations also for no-load operation. (3]

« Avoiding of filter resonances at the multiples of
switching frequency.

o Minimization of the filter output impedance, in or-
der ensures system stability and minimizes control
design constrains

As it has been showed, predictive control has been[s]

successfully implemented in MCs. But, there are still
some open topics for research as well as some trends
in the work with this type of power converters and con- (6]
trol strategy. Finally, an exhaustive comparison between
predictive control and classical control techniques must
be taking into consideration in order to demonstrate the
simplicity and feasibility of the strategy.

(4]

(7]

IV. CONCLUSIONS

The main contribution of this paper has been to presents[g]
an overview of different topologies, control strategied an
applications for MCs where predictive control techniques
are applied. The main limitations of simple predictive
control applied to traditional MCs fall on its power
factor correction or active damping capability and vamgabl [9]
switching frequency producing resonance in the input
filter. This resonance generates high distortion on the
input current which are also reflected in the output current
due to the direct connection between input and output®!
sides of the converter. The performance of predictive
control strategies depends on the digital platform and the
predictive strategy since it is based on an iterative anétl]
finite-horizon optimization of the load model.

Named limitations and weaknesses of predictive con-
trol in matrix converters, constitute future topics for

- 12]
research. It has been shown that predictive control cah
be recognized as an attractive control approach, with
significant benefits such as flexibility, versatility, and-pe
formance, with real applications of the power converterg; 3,
and electric drives. The advantages of predictive control
can be enhanced with commutation strategies to avoid
variable switching frequency and resonance. Moreover,
other numeric integration algorithms can be implemented4]
to overcome limitations of the sampling time in the digital
platform.
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