Article

Novel Fused Arylpyrimidinone Based Allosteric Modulators of the M1 Muscarinic Acetylcholine Receptor

Shailesh N. Mistry, Herman Lim, Manuela Jörg, Ben Capuano, Arthur Christopoulos, J. Robert Lane, and Peter J. Scammells

ACS Chem. Neurosci., Just Accepted Manuscript • DOI: 10.1021/acschemneuro.6b00018 • Publication Date (Web): 18 Feb 2016
Downloaded from http://pubs.acs.org on February 19, 2016

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

Novel Fused Arylpyrimidinone Based Allosteric Modulators of the \mathbf{M}_{1} Muscarinic Acetylcholine Receptor

Shailesh N. Mistry, ${ }^{\dagger, \S}$ Herman Lim, ${ }^{\ddagger, \S}$ Manuela Jörg, ${ }^{\dagger}$ Ben Capuano, ${ }^{\dagger}$ Arthur Christopoulos, ${ }^{\ddagger}$ J. Robert Lane, ${ }^{\ddagger,{ }^{*}}$ and Peter J. Scammells ${ }^{\dagger, *}$
${ }^{\dagger}$ Medicinal Chemistry and ${ }^{\dagger}$ Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia.

Abstract

Benzoquinazolinone $\mathbf{1}$ is a positive allosteric modulator (PAM) of the M_{1} muscarinic acetylcholine receptor (mAChR), which is significantly more potent than the prototypical PAM, 1-(4-methoxybenzyl)-4-oxo-1,4-dihydroquinoline- $\square 3$-carboxylic acid \square (BQCA). In this study, we explored the structural determinants that underlie the activity of $\mathbf{1}$ as a PAM of the $\mathrm{M}_{1} \mathrm{mAChR}$. We paid particular attention to the importance of the tricyclic scaffold of compound $\mathbf{1}$, for the activity of the molecule. Complete deletion of the peripheral fused benzene ring caused a significant decrease in affinity and binding cooperativity with acetylcholine (ACh). This loss of affinity was rescued with the addition of either one or two methyl groups in the 7 - and/or 8-position of the quinazolin- $4(3 H)$-one core. These results demonstrate that the tricyclic benzo[h]quinazolin$4(3 \mathrm{H})$-one core could be replaced with a quinazolin- $4(3 \mathrm{H})$-one core and maintain functional affinity. As such, the quinazolin- $4(3 H)$-one core represents a novel scaffold to further explore M_{1} mAChR PAMs with improved physicochemical properties.

KEYWORDS: M_{1} muscarinic acetylcholine receptor, positive allosteric modulator

■ INTRODUCTION

Alzheimer's disease is a progressive and irreversible neurodegenerative disorder affecting around 25 million people worldwide. ${ }^{1}$ The disorder is primarily observed in the ageing population, and characteristic symptoms of the disease include memory loss, confusion and dementia. ${ }^{2,3}$ Currently, pharmacological interventions for Alzheimer's disease remain limited, and provide only symptomatic relief to patients. ${ }^{4,5}$

The reduction of cholinergic neurons in the basal nuclear complex is associated with the cognitive deficits observed in patients with Alzheimer's disease. ${ }^{6,7}$ A link between mAChR function and disease pathology has been suggested, with the $\mathrm{M}_{1} \mathrm{mAChR}$ subtype particularly highlighted for a role in cognition. ${ }^{7,8}$

Acetylcholinesterase inhibitors are currently used to treat the cognitive deficits associated with Alzheimer's disease, but this approach is limited by the moderate improvement in the cognitive function of patients, as well as debilitating side effects including nausea, diarrhea, hypotension and vomiting. ${ }^{9}$ However, because acetylcholine esterase inhibitors act to inhibit acetylcholine breakdown they exert a non-selective effect at all muscarinic receptor subtypes. It is likely that such side-effects are due activation of M_{2} and $\mathrm{M}_{3} \mathrm{mAChRs}$ expressed in the periphery. ${ }^{7}$

Accordingly, there has been considerable focus upon the design of ligands that selectively activate the $\mathrm{M}_{1} \mathrm{mAChR}$. However, the design of selective orthosteric agonists for the $\mathrm{M}_{1} \mathrm{mAChR}$ has proven difficult, due to the highly conserved orthosteric pocket of all the mAChRs $\left(\mathrm{M}_{1}-\mathrm{M}_{5}\right) .{ }^{10}$ However, efforts to target the less-conserved, and topographically distinct allosteric site of the receptor have proven more fruitful. ${ }^{11-14}$ Ligands that target such allosteric sites may act to potentiate the binding and signaling activity of an orthosteric receptor agonist (positive allosteric modulators, PAM) and/or activate the receptor themselves (allosteric agonists). Allosteric ligands of the $M_{1} m A C h R$ have been recognized as a potentially promising novel drug class for the treatment of Alzheimer's disease. ${ }^{14}$

Figure 1. Top: chemical structure of lead compounds 1-(4-methoxybenzyl)-4-oxo-1,4-dihydroquinoline- $\square 3$-carboxylic acid (BQCA) and 3-((1S,2S)-2-hydroxycyclohexyl)-6-((6-(1-methyl-1 H-pyrazol-4-yl)pyridin-3-yl)methyl)benzo[h]quinazolin-4(3H)-one (1). Bottom: overview of the structures and design strategy behind the novel analogues derived from compound $\mathbf{1}$. The numbering of the atoms in the quinazolinone ring bearing substituents is shown in blue.

BQCA was reported as the first highly selective PAM for the $\mathrm{M}_{1} \mathrm{mAChR} .{ }^{15}$ Structure-activity relationship (SAR) studies around BQCA have revealed structurally related compounds with higher affinity and potency. ${ }^{16-18}$ Furthermore, our group has reported an enriched SAR study that used modeling of pharmacological data, to relate structural modification to BQCA analogues, with variations in binding affinity $\left(\mathrm{p} K_{\mathrm{B}}\right)$, binding (α) and functional $(\alpha \beta)$ cooperativity and intrinsic efficacy $\quad\left(\tau_{\mathrm{B}}\right) .{ }^{19} \quad 3-((1 S, 2 S)-2-H y d r o x y c y c l o h e x y l)-6-((6-(1-m e t h y l-1 H$-pyrazol-4-yl)pyridin-3yl)methyl)benzo[h]quinazolin- $4(3 H)$-one (1), is a significantly more potent $\mathrm{M}_{1} \mathrm{mAChR}$ PAM with a structural ancestry originating from BQCA and related compounds (Figure 1). ${ }^{17,20}$ We recently used a combination of site-directed mutagenesis, modelling of pharmacological data and molecular dynamics simulations to propose a binding mode for $\mathbf{1}$ at the $\mathrm{M}_{1} \mathrm{mAChR}$, similar to that predicted
for BQCA. In particular, residues $\mathrm{Y} 85^{2.64}$ and $\mathrm{Y} 82^{2.61}$ in transmembrane (TM) bundle 2, Y179 in extracellular loop (ECL) 2 and $\mathrm{W} 400^{7.35}$ in TM 7 were shown to be important for the binding and function of both BQCA and compound 1. ${ }^{21}$ This approach also revealed that the higher potency of 1 was predominantly driven by an increase in affinity, rather than cooperativity with ACh , for the $\mathrm{M}_{1} \mathrm{mAChR}$ allosteric site. The current study aimed to explore the structural determinants that underlie the activity of $\mathbf{1}$ as a PAM of the $\mathrm{M}_{1} \mathrm{mAChR}$ and, in particular, those that are responsible for its superior potency. Furthermore, we aimed to move away from the tricyclic scaffold of compound $\mathbf{1}$ and determine the importance of this moiety for the activity of the molecule (Figure 1), using approaches such as core trimming (compounds 2-9). An enriched SAR profile was compiled to explore the important features of these novel compounds to maintain high affinity, cooperativity and intrinsic efficacy.

RESULTS AND DISCUSSION

Chemistry. The synthesis of lead compound $\mathbf{1}$, though previously reported in patent literature, ${ }^{20}$ has only recently been fully optimized and characterized in our hands. ${ }^{21}$ Seeking to understand the basis for the PAM activity of compound $\mathbf{1}$, we initially decided to pharmacologically characterize key synthetic intermediates. Compound $\mathbf{1 0}$ was synthesized as previously described, with subsequent Negishi coupling carried out according to established methodology, ${ }^{20,}{ }^{21}$ affording intermediate $\mathbf{1 1}$ in good yield. After the final Suzuki coupling of $\mathbf{1 1}$ with commercially available 1-methyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole, we were able to isolate and characterize both the desired Suzuki product 1, and corresponding dehalogenated product 12 (Scheme 1). ${ }^{21}$

Scheme 1. Synthesis of compound 1. ${ }^{a}$

10

12

1
${ }^{a}$ Reagents and conditions: (a) i. cat. $\operatorname{Pd}\left(\mathrm{P}\left({ }^{t} \mathrm{Bu}\right)_{3}\right)_{2}$, degassed anhydrous THF, $0^{\circ} \mathrm{C}$; ii. $0.5 \mathrm{M}(2-$ chloro-5-pyridyl)methylzinc chloride/THF, $0{ }^{\circ} \mathrm{C}$ to rt, 79\%; (b) 1-methyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole, cat. $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}, 1 \mathrm{M} \mathrm{Na} 2 \mathrm{CO}_{3(\mathrm{aq})} / \mathrm{THF} 1: 3$ degassed, $100^{\circ} \mathrm{C}, 64 \%(59 \% 1: 5 \% 12)$.

Aside from pharmacological characterization of compounds $\mathbf{1 0}, \mathbf{1 2}$ and $\mathbf{1}$, which represent a stepwise build-up of the (pyridin-3-yl)methyl pendant group, we also sought to investigate the nature of the polyaromatic core. Given the precedence for polyaromatic heterocycles potentially imparting toxic DNA-chelation behavior to a scaffold, ${ }^{22}$ investigation of related heteroaromatics seemed a prudent avenue of investigation. Initially we envisaged generating comparable analogues of 1, incorporating gradual deletion of the benzo[h]quinazolin-4(3H)-one core towards a
quinazolin- $4(3 H)$-one core. The deletion of the fused benzene ring was also anticipated to make these analogues more "drug-like", through reductions in lipophilicity (assessed through calculated $\log \mathrm{P}$), topological polar surface area (tPSA) and molecular weight. ${ }^{23}$ With this strategy in mind, we synthesized analogues with either complete deletion of the peripheral fused benzene ring (2), or the presence of one or two methyl groups in the $7 / 8$ positions of the quinazolin- $4(3 \mathrm{H})$-one core, to give 4,5 and 6. Evaluation of these compounds was anticipated to address whether the peripheral fused benzene ring of literature compound $\mathbf{1}$, could be replaced by the steric presence of either one or two methyl groups.

Our recent work determining the structural nature of the interaction of compound $\mathbf{1}$ with the allosteric binding site at the $\mathrm{M}_{1} \mathrm{mAChR}$, highlighted the importance of Y179 in ECL2, making aromatic edge-face interactions with both the benzylic pendant group and benzo[h]quinazolin$4(3 \mathrm{H})$-one core. ${ }^{21}$ In addition, the proximity of the phenol moiety of Y179 could facilitate additional polar interactions with an appropriately positioned heteroatom incorporated into the ligand. With this in mind, we also synthesized 8, the pyrido[2,3- d] pyrimidin- $4(3 H)$-one analogue of $\mathbf{2}$.

Synthesis of these analogues was carried out in a similar manner to that of lead compound 1. In the case of 2, commercially available 2-amino-5-bromobenzoic acid (21) was employed, while the remaining substituted 2-amino-5-bromobenzoic acid intermediates (22-24), required synthesis from unbrominated starting materials.

2-Amino-3,4-dimethylbenzoic acid (14) underwent initial Fischer esterification to give the corresponding methyl ester 15, followed by selective bromination of the 5-position to give intermediate $\mathbf{1 6}$ as the hydrobromide salt, in excellent yield. Subsequent basic hydrolysis afforded the desired 2-amino-5-bromo-3,4-dimethylbenzoic acid (24). In the case of 2-amino-3methylbenzoic acid (13), we were able to directly brominate in acetic acid at room temperature, to give 22, without the need for esterification of the carboxylic acid moiety (Scheme 2). Finally, in the case of 2-amino-4-methylbenzoic acid (23), our attempts at direct bromination in the same
manner as for 22, gave a mixture of mono- and dibrominated products, in addition to unreacted starting material, which proved difficult to separate. However, selective bromination in the 5postion was achieved through esterification of the carboxylic acid moiety, and acetylation of the aniline group. The acetanilide derivative 19 facilitated selective mono-bromination of the 5position, allowing the isolation of $\mathbf{2 3}$ following the saponification of the ester in the modest yield over 19% over these two steps.

Subsequent synthetic steps proceeded in accordance with our reported synthesis of lead compound $\mathbf{1} .^{21}$ Briefly, the 2-amino-5-bromobenzoic acid (21-24) intermediates firstly underwent O-(1H-6-chlorobenzotriazole-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HCTU)mediated coupling with ($1 S, 2 S$)-2-aminocyclohexanol hydrochloride in the presence of DIPEA, in DMF at room temperature, furnishing the corresponding amides (25-28) in good to excellent yield. Cyclisation of these 2-amino arylcarboxamide derivatives was achieved through heating in N, N -dimethylformamide-dimethylacetal (DMF-DMA), formamide or triethylorthoformate, affording 2932. The more forcing conditions ($150{ }^{\circ} \mathrm{C}$ or $180{ }^{\circ} \mathrm{C}$ in formamide), were found to prevent formation of stable 2-(dimethylamino)-2,3-dihydroquinazolin-4(1H)-one-type intermediates, which occurred in the presence of DMF-DMA. In some cases, these intermediates failed to undergo elimination of N, N-dimethylamine to furnish the desired product, necessitating the use of more forcing conditions.

Installation of the (pyridin-3-yl)methyl pendant group was achieved as described for lead compound 1, through a sequence of Negishi and Suzuki reactions, to give the desired compounds 2 and 4-6, bearing the (6-(1-methyl-1H-pyrazol-4-yl)pyridin-3-yl)methyl group. During Suzuki coupling of final compounds $\mathbf{2}$ and $\mathbf{6}$, appreciable amounts of the dehalogenation side-product, $\mathbf{3}$ and 7 were also isolated, and deemed of interest for pharmacological evaluation.

Scheme 2. Synthesis of analogues 2-7. ${ }^{a}$

${ }^{a}$ Reagents and conditions: (a) $\mathrm{Br}_{2}, \mathrm{AcOH}, \mathrm{DCM}, \mathrm{rt}, 95 \%$; (b) cat. conc. $\mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq})}, \mathrm{EtOH}$, reflux, 75%; (c) acetyl chloride, TEA, DCM, $0^{\circ} \mathrm{C}$ to rt, 100%; (d) $\mathrm{Br}_{2}, \mathrm{AcOH}, \mathrm{rt}, 23 \%$ (brsm); (e) 5 M $\mathrm{NaOH}_{\text {(aq) }}, \mathrm{EtOH}, 9{ }^{\circ} \mathrm{C}$, 81%; (f) cat. $\mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq})}, \mathrm{MeOH}$, reflux, 83%; (g) 1,4-dioxane, $\mathrm{CCl}_{4} 1: 1$, $0^{\circ} \mathrm{C}$; ii. Br_{2}, 1,4-dioxane/ $\mathrm{CCl}_{4} 1: 1$, dropwise, $0{ }^{\circ} \mathrm{C}$, 93%; (h) LiOH $\cdot \mathrm{H}_{2} \mathrm{O}$, THF, water, rt, 94%; (i) HCTU, ($1 S, 2 S$)-2-aminocyclohexanol hydrochloride, DIPEA, DMF, rt, 77-95\%; (j) DMF-DMA, $85^{\circ} \mathrm{C}$ or $115{ }^{\circ} \mathrm{C}, 63-95 \%$; (k) formamide, $150{ }^{\circ} \mathrm{C}$ or $180^{\circ} \mathrm{C}, 44-69 \%$; (1) i. triethylorthoformate, $100-150{ }^{\circ} \mathrm{C}, 65 \%$; (m) i. cat. $\mathrm{Pd}\left(\mathrm{P}\left({ }^{(} \mathrm{Bu}\right)_{3}\right)_{2}$, dry THF, $0{ }^{\circ} \mathrm{C}$; ii. 0.5 M (2-chloro-5-pyridylmethyl)zinc chloride/THF, $0^{\circ} \mathrm{C}$ to rt or $55^{\circ} \mathrm{C}, 14-90 \%$; (n) 1-methyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)- 1 H -pyrazole, cat. $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}, 1 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3(\text { aq })} /$ THF $1: 3$ degassed, $100{ }^{\circ} \mathrm{C}$, Suzuki product $15-96 \%$, dehalogenation product $0-14 \%$.

As part of the strategy to develop fused heteroaromatic analogues of lead compound $\mathbf{1}$, the investigation of alternative cores was also of interest. The pyrido[2,3- d] pyrimidinone analog of $\mathbf{2}$
(compound $\mathbf{8}$) was prepared using an analogous approach starting from 2-amino-5-bromonicotinic acid (37) (Scheme 3).

Scheme 3. Synthesis of compound $\mathbf{8}$ containing a pyrido $[2,3-d]$ pyrimidinone core. ${ }^{a}$

${ }^{a}$ Reagents and conditions: (a) HCTU, ($1 S, 2 S$)-2-aminocyclohexanol hydrochloride, DIPEA, DMF, rt, 94%; (b) formamide, $150{ }^{\circ} \mathrm{C}$ or $180^{\circ} \mathrm{C}, 69 \%$; (c) i. cat. $\mathrm{Pd}\left(\mathrm{P}\left({ }^{(} \mathrm{Bu}\right)_{3}\right)_{2}$, dry THF, $0^{\circ} \mathrm{C}$; ii. $0.5 \mathrm{M}(2-$ chloro-5-pyridylmethyl)zinc chloride/THF, $0{ }^{\circ} \mathrm{C}$ to rt or $55{ }^{\circ} \mathrm{C}, 90 \%$; (d) 1-methyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole, cat. $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}, 1 \mathrm{M} \mathrm{Na} 2 \mathrm{CO}_{3(\mathrm{aq})} /$ THF $1: 3$ degassed, $100^{\circ} \mathrm{C}, 24 \%$.

Having synthesized the pyrido[2,3- d]pyrimidin-4(3H)-one analogue 8, we turned our attention to 5-6 fused heterocyclic scaffolds. The thieno[2,3- d]pyrimidin-4(3H)-one core was of interest, since spatially isosteric replacements for the quinazolin- $4(3 H)$-one core have been reported in a number of medicinal chemistry lead optimization campaigns, possessing "drug-like" properties and biological activity. ${ }^{24-26}$

The thieno[2,3-d] pyrimidin- $4(3 H)$-one core was accessible through synthesis of the appropriately substituted 2-aminothiophene-3-carboxamide, which in turn was assembled in a one-pot Gewald synthesis based on literature precedent. ${ }^{5}$ Components for the Gewald reaction were readily synthesized from commercially available reagents (Scheme 4). Cyanoacetamide 48, was obtained
through HCTU-mediated coupling of cyanoacetic acid and (1S,2S)-2-aminocyclohexanol hydrochloride in the presence of DIPEA and DMF at room temperature. A one-pot Wittig-Suzuki reaction was employed to construct ester 44, from phenylboronic acid (41), 4-bromobenzaldehyde (42) and (ethoxycarbonylmethylene)triphenylphosphorane (43), according to previously described methodology. ${ }^{6}$ Though intermediate 44 was isolated as both the E - and Z-isomers, these were combined before hydrogenation of the double bond, to give saturated ester 45 . Reduction of $\mathbf{4 5}$ in the presence of DIBAL-H at $-78^{\circ} \mathrm{C}$, afforded the desired aldehyde 46 in excellent yield.

Scheme 4. Synthesis of analogue 9 containing a thienopyrimidinone core. ${ }^{a}$

${ }^{a}$ Reagents and conditions: (a) i. cat. PPh_{3}, cat. $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$, degassed DME/2 $\mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3(\text { aq) }}, 70$ ${ }^{\circ} \mathrm{C}$; ii. $100{ }^{\circ} \mathrm{C}$; iii. $85{ }^{\circ} \mathrm{C}$, $84 \%(E / Z 4: 1)$; (b) H_{2}, wet $10 \% \mathrm{Pd} / \mathrm{C}$, EtOAc, rt, 99%; (c) i. anhydrous toluene, $-78{ }^{\circ} \mathrm{C}$; ii. 1 M DIBAL-H in toluene, dropwise, $-78{ }^{\circ} \mathrm{C}$; iii. MeOH quench, $-78{ }^{\circ} \mathrm{C}$; 88%; (d) ($1 S, 2 S$)-2-aminocyclohexanol hydrochloride, HCTU, DIPEA, DMF, rt, 71%; (e) sulfur, TEA, EtOH, $60^{\circ} \mathrm{C}, 57 \%$; (f) formamide, $180^{\circ} \mathrm{C}, 56 \%$.

The combination of $\mathbf{4 6}, 48$ and sulfur in the presence of TEA and ethanol at $60^{\circ} \mathrm{C}$ (one-pot Gewald conditions), gave the substituted 2-aminothiophene-3-carboxamide 49 in moderate yield. Finally cyclisation of 49 was achieved by heating in formamide at $180^{\circ} \mathrm{C}$, affording the desired thieno[2,3-d] pyrimidin-4(3H)-one derivative 9. We elected to synthesize 9 bearing the biphenylmethyl pendant group, for initial ease of access and to establish synthetic methodology. Furthermore, this moiety has been shown to impart good affinity and cooperativity on the BQCA scaffold (an early precursor of lead compound $\mathbf{1}$ and related structures). ${ }^{7}$

- PHARMACOLOGY

We recently published an SAR study of the $\mathrm{M}_{1} \mathrm{mAChR}$ PAM, BQCA. ${ }^{19}$ By incorporating modeling into our pharmacological analysis, we were able to relate modifications of the structural features of BQCA, to changes in parameters that describe allosteric ligand action. These comprise the affinity of the modulator for the free receptor $\left(K_{\mathrm{B}}\right)$, its modulatory effects on the binding and efficacy of acetylcholine (α and β, respectively), and its intrinsic efficacy (direct allosteric agonism) in the system $\left(\tau_{\mathrm{B}}\right)$. In particular, alternative substitution of the quinolone ring in the 5 - and 8 positions modulated intrinsic efficacy; isosteric replacement of the carboxylic acid moiety or amide derivatives of the acid function was important in determining cooperativity, and replacement of the N -alkyl group modulated ligand affinity. ${ }^{19}$ More recently, we focused on the binding mode of 3-((1S,2S)-2-hydroxycyclohexyl)-6-((6-(1-methyl-1H-pyrazol-4-yl)pyridin-3yl)methyl)benzo[h]quinazolin-4(3H)-one (1), a significantly more potent M_{1} mAChR PAM with a structural ancestry originating from BQCA. ${ }^{21}$ To understand the structural determinants that underlie the superior PAM activity of $\mathbf{1}$, we applied the same approach as described above for BQCA for all ligands described in this study. Competition binding studies between ACh and the radiolabelled antagonist $\left[{ }^{3} \mathrm{H}\right] \mathrm{NMS}$ at the M_{1} mAChR expressed in FlpIN CHO cells were performed in the absence and presence of increasing concentrations of each test compound. Data were analysed with an allosteric ternary complex, ${ }^{27}$ to determine the K_{B} of the test compound for the
allosteric site on the unoccupied $\mathrm{M}_{1} \mathrm{mAChR}$, and its binding cooperativity (α) with ACh. To assess the ability of our test compounds to modulate ACh function, we used myo-inositol-1-phosphate $\left(\mathrm{IP}_{1}\right)$ accumulation as a measure of $\mathrm{M}_{1} \mathrm{mAChR}$ activation. Concentration curves of ACh were generated in the presence of increasing concentrations of test compound, and an operational model of allostery was applied to the data with the K_{B} fixed to that determined in the binding studies, thus allowing an overall estimate of both functional cooperativity with $\mathrm{ACh}(\alpha \beta)$ and the intrinsic efficacy of the allosteric ligand. Values of α or $\beta>1$ describe a positive modulatory effect upon ACh, whereas values between 0 and 1 describe a negative modulatory effect. It should be noted that because the logarithms of affinity and cooperativity values are normally distributed, whereas the corresponding absolute (antilogarithms) are not, ${ }^{28}$ all statistical comparisons were performed on the logarithmic values (Table 1).

As described before, $\mathbf{1}$ displays a significant 13-fold higher affinity ($K_{\mathrm{B}}=1.3 \mu \mathrm{M}$) for the M_{1} mAChR as compared to BQCA. In addition, in comparison to BQCA, $\mathbf{1}$ displays a 12 -fold increase in binding cooperativity $(\alpha=692)$ and a 5 -fold increase in functional cooperativity $(\alpha \beta=370)$ with ACh (Figure 2, Table 1). Finally, $\mathbf{1}$ displays superior intrinsic efficacy compared to BQCA with a 15 -fold increase in $\tau_{\mathrm{B}}\left(\tau_{\mathrm{B}}=3\right)$. Complete deletion of the peripheral fused benzene ring, as in $\mathbf{2}$, caused a 40 -fold decrease in affinity ($K_{\mathrm{B}}=52$) and a 8 -fold decrease in binding cooperativity with ACh $(\alpha=91)$. However, no change in intrinsic efficacy was observed $\left(\tau_{\mathrm{B}}=4\right)$. Further deletion of the 4-(1-methylpyrazole-4-yl) substitution of the (pyridin-3-yl)methyl pendant group to give 3, caused no change in affinity relative to 2, but caused a significant 9 -fold loss of binding cooperativity, a significant 11 -fold loss of functional cooperativity, and a complete loss of observed intrinsic efficacy. The addition of a methyl group at the 8 - or 7 -positions of the quinazolin- $4(3 H)$ one core (compounds 4 and 5, respectively) caused a significant 5- to 7 -fold increase in affinity compared to 2, but with no significant change in cooperativity with ACh. While methyl substitution at the 8 -position (4) resulted in similar intrinsic activity relative to 2 , the addition of methyl at the 7-position (5) caused a significant 4-fold decrease in intrinsic efficacy (Figure 2). The
addition of a methyl group at both the 7 - and 8 -positions in compound $\mathbf{6}$ caused a 7 -fold increase in affinity, and no significant change in cooperativity with ACh or intrinsic efficacy relative to $\mathbf{2}$. Indeed this analogue displayed a 2 -fold higher intrinsic efficacy than 1. Together these data reveal that the benzo[h]quinazolin- $4(3 H)$-one core is an important determinant of the affinity of $\mathbf{1}$. Deletion of the fused benzene ring of this core (2) was associated with a significant loss of affinity that was partly rescued with the addition of methyl groups in the 7 and/or 8 position of a quinazolin-4($3 H$)-one core ($\mathbf{5}$ and $\mathbf{6}$). Indeed, compound 5 displayed no significant difference in affinity compared to $\mathbf{1}$ ($p>0.05$, one-way ANOVA with Tukey's post-test). In our recent SAR study, ${ }^{19}$ we observed that the replacement of the N -alkyl group of the quinolone core of BQCA modulated ligand affinity. In particular, changing the N-(4-methoxy)benzyl group to N-(4phenyl)benzyl tended to improve affinity for the receptor without improving cooperative binding with ACh. In contrast, the absence of a 4-(1-methylpyrazole-4-yl) substituent from the (pyridin-3yl)methyl pendant group of 2 (with a quinazolin- $4(3 H)$-one core) had no effect upon affinity but instead caused a decrease in intrinsic activity (compare compounds 2 and 3). However, when two methyl groups were present on the quinazolin- $4(3 H)$-one core, the absence of the 4 -(1-methylpyrazole-4-yl) moiety caused no change in affinity, cooperativity or intrinsic activity (6 compared to 7, Table 1).

To further explore the role of the (pyridin-3-yl)methyl pendant group in the determination of the activity of $\mathbf{1}$, we characterized the synthetic intermediates $\mathbf{1 0}$ and $\mathbf{1 1}$ and synthetic byproduct $\mathbf{1 2}$. Replacement of the (6-(1-methyl-1H-pyrazol-4-yl)pyridin-3-yl)methyl group with a bromosubstituent (10) caused an 8 -fold loss of affinity, a 170 -fold and 70 -fold loss in binding and functional cooperativity with ACh , respectively. In addition, a complete loss of intrinsic efficacy was observed. Compound 12, which possessed an unsubstituted (pyridin-3-yl)methyl group, displayed an affinity for the $\mathrm{M}_{1} \mathrm{mAChR}$ that was not significantly different from $\mathbf{1}$ and had similar binding and functional cooperativity with $\mathrm{ACh}(\alpha=223, \alpha \beta=436)$. Furthermore, 12 displayed 5fold higher intrinsic efficacy than $\mathbf{1}\left(\tau_{\mathrm{B}}=14\right)$. In contrast, the (6-chloropyridin-3-yl)methyl
derivative 11 displayed 66 -fold lower affinity than $\mathbf{1}, 140$-fold and 30 -fold lower binding and functional cooperativity with ACh and 8 -fold lower intrinsic efficacy. Together these data illustrate the importance of the benzylic pendant group for the activity of $\mathbf{1}$. In contrast to our findings with BQCA, we found that this moiety was not only important for affinity, but also for the cooperativity with ACh and intrinsic efficacy displayed by 1. However, removal of the 4-(1-methylpyrazole-4yl) substitution of the (pyridin-3-yl)methyl pendant group of $\mathbf{1}$ was tolerated both in terms of affinity, cooperativity with ACh and intrinsic efficacy.

The pyrido $[2,3-d]$ pyrimidin- $4(3 H)$-one analogue (8: $\alpha=69, \alpha \beta=66$) displayed attenuated binding and functional cooperativity with ACh relative to compound $\mathbf{2}(\mathbf{2}: \alpha=91, \alpha \beta=195)$. Finally, the thieno[2,3-d]pyrimidin-4(3H)-one 9 showed negligible binding cooperativity with ACh.

CONCLUSIONS

We have recently reported that 3-((1S,2S)-2-hydroxycyclohexyl)-6-((6-(1-methyl-1H-pyrazol-4-yl)pyridin-3yl)methyl)benzo[h]quinazolin-4(3H)-one (1), while structurally related to BQCA, is a significantly more potent PAM of the $\mathrm{M}_{1} \mathrm{mAChR}$, driven both by an increased affinity for the M_{1} mAChR and an increased level of positive cooperativity with ACh. ${ }^{21}$ In addition, $\mathbf{1}$ displays higher intrinsic efficacy than BQCA. Furthermore, we recently proposed a binding mode of $\mathbf{1}$ within the $\mathrm{M}_{1} \mathrm{mAChR}$ that is similar to that predicted for BQCA. ${ }^{21}$ In this study, we wanted to explore the structural determinants that underlie the activity of $\mathbf{1}$ as a PAM of the $\mathrm{M}_{1} \mathrm{mAChR}$. We have previously demonstrated that changing the N -alkyl group of the quinolone core of BQCA modulated ligand affinity but not cooperativity with ACh. ${ }^{19}$ In this study we demonstrate that the (pyrid-3-yl)methyl pendant group of $\mathbf{1}$ is not only important for affinity, but has an additional role in determining cooperativity with ACh . In addition we found that removal of the 1 -methyl- 1 H -pyrazol-4-yl moiety of $\mathbf{1}$ was well tolerated in terms of both affinity and cooperativity with ACh and generated a PAM (7) with superior intrinsic efficacy. We paid particular attention to the importance of the tricyclic scaffold of compound $\mathbf{1}$ for the activity of the molecule. Complete deletion of the peripheral fused benzene ring caused a significant decrease in affinity and binding cooperativity with ACh, but no change in intrinsic activity. However, this loss of affinity was partially rescued with the addition of methyl groups in the 7 - and/or 8-position of the quinazolin$4(3 H)$-one core (compounds $\mathbf{4}, \mathbf{5}$ and $\mathbf{6}$). Indeed, compound $\mathbf{5}$ with the addition of a methyl group in the 8-position displayed no significant difference in affinity for the $\mathrm{M}_{1} \mathrm{mAChR}$ compared to $\mathbf{1}$, but lower intrinsic activity (Figure 2). The addition of methyl groups at the 7- and 8-positions (6) maintained this affinity and rescued intrinsic efficacy. These results demonstrate that the tricyclic benzo[h]quinazolin- $4(3 \mathrm{H})$-one core could be replaced with a quinazolin- $4(3 \mathrm{H})$-one core. This may be important, given the precedence of polyaromatic heterocycles as DNA chelators. In addition, the
quinazolin- $4(3 H)$-one core represents a novel scaffold to explore further $\mathrm{M}_{1} \mathrm{mAChR}$ PAMs with improved physicochemical properties.

Figure 2. (a-d) Pharmacological characterization of $\mathbf{1}$ and $\mathbf{5}$ in binding and function at the M_{1} mAChR. (a-b) Radioligand binding experiments were performed using FlpIn-CHO cells expressing the $\mathrm{M}_{1} \mathrm{mAChR}, 0.1 \mathrm{nM}$ of the radiolabeled antagonist $\left[{ }^{3} \mathrm{H}\right] \mathrm{NMS}$, increasing concentrations of ACh , with or without increasing concentrations of either $\mathbf{1}$ (a) or 5 (b). (c-d) IP_{1} accumulation experiments were performed using FlpIn-CHO cells expressing the $\mathrm{M}_{1} \mathrm{mAChR}$ and increasing concentrations of ACh with or without increasing concentrations of either compound $\mathbf{1}$ (c) or 5 (d). 100% represents the maximal stimulation of ACh in the absence of test compound.

Table 1. Binding and functional parameters of 4-phenylpyridin-2-one analogues 2-12 at the $\mathrm{M}_{1} \mathrm{mAChR}$.

			 2-7		 8		 10	
			Radioligand binding ($\left.{ }^{3} \mathrm{H}\right] \mathrm{NMS}$)				IP_{1} accumulation	
	R_{1}	R_{2}	R_{3}	$\mathrm{p} K_{\mathrm{B}}\left(K_{\mathrm{B}}, \mu \mathrm{M}\right)$	$\log \alpha^{\text {a }}$	$\log \alpha(\alpha)^{b}$	$\log \alpha \beta(\alpha \beta)^{c}$	$\log \tau_{\mathrm{B}}\left(\tau_{\mathrm{B}}\right)^{d}$
BQCA				4.78 ± 0.06 (17)*	-3	1.77 ± 0.13 (58)*	1.84 ± 0.13 (69)*	-0.60 ± 0.10 (0.2)
1		-	-	5.88 ± 0.02 (1.3)	-3	2.84 ± 0.13 (692)	2.57 ± 0.15 (370)	0.44 ± 0.07 (3)
2		H	H	4.28 ± 0.13 (52)*	-3	1.96 ± 0.17 (91)*	2.29 ± 0.07 (195)	0.60 ± 0.02 (4)
3	H	H	H	4.21 ± 0.06 (61)*	-3	1.01 ± 0.26 (10)*	1.24 ± 0.07 (17)*	-3
4		Me	H	4.98 ± 0.11 (10)*	-3	2.32 ± 0.09 (209)	2.42 ± 0.10 (263)	0.44 ± 0.04 (2.8)
5		H	Me	5.15 ± 0.18 (7.1)	-3	2.58 ± 0.16 (380)	2.66 ± 0.05 (457)	0.05 ± 0.03 (1.1)*
6		Me	Me	5.14 ± 0.13 (7.2)*	-3	2.41 ± 0.21 (257)	2.69 ± 0.11 (490)	0.81 ± 0.05 (6.5)*
7	H	Me	Me	4.76 ± 0.14 (17)*	-3	2.34 ± 0.17 (219)	2.86 ± 0.09 (776)	$1.06 \pm 0.02(11)^{*}$
8		-	-	4.10 ± 0.07 (79)*	-3	1.84 ± 0.16 (69)*	1.82 ± 0.04 (66)*	-3
9	Ph	-	-	4.66 ± 0.20 (22)	-0.32 ± 0.12	$-0.04 \pm 0.09(0.91)$	n / a	n/a
10	-	-	-	4.99 ± 0.22 (10)*	0.08 ± 0.05	0.60 ± 0.08 (4)*	0.67 ± 0.09 (5)*	-3
11	Cl	-	-	4.06 ± 0.08 (87)*	-0.55 ± 0.18	0.67 ± 0.08 (5)*	1.12 ± 0.11 (13)*	$-0.36 \pm 0.11(0.4) *$
12	H	-	-	5.29 ± 0.09 (5)	-3	2.35 ± 0.18 (223)	2.64 ± 0.13 (436)	$1.14 \pm 0.02(14)^{*}$

${ }^{a}$ Binding cooperativity with $\left[{ }^{3} \mathrm{H}\right]$ NMS; for instances where a complete inhibition of $\left[{ }^{3} \mathrm{H}\right]$ NMS binding by the allosteric modulator was observed (consistent with a high level of negative cooperativity), $\log \alpha^{\prime}$ was fixed to $-3 ;{ }^{b}$ binding cooperativity with ACh ; ${ }^{c}$ functional cooperativity with ACh ; ${ }_{\text {intrinsic }}$ efficacy of the modulator; for instances where no intrinsic efficacy was observed, $\log \tau_{\mathrm{B}}$ was fixed to -3 . * $=$ significant difference ($p<0.05$) relative to same parameter determined for $\mathbf{1}$, one-way ANOVA with Tukeys's post-test. Values represent the mean \pm SEM from at least three experiments performed in duplicate.

METHODS

Synthesis of Compounds. Chemicals and solvents were purchased from standard suppliers and used without further purification. Davisil ${ }^{\circledR}$ silica gel ($40-63 \mu \mathrm{~m}$), for flash column chromatography (FCC) was supplied by Grace Davison Discovery Sciences (Victoria, Australia) and deuterated solvents were purchased from Cambridge Isotope Laboratories, Inc. (USA, distributed by Novachem PTY. Ltd, Victoria, Australia).

Unless otherwise stated, reactions were carried out at ambient temperature. Reactions were monitored by thin layer chromatography on commercially available precoated aluminium-backed plates (Merck Kieselgel $60 \mathrm{~F}_{254}$). Visualisation was by examination under UV light (254 and 366 nm). General staining was carried out with KMnO_{4} or phosphomolybdic acid. A solution of Ninhydrin (in ethanol) was used to visualize primary and secondary amines. All organic extracts collected after aqueous work-up procedures were dried over anhydrous MgSO_{4} or $\mathrm{Na}_{2} \mathrm{SO}_{4}$ before gravity filtering and evaporation to dryness. Organic solvents were evaporated in vacuo at $\leq 40^{\circ} \mathrm{C}$ (water bath temperature). Purification using preparative layer chromatography (PLC) was carried out on Analtech preparative TLC plates ($200 \mathrm{~mm} \times 200 \mathrm{~mm} \times 2 \mathrm{~mm}$).
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker Avance Nanobay III 400 MHz Ultrashield Plus spectrometer at 400.13 MHz and 100.62 MHz respectively. Chemical shifts (δ) are recorded in parts per million (ppm) with reference to the chemical shift of the deuterated solvent. Coupling constants (J) and carbon-fluorine coupling constants $\left(J_{C F}\right)$ are recorded in Hz and the significant multiplicities described by singlet (s), doublet (d), triplet (t , quadruplet (q), broad (br), multiplet (m), doublet of doublets (dd), doublet of triplets (dt). Spectra were assigned using appropriate COSY, distortionless enhanced polarisation transfer (DEPT), HSQC and HMBC sequences. Specific optical rotation was determined using a Jasco P-2000 polarimeter.

LCMS were run to verify reaction outcome and purity using following system: Agilent 6120 Series Single Quad coupled to an Agilent 1260 Series HPLC. The following buffers were used; buffer A: 0.1% formic acid in $\mathrm{H}_{2} \mathrm{O}$; buffer B: 0.1% formic acid in MeCN . The following gradient was used
with a Poroshell 120 EC-C18 $50 \times 3.0 \mathrm{~mm} 2.7$ micron column, and a flow rate of $0.5 \mathrm{~mL} / \mathrm{min}$ and total run time of $5 \mathrm{~min} ; 0-1 \mathrm{~min} 95 \%$ buffer A and 5% buffer B , from 1-2.5 min up to 0% buffer A and 100% buffer B , held at this composition until $3.8 \mathrm{~min}, 3.8-4 \mathrm{~min} 95 \%$ buffer A and 5% buffer B , held until 5 min at this composition. Mass spectra were acquired in positive and negative ion mode with a scan range of $100-1000 \mathrm{~m} / \mathrm{z}$. UV detection was carried out at 214 and 254 nm . All retention times $\left(t_{\mathrm{R}}\right)$ are quoted in minutes. High resolution mass spectra (HRMS) were obtained from a Waters LCT Premier XE (TOF) mass spectrometer fitted with an ESI ion source, coupled to a 2795 Alliance Separations Module.

Preparative HPLC was performed using an Agilent 1260 infinity coupled with a binary preparative pump and Agilent 1260 FC-PS fraction collector, using Agilent OpenLAB CDS software (Rev C.01.04), and an Altima $5 \mu \mathrm{M}$ C8 $22 \times 250 \mathrm{~mm}$ column. The following buffers were used; buffer A: $\mathrm{H}_{2} \mathrm{O}$; buffer B: MeCN, with sample being run at a gradient of 5% buffer B to 100% buffer B over 20 min , at a flow rate of $20 \mathrm{~mL} / \mathrm{min}$ All screening compounds were of $>95 \%$ purity unless stated otherwise.

General Procedure A: HCTU-mediated amide bond formation. Carboxylic acid (1 eq), HCTU (1.1 eq) and amine or amine salt (1.1 eq) were dispersed or dissolved in DMF ($\sim 2 \mathrm{~mL} / \mathrm{mmol}$) at RT. To this was added DIPEA (2.5 eq, for amine salts, an additional 1.0 eq per salt form was also added), and the mixture allowed to stir at RT overnight. LCMS analysis was used to confirm reaction completion. The mixture was diluted with water/sat. $\mathrm{NaHCO}_{3(\mathrm{aq})}(1: 1, \sim 20 \mathrm{~mL} / \mathrm{mmol})$ and stirred for 30 min at RT. Where a solid precipitate formed, this was collected by filtration (vacuum) and washed with water. Where no solid could be isolated in this manner, the aqueous slurry was extracted with EtOAc (3 times) and the combined organic layers washed with brine, then concentrated under reduced pressure. Where necessary, further purification was carried out by FCC.

General Procedure B: Negishi coupling of aryl bromides with (2-chloro-5-pyridylmethyl)zinc chloride. Aryl bromide (1.0 eq) was dissolved in dry THF ($2 \mathrm{~mL} / \mathrm{mmol}$), under an atmosphere of nitrogen, and degassed for 5 min under a stream of nitrogen. $\operatorname{Pd}\left(\mathrm{P}\left({ }^{t} \mathrm{Bu}\right)_{3}\right)_{2}(0.03$ eq) was added and then vessel was evacuated and refilled with nitrogen, before cooling to $0^{\circ} \mathrm{C}$ over an ice bath. A solution of 2-chloro-5-pyridylmethyl)zinc chloride (0.5 M in THF, 1.25 eq) was added in a dropwise fashion, and stirring continued over the ice bath for a further 5 min , before allowing the mixture to warm to RT. Reactions were monitored by LCMS analysis and generally left to stir overnight. To quench, the mixture was cooled to $0{ }^{\circ} \mathrm{C}$ over an ice bath and a small amount of water added with care. The quenched mixture was diluted with water, then washed three times with equal volumes of EtOAc. The combined organic layers were washed with brine, before drying over MgSO_{4}, and concentrating under reduced pressure. The crude product was further purified by FCC (eluent EtOAc/PE 50:50 to 100:0).

General Procedure C: Suzuki coupling of substituted 2-chloropyridines with 1-methyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole. Substituted 2-chloropyridine (1.0 eq) and 1-methyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1 H -pyrazole (1.5 eq) were dispersed in 1 M $\mathrm{Na}_{2} \mathrm{CO}_{3 \text { (aq) }} / \mathrm{THF}(1: 3, \sim 10 \mathrm{~mL} / \mathrm{mmol})$ in a 10 mL microwave tube. The mixture was sonicated for 5 min, then degassed under a stream of nitrogen. $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(0.1 \mathrm{eq})$ was added, and the tube sealed, before heating (hotplate) at $100^{\circ} \mathrm{C}$ for 2 h . The mixture was cooled to RT, then diluted with water (20 mL), before extracting with EtOAc ($3 \times 20 \mathrm{~mL}$). The combined organic extracts were washed with brine (20 mL), then concentrated under reduce pressure. The crude product was purified by normal phase silica chromatography as specified under each monologue.

3-((1S,2S)-2-Hydroxycyclohexyl)-6-((6-(1-methyl-1H-pyrazol-4-yl)pyridin-3-yl)methyl)quinazolin-4(3H)-one (2) and 3-((1S,2S)-2-Hydroxycyclohexyl)-6-(pyridin-3-ylmethyl)quinazolin-4(3H)-one
(3). 6-((6-Chloropyridin-3-yl)methyl)-3-((1S,2S)-2-hydroxycyclohexyl)quinazolin-4(3H)-one (33)
($70 \mathrm{mg}, 0.19 \mathrm{mmol}$) underwent Suzuki coupling according to General Procedure C. The crude
product was purified by PLC ($\mathrm{MeOH} / E t O A c 6: 94$, plate run three times). The higher running band was found to be dehalogenated starting material: 3-((1S,2S)-2-Hydroxycyclohexyl)-6-(pyridin-3-ylmethyl)quinazolin-4(3H)-one (3), isolated as $9 \mathrm{mg}(14 \%)$ of a white solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $8.62-8.41(\mathrm{~m}, 2 \mathrm{H}), 8.09(\mathrm{~s}, 1 \mathrm{H}), 8.04(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.49(\mathrm{dd}, J=8.4 / 2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.32(\mathrm{~m}, 1 \mathrm{H}), 4.74-4.40(\mathrm{~m}, 1 \mathrm{H}), 4.13(\mathrm{~s}, 2 \mathrm{H}), 4.08-$ $3.85(\mathrm{~m}, 1 \mathrm{H}), 2.30-2.17(\mathrm{~m}, 1 \mathrm{H}), 2.03-1.77(\mathrm{~m}, 4 \mathrm{H}), 1.58-1.35(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ $161.8,147.2,146.4,145.2,144.9,139.4,138.2,137.6,135.1,128.1,126.7,124.7,122.2,70.4,38.8$, 35.7, 31.0, 25.4, 24.5; m/z MS (TOF ES ${ }^{+}$) $336.2[\mathrm{MH}]^{+}$; HRMS - $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{MH}]^{+}$calcd 336.1712; found 336.1716; LC-MS $t_{\mathrm{R}}: 2.76 \mathrm{~min} ;[\alpha]_{D}^{27}=+5.10^{\circ}(0.11$, DMSO $)$.

The lower running band was found to be 3-((1S,2S)-2-hydroxycyclohexyl)-6-((6-(1-methyl-1 H -pyrazol-4-yl)pyridin-3-yl)methyl)quinazolin- $4(3 H)$-one (2, isolated as $42 \mathrm{mg}(53 \%)$ of a glassy solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.39(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{~s}, 1 \mathrm{H}), 8.05(\mathrm{~s}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=1.6 \mathrm{~Hz}$, 1H), 7.88 (s, 1H), 7.53 (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.39(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.51$ (s, $1 \mathrm{H}), 4.06-3.85(\mathrm{~m}, 6 \mathrm{H}), 2.29-2.15(\mathrm{~m}, 1 \mathrm{H}), 2.01-1.73(\mathrm{~m}, 4 \mathrm{H}), 1.58-1.33(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 161.8,149.5,148.1,146.2,144.6,139.0,138.6,137.7,135.1,133.6,129.6,127.8,126.5$, $122.1,120.0,113.6,71.6,39.4,38.5,35.6,31.0,25.4,24.6 ; m / z \mathrm{MS}\left(\mathrm{TOF} \mathrm{ES}^{+}\right) 416.3[\mathrm{MH}]^{+}$; HRMS - $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{5} \mathrm{O}_{2}[\mathrm{M}-\mathrm{Na}]^{+}$calcd 438.1906; found 438.1872; LC-MS $t_{\mathrm{R}}: 2.85 \mathrm{~min} ;[\alpha]_{D}^{27}=-$ $1.04^{\circ}(0.26$, DMSO $)$.

3-((1S,2S)-2-Hydroxycyclohexyl)-8-methyl-6-((6-(1-methyl-1H-pyrazol-4-yl)pyridin-3-
yl)methyl)quinazolin-4(3H)-one (4). 6-((6-Chloropyridin-3-yl)methyl)-3-((1S,2S)-2-hydroxycyclohexyl)-8-methylquinazolin-4(3H)-one (34) ($200 \mathrm{mg}, 0.52 \mathrm{mmol}$) underwent Suzuki coupling according to General Procedure C. The crude product was purified by FCC (eluent $\mathrm{MeOH} / \mathrm{DCM}$ 0:100 to $10: 90$) to give $214 \mathrm{mg}(96 \%)$ of pale yellow glassy solid. ${ }^{1} \mathrm{H}$ NMR (DMSO$\left.d_{6}\right) \delta 8.46(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.38(\mathrm{~s}, 1 \mathrm{H}), 8.22(\mathrm{~s}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.61(\mathrm{dd}, J=8.1 / 2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{dd}, J=1.9 / 0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{dd}, J=8.1 / 0.7 \mathrm{~Hz}, 1 \mathrm{H})$,
$4.90(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~s}, 1 \mathrm{H}), 4.05(\mathrm{~s}, 2 \mathrm{H}), 3.93(\mathrm{~s}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}), 2.14-$ $1.50(\mathrm{~m}, 5 \mathrm{H}), 1.50-1.21(\mathrm{~m}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}) $\delta 160.6,149.8,149.4,144.9,144.4,139.1$, $137.0,136.9,135.4,135.2,133.5,129.6,123.2,122.7,121.6,119.1,69.0,38.7,37.4,35.2,30.3$, 25.0, 24.0, 17.0; m/z MS (TOF ES ${ }^{+}$) $430.3[\mathrm{MH}]^{+} ;$HRMS $-\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{~N}_{5} \mathrm{O}_{2}[\mathrm{MH}]^{+}$calcd 430.2243; found 430.2248 ; LC-MS $t_{\mathrm{R}}: 3.29 \mathrm{~min} ;[\alpha]_{D}^{27}=+6.93^{\circ}(0.29, \mathrm{DMSO})$.

3-((1S,2S)-2-Hydroxycyclohexyl)-7-methyl-6-((6-(1-methyl-1H-pyrazol-4-yl)pyridin-3-
yl)methyl)quinazolin-4(3H)-one (5). 6-((6-Chloropyridin-3-yl)methyl)-3-((1S,2S)-2-hydroxycyclohexyl)-7-methylquinazolin-4(3H)-one (35) (328 mg, 0.97 mmol) underwent Suzuki coupling according to General Procedure C. The crude product was purified by FCC (eluent EtOAc/PE 50:50 to 100:0) to give $334 \mathrm{mg}(90 \%)$ of an off-white solid. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 8.38$ (d, $J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.34(\mathrm{~s}, 1 \mathrm{H}), 8.23(\mathrm{~s}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~s}, 1 \mathrm{H}), 7.56(\mathrm{dd}, J=$ $8.1 / 0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.42(\mathrm{~m}, 2 \mathrm{H}), 4.90(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~s}, 1 \mathrm{H}), 4.11(\mathrm{~s}, 2 \mathrm{H}), 3.94(\mathrm{~s}$, $1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.11-1.49(\mathrm{~m}, 5 \mathrm{H}), 1.46-1.13(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}) δ $160.2,149.8,149.6,146.2,146.0,143.7,138.3,137.0,136.9,132.3,129.3,127.8,126.2,122.6$, 119.1, 119.0, 69.0, 38.7, 35.2, 35.0, 29.9, 25.1, 24.0, 19.7; m / z MS (TOF ES ${ }^{+}$) $430.3[\mathrm{MH}]^{+}$; HRMS $-\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{~N}_{5} \mathrm{O}_{2}[\mathrm{MH}]^{+}$calcd 430.2243; found 430.2244; LC-MS $t_{\mathrm{R}}: 3.24 \mathrm{~min} ;[\alpha]_{D}^{27}=+6.11^{\circ}(0.67$, DMSO).

3-((1S,2S)-2-Hydroxycyclohexyl)-7,8-dimethyl-6-((6-(1-methyl-1H-pyrazol-4-yl)pyridin-3-
yl)methyl)quinazolin-4(3H)-one (6) and 3-((1S,2S)-2-Hydroxycyclohexyl)-7,8-dimethyl-6-(pyridin-3-ylmethyl)quinazolin-4(3H)-one (7). 6-((6-Chloropyridin-3-yl)methyl)-3-((1S,2S)-2-hydroxycyclohexyl)-7,8-dimethylquinazolin-4(3H)-one (36) ($61 \mathrm{mg}, 0.15 \mathrm{mmol}$) underwent Suzuki coupling according to General Procedure C. The crude product was purified by PLC $(\mathrm{MeOH} / \mathrm{EtOAc} 5: 95$, plate run three times). The higher running band was found to be dehalogenated starting material: 3-((1S,2S)-2-Hydroxycyclohexyl)-7,8-dimethyl-6-(pyridin-3-ylmethyl)quinazolin-4(3H)-one (7), isolated as $5 \mathrm{mg}(9 \%)$ of an off-white solid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$
$8.45(\mathrm{~s}, 2 \mathrm{H}), 8.10(\mathrm{~s}, 1 \mathrm{H}), 7.90(\mathrm{~s}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.19(\mathrm{~m}, 1 \mathrm{H}), 4.53(\mathrm{~s}, 1 \mathrm{H})$, $4.13(\mathrm{~s}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.97(\mathrm{~s}, 1 \mathrm{H}), 3.82-2.86(\mathrm{~m}, 1 \mathrm{H}), 2.52(\mathrm{~s}, 3 \mathrm{H}), 2.33-2.13(\mathrm{~m}, 4 \mathrm{H}), 2.03-$ $1.69(\mathrm{~m}, 4 \mathrm{H}), 1.61-1.33(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 162.3,148.3,146.1,145.1,143.3,142.1$, $137.7,136.6,134.9,129.0,125.3,124.2,119.7,72.0,37.7,35.7,31.0,25.5,24.6,17.0,13.7 ; m / z$ MS (TOF ES ${ }^{+}$) $364.2[\mathrm{MH}]^{+}$; HRMS - $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{MH}]^{+}$calcd 364.2025; found 364.2031; LCMS $t_{\mathrm{R}}: 2.90 \mathrm{~min} ;[\alpha]_{D}^{27}=+13.87^{\circ}(0.18, \mathrm{DMSO})$.

The lower running band was found to be 3-((1S,2S)-2-hydroxycyclohexyl)-7,8-dimethyl-6-((6-(1-methyl-1 H -pyrazol-4-yl)pyridin-3-yl)methyl)quinazolin-4(3H)-one (6), isolated as $10 \mathrm{mg}(15 \%)$ of white solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.20(\mathrm{~s}, 1 \mathrm{H}), 8.08-7.93(\mathrm{~m}, 2 \mathrm{H}), 7.83(\mathrm{~s}, 1 \mathrm{H}), 7.81(\mathrm{~s}, 1 \mathrm{H}), 7.48-$ $7.32(\mathrm{~m}, 2 \mathrm{H}), 4.35(\mathrm{~s}, 1 \mathrm{H}), 4.05(\mathrm{~s}, 2 \mathrm{H}), 4.01-3.73(\mathrm{~m}, 4 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 2.07(\mathrm{~d}, \mathrm{~J}=$ 10.1 Hz, 1H), 1.97-1.58 (m, 4H), 1.48-1.21 (m, 3H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 162.1,151.6,146.8$, $144.9,143.5,142.2,139.5,137.6,136.6,134.6,133.9,129.9,124.9,120.6,119.5,112.1,70.6,38.9$, 37.1, 35.1, 31.0, 25.2, 24.3, 16.7, 13.4; m/z MS (TOF ES ${ }^{+}$) 444.3 [MH] ${ }^{+}$; HRMS - $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~N}_{5} \mathrm{O}_{2}$ $[\mathrm{MH}]^{+}$calcd 444.2400; found 444.2411; LC-MS $t_{\mathrm{R}}: 3.01 \mathrm{~min} ;[\alpha]_{D}^{27}=+6.44^{\circ}(0.16$, DMSO $)$. 3-((1S,2S)-2-Hydroxycyclohexyl)-6-((6-(1-methyl-1H-pyrazol-4-yl)pyridin-3-yl)methyl)pyrido[2,3-d]pyrimidin-4(3H)-one
(8). 6-((6-Chloropyridin-3-yl)methyl)-3-((1S,2S)-2-hydroxycyclohexyl)pyrido[2,3-d]pyrimidin-4(3H)-one (40) (33 mg, 0.09 mmol) underwent Suzuki coupling according to General Procedure C. The crude product was purified by PLC (MeOH/EtOAc 7:93, plate run six times) to give $9 \mathrm{mg}(24 \%)$ of white solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta$ $8.88(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.52(\mathrm{~s}, 1 \mathrm{H}), 8.49-8.40(\mathrm{~m}, 2 \mathrm{H}), 8.12(\mathrm{~s}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=0.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.70(\mathrm{dd}, J=8.2 / 2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~s}, 1 \mathrm{H}), 4.23(\mathrm{~s}, 2 \mathrm{H}), 4.18-3.98$ (m, $1 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 2.29-1.69(\mathrm{~m}, 5 \mathrm{H}), 1.56-1.37(\mathrm{~m}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 163.1,157.4,157.2$, $151.6,150.4,150.3,139.3,138.5,137.3,137.1,134.6,130.9,123.9,121.5,118.0,71.1,39.1,36.2$, 36.0, 30.8, 26.4, 25.4; m/z MS (TOF ES ${ }^{+}$) $417.3[\mathrm{MH}]^{+}$; HRMS- $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{6} \mathrm{O}_{2}[\mathrm{MH}]^{+}$calcd 417.2039; found 417.2025; LC-MS $t_{\mathrm{R}}: 3.16 \mathrm{~min} ;[\alpha]_{D}^{27}=-4.86^{\circ}(0.20$, DMSO $)$.

6-([1,1'-Biphenyl]-4-ylmethyl)-3-((1S,2S)-2-hydroxycyclohexyl)thieno[2,3-d]pyrimidin-4(3H)-one
(9). 5-([1,1'-Biphenyl]-4-ylmethyl)-2-amino- N-((1S,2S)-2-hydroxycyclohexyl)thiophene-3carboxamide (49) ($91 \mathrm{mg}, 0.22 \mathrm{mmol}$) was dispersed in formamide $(20 \mathrm{~mL})$, before heating at $180^{\circ} \mathrm{C}$ for 4 h . LCMS analysis indicated conversion was complete. TLC analysis (EtOAc/PE 1:1, plate run twice) indicated the starting material and product both had an $R_{\mathrm{f}} \sim 0.4$, with only the starting material staining positive with ninhydrin. The mixture was cooled, then poured onto ice/water, and the resulting precipitate collected by filtration (vacuum), and further washed with water. The crude product was purified by FCC (eluent EtOAc/PE 0:100 to 60:40, wet load in DCM), to give $52 \mathrm{mg}(56 \%)$ of an off-white solid. ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}\right) \delta 8.39(\mathrm{~s}, 1 \mathrm{H}), 7.75-7.56$ (m, 4H), 7.50-7.42 (m, 2H), 7.42-7.31 (m, 3H), $7.21(\mathrm{~s}, 1 \mathrm{H}), 4.92(\mathrm{~s}, 1 \mathrm{H}), 4.41(\mathrm{~s}, 1 \mathrm{H}), 4.25(\mathrm{~s}$, $2 \mathrm{H}), 3.91(\mathrm{~s}, 1 \mathrm{H}), 2.15-1.50(\mathrm{~m}, 4 \mathrm{H}), 1.48-1.11(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}\right) \delta 162.0,156.8$, $145.9,142.1,139.8,138.9,138.6,129.2,128.9,127.4,127.0,126.6,123.7,119.6,69.1,35.3,35.2$, 30.6, 25.1, 23.9; $m / z \mathrm{MS}\left(\mathrm{TOF} \mathrm{ES}^{+}\right) 417.3[\mathrm{MH}]^{+} ; \mathrm{HRMS}-\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{MH}]^{+}$calcd 417.1637; found 417.1613; LC-MS $t_{\mathrm{R}}: 3.98 \mathrm{~min} ;[\alpha]_{D}^{27}=+17.77^{\circ}(0.35, \mathrm{DMSO})$.

Methyl 2-amino-3,4-dimethylbenzoate (15). ${ }^{12}$ 2-Amino-3,4-dimethylbenzoic acid (14) (4.92 g, 29.8 $\mathrm{mmol})$ and conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(3 \mathrm{~mL})$ were dissolved in $\mathrm{MeOH}(50 \mathrm{~mL})$ and boiled under reflux for 48 h . LCMS analysis indicated approximately half of the starting material had been converted. Additional $\mathrm{H}_{2} \mathrm{SO}_{4}(1 \mathrm{~mL})$ was added, and heating continued. After a total of 6 days, the mixture was cooled to RT, and concentrated under reduced pressure. The residue was neutralised with sat. $\mathrm{NaHCO}_{3(\mathrm{aq})}$, and the resulting precipitate collected by filtration (vacuum), and washed with water. After drying, $4.452 \mathrm{~g}(83 \%)$ of an off-white solid was obtained. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.69(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{~s}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 169.2,147.8,142.8,128.4,122.0,119.4,109.5,51.7,21.3,13.0 ; m / z \mathrm{MS}(\mathrm{TOF}$ $\left.\mathrm{ES}^{\dagger}\right) 180.2[\mathrm{MH}]^{+} ;$LC-MS $t_{\mathrm{R}}: 3.48 \mathrm{~min}$.

Methyl 2-amino-5-bromo-3,4-dimethylbenzoate hydrobromide (16). Methyl 2-amino-3,4dimethylbenzoate (15) ($3.40 \mathrm{~g}, 19.0 \mathrm{mmol}$) was dissolved in 1,4-dioxane $/ \mathrm{CCl}_{4}(1: 1,100 \mathrm{~mL})$, and cooled to $0^{\circ} \mathrm{C}$ over an ice bath, after wrapping the flask in aluminium foil to exclude light. To the cooled mixture, was added a solution of bromine ($3.03 \mathrm{~g}, 18.97 \mathrm{mmol}, 1.0 \mathrm{eq}$) in 1,4-dioxane $/ \mathrm{CCl}_{4}$ $(1: 1,20 \mathrm{~mL})$ in a dropwise fashion. The mixture was stirred for 2 h at $0^{\circ} \mathrm{C}$, before addition of $\mathrm{Et}_{2} \mathrm{O}$, and collection of the resulting precipitate by filtration (vacuum). After washing with further $\mathrm{Et}_{2} \mathrm{O}$ and drying, $5.96 \mathrm{~g}(93 \%)$ of an off-white solid was obtained. ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}\right) \delta 7.79$ (s, $1 \mathrm{H}), 4.40(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO- $\left.\mathrm{d}_{6}\right) \delta$ 167.2, 148.7, 140.7, 130.7, 123.8, 109.7, 108.3, 51.7, 20.5, 14.4; $m / z \mathrm{MS}\left(\mathrm{TOF} \mathrm{ES}^{+}\right) 258.0[\mathrm{MH}]^{+} ; \mathrm{LC}-\mathrm{MS} t_{\mathrm{R}}$: 3.71 min .

Ethyl 2-amino-4-methylbenzoate (18). ${ }^{10}$ 2-Amino-4-methylbenzoic acid (17) ($2.10 \mathrm{~g}, 13.9 \mathrm{mmol}$) was dissolved in $\mathrm{EtOH}(50 \mathrm{~mL})$ with conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(1 \mathrm{~mL})$, before boiling under reflux for 2 h . LCMS analysis indicated little progression, so further conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(1 \mathrm{~mL})$ was added, and heating continued for 65 h . The mixture was cooled, then concentrated under reduced pressure. The resulting residue was neutralised with sat. $\mathrm{NaHCO}_{3(a q)}$, then extracted with $\mathrm{DCM}(3 \times 30 \mathrm{~mL})$. The combined organic layers were concentrated to give a brown oil, which was further purified by FCC (eluent EtOA/PE 0:100 to 10:90), to give $1.87 \mathrm{~g}(75 \%)$ of pale yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.85$ (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~s}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H})$, $1.39(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.2,147.7,145.2,131.3,119.8,118.5$, 110.5, 60.6, 21.8, 14.5; ${ }^{1} \mathrm{H}$ NMR; m / z MS (TOF ES ${ }^{+}$) $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{NO}_{2} 180.1$ [MH] ${ }^{+}$; LC-MS $t_{\mathrm{R}}: 3.82$ \min.

Ethyl 2-acetamido-4-methybenzoate (19). ${ }^{10,11}$ Ethyl 2-amino-4-methylbenzoate (18) (1.87 g, 10.4 $\mathrm{mmol})$ and TEA ($1.74 \mathrm{~mL}, 12.5 \mathrm{mmol}, 1.2 \mathrm{eq})$ were dissolved in $\mathrm{DCM}(50 \mathrm{~mL})$ and cooled to $0^{\circ} \mathrm{C}$ under an atmosphere of nitrogen. Acetyl chloride ($0.81 \mathrm{~mL}, 11.5 \mathrm{mmol}, 1.1 \mathrm{eq}$) was added and then the mixture was allowed to warm to RT, before stirring overnight. LCMS analysis indicated
incomplete conversion after this time, so further TEA ($1.74 \mathrm{~mL}, 12.5 \mathrm{mmol}, 1.2 \mathrm{eq}$) and acetyl chloride ($0.81 \mathrm{~mL}, 11.5 \mathrm{mmol}, 1.1 \mathrm{eq}$) were added and stirring continued for a further 4 h . The mixture was washed with water $(50 \mathrm{~mL})$, then sat. $\mathrm{NaHCO}_{3(\mathrm{aq})}(50 \mathrm{~mL})$, then concentrated under reduced pressure, to give 2.56 g of yellow solid (quantitative). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 11.10(\mathrm{~s}, 1 \mathrm{H})$, $8.53(\mathrm{~s}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{ddd}, J=8.2 / 1.7 / 0.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, $2.39(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 169.2,168.5,145.9,141.7$, $130.8,123.5,120.7,112.6,61.3,25.7,22.3,14.4 ; m / z \mathrm{MS}\left(\mathrm{TOF} \mathrm{ES}^{+}\right) 176.2[\mathrm{M}-\mathrm{OEt}]^{+} ; \mathrm{LC}-\mathrm{MS} t_{\mathrm{R}}$: 3.79 min .

Ethyl 2-acetamido-5-bromo-4-methylbenzoate (20). Ethyl 2-acetamido-4-methybenzoate (19) (2.55 $\mathrm{g}, 11.5 \mathrm{mmol})$ was dissolved in acetic acid $(8 \mathrm{~mL})$ at RT, with stirring. A solution of bromine (1.84 $\mathrm{g}, 11.5 \mathrm{mmol}, 1.0 \mathrm{eq})$ in acetic acid (2 mL) was added in a dropwise fashion. After 48 h of stirring, LCMS indicated partial progression, therefore another portion of bromine $(0.30 \mathrm{~mL}, 921 \mathrm{mg}, 5.76$ mmol, 0.5 eq) was added. After a further 72 h of stirring, further progression was evident, with the appearance of a minor peak indicating formation of the dibromo product. The mixture was stirred with $5 \% \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3 \text { (aq) }}(20 \mathrm{~mL})$ for 30 min , then sat. $\mathrm{NaHCO}_{3}(150 \mathrm{~mL})$ added. This was extracted with $\mathrm{DCM}(3 \times 50 \mathrm{~mL})$, and the combined organic extracts washed further with sat. $\mathrm{NaHCO}_{3 \text { (aq) }}$ (50 mL), before concentration under reduced pressure. Purification of the crude material was attempted by FCC (eluent DCM), however, both starting material and product were found to co-elute. FCC was reattempted (eluent DCM/PE 50:50 to 70:30, then 100:0) to give 687 mg of yellow solid (23%, brsm) and a further 995 mg of mixture containing starting material and desired product. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 10.99(\mathrm{~s}, 1 \mathrm{H}), 8.65(\mathrm{~s}, 1 \mathrm{H}), 8.16(\mathrm{~s}, 1 \mathrm{H}), 4.37(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{~s}$, $3 \mathrm{H}), 1.42(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.2,167.4,145.4,140.7,134.1$, 122.3, 117.6, 114.5, 61.8, 25.7, 23.8, 14.3; $m / z \mathrm{MS}\left(\mathrm{TOF} \mathrm{ES}^{+}\right) 300.2[\mathrm{MH}]^{+}$; LC-MS $t_{\mathrm{R}}: 4.11 \mathrm{~min}$.

2-Amino-5-bromo-3-methylbenzoic acid hydrobromide (22). ${ }^{29}$ 2-Amino-3-methylbenzoic acid (13) $(2.08 \mathrm{~g}, 13.8 \mathrm{mmol})$ was dissolved in acetic acid $(8 \mathrm{~mL})$ and stirred at RT. A solution of bromine
$(2.20 \mathrm{~g}, 13.8 \mathrm{mmol}, 1.0 \mathrm{eq})$ in acetic acid $(2 \mathrm{~mL})$ was added in a dropwise fashion, followed by washings of $\mathrm{DCM}(5 \mathrm{~mL})$. The mixture was stirred at RT for 1 h , then diluted with $\mathrm{Et}_{2} \mathrm{O}$. The resulting precipitate was collected by filtration (vacuum) and washed with $\mathrm{Et}_{2} \mathrm{O}$. After drying, 4.07 $\mathrm{g}(95 \%)$ of a pale beige solid was obtained as the hydrobromide salt. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 9.19$ (s, 3H), $7.68(\mathrm{dd}, J=2.5 / 0.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{dd}, J=2.5 / 0.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\right.$ DMSO- d_{6}) $\delta 168.9,148.8,136.4,130.6,126.4,111.0,104.8,17.3 ; m / z$ MS (TOF ES ${ }^{+}$) 230.0 $[\mathrm{MH}]^{+}$; LC-MS $t_{\mathrm{R}}: 3.62 \mathrm{~min}$.

2-Amino-5-bromo-4-methylbenzoic acid (23). ${ }^{30}$ Ethyl 2-acetamido-5-bromo-4-methylbenzoate (20) ($672 \mathrm{mg}, 2.24 \mathrm{mmol}$) was dissolved in $5 \mathrm{M} \mathrm{NaOH}_{(\mathrm{aq})}(20 \mathrm{~mL})$ and $\mathrm{EtOH}(30 \mathrm{~mL})$. The resulting mixture was heated at $90^{\circ} \mathrm{C}$ under a reflux condenser for 20 h . LCMS analysis at this indicated hydrolysis was complete. The mixture was cooled to RT, then concentrated under reduced pressure to remove EtOH . The aqueous slurry was acidified with $2 \mathrm{M} \mathrm{HCl}_{(\mathrm{aq})}$, to pH 2 resulting in formation of a precipitate. This was collected by filtration (vacuum), then washed with water and dried, to give $415 \mathrm{mg}(81 \%)$ of a beige solid. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{DMSO}-d_{6}$) $\delta 7.77(\mathrm{~s}, 1 \mathrm{H}), 11.41-6.62(\mathrm{~m}, 2 \mathrm{H}), 6.72$ $(\mathrm{d}, J=0.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}) $\delta 168.3,150.7,142.8,133.7,118.3,109.4$, 107.8, 22.7; m/z MS (TOF ES ${ }^{+}$) $230.1[\mathrm{MH}]^{+}$; LC-MS $t_{\mathrm{R}}: 3.56 \mathrm{~min}$.

2-Amino-5-bromo-3,4-dimethylbenzoic acid (24). ${ }^{13}$ Methyl 2-amino-5-bromo-3,4-dimethylbenzoate hydrobromide (16) ($5.93 \mathrm{~g}, 17.5 \mathrm{mmol}$) was dispersed in THF/water ($1: 1,100 \mathrm{~mL}$), and the flask atmosphere purged with nitrogen. To this, was added $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}(3.67 \mathrm{~g}, 87.4 \mathrm{mmol}, 5.0 \mathrm{eq})$, and the mixture stirred at RT for 24 h . LCMS analysis after this time indicated complete hydrolysis had occurred. The mixture was concentrated under reduced pressure to remove THF and MeOH , and then acidified with excess $2 \mathrm{M} \mathrm{HCl}_{(\mathrm{aq})}$. The resultant precipitate was collected by filtration (vacuum), and washed with water, before allowing to dry on the filter bed overnight. This was then taken up in EtOAc (300 mL) and washed with brine (80 mL), before drying over MgSO_{4}. Concentration of dried organic layer under reduced pressure, gave $4.00 \mathrm{~g}(94 \%)$ of a pale brown
solid. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 7.78(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 7.78(\mathrm{~s}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\right.$ DMSO- $\left._{6}\right) \delta 168.9,149.0,140.3,131.2,123.5,109.3,109.1,20.4,14.3 ; m / z$ MS (TOF ES ${ }^{+}$) 244.1 $[\mathrm{MH}]^{+}$; LC-MS $t_{\mathrm{R}}: 3.33 \mathrm{~min}$.

2-Amino-5-bromo-N-((1S,2S)-2-hydroxycyclohexyl)benzamide (25). 2-Amino-5-bromobenzoic acid (21) ($1.08 \mathrm{~g}, 5.00 \mathrm{mmol}$) and ($1 S, 2 S$)-2-aminocyclohexanol hydrochloride ($834 \mathrm{mg}, 1.1 \mathrm{eq}$) were coupled according to General Procedure A, to give $1.21 \mathrm{~g}(77 \%)$ of precipitate as a yellow solid, requiring no further purification. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}-d_{6}\right) \delta 8.02(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=2.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.24(\mathrm{dd}, J=8.8 / 2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{~s}, 2 \mathrm{H}), 4.65(\mathrm{~d}, J=5.2 \mathrm{~Hz}$, 1H), 3.63-3.49 (m, 1H), 3.46-3.36 (m, 1H), 2.02-1.72 (m, 2H), 1.71-1.43 (m, 2H), 1.19 (d, $J=6.6$ $\mathrm{Hz}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{DMSO}_{6}\right) \delta 167.3,148.6,133.8,130.5,118.2,117.2,105.0,71.0,54.9,34.6$, 31.3, 24.6, 24.2; $m / z \mathrm{MS}\left(\mathrm{TOF} \mathrm{ES}^{\dagger}\right) 313.1[\mathrm{MH}]^{+}$; LC-MS $t_{\mathrm{R}}: 3.17 \mathrm{~min}$.

2-Amino-5-bromo-N-((1S,2S)-2-hydroxycyclohexyl)-3-methylbenzamide (26). 2-Amino-5-bromo-3methylbenzoic acid hydrobromide (22) ($2.00 \mathrm{~g}, 6.43 \mathrm{mmol}$) and ($1 S, 2 S$)-2-aminocyclohexanol hydrochloride ($1.07 \mathrm{~g}, 1.1 \mathrm{eq}$) were coupled according to General Procedure A, to give 2.00 g (95%) of precipitate as a pale yellow solid, requiring no further purification. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 8.03(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{~s}, 2 \mathrm{H}), 4.64(\mathrm{~d}, J$ $=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.68-3.47(\mathrm{~m}, 1 \mathrm{H}), 3.46-3.34(\mathrm{~m}, 1 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 1.98-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.51$ (m, 2H), 1.34-1.06 (m, 4H); ${ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}) δ 167.7, 146.6, 134.1, 128.2, 125.7, 117.2, 105.1, 70.9, 54.9, 34.6, 31.3, 24.5, 24.2, 17.3; m / z MS (TOF ES ${ }^{+}$) $327.1[\mathrm{MH}]^{+}$; LC-MS $t_{\mathrm{R}}: 3.62$ \min.

2-Amino-5-bromo-N-((1S,2S)-2-hydroxycyclohexyl)-4-methylbenzamide (27). 2-Amino-5-bromo-4methylbenzoic acid (23) (386 mg, 1.68 mmol) and ($15,2 S$)-2-aminocyclohexanol hydrochloride ($281 \mathrm{mg}, 1.1 \mathrm{eq}$) were coupled according to General Procedure A, to give $508 \mathrm{mg}(92 \%)$ of precipitate as a beige solid, requiring no further purification. ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}\right) \delta 7.95(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.74(\mathrm{~s}, 1 \mathrm{H}), 6.64(\mathrm{~d}, J=0.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{~s}, 2 \mathrm{H}), 4.62(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.68-3.45(\mathrm{~m}$,
$1 \mathrm{H}), 3.45-3.34(\mathrm{~m}, 1 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 1.97-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.36-1.06(\mathrm{~m}, 4 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}) $\delta 167.2,148.9,140.0,131.2,118.1,115.0,108.0,70.9,54.83,34.6,31.3$, 24.5, 24.2, 22.4; $m / z \mathrm{MS}\left(\mathrm{TOF} \mathrm{ES}^{+}\right) 327.1[\mathrm{MH}]^{+}$; LC-MS $t_{\mathrm{R}}: 3.57 \mathrm{~min}$.

2-Amino-5-bromo-N-((1S,2S)-2-hydroxycyclohexyl)-3,4-dimethylbenzamide (28). 2-Amino-5-bromo-3,4-dimethylbenzoic acid (24) ($1.00 \mathrm{~g}, 4.10 \mathrm{mmol}$) and ($1 S, 2 S$)-2-aminocyclohexanol hydrochloride ($684 \mathrm{mg}, 1.1 \mathrm{eq}$) were coupled according to General Procedure A, to give 1.32 g (94%) of precipitate as an off-white solid, requiring no further purification. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) δ $7.99(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~s}, 1 \mathrm{H}), 6.27(\mathrm{~s}, 2 \mathrm{H}), 4.62(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.66-3.49(\mathrm{~m}, 1 \mathrm{H})$, 3.46-3.34(m, 1H), $2.31(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 1.97-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.34-1.08(\mathrm{~m}$, $4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}) $\delta 167.8,146.7,137.5,128.7,123.1,115.4,109.7,70.9,54.9,34.6,31.3$, 24.5, 24.2, 20.1, 14.3; $m / z \mathrm{MS}\left(\mathrm{TOF} \mathrm{ES}^{+}\right) 341.1[\mathrm{MH}]^{+} ; \mathrm{LC}-\mathrm{MS} t_{\mathrm{R}}: 3.31 \mathrm{~min}$.

6-Bromo-3-((1S,2S)-2-hydroxycyclohexyl)quinazolin-4(3H)-one (29). 2-Amino-5-bromo-N-((1S,2S)-2-hydroxycyclohexyl)benzamide (25) (1.18 g, 3.8 mmol$)$ was dispersed in DMF-DMA (12 mL) and heated, with stirring at $85^{\circ} \mathrm{C}$ for 3 h . LCMS analysis indicated that the dimethylamine addition product was the major component of the reaction mixture, with elimination to the desired product progressing slowly. Further DMF-DMA (5 mL) was added, and the reaction temperature was increased to $115{ }^{\circ} \mathrm{C}$, with heating continued for 72 h (progress monitored by LCMS). The mixture was cooled to RT and carefully quenched with water (very exothermic), and the resulting precipitate collected by filtration (vacuum) before washing with water. After drying under air, the crude precipitate was recrystallized from EtOH to 767 mg (63%) of a yellow solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.69(\mathrm{~s}, 1 \mathrm{H}), 8.38(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{dd}, J=8.7 / 2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $1 \mathrm{H}), 4.81-4.43(\mathrm{~m}, 1 \mathrm{H}), 4.14-3.91(\mathrm{~m}, 1 \mathrm{H}), 2.30-2.16(\mathrm{~m}, 1 \mathrm{H}), 2.11-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.96-1.65(\mathrm{~m}$, $3 \mathrm{H}), 1.63-1.32(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 160.6,148.9,144.7,137.8,129.7$, 128.7, 123.4, $121.3,61.5,35.7,31.1,25.4,24.5 ; m / z \mathrm{MS}\left(\mathrm{TOF} \mathrm{ES}^{+}\right) 323.1[\mathrm{MH}]^{+}$; LC-MS $t_{\mathrm{R}}: 3.21 \mathrm{~min}$.

6-Bromo-3-((1S,2S)-2-hydroxycyclohexyl)-8-methylquinazolin-4(3H)-one (30). 2-Amino-5-bromo-N-((1S,2S)-2-hydroxycyclohexyl)-3-methylbenzamide (26) (1.50 g, 4.58 mmol$)$ was dispersed in triethylorthoformate (30 mL) under an atmosphere of nitrogen. The mixture was heated under a reflux condenser, under nitrogen at $100{ }^{\circ} \mathrm{C}$ for 19 h . LCMS analysis indicated partial conversion had occurred, so the temperature was increased to $150{ }^{\circ} \mathrm{C}$ for 96 h and monitored by LCMS. The mixture was cooled to RT before quenching with a small amount of water (with care). On addition of water, a biphasic mixture was formed, so EtOAc was added, and the water layer decanted. The organic layer was then dried over MgSO_{4}, before concentration under reduced pressure to dryness. The crude residue was purified by FCC (eluent EtOAc/PE 0:100 to 100:0), to give 996 mg (65\%) of a pale yellow solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}-d_{6}\right) \delta 8.48(\mathrm{~s}, 1 \mathrm{H}), 8.06(\mathrm{dd}, J=2.4 / 0.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{dd}, J$ $=2.3 / 0.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~s}, 1 \mathrm{H}), 3.94(\mathrm{~s}, 1 \mathrm{H}), 2.53(\mathrm{~s}, 3 \mathrm{H}), 2.14-1.56(\mathrm{~m}$, $5 \mathrm{H}), 1.47-1.20(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}) $\delta 159.6,148.3,145.0,138.4,136.8,125.9,121.8$, 118.8, 67.9, 35.1, 29.7, 25.0, 23.9, 16.7; m/z MS (TOF ES ${ }^{+}$) $337.1[\mathrm{MH}]^{+}$; LC-MS $t_{\mathrm{R}}: 3.77 \mathrm{~min}$.

6-Bromo-3-((1S,2S)-2-hydroxycyclohexyl)-7-methylquinazolin-4(3H)-one (31). 2-Amino-5-bromo-N-((1S,2S)-2-hydroxycyclohexyl)-4-methylbenzamide (27) (481 mg, 1.46 mmol$)$ was dispersed in formamide (4 mL) in a 10 mL microwave vial, before sealing and heating at $120^{\circ} \mathrm{C}$ with stirring. LCMS analysis after this time indicated no reaction progression, so the temperature was increased to $150{ }^{\circ} \mathrm{C}$, and stirring continued for 4 h . LCMS analysis indicated the reaction was complete, so the mixture was cooled to RT overnight, before diluting with water $(30 \mathrm{~mL})$, then extracting with EtOAc ($3 \times 30 \mathrm{~mL}$). The combined organic layers were washed with water (30 mL) and brine (30 mL), before concentration under reduce pressure. The crude residue was recrystallised from EtOH, to give $339 \mathrm{mg}(69 \%)$ of pale brown solid. Concentration of the mother liquor gave 141 mg of impure product. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.50(\mathrm{~s}, 1 \mathrm{H}), 8.32(\mathrm{~s}, 1 \mathrm{H}), 7.60-7.51(\mathrm{~m}, 1 \mathrm{H}), 4.61(\mathrm{~s}, 1 \mathrm{H})$, $4.04(\mathrm{~s}, 1 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}), 2.33-2.17(\mathrm{~m}, 1 \mathrm{H}), 2.10-1.68(\mathrm{~m}, 4 \mathrm{H}), 1.67-1.30(\mathrm{~m}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 160.4,145.6,145.5,145.1,130.3,128.3,123.8,121.1,72.1,35.7,31.0,25.4,24.5,23.8 ;$ $m / z \mathrm{MS}\left(\mathrm{TOF} \mathrm{ES}^{+}\right) 337.1[\mathrm{MH}]^{+}$; LC-MS $t_{\mathrm{R}}: 3.64 \mathrm{~min}$.

6-Bromo-3-((1S,2S)-2-hydroxycyclohexyl)-7,8-dimethylquinazolin-4(3H)-one (32). 2-Amino-5-bromo- N-(($1 S, 2 S$)-2-hydroxycyclohexyl)-3,4-dimethylbenzamide (28) (1.28 g, 3.75 mmol) was dispersed in DMF-DMA (12 mL) under an atmosphere of nitrogen, and heated at $85^{\circ} \mathrm{C}$ for 6 h , before LCMS analysis indicated conversion was complete. The mixture was cooled to RT, and carefully quenched with water. The resulting precipitate was collected by filtration (vacuum), washed with further water and dried, to give $1.25 \mathrm{~g}(95 \%)$ of an off-white solid. ${ }^{1} \mathrm{H}$ NMR (DMSO$\left.d_{6}\right) \delta 8.46(\mathrm{~s}, 1 \mathrm{H}), 8.14(\mathrm{~s}, 1 \mathrm{H}), 4.93(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~s}, 1 \mathrm{H}), 3.94(\mathrm{~s}, 1 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H})$, $2.49(\mathrm{~s}, 3 \mathrm{H}), 2.17-1.54(\mathrm{~m}, 5 \mathrm{H}), 1.52-1.06(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\right.$ DMSO- $\left.d_{6}\right) \delta 159.6,147.9,144.7$, $141.5,136.0,126.3,122.9,120.8,68.7,35.1,26.8,25.0,23.9,20.4,14.1 ; m / z$ MS (TOF ES ${ }^{+}$) 351.1 $[\mathrm{MH}]^{+}$; LC-MS $t_{\mathrm{R}}: 3.51 \mathrm{~min}$.

6-((6-Chloropyridin-3-yl)methyl)-3-((1S,2S)-2-hydroxycyclohexyl)quinazolin-4(3H)-one (33). 6-Bromo-3-((1S,2S)-2-hydroxycyclohexyl)quinazolin-4(3H)-one (29) (170 $\mathrm{mg}, \quad 0.53 \mathrm{mmol})$ underwent Negishi coupling according to General Procedure B, to give $129 \mathrm{mg}(66 \%)$ of a pale yellow solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}_{6}\right) \delta 8.40(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.37(\mathrm{~s}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.74(\mathrm{dd}, J=8.2 / 2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{dd}, J=8.4 / 2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.44$ (dd, $J=8.2 / 0.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~s}, 1 \mathrm{H}), 4.15(\mathrm{~s}, 2 \mathrm{H}), 3.94(\mathrm{~s}, 1 \mathrm{H}), 2.12-1.57(\mathrm{~m}$, $5 \mathrm{H}), 1.48-1.20(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}) $\delta 160.3,149.9,148.8,148.3,146.0,140.1,139.0$, 136.1, 134.9, 127.4, 125.7, 124.2, 121.7, 68.9, 36.6, 35.2, 27.6, 25.0, 23.9; m/z MS (TOF ES ${ }^{\dagger}$) $370.2[\mathrm{MH}]^{+}$; LC-MS $t_{\mathrm{R}}: 3.18 \mathrm{~min} ;[\alpha]_{D}^{27}=+7.78^{\circ}(0.43, \mathrm{DMSO})$. 6-((6-Chloropyridin-3-yl)methyl)-3-((lS,2S)-2-hydroxycyclohexyl)-8-methylquinazolin-4(3H)-one (34). 6-Bromo-3-((1S,2S)-2-hydroxycyclohexyl)-8-methylquinazolin-4(3H)-one (30) (462 mg, 1.37 mmol) underwent Negishi coupling according to General Procedure B, to give $390 \mathrm{mg}(74 \%)$ of pale yellow solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}-d_{6}\right) \delta 8.40(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.39(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=1.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.73(\mathrm{dd}, J=8.2 / 2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~s}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.38(\mathrm{~s}, 1 \mathrm{H}), 4.10(\mathrm{~s}, 2 \mathrm{H}), 3.93(\mathrm{~s}, 1 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}), 2.21-1.53(\mathrm{~m}, 5 \mathrm{H}), 1.51-1.12(\mathrm{~m}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$

NMR (DMSO- d_{6}) $\delta 160.5,149.9,148.2,144.9,144.5,140.1,138.4,136.2,135.6,135.2,124.2$, $123.4,121.6,68.6,36.6,35.2,30.5,25.0,24.0,17.0 ; m / z \mathrm{MS}\left(\mathrm{TOF} \mathrm{ES}^{+}\right) 384.2[\mathrm{MH}]^{+}$; LC-MS t_{R} : 3.63 min .

6-((6-Chloropyridin-3-yl)methyl)-3-((1S,2S)-2-hydroxycyclohexyl)-7-methylquinazolin-4(3H)-one (35). 6-Bromo-3-((1S,2S)-2-hydroxycyclohexyl)-7-methylquinazolin-4(3H)-one (31) (328 mg, 0.97 mmol) underwent Negishi coupling according to General Procedure B, to give $334 \mathrm{mg}(90 \%)$ of an off-white solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}-d_{6}\right) \delta 8.35(\mathrm{~s}, 1 \mathrm{H}), 8.31(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~s}, 1 \mathrm{H}), 7.59$ (dd, $J=8.2 / 2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~s}, 1 \mathrm{H}), 7.48-7.38(\mathrm{~m}, 1 \mathrm{H}), 4.90(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~s}, 1 \mathrm{H})$, $4.15(\mathrm{~s}, 2 \mathrm{H}), 3.93(\mathrm{~s}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.07-1.48(\mathrm{~m}, 5 \mathrm{H}), 1.47-1.14(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO$\left.d_{6}\right) \delta 160.2,150.0,148.2,146.4,146.3,143.6,140.0,137.6,135.1,128.0,126.4,124.2,119.7,68.9$, $35.2,34.4,30.4,25.1,24.0,19.7 ; m / z \mathrm{MS}\left(\mathrm{TOF} \mathrm{ES}^{+}\right) 384.2[\mathrm{MH}]^{+} ; \mathrm{LC}-\mathrm{MS} t_{\mathrm{R}}: 3.55 \mathrm{~min}$.

6-((6-Chloropyridin-3-yl)methyl)-3-((lS,2S)-2-hydroxycyclohexyl)-7,8-dimethylquinazolin-4(3H)one (36). 6-Bromo-3-((1S,2S)-2-hydroxycyclohexyl)-7,8-dimethylquinazolin-4(3H)-one (32) (250 $\mathrm{mg}, 0.71 \mathrm{mmol}$) underwent Negishi coupling according to General Procedure B. After stirring for 24 h , LCMS analysis indicated only partial conversion had occurred. Further $\operatorname{Pd}\left(\mathrm{P}\left({ }^{t} \mathrm{Bu}\right)_{3}\right)_{2}(11 \mathrm{mg}$, $0.02 \mathrm{mmol}, 0.03 \mathrm{eq})$ were added and stirring continued for a further 24 h . After this time the mixture was heated to $55^{\circ} \mathrm{C}$ for an additional 24 h . After this time, the reaction had not progressed any further, so the mixture was cooled over an ice bath and quenched with a small amount of water, before dilution with water (20 mL). The aqueous slurry was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$), and the combined organic layers washed with brine $(20 \mathrm{~mL})$ before concentration under reduced pressure. The crude product was purified by FCC (eluent EtOAc/PE 60:40 to 100:0), to give 164 mg of the starting material (36) and $73 \mathrm{mg}(75 \% \mathrm{brsm})$ of the desired product as an off-white glassy solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.19(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{~s}, 1 \mathrm{H}), 7.81(\mathrm{~s}, 1 \mathrm{H}), 7.27(\mathrm{dd}, J=8.6 / 2.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~s}, 1 \mathrm{H}), 4.16-3.85(\mathrm{~m}, 3 \mathrm{H}), 3.10(\mathrm{~s}, 1 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 2.21$ $(\mathrm{d}, J=15.6 \mathrm{~Hz}, 4 \mathrm{H}), 2.00-1.70(\mathrm{~m}, 4 \mathrm{H}), 1.61-1.29(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 162.1,149.7$,
$149.5,144.5,143.6,142.1,139.0,136.8,134.6,134.3,125.1,124.2,119.5,71.6,37.0,35.5,31.0$, 25.4, 24.5, 16.9, 13.7; m/z MS (TOF ES ${ }^{+}$) $398.2[\mathrm{MH}]^{+}$; LC-MS $t_{\mathrm{R}}: 3.41 \mathrm{~min}$.

2-Amino-5-bromo-N-((1S,2S)-2-hydroxycyclohexyl)nicotinamide (38). 2-Amino-5-bromopyridine-3-carboxylic acid (37) ($1.09 \mathrm{~g}, 5.00 \mathrm{mmol}$) and ($1 \mathrm{~S}, 2 \mathrm{~S}$)-2-aminocyclohexanol hydrochloride (834 $\mathrm{mg}, 1.1 \mathrm{eq})$ were coupled according to General Procedure A, to give $1.47 \mathrm{~g}(94 \%)$ of precipitate as an off-white solid, requiring no further purification. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 8.22(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 8.14(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.12(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~s}, 2 \mathrm{H}), 4.70(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.71-$ $3.46(\mathrm{~m}, 1 \mathrm{H}), 3.48-3.21(\mathrm{~m}, 1 \mathrm{H}), 2.01-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.41-0.99(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}) $\delta 166.0,157.5,150.9,138.4,111.8,104.0,71.0,55.1,34.4,31.2,24.5,24.2 ; \mathrm{m} / \mathrm{z}$ MS (TOF ES ${ }^{+}$) $314.1[\mathrm{MH}]^{+}$; LC-MS $t_{\mathrm{R}}: 3.32 \mathrm{~min}$.

6-Bromo-3-((1S,2S)-2-hydroxycyclohexyl)pyrido[2,3-d]pyrimidin-4(3H)-one (39). 2-Amino-5-bromo- N-((1S,2S)-2-hydroxycyclohexyl)nicotinamide (38) ($515 \mathrm{mg}, 1.64 \mathrm{mmol}$) was suspended in formamide (4.5 mL) in a 10 mL microwave vial, before sealing the tube. The mixture was heated to $180^{\circ} \mathrm{C}$ for 1.5 h , then allowed to stir at RT overnight, before a further period of heating at $180^{\circ} \mathrm{C}$ for 2 h . The mixture was cooled to RT, then quenched with water. The resulting precipitate was collected by filtration (vacuum) to give 168 mg of brown solid. The aqueous filtrate was extracted with EtOAc ($3 \times 30 \mathrm{~mL}$), and the combined organic extracts washed with brine (30 mL). TLC analysis (EtOAc) indicated that product was still trapped in the aqueous layer. The aqueous layer was saturated with NaCl , before re-extraction with $\mathrm{EtOAc}(2 \times 30 \mathrm{~mL})$ then $\mathrm{MeOH} / \mathrm{EtOAc}(1: 9,30$ $\mathrm{mL})$. The combined organic layers were washed with brine $(30 \mathrm{~mL})$, then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ before concentrating under reduced pressure, to give an additional 366 mg of yellow solid. The crude solids were combined, and purified by FCC (eluent MeOH/DCM 0:100 to 6:94), to give 233 $\mathrm{mg}(44 \%)$ of pale yellow solid. ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}\right) \delta 9.05(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.68(\mathrm{~s}, 1 \mathrm{H}), 8.65$ (d, $J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~s}, 1 \mathrm{H}), 3.96(\mathrm{~s}, 1 \mathrm{H}), 2.12-1.50(\mathrm{~m}, 5 \mathrm{H}), 1.49-$
$1.10(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{DMSO}_{6}\right) \delta 160.2,156.4,156.0,149.3,137.5,118.1,117.3,68.3,34.9$, 30.1, 25.0, 23.9; m/z MS (TOF ES ${ }^{+}$) $324.1[\mathrm{MH}]^{+}$; LC-MS $t_{\mathrm{R}}: 3.35 \mathrm{~min}$.

6-((6-Chloropyridin-3-yl)methyl)-3-((1S,2S)-2-hydroxycyclohexyl)pyrido[2,3-d]pyrimidin-4(3H)one (40). 6-Bromo-3-((1S,2S)-2-hydroxycyclohexyl)pyrido[2,3-d]pyrimidin-4(3H)-one (39) underwent Negishi coupling according to General Procedure B. After quenching, the reaction mixture was concentrated under reduced pressure (prior LCMS analysis indicated extractive workup was not suitable, due to solubility of the product in the aqueous layer). The crude product was purified by FCC (eluent $\mathrm{MeOH} / \mathrm{DCM} 0: 100$ to $6: 94$, slow gradient over 20 column volumes) to give 33 mg (14\%) of an off-white glassy solid. An additional 107 mg (37\%) of yellow glassy solid was also isolated form the column, eluting before the desired product, and found to be 6-bromo-7-((6-chloropyridin-3-yl)methyl)-3-((1S,2S)-2-hydroxycyclohexyl)-7,8-dihydropyrido[2,3$d]$ pyrimidin-4(3H)-one. This was the major product of the reaction, resulting from nucleophilic attack by the zincate 7 -position of the pyrido[2,3- d] pyrimidin- $4(3 H)$-one ring system. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.90(\mathrm{~s}, 1 \mathrm{H}), 8.58(\mathrm{~s}, 1 \mathrm{H}), 8.49(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.36(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{dd}, J$ $=8.3 / 2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~s}, 1 \mathrm{H}), 4.25(\mathrm{~s}, 2 \mathrm{H}), 4.08(\mathrm{~s}, 1 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H})$, 2.27-1.66 (m, 5H), 1.63-1.31 (m, 3H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 162.7,157.2,156.7,151.0,150.8$, $150.8,141.5,137.9,137.0,136.3,125.8,118.5,70.6,36.2,35.4,30.9,26.4,25.3 ; \mathrm{m} / \mathrm{z}$ MS (TOF $\left.\mathrm{ES}^{\dagger}\right) 371.2[\mathrm{MH}]^{+} ;$LC-MS $t_{\mathrm{R}}: 3.36 \mathrm{~min}$.

Ethyl 3-([1,1'-biphenyl]-4-yl)acrylate (44). ${ }^{6}$ Phenylboronic acid (41) ($2.47 \mathrm{~g}, 20.3 \mathrm{mmol}, 1.25 \mathrm{eq}$), 4-bromobenzaldehyde (42) ($3.00 \mathrm{~g}, 16.2 \mathrm{mmol}$), (ethoxycarbonylmethylene)triphenylphosphorane (43) ($8.47 \mathrm{~g}, 24.3 \mathrm{mmol}, 1.5 \mathrm{eq}$), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(398 \mathrm{mg} 0.57 \mathrm{mmol}, 0.035 \mathrm{eq})$ and $\mathrm{PPh}_{3}(298 \mathrm{mg}$, $1.13 \mathrm{mmol}, 0.07 \mathrm{eq})$ were dispersed in degassed $\mathrm{DME}(64 \mathrm{~mL})$ and degassed $2 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3(\mathrm{aq})}$ (32 mL). The mixture was heated at $70^{\circ} \mathrm{C}$ for 22.5 h , then at $100{ }^{\circ} \mathrm{C}$ for 3 h , followed by $85{ }^{\circ} \mathrm{C}$ overnight. LCMS analysis over this time indicated the Wittig reaction progressed at a faster rate than the Suzuki coupling. The mixture was cooled, then dilute with water (200 mL), before
extracting with $\mathrm{Et}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$. The combined organic layers were washed with brine (100 mL), before concentration under reduced pressure. The residue was diluted with $\mathrm{Et}_{2} \mathrm{O} / \mathrm{PE}$ to effect precipitation of triphenylphosphine oxide, the majority of which was removed by filtration (vacuum). The resulting filtrated was reconcentrated under reduced pressure, and purified by FCC (eluent $\mathrm{Et}_{2} \mathrm{O} / \mathrm{PE} 0: 100$, followed by 8:92, then $10: 90$) to give ethyl (Z)-3-([1,1'-biphenyl]-4yl)acrylate as $677 \mathrm{mg}(17 \%)$ of a clear colourless oil and ethyl $(E)-3$-([1,1'-biphenyl]-4-yl)acrylate as $2.78 \mathrm{~g}(68 \%)$ of a white solid. Total yield $3.46 \mathrm{~g}(84 \%, E / Z 4: 1)$.
E-isomer: ${ }^{14}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.73(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.67-7.56(\mathrm{~m}, 6 \mathrm{H}), 7.52-7.42(\mathrm{~m}, 2 \mathrm{H})$, $7.42-7.34(\mathrm{~m}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.36(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 167.2,144.3,143.1,140.3,133.6,129.0,128.7,128.0,127.7,127.2,118.3,60.7$, 14.5; m/z MS (TOF ES ${ }^{+}$) $253.2[\mathrm{MH}]^{+} ;$LC-MS $t_{\mathrm{R}}: 3.83 \mathrm{~min}$.

Z-isomer: ${ }^{15}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.71(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.65-7.55(\mathrm{~m}, 4 \mathrm{H}), 7.49-7.40(\mathrm{~m}, 2 \mathrm{H})$, $7.40-7.31(\mathrm{~m}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.97(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, $1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 166.4,142.9,141.9,140.7,133.9,130.6,129.0,127.7$, 127.2, 126.8, 119.8, 60.5, 14.3; m / z MS (TOF ES ${ }^{+}$) $253.1[\mathrm{MH}]^{+}$; LC-MS $t_{\mathrm{R}}: 3.83 \mathrm{~min}$.

Ethyl 3-([1,1'-biphenyl]-4-yl)propanoate (45). ${ }^{14,16}$ Ethyl 3-([1,1'-biphenyl]-4-yl)acrylate (44) (3.39 $\mathrm{g}, 13.4 \mathrm{mmol}, \mathrm{E} / \mathrm{Z}$ isomers recombined) was dissolved in EtOAC (150 mL). $\mathrm{Pd} / \mathrm{C}(10 \%, 300 \mathrm{mg}$, $0.1 \mathrm{wt} \mathrm{eq})$ as a slurry in water $(0.5 \mathrm{~mL})$ was added and the mixture degassed by sonication. The vessel was evacuated and filled with hydrogen three times, then stirred under an atmosphere of hydrogen (balloon) for 4 h at RT. LCMS analysis indicated complete consumption of starting material. The reaction mixture was filtered through a bed of Celite ${ }^{\mathrm{TM}}$, with washings of EtOAc, before concentrating the filtrate under reduced pressure, to give $3.40 \mathrm{~g}(99 \%)$ of clear colourless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.60-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.52(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{dd}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-$ $7.30(\mathrm{~m}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.15(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.00(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.75-2.54$
(m, 2H), $1.25(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 173.1,141.1,139.8,139.4,128.9,127.4$, $127.3,127.2,60.6,36.0,30.8,14.4 ; m / z \mathrm{MS}\left(\mathrm{TOF} \mathrm{ES}^{+}\right) 255.2[\mathrm{MH}]^{+} ; \mathrm{LC}-\mathrm{MS} t_{\mathrm{R}}: 3.78 \mathrm{~min}$.

3-([1, 1'-Biphenyl]-4-yl)propanal (46). ${ }^{16}$ Ethyl 3-([1,1'-biphenyl]-4-yl)propanoate (45) (2.18 g, 8.57 mmol) was dissolved in dry toluene (35 mL) under an atmosphere of nitrogen. The solution was degassed under a stream of nitrogen, before cooling to $-78{ }^{\circ} \mathrm{C}$ in a dry ice/acetone bath. A solution of 1 M DIBALH in toluene ($17 \mathrm{~mL}, 17 \mathrm{mmol}, 2.0 \mathrm{eq}$) was added in dropwise, and the mixture stirred at $-78{ }^{\circ} \mathrm{C}$ for 1.25 h . TLC analysis (DCM) indicated disappearance of the starting material, so the mixture was quenched with care, with dropwise addition of MeOH , whilst maintaining the temperature at $-78{ }^{\circ} \mathrm{C}$. Once quenched, the mixture was allowed to warm to RT , and stirred for 15 min , before addition of sat. Rochelle's solution (50 mL) and stirring for 30 min . The resulting mixture was then extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$, and the combined organic layers washed with brine (50 mL). On concentration under reduced pressure, 2.01 g of milky white oil was obtained with an odour reminiscent of cinnamaldehyde. The crude product was purified by FCC (eluent EtOAc/PE 0:100 to 30:70), to give $1.58 \mathrm{~g}(88 \%)$ of a white solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 9.86(\mathrm{t}, J=$ $1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.28(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.01(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.89-2.78(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 201.7,141.0$, $139.6,139.5,128.9,128.9,127.5,127.3,127.2,45.4,27.9 ; m / z \mathrm{MS}\left(\mathrm{TOF} \mathrm{ES}^{+}\right)$no mass peaks observed; LC-MS t_{R} : 3.95 min .

2-Cyano-N-((1S,2S)-2-hydroxycyclohexyl)acetamide (48). Cyanoacetic acid (47) (419 mg, 4.92 mmol) and ($1 S, 2 S$)-2-aminocyclohexanol hydrochloride (821 mg , 5.41 mmol) were coupled according to General Procedure A. After stirring in water/sat. $\mathrm{NaHCO}_{3(\mathrm{aq})}$, no precipitate was evident, and the organic extracts of this aqueous slurry contained mainly 1,1,3,3-tetramethylurea by-product. The aqueous layer was concentrated to dryness under reduced pressure, and the resulting residue taken up in MeCN , and stirred at RT for 30 min . The inorganic solid mass was removed by filtration (vacuum) and the resulting filtrate concentrated under reduced pressure to
give 1.60 g of yellow solid. This was recrystallised from EtOAc to give 400 mg of a yellow crystalline solid. The mother liquor was reconcentrated and purified by FCC (eluent EtOAc/PE $50: 50$ to $100: 0$) to give a further 237 mg of an off-white solid. Total yield $637 \mathrm{mg}(71 \%) .{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 8.07(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.45-3.28(\mathrm{~m}, 1 \mathrm{H}), 3.26-3.13(\mathrm{~m}$, $1 \mathrm{H}), 1.93-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.69-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.35-0.94(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO-d d_{6}) δ 161.6, $116.4,71.0,54.9,33.9,30.8,25.5,24.1,23.7 ; m / z$ MS (TOF ES') $181.1[\mathrm{M}-\mathrm{H}]^{-} ;$LC-MS $t_{\mathrm{R}}: 2.40$ \min.

5-([1,1'-Biphenyl]-4-ylmethyl)-2-amino-N-((1S,2S)-2-hydroxycyclohexyl)thiophene-3-carboxamide (49). 3-([1, 1'-Biphenyl]-4-yl)propanal (46) (334 mg, 1.59 mmol$)$, 2-cyano- $N-((1 S, 2 S)-2-$ hydroxycyclohexyl)acetamide (48) ($289 \mathrm{mg}, 1.59 \mathrm{mmol}, 1.0 \mathrm{eq}$), sulphur ($51 \mathrm{mg}, 1.59 \mathrm{mmol}, 1.0$ eq) and TEA ($0.22 \mathrm{~mL}, 1.59 \mathrm{mmol}, 1.0 \mathrm{eq}$) were dispersed in EtOH (1.6 mL) in a 10 mL microwave vial. The mixture was sonicated at RT for 5 min , before flushing the atmosphere with nitrogen and sealing the vial. The mixture was heated at $60^{\circ} \mathrm{C}$ for 6 h , at which time LCMS analysis indicated the reaction was complete. The mixture was cooled to RT, before pouring onto ice/water. The resulting brown solid was collected by filtration (vacuum) and washed with water, then air-dried. The crude product was purified by FCC (eluent EtOAc/PE 10:90 to 100:0) to give $367 \mathrm{mg}(57 \%)$ of red solid. ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}\right) \delta 7.80-7.56(\mathrm{~m}, 4 \mathrm{H}), 7.53-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.40-$ $7.28(\mathrm{~m}, 3 \mathrm{H}), 7.24(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~s}, 2 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H}), 4.54(\mathrm{~s}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 2 \mathrm{H}), 3.67-$ $3.43(\mathrm{~m}, 1 \mathrm{H}), 3.33(\mathrm{~s}, 1 \mathrm{H}), 1.96-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.45-0.97(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}) $\delta 165.4,160.2,134.0,139.9,138.2,128.9,128.9,127.3,126.8,126.6,122.4,122.0$, 106.9, 71.4, 54.3, 34.9, 34.6, 31.6, 24.6, 24.2; m/z MS (TOF ES ${ }^{+}$) $407.2[\mathrm{MH}]^{+}$; HRMS $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{MH}]^{+}$calcd 407.1793; found 407.1797; LC-MS $t_{\mathrm{R}}: 3.92 \mathrm{~min} ;[\alpha]_{D}^{27}=+20.58^{\circ}(0.14$, DMSO).

Intact cell radioligand binding assays. Flp- $\mathrm{In}^{\mathrm{TM}}$ Chinese hamster ovary (CHO) cells expressing the human muscarinic acetylcholine $\mathrm{M}_{1}\left(\mathrm{hM}_{1} \mathrm{mAChR}\right)$ were grown in Dulbecco's
modified Eagle's medium (DMEM) (Invitrogen, Carlsbad, CA) supplemented with foetal bovine serum (FBS) (ThermoTrace (Melbourne, Australia) and $0.2 \mathrm{mg} / \mathrm{mL}$ hygromycin-B (Roche, Mannheim, Germany). The cells were plated at 10^{4} cells per well in 96 -well Isoplates (Perkin Elmer). Prior to assay the growth medium was removed and the attached cells were used to perform radioligand binding studies in the presence of $0.2 \mathrm{nM}\left[{ }^{3} \mathrm{H}\right] \mathrm{NMS}$ and varying concentrations of acetylcholine (Sigma, St. Loius, MI) and PAMs in a total volume of $200 \mu \mathrm{~L}$ of binding buffer (10 mM HEPES, $145 \mathrm{mM} \mathrm{NaCl}, 1 \mathrm{mM} \mathrm{MgSO} 4 \cdot 7 \mathrm{H}_{2} \mathrm{O}, 10 \mathrm{mM}$ glucose, $5 \mathrm{mM} \mathrm{KCl}, 2 \mathrm{mM} \mathrm{CaCl} 2,1.5$ $\mathrm{mM} \mathrm{NaHCO} 3, \mathrm{pH} 7.4)$. The binding reaction mixtures were incubated for 1 h at $37^{\circ} \mathrm{C}$, in a humidified incubator and terminated by rapid removal of radioligand followed by two $100 \mu \mathrm{~L}$ washes with ice-cold $0.9 \% \mathrm{NaCl}$ buffer. Radioactivity was determined by addition of $100 \mu \mathrm{~L}$ Microscint scintillation liquid (PerkinElmer Life Sciences) to each well and counting in a MicroBeta plate reader (PerkinElmer Life Sciences).

IP-One accumulation assays. The IP-One assay kit (Cisbio, France) was used for the direct quantitative measurement of myo-Inositol 1 phosphate $\left(\mathrm{IP}_{1}\right)$ in FlpIn CHO cells stably expressing the $h \mathrm{M}_{1} \mathrm{mAChR}$. The cells were detached and resuspended in IP_{1} stimulation buffer (10 mM Hepes, $1 \mathrm{mM} \mathrm{CaCl} 2,0.5 \mathrm{mM} \mathrm{MgCl}_{2}, 4.2 \mathrm{mM} \mathrm{KCl}, 146 \mathrm{mM} \mathrm{NaCl}, 5.5 \mathrm{mM}$ glucose, 50 mM LiCl , pH 7.4). The stimulations were performed in 384-well Proxy-plates (PerkinElmer) in a total volume of $14 \mu \mathrm{~L}$, in the absence or presence of increasing concentrations of ACh and the PAMs, at cell density of 10^{6} million cells $/ \mathrm{ml}$ for 1 h at $37{ }^{\circ} \mathrm{C}, 5 \% \mathrm{CO}_{2}$. The reactions were terminated by addition of $6 \mu \mathrm{~L}$ lysis buffer containing HTRF reagents (the anti-IP1 Tb cryptate conjugate and the IP1-D2 conjugate), followed by incubation for 1 h at RT. The emission signals were measured at 590 and 665 nm after excitation at 340 nm using an Envision multi-label plate reader (PerkinElmer) and the signal was expressed as the HTRF ratio: $F=\left(\left(\right.\right.$ fluorescence $_{665} \mathrm{~nm} /$ fluorescence $\left.\left.{ }_{590} \mathrm{~nm}\right) \times 10^{4}\right)$.

Data Analysis. All data were analyzed using Prism 6.01 (GraphPad Software, San Diego, CA). Binding-interaction studies with allosteric ligands were fitted to the following allosteric ternary complex model (equation 1): ${ }^{31}$

$$
\begin{equation*}
Y=\frac{\mathrm{Bmax}[\mathrm{~A}]}{[\mathrm{A}]+\left(\frac{K_{\mathrm{A}} K_{\mathrm{B}}}{\alpha^{\prime}[\mathrm{B}]+K_{\mathrm{B}}}\right)\left(1+\frac{[\mathrm{I}]}{K_{\mathrm{I}}}+\frac{[\mathrm{B}]}{K_{\mathrm{B}}}+\frac{\alpha[\mathrm{II}][\mathrm{B}]}{K_{\mathrm{I}} K_{\mathrm{B}}}\right)} \tag{1}
\end{equation*}
$$

Where Y is percentage (vehicle control) binding, $\mathrm{B}_{\max }$ is the total number of receptors, [A], [B] and [I] are the concentrations of radioligand, allosteric modulator and the orthosteric ligand, respectively, K_{A} and K_{B} and K_{I} are the equilibrium dissociation constants of the radioligand, allosteric modulator orthosteric ligand, respectively. α^{\prime} and α are the binding cooperativities between the allosteric ligand and $\left[{ }^{3} \mathrm{H}\right]$ NMS and the allosteric modulator and the agonist acetylcholine, respectively. Saturation binding experiments were used to determine the value of $\mathrm{p} K_{\mathrm{A}}$ for $\left[{ }^{3} \mathrm{H}\right] \mathrm{NMS}\left(\mathrm{p} K_{\mathrm{A}}=9.70 \pm 0.01, K_{\mathrm{A}}=0.2 \mathrm{nM}\right)$. Values of $\alpha\left(\right.$ or $\left.\alpha^{\prime}\right)>1$ denote positive cooperativity; values <1 (but >0) denote negative cooperativity, and value $=1$ denotes neutral cooperativity. For the majority of compounds, a complete inhibition of $\left[{ }^{3} \mathrm{H}\right]$ NMS binding by the allosteric modulator was observed, consistent with a very high level of negative cooperativity. In these cases to allow fitting of the data, $\log \alpha$ ' was fixed to -3 to reflect this high negative cooperativity. The dissociation constant of $\mathrm{ACh}\left(K_{\mathrm{I}}\right)$ was not fixed in these analyses but rather determined for each separate experiment. No difference was observed in the value of K_{I} between experiments.

Concentration-response curves for the interaction between the allosteric ligand and the orthosteric ligand in the IP-One accumulation assays were globally fitted to the following operational model of allosterism and agonism (equation 2): ${ }^{32}$

$$
\begin{equation*}
E=\frac{E_{m}\left(\tau_{\mathrm{A}}[\mathrm{~A}]\left(K_{\mathrm{B}}+\alpha \beta[\mathrm{B}]\right)+\tau_{\mathrm{B}}[\mathrm{~B}] K_{\mathrm{A}}\right)^{n}}{\left([\mathrm{~A}] K_{\mathrm{B}}+K_{\mathrm{A}} K_{\mathrm{B}}+[\mathrm{B}] K_{\mathrm{A}}+\alpha[\mathrm{A}][\mathrm{B}]\right)^{n}+\left(\tau_{\mathrm{A}}[\mathrm{~A}]\left(K_{\mathrm{B}}+\alpha \beta[\mathrm{B}]\right)+\tau_{\mathrm{B}}[\mathrm{~B}] K_{\mathrm{A}}\right)^{n}} \tag{2}
\end{equation*}
$$

Where E_{m} is the maximum possible cellular response, $[\mathrm{A}]$ and $[\mathrm{B}]$ are the concentrations of orthosteric and allosteric ligands, respectively, K_{A} and K_{B} are the equilibrium dissociation constant of the orthosteric and allosteric ligands, respectively, τ_{A} and τ_{B} are operational measures of orthosteric and allosteric ligand efficacy, respectively, α is the binding cooperativity parameter between the orthosteric and allosteric ligand, β denotes the magnitude of the allosteric effect of the modulator on the efficacy of the orthosteric agonist and n denotes the transducer slope that
describes the underlying stimulus-response coupling of the ligand-occupied receptor to the signal pathway. This parameter was constrained to be shared between all curves within a fitted dataset for each interaction study, and in all instances was not significantly different from unity. In many instances, the individual model parameters of equation 2 could not be directly estimated via the nonlinear regression algorithm by analysis of the functional data alone due to parameter redundancy. To facilitate model convergence, therefore, we fixed the equilibrium dissociation constant of each ligand to that determined from the whole cell binding assays. For compounds where no agonism was observed, $\log \tau_{\mathrm{B}}$ was fixed to -3 .

All affinity, potency, and cooperativity values were estimated as logarithms and statistical comparisons between values were by one-way analysis of variance using a Tukey's multiple comparison post test to determine significant differences between mutant receptors and the WT M M_{1} mAChR. A value of $p<0.05$ was considered statistically significant.

■ AUTHOR INFORMATION

Corresponding Author

*For P.J.S.: phone: +61 (0)3 9903 9542; E-mail: Peter.Scammells@monash.edu. For J.R.L. : +61
(0)3 9903 9095; E-Mail: Rob.Lane@monash.edu

Author Contributions

${ }^{\S}$ These authors contributed equally to this work.

The manuscript was written through contributions of all authors and all authors have given approval to the final version of the manuscript.

Notes
\#Current address: School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.

The authors declare no competing financial interest.

ACKNOWLEDGEMENTS

This research was supported by Discovery grant DP110100687 of the Australian Research Council as well as Program grant APP1055134 and Project grant APP1049564 of the National Health and Medicinal Research Council (NHMRC) of Australia. J.R.L. is a R.D. Wright Biomedical Career Development Fellow and a Larkin's Fellow (Monash University, Australia) while A.C. is a Senior Principal Research Fellow.

■ ABBREVIATIONS

brsm, based on recovery of starting material; DCM, dichloromethane, DIPEA, diisopropylethylamine; DMF-DMA, N, N-dimethylformamide, dimethylacetal; FCC, flash column chromatography; HCTU, O-(1H-6-chlorobenzotriazole-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate; min, minutes; PE, petroleum spirits 40-60; TEA, triethylamine;

REFERENCES

(1) Ferri, C. P.; Prince, M.; Brayne, C.; Brodaty, H.; Fratiglioni, L.; Ganguli, M.; Hall, K.; Hasegawa, K.; Hendrie, H.; Huang, Y.; Jorm, A.; Mathers, C.; Menezes, P. R.; Rimmer, E.; Scazufca, M. Global prevalence of dementia: a Delphi consensus study. Lancet 2005, 366, 2112-7.
(2) van Duijn, C. M.; Clayton, D.; Chandra, V.; Fratiglioni, L.; Graves, A. B.; Heyman, A.; Jorm, A. F.; Kokmen, E.; Kondo, K.; Mortimer, J. A.; Rocca, W. A.; Shalat, S. L.; Soininen, H.; Hofman, A.; et, a. Familial aggregation of Alzheimer's disease and related disorders: a collaborative re-analysis of case-control studies. Int. J. Epidemiol. 1991, 20 Suppl 2, S13-20.
(3) Gao, S.; Hendrie, H. C.; Hall, K. S.; Hui, S. The relationships between age, sex, and the incidence of dementia and Alzheimer disease: a meta-analysis. Arch. Gen. Psychiatry 1998, 55, 809-15.
(4) Lanctot, K. L.; Rajaram, R. D.; Herrmann, N. Therapy for Alzheimer's Disease: How Effective are Current Treatments? Ther. Adv. Neurol. Disord. 2009, 2, 163-80.
(5) Osborn, G. G.; Saunders, A. V. Current treatments for patients with Alzheimer disease. J. Am. Osteopath. Assoc. 2010, 110, S16-26.
(6) Geula, C.; Mesulam, M. M. Cholinesterases and the pathology of Alzheimer disease. Alzheimer Dis. Assoc. Disord. 1995, 9 Suppl 2, 23-8.
(7) Clader, J. W.; Wang, Y. Muscarinic receptor agonists and antagonists in the treatment of Alzheimer's disease. Curr. Pharm. Des. 2005, 11, 3353-3361.
(8) Koch, H. J.; Haas, S.; Juergens, T. On the physiological relevance of muscarinic acetylcholine receptors in Alzheimer's disease. Curr. Med. Chem. 2005, 12, 2915-2921.
(9) Birks, J. Cholinesterase inhibitors for Alzheimer's disease. Cochrane Database Syst. Rev. //, 2006, p CD005593.
(10) Wess, J.; Eglen, R. M.; Gautam, D. Muscarinic acetylcholine receptors: mutant mice provide new insights for drug development. Nat. Rev. Drug Discov. 2007, 6, 721-733.
(11) Christopoulos, A. Allosteric binding sites on cell-surface receptors: novel targets for drug discovery. Nat. Rev. Drug Discov. 2002, 1, 198-210.
(12) Conn, P. J.; Christopoulos, A.; Lindsley, C. W. Allosteric modulators of GPCRs: a novel approach for the treatment of CNS disorders. Nat. Rev. Drug Discov. 2009, 8, 41-54.
(13) Conn, P. J.; Lindsley, C. W.; Meiler, J.; Niswender, C. M. Opportunities and challenges in the discovery of allosteric modulators of GPCRs for treating CNS disorders. Nat. Rev. Drug Discov. 2014, 13, 692-708.
(14) Decker, M.; Holzgrabe, U. M1 muscarinic acetylcholine receptor allosteric modulators as potential therapeutic opportunities for treating Alzheimer's disease. MedChemCommun 2012, 3, 752-762.
(15) Ma, L.; Seager, M.; Wittmann, M.; Jacobson, M.; Bickel, D.; Burno, M.; Jones, K.; Graufelds, V. K.; Xu, G.; Pearson, M.; McCampbell, A.; Gaspar, R.; Shughrue, P.; Danziger, A.;

Regan, C.; Flick, R.; Pascarella, D.; Garson, S.; Doran, S.; Kreatsoulas, C.; Veng, L.; Lindsley, C. W.; Shipe, W.; Kuduk, S.; Sur, C.; Kinney, G.; Seabrook, G. R.; Ray, W. J. Selective activation of the M1 muscarinic acetylcholine receptor achieved by allosteric potentiation. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 15950-15955, S15950/1-S15950/9.
(16) Shirey, J. K.; Brady, A. E.; Jones, P. J.; Davis, A. A.; Bridges, T. M.; Kennedy, J. P.; Jadhav, S. B.; Menon, U. N.; Xiang, Z.; Watson, M. L.; Christian, E. P.; Doherty, J. J.; Quirk, M. C.; Snyder, D. H.; Lah, J. J.; Levey, A. I.; Nicolle, M. M.; Lindsley, C. W.; Conn, P. J. A selective allosteric potentiator of the M1 muscarinic acetylcholine receptor increases activity of medial prefrontal cortical neurons and restores impairments in reversal learning. J. Neurosci. 2009, 29, 14271-14286.
(17) Kuduk, S. D.; Beshore, D. C. Novel M1 allosteric ligands: a patent review. Expert Opin. Ther. Pat. 2012, 22, 1385-1398.
(18) Yang, F. V.; Shipe, W. D.; Bunda, J. L.; Nolt, M. B.; Wisnoski, D. D.; Zhao, Z.; Barrow, J. C.; Ray, W. J.; Ma, L.; Wittmann, M.; Seager, M. A.; Koeplinger, K. A.; Hartman, G. D.; Lindsley, C. W. Parallel synthesis of N-biaryl quinolone carboxylic acids as selective M1 positive allosteric modulators. Bioorg. Med. Chem. Lett. 2010, 20, 531-536.
(19) Mistry, S. N.; Valant, C.; Sexton, P. M.; Capuano, B.; Christopoulos, A.; Scammells, P. J. Synthesis and Pharmacological Profiling of Analogues of Benzyl Quinolone Carboxylic Acid (BQCA) as Allosteric Modulators of the M1 Muscarinic Receptor. J. Med. Chem. 2013, 56, 51515172.
(20) Kuduk, S. D.; Beshore, D. C.; Di Marco, C. N.; Greshock, T. J. Benzoquinazolinone derivatives as M1 receptor positive allosteric modulators and their preparation, pharmaceutical compositions and use in the treatment of diseases. WO2010059773A1, 2010.
(21) Abdul-Ridha, A.; Lane, J. R.; Lopez, L.; Sexton, P. M.; Christopoulos, A.; Canals, M.; Mistry, S. N.; Scammells, P. J. Mechanistic insights into allosteric structure-function relationships at the m 1 muscarinic acetylcholine receptor. J. Biol. Chem. 2014, 289, 33701-11.
(22) Rescifina, A.; Zagni, C.; Varrica, M. G.; Pistara, V.; Corsaro, A. Recent advances in small organic molecules as DNA intercalating agents: Synthesis, activity, and modeling. Eur. J. Med. Chem. 2014, 74, 95-115.
(23) Veber, D. F.; Johnson, S. R.; Cheng, H.-Y.; Smith, B. R.; Ward, K. W.; Kopple, K. D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 2002, 45, 2615-23.
(24) Lin, H.; Schulz, M. J.; Xie, R.; Zeng, J.; Luengo, J. I.; Squire, M. D.; Tedesco, R.; Qu, J.; Erhard, K.; Mack, J. F.; Raha, K.; Plant, R.; Rominger, C. M.; Ariazi, J. L.; Sherk, C. S.; Schaber, M. D.; McSurdy-Freed, J.; Spengler, M. D.; Davis, C. B.; Hardwicke, M. A.; Rivero, R. A. Rational Design, Synthesis, and SAR of a Novel Thiazolopyrimidinone Series of Selective PI3K-beta Inhibitors. ACS Med. Chem. Lett. 2012, 3, 524-529.
(25) Zhang, M.; Tamiya, J.; Nguyen, L.; Rowbottom, M. W.; Dyck, B.; Vickers, T. D.; Grey, J.; Schwarz, D. A.; Heise, C. E.; Haelewyn, J.; Mistry, M. S.; Goodfellow, V. S. Thienopyrimidinone bis-aminopyrrolidine ureas as potent melanin-concentrating hormone receptor-1 (MCH-R1) antagonists. Bioorg. Med. Chem. Lett. 2007, 17, 2535-2539.
(26) Mandal, S.; Li, W. T.; Bai, Y.; Robertus, J. D.; Kerwin, S. M. Synthesis of 2-substituted 9-oxa-guanines $\quad\{5$-aminooxazolo[5,4-d]pyrimidin-7(6H)-ones $\}$ and 9-oxa-2-thioxanthines $\{5$ -mercaptooxazolo[5,4-d]pyrimidin-7(6H)-ones\}. Beilstein J. Org. Chem. 2008, 4, No. 26, No pp. given.
(27) Christopoulos, A.; Kenakin, T. G protein-coupled receptor allosterism and complexing. Pharmacol. Rev. 2002, 54, 323-374.
(28) Christopoulos, A. Assessing the distribution of parameters in models of ligand-receptor interaction: to log or not to log. Trends Pharmacol. Sci. 1998, 19, 351-357.
(29) Hua, X.; Mao, W.; Fan, Z.; Ji, X.; Li, F.; Zong, G.; Song, H.; Li, J.; Zhou, L.; Zhou, L.; Liang, X.; Wang, G.; Chen, X. Novel Anthranilic Diamide Insecticides: Design, Synthesis, and Insecticidal Evaluation. Aust. J. Chem. 2014, 67, 1491-1503.
(30) Rewcastle, G. W.; Denny, W. A.; Baguley, B. C. Potential antitumor agents. 51. Synthesis and antitumor activity of substituted phenazine-1-carboxamides. J. Med. Chem. 1987, 30, 843-51.
(31) May, L. T.; Leach, K.; Sexton, P. M.; Christopoulos, A. Allosteric modulation of G protein-coupled receptors. Annu. Rev. Pharmacol. Toxicol. 2007, 47, 1-51.
(32) Leach, K.; Sexton, P. M.; Christopoulos, A. Allosteric GPCR modulators: taking advantage of permissive receptor pharmacology. Trends Pharmacol. Sci. 2007, 28, 382-389.

Novel Fused Arylpyrimidinone Based Allosteric Modulators of the M_{1} Muscarinic Acetylcholine Receptor
S. N. Mistry, H. Lim, M. Jörg, B. Capuano, A. Christopoulos, J. R. Lane, P. J. Scammells

