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This paper demonstrates that the transport coefficients of 
4
He

+
 in 

4
He can be calculated over wide ranges of    , 

the ratio of the electrostatic field strength to the gas number density, with the same level of precision as can be 

obtained experimentally if sufficiently accurate potential energy curves are available for the X
2
u

+
 and A

2
g

+
 states  

and one takes into account resonant charge transfer.  We start by computing new potential energy curves for these 

states and testing their accuracy by calculating spectroscopic values for the separate states. It is established that the 

potentials obtained by extrapolation of results from d-aug-cc-pVXZ (X=6,7) basis sets using the 

CASSCF+MRCISD approach are each in exceptionally close agreement with the best potentials available and with 

experiment.  The potentials are then used in a new computer program to determine the semi-classical phase shifts 

and the transport cross sections, and from these the gaseous ion transport coefficients are determined.  In addition, 

new experimental values are reported for the mobilities of 
4
He

+
 in 

4
He at 298.7 K, as a function of    , where 

careful consideration is given to minimizing various sources of uncertainty. Comparison with previously measured 

values establishes that only one set of previous data is reliable.  Finally, the experimental and theoretical ion 

transport coefficients are shown to be in very good to excellent agreement, once corrections are applied to account 

for quantum-mechanical effects. 

 

 

I. INTRODUCTION 

Recent theoretical advances have made it possible to calculate ab initio interaction potentials for atomic ion-

atom collisions that are highly accurate, and to use the potentials to calculate gaseous ion transport coefficients that 

meet or exceed the accuracy with which they can be measured
1-4

.  Hence gaseous ion transport data serve as 

stringent tests of the interaction potentials.  Advances in the calculation of transport properties, unfortunately, have 
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not included the situation where atomic ions move through their parent gases, where resonant charge transfer (RCT) 

can occur.  The purpose of this paper is to fill this void. 

The occurrence of RCT affects the mobility, diffusion and other transport coefficients that are measured as 

functions of the gas temperature,  , and the ratio,    , of the electrostatic field strength to the gas number density.  

In particular, when a singly-charged atomic ion collides with a neutral atom of the same kind, an electron can be 

transferred so that the ion and the neutral interchange roles.  The new ion starts its motion through the drift tube as if 

it were initially at rest, on average, rather than as if it had reached a steady-state average velocity.  This means
5
 that 

the ion velocity distribution function along the field is skewed toward small velocities.  It will also have kurtoses 

(coefficients that describe the sharpness of the peak) that are different parallel and perpendicular to the field and it 

will show correlations between the average speeds and energies in the different directions; these quantities will be 

discussed more fully below. 

It has been known in principle since 1933
6
 how to calculate the transport cross sections for systems with RCT 

from quantum-mechanical phase shifts, and the first numerical values were reported in 1934
7
.  These did not agree 

well with ion mobilities in helium gas at room temperature and low     that had finally, just a few years earlier
8
, 

been measured free of the influence of impurities.  However, the observed mobilities were shown later
9,10

 to 

correspond to    
  not He

+
; RCT means that the lighter, atomic ion moves more slowly through He than does the 

molecular ion.  Progress between the 1930s and the 1960s has been summarized before
11-13

.  We will cite more 

recent work in the appropriate places below. 

Although numerical algorithms and computer resources have advanced significantly since the 1960s, it remains 

difficult to make accurate calculations of transport coefficients when RCT is involved and particularly when the 

energies probed in drift-tube mass spectrometers are large, arising from high values of   or    .  This is a result of 

the large number of phase shifts that are involved, the occurrence of modulo-π errors
14

 in the calculation of phase 

shifts for large angular momentum numbers, and the large number of slightly different transport cross sections that 

are needed in kinetic theory treatments that describe accurately the experimental values.  It is natural then to turn to 

a semi-classical treatment of the phase shifts. 

A semi-classical picture of RCT was given by Holstein
15

 in 1952.  It indicates that RCT converts a glancing 

collision into an apparent head-on collision, thus making the energy ( ) -dependent, momentum-transfer (or 

diffusion) cross section,  ( )( ), abnormally large compared to the viscosity cross section,  ( )( ).  In 1958, 
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Dalgarno
16

 gave a semi-classical description of RCT that showed that  ( )( ) is approximately twice as large as the 

cross section for RCT,     ( ).  By 1970, computers had advanced enough that Heiche and Mason
17

 could use both 

quantum-mechanical and semi-classical techniques to calculate     ( ) and the first three transport cross sections, 

 ( )( ), for He
+
 in He.  Their results showed that the semi-classical cross sections are quite accurate, particularly 

when one realizes that it is energy averages of the cross sections that govern the transport coefficients, and that 

averaging washes out most, but not all, of the structure in the quantum-mechanical cross sections.  Sinha et al.
18

 

showed that the residual differences make the quantum-mechanical mobilities for 
4
He

+ 
in 

4
He at room temperature 

smaller than the semi-classical values.  More recent work is cited at the appropriate places below. 

The objectives of this paper are: 

1. To obtain potential energy curves for the X
2  

 and A
2  

  states of He2
+
 that merge at large distances onto 

the ion-induced dipole potential that is known to be asymptotically correct for both states.   

2. To show that the spectroscopic quantities computed from the new potentials are in excellent agreement 

with the available experimental data and with the values computed (separately) from the best previous potentials. 

3. To report the development of a new computer program that calculates the semi-classical phase shifts and 

transport cross sections from a g-u pair of potentials like the ones presented here for He2
+
. 

4. To use the cross sections in an existing computer program that determines the mobility and other transport 

coefficients of 
4
He

+
 in 

4
He, as functions of   and    . 

5. To make new measurements of high accuracy of the mobility of 
4
He

+
 in 

4
He at room temperature as a 

function of    .  This is needed because the values obtained by different research groups (cited at the appropriate 

places below) differ by as much as 7%. 

6. To show how the calculated mobilities can be corrected to account for the use of semi-classical rather than 

quantum-mechanical methods. 

7. To show that the corrected mobilities calculated from the new potentials are in excellent agreement with 

the most reliable experimental data. 

 

II. POTENTIALS 

It follows from the assumption of a purely electrostatic Hamiltonian and the Born-Oppenheimer (BO) 

approximation that different g-u pairs of molecular states do not interact.  For He2
+
, the potentials that we are 
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concerned with are for the X
2  

  and A
2  

 states that are antisymmetric and symmetric, respectively, under 

exchange of nuclei. 

Reagan et al.
19

 calculated the X
2
u

+
 potential energy curve (PEC) for He2

+
 for values of the internuclear 

separation,  , greater than 1.5 bohr, using a 26-term valence-bond function.  Browne
20

 subsequently calculated the 

A
2
g

+
 PEC for       bohr using a 5-term function; he found strange behavior near 1.5 bohr, which he attributed to 

an avoided crossing with an even higher excited state.  This behavior was also found by Gupta and Matsen
21

, who 

extended the calculations for the A
2
g

+
 PEC down to 0.378 bohr.  A reconciliation of these potentials to those 

calculated in some even earlier work
22

 was given by Dickinson
23

. 

There have been many other calculations of the PECs for He2
+
 over the years

24-32
, with the results improving as 

better algorithms and faster computers became available.  Lee
33

 reviewed the work up until 1993, and then presented 

CASSCF+MRCISD calculations (denoted CAS+MRCI hereafter), concluding that the potentials he produced for the 

X
2
u

+
 and A

2
g

+
 states were reliable and close to what could be expected with full CI calculations; it was 

acknowledged, however, that the study was limited by the range of basis sets that could be employed. 

Following that study, Carrington et al.
34

 calculated CAS+MRCI potentials using a range of basis sets, from aug-

cc-pVDZ to aug-cc-pV6Z.  (For simplicity, we will henceforth refer to these as aVDZ and aV6Z basis sets, making 

similar abbreviations for other basis sets.)  Tests of the potentials against the rovibrational transition energies of Yu 

and Wing
35

 and the almost contemporaneous calculations of Cencek and Rychlewski
36

 for the X
2
u

+
 PEC suggested 

that the potential was producing transition energies that were too low by about 20 cm
-1

.  In Ref. 36, explicitly-

correlated Gaussian functions were employed to obtain excellent agreement with the measured infrared (IR) 

rovibrational transition wave numbers, but it was pointed out
34

 that the long-range portion of their X
2
u

+
 potential 

did not behave satisfactorily. In particular, the energies of the rotational (N) levels for vibrational number      

did not give good agreement with the microwave rovibronic transitions. 

In 2000, Cencek and Rychlewski
37

 reported the lowest variational energy known at the time for He2
+
, and they 

made estimates of the BO limit of the X
2
u

+
 PEC.   Subsequently, Xie et al.

38
 used a CAS+MRCI approach together 

with a daV6Z basis set to calculate BO potentials, along with corrections to the BO approximation. It is stated in that 

work that the Davidson correction was applied although, as noted by Lee
33

 and discussed below, this is 

inappropriate.  Overall, it was found that the calculated transition wave numbers were in better agreement when the 
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BO-corrected potentials were used, but that the BO potentials seemed to be superior for the IR rovibrational 

transitions for       in the X
2
u

+
  state and for the microwave rovibronic transitions. 

Most recently, Tung et al.
39

 published a potential using explicitly-correlated Gaussians and taking adiabatic 

effects into account. The transition wave numbers they calculated were in excellent agreement with both the 

microwave
34

 and IR
35

 measurements. 

The best PECs presently available are thus likely to be those in Refs. 38 and 39.  Unfortunately, the parameters 

for the X
2
u

+
 PEC given in the supplementary material for Ref. 38 do not reproduce the well depth given in the text 

of that paper, so one can only use their A
2
g

+
 potential; additionally, only the X

2
u

+
 PEC was determined by Tung et 

al.
39

 

It is important to note that at large   both PECs should smoothly merge into the ion-induced dipole potential 

that is shown in Sec. 7-2-A of Mason and McDaniel
40

 to vary as –     
 . In atomic units,              when 

one uses the value
41

             Å3
 for the static average electric dipole polarizability of He.  The A

2
g

+
 PEC of 

Xie et al.
38

 merges into this so-called polarization potential, but the values of Tung et al.
39

 for the X
2
u

+
 PEC for 

20.5<R<29.5 bohr lie below the potential of Ref. 38 by amounts that vary erratically from       –            

hartree, with the average deviation being            hartree.  This is most likely because of numerical instability 

and because the zero of energy, i.e., the value at    , was not set correctly.  While this slight error probably does 

not affect the spectroscopy values reported
39

 for the X
2
u

+
 state, it would affect the transport coefficients at low   

and    .  Rather than attempt to modify this X
2
u

+
 potential and then use it with a A

2
g

+
 potential calculated

38
 by a 

different group of researchers using slightly different methods, we decided to compute both potentials again.  

Another motive for this is that we wished to use “standard” approaches, so that we could assess these for use in 

calculating the potentials for the heavier diatomic rare gas species, RG2
+
, which will allow the calculation in other 

papers of the transport properties of RG
+
 in RG.  

Our strategy is to calculate the potentials for He2
+
 at high levels of theory and to assess these against the 

spectroscopic data to ascertain their reliability before employing them in transport calculations.  All of the 

calculations were performed using MOLPRO
42,43

 with high precision, e.g., the integrals and energies converged 

within       hartree, which allowed the calculated potentials to extend smoothly out to       Å. For the 

spectroscopy calculations, we took the energy here to be zero for each PES. For the ion transport calculations, we 
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merged the calculated potentials with the long-range -C4/R4 potential, such that all three coincided at this separation; 

this means that the ab initio PECs were decreased by            hartree (          cm
-1

) at all R. 

Because of the nature of the bonding in He2
+
, it is not possible to identify the fragments unambiguously and 

carry out full counterpoise corrections for basis set superposition error (BSSE), particularly in the short   region. 

This was noted by Carrington et al.
34

, although they did examine the BSSE, as did Lee
33

.  Because of this ambiguity, 

which risks introducing more errors that it corrects for, and because of the size of our basis sets and the observed 

convergence of the spectroscopic quantities, including De, we are confident that BSSE effects are small in our PECs. 

(It is noted that Carrington et al. concluded that their uncorrected results seemed to be better than the BSSE-

corrected ones.) 

One of the most widely-used high-level methods for calculating potentials is the RCCSD(T) method, and so we 

initially used this with large basis sets, aVXZ (X=Q–7) and daVXZ (X=Q–7), as well as employing pairwise (X
-3

) 

extrapolation
44

 of the interaction energies.  Standard basis sets from the MOLPRO library were employed in all 

cases except for the following: 

(i) The daV6Z basis set was obtained from the standard aV6Z basis set, with the extra sets of diffuse functions 

being obtained in an even-tempered fashion from the outermost functions. 

(ii) The aV7Z and daV7Z basis sets were taken from the literature
45

.  

However, we found that the long-range behavior was not in agreement with the polarization potential, showing a 

slight maximum (see below).  Therefore, we carried out CAS+MRCI calculations using the molecular orbitals 

formed from the He 1s, 2s and 2p orbitals. In these calculations, single and double excitations were included but 

triple excitations (the highest possible excitations for He2
+
) were omitted. To investigate the effect of these 

omissions and the use of a truncated active space, we then performed a limited set of full CI calculations for the 

quadruple- and quintuple- basis sets, where we found excellent agreement with the CAS+MRCI results.  As 

discussed below, the CAS+MRCI values obtained by extrapolating d-aug-cc-pVXZ (X = 6, 7) interaction energies 

represent our most accurate potentials, and they are tabulated in supplementary material.
46

 

It should be noted that we did not use the (generalized) Davidson correction to correct for higher-order 

excitations in the MRCI procedure.  This is because, as highlighted by Lee
33

, there are only three electrons in He2
+
 

while the Davidson correction was designed to correct for quadruple excitations.  In addition, the full CI results (see 

below) indicated that triples contribute only an extremely small amount to the correlation energy. 
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Fig. 1 shows our values of the PECs of He2
+ 

at large separations.  At these R values there are still other 

contributions to the interaction energy; however, our potential steadily approaches agreement with the polarization 

potential as these other terms die off.  It is in excellent agreement with the previous values of Xie et al.
38

, but only 

with those of Tung et al.
39

 after their potential is corrected by adding            hartree, as discussed above. 

Fig. 2 shows the present values of the A
2
g

+
 potential of He2

+ 
at small separations.  Below 1.51 bohr, the present 

potential shows the unusual behavior reported previously
20,21

 and that is assumed to be due to an avoided crossing 

with a higher excited state at these small R values.  This does not appear in the A
2
g

+
 PEC of Xie at al.

38
 because 

that potential was given as a functional form that does not permit such influences to be represented.  In calculating 

spectroscopic quantities, we employ our A
2
g

+
 PEC only for        bohr, while for the ion transport calculations 

we extrapolate to lower separations using an inverse power potential that matches the first two points at R > 1.51 

bohr.  The potential at small   is so far up on the repulsive wall of the potential that it does not affect the transport 

calculations at the   and     values of interest below. 

 

III. SPECTROSCOPY 

From the potentials given in the supplementary material
46

, rovibrational energy levels were calculated using Le 

Roy’s LEVEL program
47

.  For the A
2
g

+
 state and for the v = 23 level for the X

2
u

+
 state, it was necessary to provide 

reasonable estimates of the rovibrational energies before convergence was achieved, rather than relying on the 

default procedure.  The final energies of the rovibrational levels were then employed to calculated transition 

energies that could be compared with experimental results; in addition, spectroscopic quantities were derived and 

similarly compared.  

There are a few key spectroscopic studies to which comparison will be made.  In 1995 Carrington et al.
34

 

recorded rovibronic transitions for He2
+
 between high-lying levels of the X

2
u

+
 state and those of the A

2
g

+
 state; 

these levels are close enough to allow microwave radiation to effect the transitions.  Comparing calculated and 

experimental values for these transitions allows testing of the high energy region of the X
2
u

+
 state, as well as the 

potential for the A
2
g

+
 state (which is bound by less than 20 cm

-1
 and only supports two vibrational manifolds and a 

handful of rotational levels).  Prior to this, Yu and Wing
35

 had recorded rotationally-resolved IR transitions between 

the lowest two vibrational levels of the X
2


+
 state of 

3
He

4
He

+
 (note that the symmetric isotopologues will not be IR 

active), and so comparison with these transition energies allows some assessment of the X
2
u

+
 PEC close to the 
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minimum.  Pulsed-field ionization zero-kinetic-energy (PFI-ZEKE) spectroscopy via a metastable state of He2 

allowed rotationally-resolved spectra of the lowest three vibrational levels of the X
2
u

+
 state of He2

+
 to be 

determined
48

 for three isotopologues, 
4
He2

+
, 

3
He

4
He

+
 and 

3
He2

+
. This work has been extended in recent studies

49,50
 

that allowed the 1–3 and 1–5 rotational spacings in the X
2
u

+
 state of 

4
He2

+
 to be measured very precisely. It should 

be noted that 
4
He has a nuclear spin of zero, so it is a boson.  As a consequence of this, the odd parity of the 

2
u

+
 

state with respect to nuclear exchange, and the fact that the vibrational levels are all of positive parity for He2
+
, there 

are only odd N rotational levels for 
4
He2

+
.  It then follows that N=1 is the ground rotational state. This is not true for 

the 
3
He

4
He

+
 and 

3
He2

+
 isotopologues, for which all N levels exist, owing to the lack of a center of symmetry for the 

former and to the alternating degeneracy weighting of  3:1 for the odd:even N levels in the latter. 

In Table I we present the vibrational wave numbers for the X
2
u

+
 state of 

4
He2

+
 calculated using RCCSD(T) 

theory with the aV7Z and daV7Z basis sets.  We also present in Table I basis set extrapolated results for the (Q,5), 

(5,6) and (6,7) pairings, where the extrapolation has been carried out with the X
-3

 scaling of Halkier et al.
44

  It may 

be seen that the differences between the aV7Z and daV7Z results are very small, amounting to < 1 cm
-1

 for each 

vibrational energy level. It may also be seen from the three pairwise extrapolations that the (5,6) and (6,7) results are 

very close, with differences of about 0.5 cm
-1

, while the (Q,5) results are significantly different. Thus convergence 

with respect to the size of the basis set is close to complete at the quintuple/sextuple- level; also, it seems that a 

second set of diffuse functions, above that of the “standard” augmentation, is probably not necessary. 

In the last two columns of Table I we also give the calculated vibrational energy levels for the isotopologues 

3
He

4
He

+
 and 

3
He2

+
 using just the (6,7) extrapolated potential.  It can be seen that the number of bound vibrational 

levels decreases as we move from 
4
He2

+
 to 

3
He

4
He

+
, and again when moving to 

3
He2

+
. (We note that for 

3
He

4
He

+
 the 

ground state should be denoted X
2


+
, but we shall always refer to the ground state as the X

2
u

+
 state, since the 

emphasis in this paper is on 
4
He; within the BO approximation, these potentials are identical.) 
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Table I. PEC parameters and vibrational wave numbers in cm
-1

 for the X
2
u

+
 state for the He2

+
 isotopologues, as 

calculated using RCCSD(T) theory. 

 4He2
+ 3He4He+ 3He2

+ 

 aV7Z daV7Z (Q,5)a (5,6)a (6,7)a (6,7)a (6,7)a 

R/Å 1.081 1.081 1.080 1.081 1.081 1.081b 1.081b 

Emin/cm
-1 -19948.04 -19948.23 -19966.48 -19955.05 -19955.11 -19955.11b -19955.11b 

v        

0 -19107.65 -19107.85 -19125.67 -19114.37 -19114.55 -19049.16 -18988.32 
1 -17479.65 -17479.87 -17496.83 -17485.77 -17486.19 -17298.64 -17124.75 
2 -15921.88 -15922.11 -15938.19 -15927.40 -15928.02 -15629.80 -15354.36 
3 -14434.42 -14434.68 -14449.81 -14439.39 -14440.16 -14042.80 -13677.34 
4 -13017.41 -13017.69 -13031.86 -13021.87 -13022.73 -12537.80 -12093.90 
5 -11671.00 -11671.31 -11684.52 -11674.99 -11675.89 -11115.02 -10604.33 
6 -10395.37 -10395.72 -10408.04 -10398.94 -10399.86 -9774.73 -9208.98 
7 -9190.78 -9191.17 -9202.69 -9193.95 -9194.87 -8517.29 -7908.33 
8 -8057.52 -8057.96 -8068.76 -8060.31 -8061.24 -7343.11 -6702.93 
9 -6995.96 -6996.46 -7006.61 -6998.40 -6999.33 -6252.73 -5593.50 

10 -6006.52 -6007.09 -6016.64 -6008.65 -6009.58 -5246.74 -4580.84 
11 -5089.72 -5090.36 -5099.34 -5091.57 -5092.51 -4325.88 -3665.94 
12 -4246.16 -4246.87 -4255.29 -4247.77 -4248.70 -3490.98 -2849.95 
13 -3476.53 -3477.30 -3485.16 -3477.92 -3478.85 -2743.02 -2134.19 
14 -2781.62 -2782.45 -2789.72 -2782.83 -2783.72 -2083.13 -1520.18 
15 -2162.33 -2163.20 -2169.86 -2163.39 -2164.22 -1512.55 -1009.60 
16 -1619.66 -1620.55 -1626.51 -1620.59 -1621.34 -1032.66 -604.15 
17 -1154.69 -1155.58 -1160.70 -1155.52 -1156.15 -644.90 -305.29 
18 -768.55 -769.42 -773.52 -769.31 -769.81 -350.48 -113.23 
19 -462.33 -463.13 -466.15 -462.98 -463.36 -149.87 -22.47 
20 -236.75 -237.43 -239.46 -237.26 -237.54 -40.40 -1.66 
21 -91.38 -91.84 -92.96 -91.68 -91.85 -5.07  
22 -20.98 -21.17 -21.58 -21.07 -21.14 -0.003  
23 -2.35 -2.38 -2.44 -2.37 -2.37   

a
 The numbers in parentheses are the cardinal numbers, X, of the daVXZ basis sets, with the corresponding PECs 

being obtained from an X
-3

 extrapolation. 
b
 These are the same as the 

4
He2

+
 values under the BO approximation. 

 

Table II compares the rovibrational wave numbers of Yu and Wing
35

 for 
3
He

4
He

+
 with our calculated wave 

numbers.  As may be seen, the RCCSD(T) (6,7) results are in excellent agreement both with experiment, and also 

with the results of Tung et al.
39

, where the adiabatic effects were concluded as improving significantly the agreement 

with experiment. It is interesting to note that the RCCSD(T) transition wave numbers are in better agreement with 

experiment than is the BO potential of Ref. 39, despite their use of explicitly-correlated Gaussian functions; whether  
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Table II. Calculated versus experimental rovibrational transition wave numbers in cm
-1

 for 
3
He

4
He

+
. 

Transition Experimenta Present Work Previous Work 

v, N – v, N Ref. 35 RCCSD(T) 
(6,7) 

CAS+MRCI 
(6,7) 

BO39 BO and 
Adiabatic39 

Ref. 36 Ref. 34 

1,1 – 0,0  1766.457 1766.363   1766.454  
1,2 – 0,1 1781.839 1781.808 1781.713 1781.867 1781.835 1781.808 1782.072 
1,3 – 0,2  1796.557 1796.461   1796.559 1796.821 
1,4  – 0,3 1810.717 1810.688 1810.592 1810.749 1810.713 1810.692 1810.951 
1,5 – 0,4 1824.212 1824.185 1824.088 1824.245 1824.207 1824.190 1824.446 
1,6 – 0,5 1837.055 1837.029 1836.932 1837.090 1837.051 1837.035 1837.287 
1,7 – 0,6 1849.229 1849.206 1849.107 1849.267 1849.225 1849.12 1849.460 
1,8 – 0,7 1860.719 1860.698 1860.598 1860.759 1860.715 1860.703 1860.948 
1,9 – 0,8  1871.489 1871.389   1871.494 1871.733 
1,10 – 0,9 1881.580 1881.563 1881.462 1881.623 1881.577 1881.566 1881.801 
1,11 – 0,10 1890.916 1890.905 1890.803 1890.964 1890.917 1890.906 1891.135 
1,12 – 0,11 1899.509 1899.499 1899.396 1899.556 1899.509 1899.496 1899.720 
Deviationb  0.016 0.114 0.045 -0.003 0.018 0.227 

a
 Only the indicated transitions were observed. 

b
 The average deviation of the modulus of the calculated and experimental values. 

 

this is fortuitous or not is difficult to say. We conclude that this ground state BO potential is of a very good quality 

in the region of the potential minimum and comparable to the best PECs available. 

Unfortunately, our RCCSD(T) X
2
u

+
 PEC does not behave as expected close to dissociation.  It has a small 

maximum of about 0.05 cm
-1

 at about      Å.  This persists with increased convergence thresholds and seems to 

be an artifact of the RCCSD(T) method at large  . The result is that the N = 2 level of the v = 23 manifold, the 

highest vibrational level for which experimental transition have been observed, is not bound and the values for the N 

= 0 and 1 levels are poor. It is interesting to note that Ref. 39 comments on similarly poor agreement being found for 

the potential of Cencek and Rychlewski
36

.  

Because of the poor behavior at large  , CAS+MRCI calculations were performed.  We included the He 1s, 2s 

and 2p orbitals in the active space, and then used the same basis sets and performed the same point-wise 

extrapolations as for the RCCSD(T) calculations. The calculated vibrational energy levels are presented in Table III 

for the three extrapolations and for the aV7Z and daV7Z calculations. Additionally, we carried out full CI 

calculations employing the aVQZ, daVQZ, aV5Z and daV5Z basis sets, and we include the full CI and (Q,5) 

extrapolated results for the daVXZ basis sets in Table III. The differences in energy levels between full CI (Q,5) and 
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Table III. CAS+MRCI PEC parameters, and wave numbers (cm
-1

) for the vibrational energy levels of different 

isotopologues of He2
+
, relative to the respective dissociation asymptotes. 

 
4
He2

+
 

3
He

4
He

+
 

3
He2

+ 

 CAS+MRCI Full CI CAS+MRCI CAS+MRCI CAS+MRCI 
 aV7Z daV7Z (Q,5)

a 
(Q,5)

a 
(5,6)

a 
(6,7)

a 
(6,7)

a 
(6,7)

a 

R/ Å 1.081 1.081 1.080 1.080 1.081 1.081 1.081
b 

1.081
b 

Emin/cm
-1

 -19948.31 -19948.66 -19967.00 -19966.96 -19955.54 -19955.62 -19955.62
b 

-19955.62
b 

v         

0 -19107.96 -19108.32 -19126.24 -19126.20 -19114.90 -19115.11 -19049.71 -18988.88 
1 -17480.05 -17480.43 -17497.49 -17497.45 -17486.39 -17486.83 -17299.29 -17125.41 
2 -15922.37 -15922.77 -15938.94 -15938.90 -15928.11 -15928.75 -15630.55 -15355.13 
3 -14435.02 -14435.44 -14450.66 -14450.63 -14440.19 -14440.98 -14043.65 -13678.21 
4 -13018.11 -13018.55 -13032.80 -13032.77 -13022.77 -13023.65 -12538.75 -12094.89 
5 -11671.80 -11672.27 -11685.57 -11685.54 -11675.99 -11676.91 -11116.08 -10605.43 
6 -10396.28 -10396.79 -10409.20 -10409.17 -10400.04 -10400.98 -9775.91 -9210.21 
7 -9191.81 -9192.35 -9203.95 -9203.93 -9195.16 -9196.10 -8518.58 -7909.67 
8 -8058.66 -8059.26 -8070.13 -8070.11 -8061.63 -8062.57 -7344.51 -6704.40 
9 -6997.21 -6997.86 -7008.07 -7008.06 -6999.82 -7000.76 -6254.24 -5595.08 

10 -6007.88 -6008.59 -6018.20 -6018.19 -6010.17 -6011.12 -5248.36 -4582.52 
11 -5091.18 -5091.96 -5101.00 -5100.99 -5093.19 -5094.14 -4327.58 -3667.71 
12 -4247.72 -4248.56 -4257.03 -4257.02 -4249.47 -4250.41 -3492.76 -2851.77 
13 -3478.16 -3479.06 -3486.96 -3486.95 -3479.70 -3480.62 -2744.85 -2136.05 
14 -2783.32 -2784.25 -2791.57 -2791.57 -2784.66 -2785.55 -2084.98 -1522.03 
15 -2164.07 -2165.03 -2171.73 -2171.73 -2165.24 -2166.07 -1514.39 -1011.38 
16 -1621.41 -1622.38 -1628.38 -1628.38 -1622.44 -1623.18 -1034.46 -605.83 
17 -1156.41 -1157.38 -1162.52 -1162.53 -1157.33 -1157.96 -646.59 -306.80 
18 -770.22 -771.15 -775.27 -775.27 -771.04 -771.54 -352.02 -114.48 
19 -463.89 -464.74 -467.77 -467.78 -464.60 -464.98 -151.19 -23.35 
20 -238.15 -238.87 -240.90 -240.90 -238.69 -238.98 -41.41 -2.13 
21 -92.55 -93.03 -94.17 -94.17 -92.87 -93.04 -5.68  
22 -21.84 -22.03 -22.46 -22.46 -21.93 -22.00 -0.25  
23 -2.85 -2.89 -2.96 -2.96 -2.88 -2.88   

a
 The numbers in parentheses are the cardinal numbers, X, of the (d)aVXZ basis sets, with the corresponding PECs 

being obtained from an X
-3

 extrapolation (see text).
 

b
 These are the same as the 

4
He2

+
 values under the Born-Oppenheimer approximation. 

 

CAS+MRCI (Q,5) are  extremely small and the transition energy differences will be even smaller, in line with 

comments made in Ref. 34, and in line with expectations that the contribution from the triple excitations is very 

minor.  Thus, we expect the CAS+MRCI calculations for the larger basis sets to be similarly close to full CI results, 

and hence the most reliable of these to be the CAS+MRCI (6,7) potentials using the daVXZ basis sets.  It is results 

with this PEC that we use to compare to experiment in more detail. 
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Table IV. PEC parameters and bound levels (in cm
-1

) of the A
2
g

+
 state for 

4
He2

+
 calculated using (6,7) basis set 

extrapolation for the daVXZ basis set. 

Level Ref. 38 Present Work 
 BO Modified Born CAS+MRCI RCCSD(T) 

De / cm
-1 17.3450 17.3820 17.303 16.548 

Re / Å  4.626 4.630 4.616 4.623 

v, N     

0,0 -8.0944 -8.1182 -8.0261 -7.3851 
0,1 -7.4854 -7.5096 -7.4180 -6.7811 
0,2 -6.2867 -6.3117 -6.2213 -5.5933 
0,3 -4.5410 -4.5668 -4.4791 -3.8662 
0,4 -2.3264 -2.3528 -2.2704 -1.6828 
1,0 -0.7895 -0.7997 -0.7807 -0.4250 
1,1 -0.5568 -0.5664 -0.5488 -0.2105 
1,2 -0.1489 -0.1568 -0.1430 unbound 
2,0 -0.0003 -0.0005 -0.0003 unbound 

 

For 
4
He2

+
, the 1-3 N spacing has been measured

50
 as 70.9380±0.0006 cm

-1
 and the 1-5 N spacing has been 

measured
49

 as 198.369±0.006 cm
-1

, each by PFI-ZEKE spectroscopy. Our corresponding calculated spacings are 

70.940 cm
-1

 and 198.368 cm
-1

, so both are in excellent agreement with these very precisely measured experimental 

values. 

Both of our X
2
u

+
 and A

2
g

+
 CAS+MRCI (6,7) potentials go to zero asymptotically, while matching very well 

the polarization potential discussed above, and  this confirms that these are both reliable at large R values.  We 

tabulate the bound energy levels of the very weakly-bound A
2
g

+
 state in Table IV. It can be seen that the 

RCCSD(T) curve, despite performing extremely well close to the minimum (as shown by the close agreement 

between the calculated and experimental rovibrational levels for the 0–1 transition for the X
2


+
 state of 

3
He

4
He

+
, 

discussed above), is not performing as well here, with the (v, N) = (1,2) and (2,0) levels of the A state not being 

predicted to be bound.  On the other hand, the CAS+MRCI (6,7) curve is performing extremely well, with all bound 

levels being obtained. We also calculated the wave numbers for the  A–X rovibronic transitions and these are 

compared in Table V both to the experimental values observed by Carrington et al.
34

 and to previous calculations.  

We see that the present potentials are performing exceptionally well – slightly better than even the modified BO 

potentials of Xie et al.
38 
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Table V. Transition wave numbers (in cm
-1

) for A–X rovibronic transitions for 
4
He2

+
 

v, N – 

v, N 

Expt.34 Scaleda 

Ref. 34  
Present 
CAS+ 
MRCI 

Ref. 39 
Modified 
BO 

Ref. 39 
BO 

Ref. 34 Present 
RCCSD(T) 

Ref. 36 

23,3–1,2 0.299 0.296 0.286 0.276 0.264 0.243 b c 

23,1–1,0 1.656 1.652 1.638 1.627 1.594 1.560 1.497 0.926 
23,3–0,4 1.864 1.864 1.841 1.920 1.914 1.918 1.669 c 

23,1–1,2 2.299 2.292 2.275 2.270 2.234 2.199 b 1.565 
22,5–0,4 3.384 3.384 3.325 3.450 3.439 3.032 3.110 0.615 
23,1–0,2 3.821 3.823 3.803 3.885 3.903 3.916 3.672 4.550 
23,1–0,0 5.628 5.629 5.608 5.690 5.711 5.721 5.464 6.355 
Deviation

d 
 0.002 0.025 0.047 0.062 0.121   

a
 These potentials were scaled in Ref. 34 by 1.00128 to match these experimental values. 

b
 The 1,2 level of the A

2
g

+
 state is not bound with the calculated potential. 

c
 The 23,3 level of the X

2
u

+
 state is not bound with the calculated potential. 

d
 Average of the modulus of the difference between the experimental and calculated values. 

 

 

It is also possible to derive the (23,3)–(22,5) and (23,3)–(23,1) spacings of the X
2
u

+
 state from the microwave 

transition frequencies (see Fig. 2 of Ref. 39). These values are presented in Table VI where it can be seen that the 

present A
2
g

+
 potential performs similarly to that of Xie et al.

38
, but very slightly poorer than that of Tung et al.

39
 

(although the differences are all very small, suggesting all three potentials are very reliable in this region.) 

Finally, we compare calculated and experimental values for various spectroscopic quantities in Table VII.  The 

level of agreement between the RCCSD(T) and CAS+MRCI potentials is remarkably good throughout. In addition, 

the agreement with the spectroscopic constants derived from the PFI-ZEKE spectra of Raunhardt et al.
48

 is almost 

always within the experimental error bars, again attesting to the high quality of the present potential, obtained using 

“standard” methods; we recall that we obtained exceptional agreement with the 1-3 and 1-5 N spacings for more 

recent PFI-ZEKE results from the same group. The fact that we are making use of the X
-3

 extrapolation of potentials 

makes this agreement all the more encouraging, particularly since the (5,6) potential appears to be extremely close to 

that obtained from the more prohibitive (6,7) method; even the (Q,5) potential seems to be “good”, but is not at the 

high level of the other two potentials; additionally, including a second set of diffuse functions makes little difference 

to the potentials. 
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   Table VI. Wave numbers in cm
-1

 of high-v rovibrational transitions.
b 

 (23,3)  (22,5) (23,3)  (23,1) 

Ref. 39 5.260 (0.012) 2.002 (0.001) 
Ref. 38 5.370 (0.122) 1.994 (-0.007) 
CAS+MRCI (6,7) 5.166 (-0.082) 1.989 (-0.012) 
Experimenta 5.248 2.001 

a
 Derived from the microwave transition frequencies of Ref. 34 (see Fig II of Ref. 39).  

b
 The values in parentheses correspond to the difference (experiment - theory). 

 

 Table VII. Spectroscopic parameters for He2
+
 isotopologues.  (Be and  are obtained from B0 and B1.) 

Quantity Source 4He2
+ 3He4He+ 3He2

+ 

De/ cm-1 RCCSD(T) 19955.11 19955.11 19955.11 
 CAS+MRCI 19955.62 19955.62 19955.62 
Re/ Å RCCSD(T) 1.081 1.081 1.081 
 CAS+MRCI 1.081 1.081 1.081 
 Expt48 1.0806 1.0809  
R0/ Å RCCSD(T) 1.0891 1.0898 1.0904 
 CAS+MRCI 1.0891 1.0898 1.0904 
 Expt48 1.08924 1.090 1.0914 

e/ cm-1 RCCSD(T) 1698.69 1832.36 1956.92 

 CAS+MRCI 1698.61 1832.28 1956.83 
 Expt48 1698.8 1832.3 1956.9 

exe/ cm-1 RCCSD(T) 35.16 40.92 46.68 

 CAS+MRCI 35.17 40.92 46.68 
 Expt48 35.18 40.88 46.63 
Be/ cm-1 RCCSD(T) 7.214 8.394 9.574 
 CAS+MRCI 7.214 8.394 9.574 
 Expt48 7.2155 8.393  
B0/ cm-1 RCCSD(T) 7.1015 8.2526 9.4016 
 CAS+MRCI 7.1012 8.2523 9.4012 
 Expt48 7.1016±0.0005 8.252±0.002 9.388±0.009 
B1/ cm-1 RCCSD(T) 6.8756 7.9689 9.0557 
 CAS+MRCI 6.8754 7.9686 9.0553 
 Expt48 6.8739±0.0005 7.968±0.001  

/ cm-1 RCCSD(T) 0.22584 0.28369 0.34584 

 CAS+MRCI 0.22584 0.28370 0.34585 
 Expt48 0.2277a 0.284a  

 a
 Obtained from the experimental    and    values. 

 

Our best De value is 19955.3 ± 0.3 cm
-1

, which encompasses both the CAS+MRCI and RCCSD(T) values in 

Table VII; this value is extremely close to that of Tung et al.
39

 who obtained 19954.586 cm
-1

 (from their Table II) or 

19956.708 cm
-1

 (from their abstract).  Cencek and Rychlewski
37

 estimated the exact value for the separated He + 
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He
+
 system to be -4.903724377 hartree; we get -4.903734326 hartree from the correlation energy obtained with the 

daV6Z and daV7Z basis sets and extrapolated with the X
-3

 formula.  

 

IV. TRANSPORT CROSS SECTIONS 

By combining the techniques of Heiche and Mason
17

 with the expressions of Wood
51

, equations were given by 

Viehland and Hesche
52

 in 1986 for the quantum-mechanical  ( )( ) for arbitrary values of   and for a system with 

RCT.  These expressions were given in terms of the phase shifts corresponding to a g-u set of potentials and the 

wave number for the relative motion of the nuclei.  As indicated above, we are interested in the semi-classical 

expressions, which are obtained by replacing sums over the phase shifts by integrals over the impact parameter, and 

by approximating the quantum phase shifts. 

Two sets of semi-classical equations exist for calculating the transport cross sections.  The expressions of 

Skullerud and Larson
30

 are for a set of transport cross sections designated as  ( )( ), while those of Viehland and 

Hesche
52

 use the  ( )( ).  The primary difference is that the former involve Legendre polynomials of the cosine of 

scattering angle while the latter involve powers of the cosine.  This is the same kind of difference that arises in 

different treatments of gaseous ion transport without RCT, and it has been shown
53

 that the relationship in that 

situation is 

 ( )( )  ∑  (   ) ( )( )  
        (1) 

where 

 (   )  [  {  (  ) } { (   )}]  ∑ (  )   (   )  [    (   )   (   ) ]  
     (2) 

 

We have shown by direct calculation that Eq. (1) is valid for the first four transport cross sections with RCT.  The 

complexity of the semi-classical expressions is such that a rigorous proof for all   seems unlikely.  Here we will 

assume it is true and work only with the expressions in Ref. 52. 

A semi-classical computer program named EXCHANGE was developed
52

 to compute the transport cross 

sections for a system with RCT.  This program was an improvement on older programs
54-57

 in that it was designed to 

make the necessary numerical integrations to as high an approximation as necessary in order to give  ( )( ) values 

that are at least as precise as the user designates (assuming the potentials are accurate enough to allow this).  At that 

time, precisions of 0.1-1% were considered sufficient. 
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Since then, improved mathematical techniques have been developed
58

 for calculating the  ( )( )  with a 

precision of 0.01% or better in systems without RCT.  Because we need high precision in the calculations reported 

below, we have written a new Fortran computer program called QEx that extends the techniques in Ref. 58 to a g-u 

pair of potentials for a system with RCT.  In the supplementary material
46

 we highlight the major aspects of QEx.  

Copies of the program are available upon request. 

As a test of program QEx, we have used it with the “B” potentials of Sinha et al.
18

 for He2
+
.  The RCT, 

momentum-transfer and viscosity cross sections we obtained are compared in Fig. 3 with those calculated using 

program EXCHANGE.  The agreement is excellent, but the greater precision obtained with QEx allowed us to 

determine more carefully the minima in  ( )( ) and     ( ) that occur near      hartree.  Note also that the 

expected result
16

 that  ( )( )       ( ) is valid only above thermal energies for this system, as was observed 

previously
16,59

. 

 

V. KINETIC THEORY 

Sinha et al.
18

 used their potentials to determine the transport cross sections by both quantum-mechanical and 

semi-classical methods.  They then used these cross sections to determine the mobility from the two-temperature 

(2T) kinetic theory
53,60

, which is better than any of the one-temperature (Chapman-Enskog) theories
40,61-63

. 

 The 2T theory starts by assuming that the ion velocity distribution function is approximately Maxwellian 

(Gaussian), with ion temperatures (average kinetic energies) that are the same along and perpendicular to the 

electrostatic field but different from the gas temperature.  It also assumes in first approximation that there is no 

skewness, kurtosis or correlation in the distribution function, even though the discussion in the Introduction clearly 

indicates that RCT should cause such effects.  Sinha et al.
18

 tried to compensate for these weaknesses by setting the 

maximum of the ion velocity distribution function equal to a value smaller than the average drift velocity, a 

procedure that was justified theoretically by Lin and Mason
5
.  Nevertheless, their calculated transport properties are 

unlikely to have the high level of precision desired in the present work. 

Two notable advances over the 2T theory are the three-temperature
64,65

 (3T) and Gram-Charlier
66

 (GC) 

approaches to solving the Boltzmann equation.  The 3T approach is based on a zero-order ion velocity distribution 

function that has different ion temperatures parallel and perpendicular to the electric field.  The GC approach is 
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based on this same zero-order function multiplied by a set of terms that take into account five other quantities, as 

follows.  The coefficient of skewness along the field is 

 

   〈(     )
 〉 〈(     )

 〉          (3) 

 

where the angle brackets indicate an average over the ion velocity distribution function, the   subscript indicates that 

this is a longitudinal value, parallel to the field,    is the longitudinal speed, and    is the average drift speed.  The 

kurtoses parallel and perpendicular to the field are 

 

   〈(     )
 〉 〈(     )

 〉      (4) 

and 

   〈  
 〉 〈  

 〉        (5) 

 

where the   subscript indicates that this is a transverse value, perpendicular to the field, and    represents the 

transverse ion speed.  (Note that the “excess kurtosis” used by some authors is the kurtosis minus 3.)  Finally, the 

correlation between the perpendicular kinetic energy and the parallel velocity is 

 

   〈  
 (     )〉 〈  

 〉〈(     )
 〉       (6) 

 

and the correlation between the perpendicular and parallel kinetic energies is 

 

   〈  
 (     )

 〉 [〈  
 〉〈(     )

 〉]     (7) 

 

For a Maxwellian (or Gaussian) distribution in three dimensions,         ,      and        , so 

these must be the values at low    . In light of the discussion in the Introduction, it is clear that these values will 

change at intermediate and high    .  This in turn means that the GC approach should be preferred over the 2T and 

3T theories in situations where RCT occurs.  As an illustration, we have used the present potentials, program QEx 

and the GC computer program
67

 to determine these quantities for 
4
He

+
 in 

4
He at 294 K.  Fig. 4 compares the results 

to the values obtained
68

 for 
40

Ca
+
 in 

4
He at 300 K; the latter are similar to the results obtained for a large number of 

ion-neutral systems without RC.  The much stronger variation with     for 
4
He

+
 in 

4
He at 294 K is striking.   
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An enlargement of Fig. 4 at small     shows that the distribution starts as a Gaussian at 0 Td, becomes slightly 

negatively skewed (    ) and platykurtic (    ,     ) but still remains almost uncorrelated (           ) 

near 20 Td, and then returns to being Gaussian near 35 Td.  From 35 to 120 Td, Fig. 4 shows that the distribution 

increasingly becomes more positively skewed, more leptokurtic (    ,     ) and more correlated (       

    ).  The tail of a leptokurtic distribution approaches zero more slowly than a Gaussian with the same average 

velocity.  Since the velocity distribution function is normalized, the longer tail and higher peak of a leptokurtic 

means that it has a smaller width. 

 

VI. QUANTUM EFFECTS 

To test program QEx further, we next considered the “4c” potentials of Carrington et al.
34

  These potentials 

were used previously
69

 to compute the quantum-mechanical transport cross sections, and these were then used in an 

early version of the GC computer program to determine the mobilities as a function of     at a number of values of  

 .  The precision was estimated to be no worse than 0.1%.  We used QEx to calculate the semi-classical cross 

sections to 0.04% and then used GC to compute the same mobilities with a precision of 0.04%.  It was expected
18,30

 

that the quantum-mechanical values would lie below the semi-classical values, but the differences shown in Fig. 5 

allow us to quantify this: quantum-mechanical effects lower the mobilities of 
4
He

+
 in 

4
He near room temperature by 

the ratio 

 

                       
  (   )           (   )     (8) 

 

for    <180 Td. (There is no difference above 180 Td.)  This equation, which assumes that     is given in Td, 

will be used below to correct results calculated for other g-u potentials from QEx and GC.  Many of the reasons for 

doing this rather than making quantum calculations ourselves were given above, but we also note that we are 

interested in eventually studying the motion of heavier rare gas ions in their parent gases, in which cases the smaller 

de Broglie wavelengths will allow semi-classical calculations to be used with little or no correction at room 

temperatures and above.  In addition, quantum calculations at low temperatures have already been reported
69

, albeit 

with less accurate potentials than are used here. 

Fig. 5 also shows the ratio of the calculated values at 298.7 K to those calculated at 294.0 K.  The ratios below 

200 Td are described by the equation 
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  (   )           (   )      (9) 

 

This equation is in excellent agreement with the temperature dependence of -0.1% per degree suggested in Ref. 70, 

which implies that           for these two temperatures.  Consequently, Eq. (9) will be used below to compare 

experimental results taken at slightly different temperatures.  

To obtain additional information, we considered a pair of potentials for He2
+
 that had been “tuned”

30
 to give 

acceptable agreement with experimental values of the ion mobility.  The potentials were tabulated at 22 values of   

between 1.3 and 12.0 bohr.  (The value at 1.3 bohr of that A
2
g

+
 PEC is in error, presumably because of a misprint, 

so we removed it.)  In order to achieve high precision, we supplemented the tuned potentials by adding eight points 

at small   (1.08–1.30 bohr), seven points near the minimum of the A
2
g

+
 PEC (8.20–9.75 bohr) and one point at 

13.0 bohr.  The large-  point was needed to ensure that both potentials matched the correct long-range potential (see 

above), while the other points were added so that graphs of the potentials were smooth when they were included. 

The results obtained from QEx and GC at 294 K with the tuned potentials are compared in Fig. 6 with the 

experimental values
70

 at this temperature and those measured
71

 at 295 K.  The values at 295 K should be lower than 

those at 294 K, but they are lower by more than is indicated by Eq. (9).  The present semi-classical values have been 

corrected to the equivalent quantum-mechanical values by using Eq. (8).  The corrected values are in excellent 

agreement with the quantum-mechanical values obtained by Skullerud and Larsen
30

 by solving the Boltzmann 

equation using a single Gaussian weight function, which they found worked only up to 200 Td and hence had to be 

supplemented at higher     by values obtained by computer simulation and by a double Gaussian expansion.  What 

are not in excellent agreement, however, are the differences they reported between their quantum-mechanical and 

semi-classical mobilities and the ones represented by Eq. (8).  Their differences were only half as large as ours, for 

reasons that must involve their semi-classical calculations.  No remarks were made in Ref. 30 about orbiting 

collisions, multiple orbiting, or the other difficulties outlined in our supplementary material
46

.  Accordingly, we 

believe the present results to be more accurate than the prior semi-classical results for this tuned potential. 

 

VII. EXPERIMENTAL MOBILITIES 

Transport coefficients calculated from theoretical interaction potentials can be tested by comparing them to 

accurate experimental data on gaseous ion mobilities and/or diffusion coefficients.  Although it has been shown
72
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that it is better to use diffusion data if both have the same experimental accuracy, mobility values are more easily 

determined in drift tubes and tend to be more accurate.  In a drift-tube experiment one usually infers the ion 

mobility,  , and the standard (or reduced) ion mobility,   , from the average ion speed, often called the drift 

velocity, using the equations 

      (  )(   )  (    )(   )   (10) 

and 

              (11) 

 

Here                    m
-3

 is Loschmidt's constant,   is the length of the drift tube, and   is the transit time 

of a short pulse of ions through a gas-filled chamber under the influence of the uniform electrostatic field of 

magnitude  .  Often a mass spectrometer is placed at the exit of the drift tube in order to separate the ion species of 

interest from others that are formed by reactions with the gas itself, e.g., diatomic molecular ions, or ions arising 

from reactions with gaseous impurities.   

Unfortunately, several complications limit the accuracy of the ion mobilities inferred from the transit time of an 

ion swarm.  The so-called “end effects” arise because the precise position at which a pulse of ions begins to drift 

with the steady-state velocity, after being produced by an external ion source, is not directly measurable.  In 

addition, if the ions are injected with excess energy they may penetrate a finite distance into the drift space before 

starting to drift with a steady-state velocity and this can be treated as if the effective length of the drift tube is 

reduced. Since this is difficult to model, the effective reduction is poorly known. This “injection effect” can be quite 

large when heavy ions are injected into a light gas like He, but is less important when He
+
 ions are injected into 

helium, because the momentum transfer is strongly enhanced by RCT.  

It appears that earlier measurements
8-13,73-84

 of the mobilities of 
4
He

+
 ions in 

4
He were subject to end effects, 

injection effects and perhaps other complications. This probably accounts for the differences shown in Fig. 6 

between the mobilities from Ref. 71 and the other two sets of values.  It may also explain why the mobilities 

measured by Peska
85

 were estimated to have fairly large uncertainties, ±6%.   The net effect is that the smoothed 

mobility data given in the compilation by Ellis et al.
86

, who took into account the results of several experimental 

groups, exceed the precise (±0.8-1.5%) values of Helm
70

 by more than 7% for    >100 Td.  We will show below 

that the values of Helm are undoubtedly the best of the previous experimental values. 
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In an effort to reduce the uncertainties, we have re-measured the mobility of 
4
He

+
 in 

4
He using the drift-tube 

mass spectrometer that at the time was housed at the University of Pittsburgh; it has since been moved to Chatham 

University.  Two different sets of data were taken. The first used the same configuration of the apparatus that was 

used in earlier measurements
87

 of the mobility of O
+
 in He.  Here, ions generated by a pulsed electron impact ion 

source are passed through an “injection mass filter” (in actuality, a radio-frequency quadrupole mass filter) before 

being injected into the drift region through a small orifice.  A fraction of the ions that have traversed the drift region 

is sampled by passing them through a second small orifice and the ions are then mass analyzed by a second 

quadrupole mass spectrometer and detected by a continuous dynode multiplier. The ion counts are coherently 

accumulated in a computer-based multichannel analyzer (MCA). The average of the arrival-time distribution must 

be corrected, in these experiments, for the short time that the ions spend traversing the mass spectrometers.  

Dividing the drift length by the transit time yields the drift velocity via Eq. (11), and finally Eq. (10) gives the 

mobility appropriate to the known value of    .  

The injection mass filter was intended for measurements of ion-molecule reactions but is not really required for 

mobility studies. It has the disadvantages that it diminishes the ion current and allows the ions to enter the drift tube 

with energies of 20 to 40 eV; the ensuing injection effect leads to systematic (but variable) errors.  A second source 

of error arises from the non-uniformity of the electric field in the region between the last guard ring and the ion 

sampling orifice.  To overcome these problems, we modified the apparatus by adding two double-grid ion shutters, 

one located close to the entrance and the other near the end of the drift section (see Fig. 7).  We then removed the 

injection mass filter. The second set of data was collected using this modified drift tube.  

The shutter grids, made from very fine nickel gauze, can be electrically biased to either pass or block ions. One 

grid of each shutter is welded directly to the two plates located at the beginning and end of the drift region, while the 

other grid is mounted on an insulated ceramic ring.  The spacing of the grids in the entrance shutter is slightly 

smaller (0.176 cm) than those in the exit shutter (0.265 cm). The distance between the two plates that define the 

beginning and end of the clear drift section is 30.60 cm. This region is enclosed by guard rings that are kept at the 

appropriate voltages by a resistor chain to make the electric field uniform within 1%; field variations of this 

magnitude would have a negligible 0.01% effect on the mobility. During measurements, one of the shutters is kept 

open while the other one is opened only for 2-4 μs by short voltage pulses applied to one of grids. The difference of 

the arrival times recorded when one or the other shutter is pulsed open reflects the time to traverse the distance 
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between the two shutters.  The spacing of the grids in each shutter, while small, introduces an uncertainty in the 

distance between the shutters. After some experimentation, we decided that the spacing between the two shutter 

grids of each shutter should be included in the drift length, increasing its value to    31.04 cm.  This decision 

contributes an estimated uncertainty of about 0.5% to the measured mobilities. 

Even very small blocking voltages (less than 1 V) were found to reduce the transmission of He
+
 through the 

entrance shutter to zero, indicating that these ions lose most of the injection energy in the thermalization region (2 

cm long) between the injection orifice and the entrance shutter. Hence there are no injection effects of concern here.  

Although some heavier ions (e.g. N2
+

, produced from impurities in the ion source) are not completely cut off by the 

entrance shutter, they have no effect on the He
+
 mobility measurements.  

The MCA records the arrival time distribution of the He
+
 ions arriving during short time windows (channels) of 

adjustable lengths. The channel width usually was set to 2 μs. The MCA has a built-in program that computes the 

average of the arrival time distribution, and those averages were usually used in the data analysis.  Some sample 

arrival spectra were examined in greater detail and the MCA averaging routine was found to be accurate.  Moreover, 

we could not detect any skewness or kurtosis in the examined arrival-time distributions. 

The spread of arrival times (typically on the order of 10 to 20 μs) was close to, but somewhat larger than, that 

calculated from the diffusive spread of the spatial ion distribution (see  Sec. 1-7 of Ref. 40),  

   √〈(      )
 〉   (    )

             (12) 

Here     is the average spread of the spatial distribution (in the field direction,  ) of the ion cloud and    is the drift 

voltage. The ratio      is given as a separate term in Eq. (12) because it is related to the longitudinal ion 

temperature by a generalized Einstein relation
88

 (GER); the values we used are those discussed in Sec. VIII.  Eq. 

(12) was derived for the case where the initial distribution is a delta function along   and where the spread is due to 

diffusion in the absence of electrostatic repulsion of the ions.  The slightly larger spread of the experimental 

distribution is a consequence of the finite length of the initial ion pulse, not electrostatic repulsion.  

A detailed analysis of the shape of the arrival distribution can be found in Sec. 2-2-B of Mason and McDaniel
40

.  

That analysis includes effects of reactive losses of ions and ion diffusion. The ions that arrive after the average time 

suffer slightly greater losses than those arriving earlier, and this skews the arrival spectrum.  In the case of He
+
 ions 

drifting in He, the dominant reactive loss of He
+
 ions is from He

+
 + 2 He  He2

+
 + He, a very slow ternary reaction 

with a rate coefficient of           cm
6
 s

-1
 at room temperature

12, 89
.  At a helium pressure of 0.5 Torr, thermal 
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He
+
 ions convert to He2

+
 ions with a time constant of       

μs, which is much larger than the width of the arrival 

spectrum.  The reaction would change the average arrival time and the inferred mobility by less than 0.001%.  

Similar estimates indicate that the diffusion effects are equally negligible.  This means that that there is little change 

in the arrival time distribution due to reactions and diffusion. 

Sources of He
+
 in the drift space can also be excluded. A very small amount of He

2+ 
ions are usually observed, 

but the two-body charge-transfer reaction He
2+

 + He  He
+
 + He

+  
is extremely slow, with a thermal rate 

coefficient
90

 of           cm
3
/s. Furthermore, the He

+
 product ions arrive at much earlier times than the He

+
 ions 

produced in the source, since the doubly-charged ions have a higher mobility.  He
+
 products from the He

2+
 reaction 

have been observed in earlier work
91

, but they play no role in the present measurements.  Finally, the mass 

spectrometer’s resolution is sufficient to separate He
+
 (mass 4) ions from other ions, for instance H3

+
 (mass 3) and 

HeH
+
 (mass 5), that are sometimes present in small amounts; the natural abundance of 

3
He

+
 is too low for it to be 

observed here. 

Depending on the desired    , the gas pressure in the drift tube was adjusted from 0.16 to 0.62 Torr by a 

precision leak valve.  The helium gas was of ultra-high purity, but small errors (~0.1%) come from the measurement 

of the gas pressure. The pressures measured by the two Baratron capacitance manometers always agreed to better 

than 0.1%.  The error in the drift voltage is also on the order of 0.1%.  The gas temperature was taken as equal to the 

wall temperature (typically, about 298 K) that was determined by two digital thermometers and one mercury 

thermometer to an accuracy of 1 K (~0.3%).  The uncertainty in the temperature causes a similar fractional error in 

the gas density that in turn affects     and the mobility.  The statistical uncertainty in the determination of the 

average arrival time is on the order of 0.1% or smaller.  The time base of the MCA was frequently checked and 

always found to be accurate. It is concluded that the overall uncertainty of the measured mobilities is not likely to 

exceed ±1%. The uncertainty in the values of     is estimated to be ±0.5%. 

The two sets of data taken, one with the original configuration of the drift tube and the other with the shuttered 

drift tube, do not show a significant difference (see Fig. 8). This was expected because the injection effect discussed 

earlier is quite small when He
+
 ions are injected into helium, because the ions are thermalized rapidly by charge 

transfer collisions.  The advantage of using shutters will be greater in mobility studies of heavier ions in helium.  

The present data at T= 298.7 K lie slightly below those of Helm
70

 at       K, but Fig. 8 shows that the 

difference is within the combined error limits when those data are rescaled to 298.7 K by using Eq. (9).  Helm’s data 
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were taken in a drift tube that was specifically designed for very accurate mobility measurements and the absence of 

a mass spectrometer in that apparatus may actually be an advantage for studies of ions drifting in their parent gases. 

Helm estimated that, at the small helium pressures in his experiments, He2
+
 ions could have contributed an error on 

the order of only 0.1% to the overall error estimate of 0.8-1.5%, depending upon    . 

The function given by Patterson
82

 is a good representation of all of the data shown in Fig. 8, as well as the 

earlier data
9,11

 from which it was derived.  However, it is a bit too high above 50 Td, which is probably a limitation 

of the functional form that was used and because it was representing data obtained at very high    . 

The mobility data for 
4
He

+
 in 

4
He at 300 K taken by Peska

85
 lie 1.5 to 2% above those of Helm

70
 at 294 K, 

rather than 0.6% below as one would expect.  The drift tube used by Peska included a mass spectrometer and was 

equipped with shutters similar to those used in the present experiment, and a detailed investigation of the 

perturbation of the drift field by the shutter potentials was carried out.  Although the reason for the large quoted 

uncertainty (±6%) is not clear, it means that the differences with our results are not statistically significant; because 

of their large uncertainties, we have chosen not to plot the values from Ref. 85 on Fig. 8. 

 

VIII. ION TEMPERATURES AND DIFFUSION COEFFICIENTS 

Before making a direct comparison of the new theoretical and experimental mobilities, we consider the ion 

temperatures,    and   , parallel (longitudinal) and perpendicular (transverse), respectively, to the electrostatic field, 

and then the diffusion coefficients,    and   . 

Applying the GER
88

 to systems with RCT, Waldman et al.
92

 estimated    and    for 
4
He

+
 in 

4
He from the 

mobilities and diffusion coefficients of Ref. 18.  The results were in good agreement with the values obtained by 

Sinha et al.
30

 using a 2T kinetic theory.  Unfortunately, both sets of results are based on calculations that started by 

assuming that    and    are the same and that the ion velocity distribution function does not show skewness, 

kurtosis or the correlations that are present in the GC kinetic theory used here.  Fig. 9 shows a comparison of our 

results with those obtained previously.  The trends with     are consistent, but the previous values are too low for 

   and too high for   .  This is undoubtedly due to the initial assumptions inherent in the 2T kinetic theory, 

assumptions that also make the 2T values for    and    disagree with experiment.  Such disagreements were in fact 

the motivations for developing the 3T
64,65

 and GC
66

 kinetic theories. 



25 
 

Fig. 10 shows the present results for      and     , and compares the latter with the experimental values
93

 for 

4
He

+
 in 

4
He at 294 K.  The agreement is good below 50 Td, as was noted in previous papers

69,93
 that used different 

interaction potentials.  At higher values, the trends with     are consistent but the numerical values are not.  Part of 

the reason is that the present results have not been corrected for quantum-mechanical effects, and these may be 

larger for the diffusion coefficients than given by Eq. (8) for the ion mobility.  However, the differences persist 

above 200 Td, where quantum effects should be negligible.  A second factor is the decreasing precision of our 

calculated diffusion coefficients as     increases.  Another factor is the assumption in Ref. 94 that the ions arriving 

at the collector were “thermalized”, i.e. they had suffered enough collisions during their motion through the 

apparatus that their velocity distribution function had reached steady state.  The steady-state assumption is 

questionable at the low pressure (0.04 Torr) they used to reach     values between 4002000 Td, as the ions would 

make only 10-12 collisions as they moved through a drift length of 10 cm.  Lack of thermalization would make   

too large and lead to a value of      that is too small.  A fourth factor is that no detectable deviations from a 

Gaussian distribution perpendicular to the field were found, even though it had previously been shown by the same 

authors
94

 that such deviations should be expected in even moments of the distribution at high    .  As noted above, 

a leptokurtic ion velocity distribution has a smaller width than a Gaussian, which leads to a smaller value of     .  

We believe that the last two factors account for most of the difference shown in Fig. 10 between the measured and 

calculated values of      above 50 Td.  

 

IX. ION VELOCITY DISTRIBUTION FUNCTIONS 

There have been attempts
95-98

 to measure the ion velocity distribution by using retarding potentials.  The work 

of Ong and Hogan
99

 is particularly relevant to the present paper, since it included figures comparing the velocity 

distribution functions that were measured for 
4
He

+
 in 

4
He at room temperature for     values between 80 and 242 

Td with Gaussian distributions normalized to have the same area.  Their results disagree completely with those 

shown in Figs. 11 and 12 for velocity distributions perpendicular and parallel to the electrostatic field. 

Fig. 11 shows how the velocity distribution perpendicular to the field direction changes with increasing    .  

Since increasing     causes an increase in the fraction of ions with large velocities, there is consequently a 

decrease in the fraction of the ions moving perpendicular to the field with small values of   .  It is also important to 
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note that this distribution is Gaussian at 0 Td, platykurtic near 10 Td, Gaussian again near 20 Td, and finally 

becomes strongly leptokurtic as     increases above 20 Td. 

Fig. 12 compares the calculated velocity distribution parallel to the field to Maxwellian distributions for several 

values of    .  It differs significantly from Fig. 11 because increasing     causes a shift towards higher speeds 

along the field direction.  Note that even at 86.52 Td this distribution function still has a large fraction of ions 

moving against the field (    ).  This is not a sustained motion, as the distribution function represents the average 

behavior of the swarm of ions at any particular instant. As a result of collisions that are nearly head-on, some ions 

will have just bounced off a neutral and be moving against the field at any particular time, until the field slows them 

and eventually causes them to resume their motion along the field.   

The distributions in Fig. 12 are Gaussian at 0 Td, platykurtic at low     and strongly leptokurtic at high    , 

just as they are in Fig. 11.  We note that the calculated distribution functions are normalized to one over the three-

dimensional ion velocity, while the Gaussians in Fig. 12 have the same ion temperatures (distribution widths) as the 

calculated distributions but are normalized to one over just   .  This means that the increasing correlations shown in 

Fig. 4, as well as increasing skewness and kurtosis in the parallel and perpendicular directions, make the calculated 

distribution at 86.52 Td appear to have a different mean velocity than the Gaussian, even though they are the same. 

We believe that the differences between Figs. 11 and 12 and the figures in Ref. 99 arise for three reasons.  First, 

the apparatus used in that work collected all ions coming out of the drift tube within 14 degrees of being on-axis.  

Second, the authors had no way of correcting for effects caused by the orifice through which the ions were passing 

before being energy-analyzed.  Third, the neutral gas density is reduced near the orifice and the gas flows toward the 

orifice, thereby “pushing” the ions out in a manner that is difficult to quantify; such effects have been investigated 

for neutral gases
100,101

 but not for ions.   

To the best of our knowledge, no attempts have been made since 1985 to measure ion velocity distribution 

functions with retarding potentials; this is presumably because the experimental problems are so difficult. However, 

laser-induced fluorescence (LIF) measurements
102-105

 of drift-velocity distributions have been able to measure ion 

temperatures (second moments) and skewness (third moment) that agree well with those calculated from the GER.  

Unfortunately, very few atomic ions are amenable to single-frequency LIF, and to date measurements have been 

reported only for Ba
+
 in He and Ar. 
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X. MOBILITY CORRECTIONS 

We reported above that the velocity distribution functions at high     show large skewness, kurtosis and 

correlation, and that this accounts, at least partly, for differences between the ion temperatures and diffusion 

coefficients that we calculated and the limited experimental data that is available.  How do they affect the mobility? 

Theoretical mobilities are always computed from the average ion velocities, whereas the experimental values 

reported here, and in most other work, are computed from the length of the drift tube and the average of the ion 

arrival times.  These, and other ways
106,107

 of determining the mobility, generally give consistent results when, as 

reported here, diffusion effects are small and there are no ion-neutral reactions of concern.  Indeed, a large number 

of previous studies
1-4,68

 have detected no difference between theoretical and experimental mobilities when the ion-

neutral interaction potentials are highly accurate and ab initio.  However, systems with ion velocity distributions that 

are highly anisotropic and non-symmetrical, such as those that involve RCT, have not been examined for such 

differences. 

To estimate the effect of the non-Gaussian nature of the ion velocity distribution on the measured mobility, we 

worked with the transport cross sections determined by program QEx for the present ab initio potentials for He2
+
, 

but we used program GC at 298.7 K in two ways.  The first was the standard approach where the calculations started 

with a Maxwellian distribution at extremely low    , and the converged values obtained at one     for the ion 

velocity, ion temperatures and the parameters defined by Eqs. (3)-(7) are used as first approximations for the 

calculations at a slightly higher    ; the diffusion coefficients are calculated at each    , but are not needed at the 

next higher value.  This approach has the advantage of more rapid convergence at the next value than might 

otherwise be found, and program GC eventually produces values over a wide range of     for the quantities just 

listed. 

The second way we used program GC was to consider only one     at a time.  We started the program with a 

Gaussian distribution in which the ion temperature in each direction was set equal to the average ion temperature, 

(      )  , that was calculated with the first method for the same drift velocity.  We then allowed GC to 

calculate the corresponding value of     in its first approximation.  This value of     remained fixed in higher 

approximations, during which GC modified   ,   ,    and the five other transport properties.  The program stopped 

when the    values were converged to 0.04% or better and the other transport properties to 0.4%. 
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The first approximation value in the second method of using GC is approximately the combination of    and 

    values that correspond to a Gaussian distribution at the average ion temperature.  The approximation arises 

because successive calculations made without changing the zero-order distribution function results, using any 

kinetic theory, in small changes in the transport properties.  For neutral gases, these changes are on the order of 1%, 

so it is no surprise that in the limit of low     we find the ratio of the converged to first-approximation mobility to 

be 0.99153. 

Between 10 and 35 Td, the ratio increased slowly from 0.994 to 1.001.  As noted in Sec. V, in this region of 

    the true distribution starts as a Gaussian, becomes slightly skewed (negatively) and slightly platykurtic while 

remaining almost uncorrelated, and then returns to being Gaussian.  From 35 to 120 Td, the ratio decreased 

monotonically from 1.001 back to 0.994, as the distribution became more positively skewed, more leptokurtic and 

more correlated.  The small changes in the converged mobility are consistent with our finding that the measured 

arrival time distributions showed no evidence of skewness or kurtosis.  Hence no corrections need be applied when 

comparing our calculated mobilities for systems with RCT to experimental values. 

We also considered a possible correction for the fact that the neutral gas used in the experiments was a mixture 

of the naturally-occurring isotopes of He.  We used the average of our two potentials to describe the interaction of 

4
He

+
 with 

3
He, and combined the cross sections obtained for this potential from program PC

58
 with those obtained 

here with program QEx for 
4
He

+
 in 

4
He.  The abundance of 

3
He is so small, however, that the results obtained with 

program GC
66

 are virtually identical with those obtained when the gas was assumed to be completely 
4
He.  Again, 

no corrections need be applied. 

 

XI. MOBILITY RESULTS 

The solid curve in Fig. 8 represents our best estimate of the experimental mobility of 
4
He

+
 in He at 298.7 K.  

Numerical values are given in Table VIII, where they can be compared with the experimental values of Helm
70

, 

corrected by Eq. (9), and the values calculated from the present potentials and corrected by Eq. (8).  The agreement 

is excellent, given the possible uncertainties in both the experimental and theoretical values.  

To demonstrate this quantitatively, we have computed the dimensionless statistical quantities,   and  , defined 

previously
108

.  Briefly,   is a measure of the relative difference between the experimental and calculated values 

compared to the combined errors, while   is a measure of the relative standard deviation compared to the sum of the 
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squared error estimates.   We used 1.0% as the maximum inaccuracy for the present data taken with shutters, but we 

have not taken into account the possible 0.5% errors in the values of    .  We used the accuracy estimates of 

Helm
70

 for his data at 294 K.  For the calculated values we have combined the small convergence errors in QEx and 

GC and the error associated with using Eq. (8) to estimate a precision of 0.5% below 130 Td, increasing gradually to 

1.5% above 500 Td.  Finally, we made comparisons at the specific temperatures indicated by the experimenters and 

we used the raw experimental values. 

 

   Table VIII. Mobilities in cm
2
 V

-1
 s

-1
 for 

4
He

+
 in 

4
He at 298.7 K. 

    (Td) Presenta  Ref. 70b Theoryc 

10 10.23 10.35 10.25 
15 10.03 10.16 10.12 

20 9.83 9.94 9.94 

25 9.62 9.70 9.74 

30 9.42 9.47 9.53 

35 9.22 9.26 9.33 

40 9.02 9.04 9.12 

60 8.25 8.31 8.38 

80 7.59 7.72 7.78 

100 7.11 7.23 7.30 
a
 Smoothed values obtained from present experimental values taken with shutters. 

b
 Converted to 298.7 K with Eq. (9). 

c
 Calculated from the present potentials and corrected using Eq. (8). 

 

 

When the mobilities calculated from the present ab initio potentials were compared to the data of Helm
70

 at 294 

K we obtained         and        for the 9     values from 10-80 Td, and         and        for all 

22 values from 10–1200 Td.  For the present experimental values taken with shutters at 298.7 K, we obtained 

        and        for the 21 values between 9.7 and 106 Td.  The negative values of   indicate that the 

calculated values lie above both sets of experimental mobilities, on the average.  Both   values for the Helm data are 

below one, so we conclude that there is no statistically significant difference between the experimental and 

calculated values at 294 K.  The   value for the present data indicates, in contrast, that there is a statistically 

significant difference at 298.7 K.  Note, however, that the values of   are large enough to indicate that the 

differences are dependent upon E/N and/or there are random variations in the raw data used in this analysis.  A 

statistical comparison of the calculated mobilities with the smoothed values at 298.7 K shown in Table VIII gives 
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        and       , indicating that the differences may or may not be statistically significant when random 

fluctuations are eliminated. 

Fig. 13 shows graphically that the present calculations are in excellent agreement with the measurements of 

Helm at 294 and in very good agreement with the present measurements (with shutters) at 298.7 K.  The 

disagreement with the values measured between 130 and 1300 Td by Basurto et al.
109

 is substantial.  We note, 

however, that their experiments were conducted between 293 and 310 K with no indication of the temperature of 

any particular     value, and that their values at 130 Td and 200 Td are very close to our calculated values and to 

Helm’s measurements at 294 K.  Overall, we believe that the accuracy of the values in Ref. 109 is not as good as the 

1.3% that they claimed. 

 

XII. CONCLUSIONS 

We have used standard techniques of modern quantum chemistry to determine new potential energy curves for 

the X
2  

 and A
2  

  states of He2
+
. Although the RCCSD(T) curves show an unphysical maximum at large R, the 

X
2
u

+
 curve seems to be very accurate close to Re; the poor behavior close to the asymptote means that the highest 

levels are not predicted well, and this is also the case for the more weakly-bound A
2  

  state. In contrast the 

CAS+MRCI curves behave extremely well: at large internuclear distances they merge smoothly onto the 

polarization potential that is known to be asymptotically correct for both states. We find that the use of basis set 

extrapolation leads to results that agree extremely closely for both (5,6) and (6,7) extrapolations, and that double 

augmentation of the basis set makes very little difference.  Based on a comparison with experimental spectroscopic 

results, our best potentials are those calculated by CAS+MRCI with (6,7)-extrapolated daVXZ basis sets.  They 

appear to be as accurate as the best Born-Oppenheimer potentials now available for these states; the best potential 

for the X
2
u

+
 state is still likely to be the non-BO corrected curve of Tung et al.

39
 but even the differences between 

that potential and ours are extremely small. 

We have developed a new computer program, QEx, that calculates the semi-classical phase shifts and transport 

cross sections from a g-u pair of potentials like the ones presented here for He2
+
.  This program allows the user to 

choose the precision desired, and it has been demonstrated to give results precise within 0.04% or less, which is 

better than previous programs for systems that allow for RCT. 



31 
 

We have used the ab initio cross sections determined by QEx in an existing computer program, GC, to 

determine the mobility and other transport coefficients of 
4
He

+
 in 

4
He, as functions of   and    .  The results at 294 

and 298.7 K have been discussed in detail.  Similar results at 300, 400 and 500 K have been placed in an on-line 

database
110

.  However, we have not performed calculations at temperatures lower than 294 K because quantum-

mechanical effects are expected to dominate over much of the     range in such situations. 

We have made new measurements of high accuracy of the mobility of 
4
He

+
 in 

4
He at 298.7 K. These values are 

in agreement with the best previous data
70

, once temperature corrections are applied.  The agreement is well within 

the combined errors (2%).  The agreement with the other data
109 

available above 130 Td is only within 5%, probably 

as a result of temperature variations (293–310 K) used in obtaining that data.  We conclude that the best available 

data is that of Helm
70

 because he used a drift-tube specifically designed for high accuracy when working with 

systems with RCT.  Our data taken with shutters is a close rival. 

It has been shown that two types of corrections must be taken into account before comparing highly precise 

calculations with highly accurate mobility data.  Eq. (8) corrects for the fact that our calculations are entirely semi-

classical, whereas the experimental value must of course exhibit quantum-mechanical effects at low energies.  Eq. 

(9) corrects for the fact that even slight temperature differences must be taken into account when one works at the 

high levels of precision and accuracy used here. 

Finally, we have found no statistically-significant differences between our calculations and the data of Helm
70

 at 

294 K.  The differences at 298.7 K with our smoothed data taken with shutters are just on the edge of being 

statistically significant.   These mobility results and the good agreement with spectroscopy values suggest strongly 

that the ab initio potentials, the semi-classical program QEx for determining the transport cross sections, the 

program GC used to determine the transport coefficients from the cross sections, and the corrections discussed 

above are all reliable.  In future work we intend to study the transport properties of the heavier RG
+
 ions in their 

respective parent gases.  
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Figure Captions 

 

Fig. 1.  Potential energy (  in hartree) as a function of the internuclear separation (R in bohr) for He2
+
, at large R.  

The blue diamonds are the present values for the X
2  

 state, the superimposed, small orange circles are for the 

A
2  

  state, and the light green triangles are the polarization potential.  The solid red curve shows the values of 

Tung et al.
39

 for the X
2  

 state, while the dashed red curve was obtained by correcting the values of Ref. 39 in the 

manner discussed in the text.  The dotted blue curve shows the values of Xie et al.
38

 for the A
2  

  state. 

 

Fig. 2. Potential energy (V in hartree) as a function of the internuclear separation (R in bohr) for the A
2  

  state of 

He2
+ 

at small R.  The blue circles are the present values and the solid red curve shows the values of Xie et al.
38

 

 

Fig. 3.  Collision frequencies,   in atomic units, for 
4
He

+
 ions moving through 

4
He gas, as a function of the collision 

energy, ε in hartree.  The blue circles connected by a blue curve are the momentum-transfer collision frequencies, 

 ( )( )  √  ( )( ), calculated from the potentials of Sinha et al.
18

 using program QEx and having a precision of 

0.04%.  The red circles are the viscosity collision frequencies,  ( )( )  √  ( )( ), calculated in the same way.  

The small black points were calculated previously
52

 from the same potentials but using program EXCHANGE and 

having a precision of 0.2%.  The dashed blue curve represents twice the value of the collision frequency for RCT, 

i.e.  √     ( ).  

 

Fig. 4. The dimensionless quantities defined by Eqs. 3-7, as a function of     in Td.   The solid curves are based on 

the present potentials for 
4
He

+
 in 

4
He at 294 K.  The dashed curves are for 

40
Ca

+
 in 

4
He at 300 K and are calculated 

from the potential in Ref. 68; they show typical results for a system without RCT. 

 

Fig. 5.  Ratio,   , of the quantum-mechanical mobilities to the semi-classical values for 
4
He

+
 in 

4
He at 294 K, and 

ratio,   , of the calculated mobilities at 298.7 K to those at 294.0 K.  The circles were obtained from the calculations 

discussed in the text.  The curves are obtained from Eqs. (8) and (9). 

 

Fig. 6. Mobilities,    in cm
2 
V

-1
 s

-1
, as a function of the reduced field strength,     in Td, for 

4
He

+
 ions in 

4
He gas 

at 294 K.  Programs QEx and GC were used to calculate the semi-classical mobilities from the potentials of 

Skullerud and Larsen
30

.  The dark blue points at low     were calculated with a precision of 0.04%, the blue points 

at intermediate     with a precision of 0.5%, and the light blue points at high     are precise with 1.0%.  The blue 

curve was obtained by correcting the calculated values to equivalent quantum-mechanical mobilities, using Eq. (8).  

The black points with small error bars are the experimental values of Helm
70

, while those with larger error bars are 

the values (at 295 K) of Johnsen et al.
71

 

 

Fig. 7.  Schematic diagram of the Pittsburgh drift-tube mass spectrometer, modified as described in the text. 
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Fig. 8.  Comparison of the present mobility data for 
4
He

+
 in 

4
He with selected earlier experimental data.  The dark 

blue circles are the present data taken without shutters; they are generally below the light blue circles that represent 

data taken with shutters.  The solid curve is a polynomial fit to the shuttered data and represents our best estimate of 

our mobilities.  The red circles that lie slightly above the curve are the data of Helm
70

 scaled by Eq. (9) to 

compensate for the difference in temperatures.  The dashed purple line represents the function of Patterson
82

 for 

mobilities at 300 K, divided by 0.9987 to correspond to 298.7 K.  

 

Fig. 9.  Ion temperatures,    and    in K, for 
4
He

+
 in 

4
He at 294 K.  The red squares were calculated by Sinha et al.

18
 

and the blue circles by Waldman et al.
92

  The curves are the present values. 

 

Fig. 10.  The ratios,      and      in mV, of the diffusion coefficients parallel and perpendicular to the 

electrostatic field to the mobilities, for 
4
He

+
 in 

4
He at 294 K as a function of     in Td.  The black points with error 

bars are the experimental values
93

 for      and the black curve represents the smoothed values
94

. The other points 

show the present values; possible convergence errors of the dark blue points at small     are no more than 0.4%, 

the blue values 1%, the light blue values 1.5%, the green values 4% and the red values 10%. 

 

Fig. 11.  Ion speed distribution function perpendicular to the field,   , for 
4
He

+
 in 

4
He at 294 K, as a function of the 

ion speed,    in m/s, and when normalized to one when integrated over all velocities, not just   .  The curves are 

calculated from the present potentials and the squares represent a Gaussian (normal) distribution.  From top to 

bottom, the dark blue curve and points are for E/N=0.15 Td, the blue ones are for 9.89 Td, the light blue for 20.13 

Td, the green for 31.65 Td, the light green for 52.25 Td, and the red ones for 86.52 Td. 

 

Fig. 12.  Ion speed distribution function parallel to the field,   , for 
4
He

+
 in 

4
He at 294 K, as a function of the ion 

speed,    in m/s, and when normalized to one when integrated over all velocities, not just   .  The curves are 

calculated from the present potentials and the squares represent a Gaussian (normal) distribution.  From left to right, 

the dark blue curve and points are for E/N=0.15 Td, the light blue ones are for 20.13 Td, the green for 31.65 Td, the 

light green for 52.25 Td, and the red ones for 86.52 Td. 

 

Fig. 13. Standard mobilities,    in cm
2
 V

-1
 s

-1
, as a function of the reduced field strength,     in Td, for 

4
He

+
 in He.  

The black, upper points with error bars are the values of Helm
70

, the blue, lower points below 100 Td are the present 

values at 298.7 K, and the purple, lowest points above 130 Td are the values of Basurto et al.
109

 at 297-310 K.  The 

black, top curve was calculated from the present potentials at 294 K and corrected with Eq. (8). The blue, lower 

curve below 200 Td was calculated similarly at 298.7 K.  The violet, lowest curve above 130 Td represents the 

function given in Ref. 109. 
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Fig. 1 of Viehland et al. 
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Fig. 2 of Viehland et al. 
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Fig. 3 of Viehland et al. 
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Fig. 4 of Viehland et al. 
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Fig. 5 of Viehland et al. 
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Fig. 6 of Viehland et al. 

  



45 
 

 

 

Fig. 7 of Viehland et al. 
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Fig. 8 of Viehland et al. 
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Fig. 9 of Viehland et al. 

  



48 
 

 

 

Fig. 10 of Viehland et al. 
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Fig. 11 of Viehland et al. 
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Fig. 12 of Viehland et al. 
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Fig. 13 of Viehland et al. 
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