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Summary
This package implements basic classes and a new reduction algorithm for Hilbert modular
groups. The main improvement over previous algorithms is that this implementation works in
theory for all Hilbert modular groups and in practice for a much wider range of examples. A
more in-depth discussion of the theoretical background and details about the implementation
can be found in Strömberg (2022).

A Brief Mathematical Background
One of the most important groups in Number Theory is the modular group, Γ = PSL2(Z),
consisting of fractional-linear transformations, z 7→ (az + b)/(cz + d) on the complex upper
half-plane, H, given by 2-by-2 matrices of determinant 1 and integer entries.

A reduction algorithm for the modular group is an algorithm that, for a given z ∈ H, finds
an element, A =

(
a b
c d

)
∈ Γ such that Az = (az + b)/(cz + d) belongs to a specific set, a

so-called “fundamental domain”. This type of algorithm was first introduced in the context
of binary quadratic forms in the 18th century by Lagrange, Gauss and others, with the main
contribution published by Gauss (1966) in the famous Disquisitiones Arithmeticae.

A natural generalisation of the modular group over Z is given by the family of Hilbert modular
groups, ΓK = PSL2(OK), where K is a totally real number field of degree n and OK is its
ring of integers. This group gives rise to an action on n copies of the complex upper half-plane

HK = H× · · · ×H.

A reduction algorithm for a Hilbert modular group ΓK should work in the same way as before.
Given z ∈ HK the algorithm finds an element A ∈ ΓK such that Az belongs to a certain
fundamental domain. The additional complexity in this case, when K is not equal to Q, has
both a theoretical and a practical part. The main theoretical problem arises when the number
field K has class number greater than 1, in which case the corresponding Fundamental domain
will have more than one point at “infinity”. From a practical standpoint the main problem
appears when the degree and discriminant of the number field increases, making it necessary
to, for instance, locate integral points in higher-dimensional polytopes.

Statement of need
There have been several previous attempts at giving a reduction algorithm for Hilbert modular
groups but they have all been limited in at least one of two ways: the number field either
being restricted to degree 2, or the class number to be 1, or a combination of both. See for
example the algorithms by Bouyer & Streng (2015) and Quinn & Verjovsky (2020).
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Having access to the algorithm in this package, which is valid for any totally real number field,
opens up for several new research directions and generalisations of previous research. Some of
the direct applications to be pursued by the package author and collaborators lie in the field of
explicit formulas and computational aspects of non-holomorphic Hilbert modular forms.

Implementation
The package hilbertmodgroup is mainly written in Python with some parts in Cython (Behnel
et al., 2011). It is intended to run as a package inside SageMath (The Sage Developers, 2022)
as it makes heavy use SageMath’s implementation of number fields, which is in turn is in many
cases using the backend from PARI/gp (The PARI Group, 2021).

Documentation and Examples
All functions are documented using docstrings with integrated doctests following the guide for
SageMath development. In addition, the /examples directory contains
Jupyter notebooks illustrating the use of the package with a selection of fundamental examples,
corresponding to examples presented in Strömberg (2022).
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