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matrix second Painlevé hierarchy, but also provides a more detailed account of the underlying process.

Corresponding author:
A. Pickering. email: andrew.pickering@urjc.es



1 Introduction

The discovery of a link between completely integrable partial differential equations (PDEs) and ordinary differ-
ential equations (ODEs) having the Painlevé property [1] led almost immediately to the derivation of the second
Painlevé (PII) hierarchy [1, 2] along with its auto-Bäcklund transformations (auto-BTs) [2]. This hierarchy,
derived by similarity reduction using the Korteweg-de Vries (KdV) and modified Korteweg-de Vries (mKdV)
hierarchies, consists of a sequence of ODEs of orders 2n, n = 1, 2, 3, . . ., having as first member the second
Painlevé equation [3, 4, 5, 6]. We refer to this hierarchy as the standard Painlevé hierarchy, in contrast to the
generalised PII hierarchy which includes terms corresponding to lower order mKdV flows [7] (see also [8], where
in addition a generalised first Painlevé (PI ) hierarchy was given).

However, despite the initial results of Airault, and despite both classical and contemporary interest in
higher order equations with the Painlevé property [9]—[15], it was to take some twenty years before interest
in Painlevé hierarchies was to take off. In [16], Kudryashov rediscovered the standard PII hierarchy, and also
obtained the standard first Painlevé (PI) hierarchy. In addition, an alternative form of the auto-BTs of the PII
hierarchy was given in [17]. Over the last quarter-century or so, a great many papers have been published on
Painlevé hierarchies and their properties. This has included using and extending the ideas in [18] in order to
use nonisospectral scattering problems to derive Painlevé hierarchies and their underlying linear problems [19],
which has led to the derivation of differential, discrete and differential-delay Painlevé hierarchies [19]—[24]; see
also [25]—[29] and the discussion in [30]. Auto-BTs for differential Painlevé hierarchies have been derived in [31]
and, with the advent of a new more general approach given in [32], for discrete and differential-delay Painlevé
equations and hierarchies [32, 33, 34], as well as for further examples of differential Painlevé hierarchies [35].
We refer also to [36]—[44] for higher order Painlevé equations and Painlevé hierarchies, and their properties.

The technique developed in [32] was also used in [45] (see also [46]) to obtain the auto-BTs of a matrix PII
equation. The derivation of matrix Painlevé hierachies using matrix PDE hierachies was, in fact, somewhat
less straightforward than for the case of scalar dependent variables. The matrix PII equation was introduced in
[47, 48], and was known to pass the Painlevé test and to have an underlying linear problem [47]. However, as
observed in [47], it was not known how to derive this equation from the matrix analogues of the mKdV equation;
neither was it understood, as remarked in [48], how to obtain a second order matrix ODE from the third order
matrix ODEs obtained as similarity reductions of the matrix mKdV equations. These problems were overcome
in [49], where a matrix PII hierarchy was obtained, along with properties thereof such as special integrals and
auto-BTs, using a matrix mKdV hierarchy. In a more recent paper, the approach developed in [49] was used to
derive matrix fourth Painlevé (PIV ) hierarchies, again along with related results such as special integrals and
auto-BTs [50]. In both [49] and [50], alternative matrix PII hierarchies were also discussed. It is also worth
remarking that, to the best of our knowledge, the matrix dispersive water wave hierarchy constructed in [50],
even in the isospectral case, is also new.

The matrix PII hierarchy presented in [49] has led to a variety of related results. These include the derivation
of Painlevé-style auto-BTs for a matrix PDE along with the derivation and study of related non-autonomous
matrix lattice equations [51, 52, 53]. In particular, in [52], we considered the use of auto-BTs in order to derive
solutions of the new matrix PII equation derived in [49]. It was also foreseen that, in a subsequent paper, we
would extend these results to the entire matrix PII hierarchy, and it is that task to which we turn here.

The outline of the paper is as follows. In Section 2, we recall the definition of the matrix PII hierarchy and
its auto-BTs. We also give some preliminary results on the composition of auto-BTs in function of properties
of the initial solution used. In Section 3, we further discuss the composition of auto-BTs, in the context of
transforming to an equivalent equation in order to simplify the matrix coefficient appearing in our hierarchy. In
addition, we give some results on upper-triangular solutions of our matrix hierarchy, as well as on extending the
classes of initial solutions discussed in [52] for the matrix PII equation to the case of the higher order equations
of the PII hierarchy. In Section 4 we present examples, with the aim of illustrating various points in the process
of constructing sequences of solutions. We dedicate our final section to a discussion and conclusions.
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2 The matrix second Painlevé hierarchy

2.1 Formulation of the matrix second Painlevé hierarchy

The matrix PII hierarchy was derived in [49] using the matrix KdV and mKdV hierarchies, for the properties of
which we refer to [54, 55, 56, 48, 57, 58, 59]. It consists of a sequence of ODEs in the m×m matrix dependent
variable u and independent variable x, which can be written

ψ[u]

(
R̃n−1[u]ux +

n−1∑
k=1

ckR̃k−1[u]ux

)
+ c0u+ uE + Eu+ 2gn−1xu− αnI = 0, n = 1, 2, 3, . . . , (2.1)

where gn−1 ( 6= 0), c0, c1, . . . , cn−1 and αn are scalar constants, E is a constant m×m matrix, I is the m×m
identity matrix, ψ[u] and φ[u] are defined as

ψ[u] = (∂x +Au)∂−1x (∂x −Au) = ∂x −Au∂−1x Au, (2.2)

φ[u] = ∂x − Cu∂−1x Cu, (2.3)

wherein
Aw = Lw +Rw, Cw = Lw −Rw, (2.4)

and the left and right multiplication operators Lw and Rw are given by

Lw(z) = wz, Rw(z) = zw, (2.5)

and
R̃[u] = φ[u]ψ[u] (2.6)

is the recursion operator of the matrix mKdV hierarchy. We note that in [49], although we also allowed the
autonomous case gn−1 = 0, it was the nonautonomous case gn−1 6= 0 under consideration here that we defined
as a matrix PII hierarchy. In this case gn−1 6= 0 we may assume without loss of generality that gn−1 = −1/2
and, shifting x via x → x + c0, that c0 = 0. This then leads us to the choice of coefficients in the matrix PII
hierarchy (2.1) that we will be using in the present paper:

ψ[u]

(
R̃n−1[u]ux +

n−1∑
k=1

ckR̃k−1[u]ux

)
+ uE + Eu− xu− αnI = 0. (2.7)

Corresponding results for (2.1) with gn−1 = −1/2 are readily obtained from the results derived herein by using
the inverse of the shift on x used to arrive at (2.7), i.e., by shifting x→ x−c0. The first two nontrivial members
of the matrix PII hierarchy (2.7) are

uxx − 2u3 + uE + Eu− xu− α1I = 0, (2.8)

uxxxx − 4uxxu
2 − 4u2uxx − 2uuxxu− 2u2xu− 2uu2x − 6uxuux + 6u5

+c1(uxx − 2u3) + uE + Eu− xu− α2I = 0. (2.9)

The matrix PII hierarchy (2.7) can also be written as follows [49]. First of all we define

K[w,E] = Mn +

n−1∑
k=1

ckMk + E − 1

2
xI, (2.10)

3



where the quantities Mk are the variational derivatives of the Hamiltonian densities (Mk = δHk) of the matrix
KdV hierarchy, defined recursively via

M0 =
1

2
I, B0[w]Mj+1 = B1[w]Mj , j = 0, 1, 2, . . . , (2.11)

B0[w] and B1[w] being the two Hamiltonian operators of the matrix KdV hierarchy,

B0[w] = ∂x, B1[w] = ∂3x +Aw∂x + ∂xAw + Cw∂
−1
x Cw. (2.12)

Thus for example

M1 = w, M2 = wxx + 3w2, M3 = wxxxx + 5wwxx + 5wxxw + 5w2
x + 10w3. (2.13)

(In the current paper we will not need explicit expressions for the Hamiltonian densities Hn.) The matrix PII
hierarchy (2.7) can then be written

(∂x +Au)K[M [u], E]−
(
αn −

1

2

)
I = 0, (2.14)

where
M [u] = ux − u2. (2.15)

Here w = M [u] = ux − u2 is just the well-known Miura map which relates the matrix KdV and matrix mKdV
hierarchies (in dependent variables w and u, respectively). The equivalence of the two formulations of the matrix
PII hierarchy (2.7) and (2.14), and its relationship to the matrix KdV and matrix modified KdV hierarchies,
can be found in [49].

Let us also remark that since the operators φ[u] and ψ[u] depend on u quadratically, then they and also R̃[u]
are invariant under u→ −u. It is then clear that (u, αn)→ (−u,−αn) is a discrete symmetry of the matrix PII
hierarchy (2.7), and using this discrete symmetry in (2.14) then leads us to a third formulation of the matrix
PII hierarchy as

(∂x −Au)K[M [−u], E] +

(
αn +

1

2

)
I = 0. (2.16)

This discrete symmetry is one of the auto-BTs of the matrix PII hierarchy. Let us now consider these auto-BTs.

2.2 Auto-Bäcklund transformations of the matrix second Painlevé hierarchy

In order that our paper be self-contained, let us recall in the following two propositions some facts (see [49, 52])
about the auto-BTs of the matrix PII hierarchy.

Proposition 2.1

The matrix PII hierarchy has the following three auto-BTs, which map from solutions of the matrix PII hierarchy
in (v, α̃n, F ), i.e.,

(∂x +Av)K[M [v], F ]−
(
α̃n −

1

2

)
I = 0, (2.17)

to solutions of the matrix PII hierarchy in (u, αn, E), i.e., (2.14):

f : u = v +
1

2
(αn − α̃n)K[M [v], F ]−1, αn = −α̃n + 1, E = F, (2.18)

g : u = −v, αn = −α̃n, E = F, (2.19)

k : u = vT , αn = α̃n, E = FT . (2.20)
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The first of these auto-BTs requires that K[M [v], F ] be nonsingular.

Proof

To see that f is an auto-BT, we begin by observing that M [u] = M [v]:

ux − u2 = vx − v2 −
1

2
(αn − α̃n)K[M [v], F ]−1

{
(∂x +Av)K[M [v], F ] +

1

2
(αn − α̃n)I

}
K[M [v], F ]−1

= vx − v2 −
1

4
(αn − α̃n)(αn + α̃n − 1)K[M [v], F ]−2

= vx − v2. (2.21)

Since we also have E = F , it follows that

(∂x +Au)K[M [u], E]−
(
αn −

1

2

)
I = (∂x +Av)K[M [v], F ] + (αn − α̃n)I −

(
αn −

1

2

)
I

= (∂x +Av)K[M [v], F ]−
(
α̃n −

1

2

)
I = 0, (2.22)

and so we see that (2.18) maps from solutions of (2.17) to solutions of (2.14).
The auto-BT g is the auto-BT corresponding to the discrete symmetry (u, αn) → (−u,−αn) of the matrix

PII hierarchy (2.14), or equivalently (2.7), as discussed at the end of Section 2.1.
To see that k is an auto-BT, let us begin by observing that if Z[u] satisfies Z[vT ] = (Z[v])T , then

ψ[vT ]Z[vT ] = (ψ[v]Z[v])T and φ[vT ]Z[vT ] = (φ[v]Z[v])T ; it then also follows that R̃[vT ]Z[vT ] = (R̃[v]Z[v])T .
Noting the identity

K[M [u], E] = (I − ∂−1x Au)

[
R̃n−1[u]ux +

n−1∑
k=1

ckR̃k−1[u]ux

]
+ E − 1

2
xI, (2.23)

we thus see, since (vT )x = (vx)T , that

K[M [vT ], FT ] = K[M [v], F ]T . (2.24)

It then follows that

(∂x +Au)K[M [u], E]−
(
αn −

1

2

)
I = (∂x +AvT )K[M [vT ], FT ]−

(
α̃n −

1

2

)
I

= (∂x +AvT ) (K[M [v], F ])
T −

(
α̃n −

1

2

)
I

=

[
(∂x +Av)K[M [v], F ]−

(
α̃n −

1

2

)
I

]T
= 0, (2.25)

and so we see that (2.20) maps from solutions of (2.17) to solutions of (2.14).
2

Proposition 2.2

The auto-BTs f , g and k satisfy the following:
(a) each is an involution, i.e., f2 = 1, g2 = 1 and k2 = 1;
(b) k commutes with both f and g, i.e., kf = fk and kg = gk.
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Proof

(a) In order to see that f is an involution, we consider a second iteration from (2.14) to a solution of the matrix
PII hierarchy in (w, α̂n, G), i.e.,

(∂x +Aw)K[M [w], G]−
(
α̂n −

1

2

)
I = 0, (2.26)

given by

w = u+
1

2
(α̂n − αn)K[M [u], E]−1, α̂n = −αn + 1, G = E. (2.27)

We then express (w, α̂n, G) in terms of (v, α̃n, F ): since we have u given by (2.18), and since M [u] = M [v] and
E = F , we obtain

w = u+
1

2
(α̂n − αn)K[M [u], E]−1 = v +

1

2
(αn − α̃n)K[M [v], F ]−1 +

1

2
(α̂n − αn)K[M [v], F ]−1

= v +
1

2
(α̂n − α̃n)K[M [v], F ]−1. (2.28)

But
α̂n = −αn + 1 = −(−α̃n + 1) + 1 = α̃n (2.29)

and so w = v. Also, G = E = F . Thus we have w = v, α̂n = α̃n and G = F , i.e., f is an involution.
As for the auto-BTs g and k, these are clearly also involutions.

(b) To see that k commutes with f , we consider first of all mapping from (2.17) to (2.14) via f (2.18), and then
from (2.14) to (2.26) via k, i.e., via w = uT , α̂n = αn, G = ET . We thus obtain:

w = uT = vT +
1

2
(1− 2α̃n)

(
K[M [v], F ]−1

)T
= vT +

1

2
(1− 2α̃n)

(
K[M [v], F ]T

)−1
, (2.30)

α̂n = αn = −α̃n + 1, (2.31)

G = ET = FT . (2.32)

On the other hand, mapping from (2.17) to (2.14) via k (2.20), and then from (2.14) to (2.26) via f (2.27) gives:

w = u+
1

2
(1− 2αn)K[M [u], E]−1 = vT +

1

2
(1− 2α̃n)

(
K[M [vT ], FT ]

)−1
, (2.33)

α̂n = −αn + 1 = −α̃n + 1, (2.34)

G = E = FT . (2.35)

Given that equation (2.24) holds, we see that the above expressions for w, α̂n and G in terms of v, α̃n and F
coincide, i.e., k and f commute, kf = fk.

The auto-BTs k and g also clearly commute, kg = gk.
2

The group of auto-BTs of the matrix PII hierarchy has generators f , g and k as given in Proposition 2.1.
These generators are subject to the relations given in Proposition 2.2, i.e. f2 = 1, g2 = 1, k2 = 1, kf = fk
and kg = gk. Given the first three relations, we see that the last two can also be written as (fk)2 = 1 and
(gk)2 = 1, respectively. Thus the group of auto-BTs of the matrix PII hierarchy has the presentation

G = 〈f, g, k ; f2 = g2 = k2 = (fk)2 = (gk)2 = 1〉, (2.36)

and is isomorphic to the direct product of the affine Weyl group of type A
(1)
1 with the cyclic group Z2, i.e.,

G ∼= A
(1)
1 × Z2 [49, 52]. For the special case where all matrices (i.e., the dependent variable and the coefficient
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matrix) are symmetric, k is just the identity transformation and so the group of auto-BTs for this restricted

case is, as it is for the scalar case, A
(1)
1 . (From (2.24) we see that, if v and F are symmetric, so is the result of

applying f and g; thus, for symmetric v and F , the result of applying any combination of f and g is symmetric.)
In order to discuss the iteration of the above three auto-BTs, let us consider the two composite auto-BTs

r = gf and s = fg:

r = gf : u = −v +
1

2
(αn + α̃n)K[M [v], F ]−1, αn = α̃n − 1, E = F, (2.37)

s = fg : u = −v +
1

2
(αn + α̃n)K[M [−v], F ]−1, αn = α̃n + 1, E = F. (2.38)

We note in passing that these transformations are inverse to each other: rs = (gf)(fg) = gf2g = g2 = 1. From
the defining relations of the group G, it is clear that any composition of f , g and k can be written in one of the
following forms:

kε1f ε2(gf)q = kε1f ε2rq, ε1, ε2 ∈ {0, 1}, q ∈ {0, 1, 2 . . .}; (2.39)

kε1gε2(fg)q = kε1gε2sq, ε1, ε2 ∈ {0, 1}, q ∈ {0, 1, 2 . . .} (2.40)

(which coincide when each has ε2 = q = 0 and the same ε1). We note that the first of these compositions maps a
solution of (2.17) for initial parameter value α̃n = β to a solution of (2.17) for parameter value either α̃n = β−q
(if ε2 = 0) or α̃n = −β + q + 1 (if ε2 = 1), and the second maps a solution of (2.17) for initial parameter value
α̃n = β to a solution of (2.17) for parameter value either α̃n = β + q (if ε2 = 0) or α̃n = −β − q (if ε2 = 1).

Let us now consider the iteration of solutions of (2.17), beginning with seed solutions for initial parameter
values α̃n = β = 0 and α̃n = β = 1

2 . The motivation for this lies in the corresponding possible classes of initial
solutions discussed in Section 3.2 for initial parameter values α̃n = β = 0 and α̃n = β = 1

2 , and which are
extensions to our matrix case of the initial solutions of scalar PII for these same parameter values. First, we
consider the case β = 0, and second, the case β = 1

2 .

We consider the iteration of solutions of (2.17), beginning with a seed solution v0 for initial parameter value
α̃n = β = 0. The composition (2.39) with ε2 = 1 and q = t − 1 ≥ 0 yields solutions v1 = frt−1v0 and kv1
of (2.17) for integer parameter value α̃n = t ≥ 1. The composition (2.40) with ε2 = 0 and q = t ≥ 0 yields
solutions v2 = stv0 and kv2 of (2.17) for integer parameter value α̃n = t ≥ 0.

Lemma 2.1

The solutions v1, v2, kv1 and kv2 obtained as described above for each positive integer parameter value
α̃n = t ≥ 1 satisfy:
(a) v1 = v2 ⇐⇒ v0 = 0;
(b) v1 = kv1 ⇐⇒ v0 = kv0 ⇐⇒ v2 = kv2;
(c) v2 = kv1 ⇐⇒ v1 = kv2 ⇐⇒ v0 = gkv0.
(The solutions v2 = v0 and kv2 = kv0, for parameter value α̃n = 0, are included in Lemma 2.2 below.)

Proof

(a) v1 = v2 ⇐⇒ frt−1v0 = stv0 ⇐⇒ (fg)t−1fv0 = (fg)tv0 ⇐⇒ v0 = gv0 ⇐⇒ v0 = −v0 ⇐⇒ v0 = 0
(b) v1 = kv1 ⇐⇒ frt−1v0 = kfrt−1v0 ⇐⇒ frt−1v0 = frt−1kv0 ⇐⇒ v0 = kv0, and

v0 = kv0 ⇐⇒ stv0 = stkv0 ⇐⇒ stv0 = kstv0 ⇐⇒ v2 = kv2
(c) v2 = kv1 ⇐⇒ v1 = kv2 since k2 = 1, and

v1 = kv2 ⇐⇒ frt−1v0 = kstv0 ⇐⇒ (fg)t−1fv0 = k(fg)tv0 ⇐⇒ (fg)t−1fv0 = (fg)t−1fgkv0
⇐⇒ v0 = gkv0

2
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We consider again the iteration of solutions of (2.17), beginning with a seed solution v0 for initial parameter
value α̃n = β = 0. The composition (2.39) with ε2 = 0 and q = t ≥ 0 yields solutions v3 = rtv0 and kv3 of
(2.17) for integer parameter value α̃n = −t ≤ 0. The composition (2.40) with ε2 = 1 and q = t ≥ 0 yields
solutions v4 = gstv0 and kv4 of (2.17) for integer parameter value α̃n = −t ≤ 0.

Lemma 2.2

The solutions v3, v4 kv3 and kv4 obtained as described above for each non-positive integer parameter value
α̃n = −t ≤ 0 satisfy:
(a) v3 = v4 ⇐⇒ v0 = 0;
(b) v3 = kv3 ⇐⇒ v0 = kv0 ⇐⇒ v4 = kv4;
(c) v4 = kv3 ⇐⇒ v3 = kv4 ⇐⇒ v0 = gkv0.

Proof

(a) v3 = v4 ⇐⇒ rtv0 = gstv0 ⇐⇒ (gf)tv0 = (gf)tgv0 ⇐⇒ v0 = gv0 ⇐⇒ v0 = −v0 ⇐⇒ v0 = 0
(b) v3 = kv3 ⇐⇒ rtv0 = krtv0 ⇐⇒ rtv0 = rtkv0 ⇐⇒ v0 = kv0, and

v0 = kv0 ⇐⇒ gstv0 = gstkv0 ⇐⇒ gstv0 = kgstv0 ⇐⇒ v4 = kv4
(c) v4 = kv3 ⇐⇒ v3 = kv4 since k2 = 1, and

v3 = kv4 ⇐⇒ rtv0 = kgstv0 ⇐⇒ (gf)tv0 = k(gf)tgv0 ⇐⇒ (gf)tv0 = (gf)tgkv0 ⇐⇒ v0 = gkv0
2

Remark 2.1

In the compositions (2.39) and (2.40), when acting with k (i.e., when ε1 = 1), the solutions obtained are in
fact solutions of (2.17) for coefficient matrix FT . Thus, if we assume F = FT , then the solutions obtained are
all solutions of the same equation, since in (2.17) we always have the same coefficient matrix F .

Taking Remark 2.1 into account, Lemmas 2.1 and 2.2 lead us to the following:

Proposition 2.3

Given a seed solution v0 for initial parameter value α̃n = β = 0:
(1) for each integer parameter value αn the auto-BTs f and g yield either: exactly one solution of (2.17), when
v0 = 0; or two distinct solutions of (2.17), when v0 6= 0.
(2) when F = FT , then for each integer parameter value αn the auto-BTs f , g and k yield: exactly one solution
of (2.17), when v0 = 0; two distinct solutions of (2.17), when v0 is nonzero symmetric or nonzero antisymmetric;
or four distinct solutions of (2.17), when v0 is neither symmetric nor antisymmetric.

We now consider the iteration of solutions of (2.17), beginning with a seed solution v0 for initial parameter
value α̃n = β = 1

2 . The composition (2.39) with ε2 = 1 and q = t ≥ 0 yields solutions v1 = frtv0 and kv1 of
(2.17) for half-odd-integer parameter value α̃n = t+ 1

2 . The composition (2.40) with ε2 = 0 and q = t ≥ 0 yields
solutions v2 = stv0 and kv2 of (2.17) for half-odd-integer parameter value α̃n = t+ 1

2 .

Lemma 2.3

The solutions v1, v2, kv1 and kv2 obtained as described above for each positive half-odd-integer parameter value
α̃n = t+ 1

2 , t ≥ 0, satisfy:
(a) v1 = v2;
(b) v1 = kv1 ⇐⇒ v0 = kv0.

Proof

(a) v1 = v2 ⇐⇒ frtv0 = stv0 ⇐⇒ (fg)tfv0 = (fg)tv0 ⇐⇒ fv0 = v0, which is satisfied since if in (2.18)
α̃n = 1

2 , then αn = 1
2 and u = v (even if K[M [v], F ] in (2.18) is singular, if α̃n = 1

2 we may define u = v)
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(b) v1 = kv1 ⇐⇒ frtv0 = kfrtv0 ⇐⇒ frtv0 = frtkv0 ⇐⇒ v0 = kv0
2

We now consider again the iteration of solutions of (2.17), beginning with a seed solution v0 for initial
parameter value α̃n = β = 1

2 . The composition (2.39) with ε2 = 0 and q = t+1 ≥ 1 yields solutions v3 = rt+1v0
and kv3 of (2.17) for half-odd-integer parameter value α̃n = −t − 1

2 . The composition (2.40) with ε2 = 1 and
q = t ≥ 0 yields solutions v4 = gstv0 and kv4 of (2.17) for half-odd-integer parameter value α̃n = −t− 1

2 .

Lemma 2.4

The solutions v3, v4, kv3 and kv4 obtained as described above for each negative half-odd-integer parameter
value α̃n = −t− 1

2 , t ≥ 0, satisfy:
(a) v3 = v4;
(b) v3 = kv3 ⇐⇒ v0 = kv0.
(The solutions v3 = v0 and kv3 = kv0, for parameter value α̃n = 1

2 , are included in Lemma 2.3 above.)

Proof

(a) v3 = v4 ⇐⇒ rt+1v0 = gstv0 ⇐⇒ (gf)tgfv0 = (gf)tgv0 ⇐⇒ fv0 = v0, which is satisfied since if in (2.18)
α̃n = 1

2 , then αn = 1
2 and u = v (even if K[M [v], F ] in (2.18) is singular, if α̃n = 1

2 we may define u = v)
(b) v3 = kv3 ⇐⇒ rt+1v0 = krt+1v0 ⇐⇒ rt+1v0 = rt+1kv0 ⇐⇒ v0 = kv0
2

Taking Remark 2.1 into account, Lemmas 2.3 and 2.4 lead us to the following:

Proposition 2.4

Given a seed solution v0 for initial parameter value α̃n = β = 1
2 (and recalling that we may define fv0 = v0):

(1) for each half-odd-integer parameter value αn the auto-BTs f and g yield exactly one solution of (2.17).
(2) when F = FT , then for each half-odd-integer parameter value αn the auto-BTs f , g and k yield either:
exactly one solution of (2.17), when v0 is symmetric; or two distinct solutions of (2.17), when v0 is not symmetric.

Remark 2.2

With respect to Propositions 2.3 and 2.4, we note that when F is symmetric:
(1) the assumption that v is symmetric gives a consistent reduction of equation (2.17), from equations for m2

scalar variables to equations for 1
2m(m+ 1) scalar variables.

(2) the assumption that v is antisymmetric gives, for α̃n = 0, a consistent reduction of equation (2.17), from
equations for m2 scalar variables to equations for 1

2m(m− 1) scalar variables.

3 Classes of solutions of the matrix second Painlevé hierarchy

3.1 On the iteration of auto-BTs

3.1.1 Mappings of the coefficient matrix

We now turn to the question of the iteration of auto-BTs in order to generate solutions of the matrix PII
hierarchy,

ψ[v̂]

(
R̃n−1[v̂]v̂x +

n−1∑
k=1

ckR̃k−1[v̂]v̂x

)
+ v̂F̂ + F̂ v̂ − xv̂ − α̃nI = 0. (3.1)
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This equation is polynomial in F̂ , v̂ and derivatives of v̂, with an additive terms a multiple of I, so the
substitution

p : v̂ = PvP−1, F̂ = PFP−1, (3.2)

where P is a nonsingular constant matrix, yields

ψ[v]

(
R̃n−1[v]vx +

n−1∑
k=1

ckR̃k−1[v]vx

)
+ vF + Fv − xv − α̃nI = 0. (3.3)

We will refer (3.2) as the mapping p. This is a mapping v̂ = pv from solutions of (3.3) to solutions of (3.1).
The above means that we can always make a transformation from (3.1) to an equation (3.3) with coefficient

matrix F similar to F̂ and the same parameter α̃n. The most obvious choice is to take F in Jordan canonical
form. In particular, if F̂ is a normal matrix (i.e., F̂ ∗ F̂ = F̂ F̂ ∗, where F̂ ∗ is the conjugate transpose of F̂ ), then
we may take F to be diagonal. Normal matrices include Hermitian and real symmetric matrices (where for such
F̂ the diagonal matrix F is real), and skew-Hermitian and real skew-symmetric matrices (where for such F̂ the
diagonal matrix F is pure imaginary). However, F may in fact be taken to be any matrix similar to F̂ , e.g., we
may always assume F to be upper-triangular, or symmetric. Here we prefer to think of p as a transformation
which allows us to fix a form of the coefficient matrix, rather than as an auto-BT; see also Appendix A.

It is straightforward to show that the transformation p commutes with the auto-BTs f (2.18) and g (2.19),
and so also with the auto-BTs r = gf (2.37) and s = fg (2.38). Thus the result of acting with any composition
of the four auto-BTs f , g, r and s can be calculated either at the level of equation (3.1) or at the level of equation
(3.3). However, the transformation p does not commute with the auto-BT k (2.20) unless PTP commutes with
both F and v, which requires, in the general case, that PTP = γI for some constant γ 6= 0. (If, for real
symmetric F̂ we map onto a diagonal F using an orthogonal P , this condition is satisfied since then PTP = I.)

3.1.2 Compositions of auto-BTs

From the above we see that we may undertake the generation of solutions of equation (3.1) using the iteration
of auto-BTs as follows. Given an initial solution v̂0 of (3.1), we obtain a corresponding solution v0 = p−1v̂0 of
(3.3), for some F similar to F̂ . Alternatively, in the absence of a solution of (3.1), we may transform to (3.3) in
order to simplify the search for an initial solution using an ansatz: if we take F to be in Jordan canonical form,
or simply upper-triangular, then we may use as an ansatz that the initial solution v0 of (3.3) is upper-triangular;
if we take F to be symmetric, then we may use as an ansatz that v0 is symmetric or, for α̃n = 0, antisymmetric
(see Remark 2.2). In either case, whether v̂0 is given in advance or not, we begin with initial solutions v0 (for
some F similar to F̂ ) and v̂0 = pv0. We undertake the iteration at the level of equation (3.3), and then return
to (3.1), rather than iterating at the level of (3.1) itself, noting that for the compositions (2.39) and (2.40),

kε1f ε2rq v̂0 = kε1f ε2rqpv0 = kε1pf ε2rqv0 and kε1gε2sq v̂0 = kε1gε2sqpv0 = kε1pgε2sqv0. (3.4)

Here we act with k (when ε1 = 1) at the level of equation (3.1). We expect this scheme to simplify the process
of generating solutions, as well as the use of an ansatz to obtain an initial solution, as we expect F in (3.3) to
have been chosen to be simpler than F̂ in (3.1). (We note that the case where F̂ is already of a suitable form
is included here as P = I, for which choice v̂0 = v0, F̂ = F , and (3.1) and (3.3) coincide.)

3.1.3 Upper-triangular matrices

As indicated above, the case of upper-triangular matrices is of particular interest, and will be of great use in our
discussion of the iteration of solutions. Since we may always take F in (3.3) to be in Jordan canonical form or
even just upper-triangular, if using an ansatz to obtain a corresponding initial solution v0 of (3.3), we may then
ask that this initial solution also be upper-triangular. For upper-triangular v0 and F , since xI is also upper
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triangular, the auto-BTs f , g, r and s yield upper-triangular matrices: any solution v of (3.3) generated from
such an initial solution v0 using these auto-BTs will also be upper-triangular.

Let us denote the components of v and F by vij and Fij respectively. We note that if v and F in (3.3) are
upper-triangular, then the equations for the 1

2m(m + 1) elements vij of v are nonlinear if j = i and linear if
j > i. Let us now consider these nonlinear equations for vii, as this will prove useful later.

Given a scalar function v̄ of x, and a scalar constant F̄ , we define the scalar quantities G[v̄, F̄ ] and H[v̄, F̄ ]
via

G[v̄, F̄ ]I = K[M [v̄I], F̄ I], H[v̄, F̄ ]I = K[M [−v̄I], F̄ I]. (3.5)

In the case where both v and F are upper-triangular, the diagonal elements of K[M [v], F ] and K[M [−v], F ]
are then given by G[vii, Fii] and H[vii, Fii] respectively, and the diagonal elements of the matrix PII hierarchy
(3.3) by

(∂x + 2vii)G[vii, Fii]−
(
α̃n −

1

2

)
= 0, i = 1, 2, . . . ,m, (3.6)

or alternatively

(∂x − 2vii)H[vii, Fii] +

(
α̃n +

1

2

)
= 0, i = 1, 2, . . . ,m (3.7)

(see the formulations (2.14)) and (2.16)) of the matrix PII hierarchy.)
The actions of the auto-BTs f , g, r = gf and s = fg on (3.3) induce mappings of these diagonal elements

given by

uii = vii +
1

2
(αn − α̃n)G[vii, Fii]

−1, αn = −α̃n + 1, (3.8)

uii = −vii, αn = −α̃n, (3.9)

uii = −vii +
1

2
(αn + α̃n)G[vii, Fii]

−1, αn = α̃n − 1, (3.10)

uii = −vii +
1

2
(αn + α̃n)H[vii, Fii]

−1, αn = α̃n + 1, (3.11)

respectively. Equation (3.6) is just the scalar generalized PII hierarchy, and (3.8)—(3.11) are its well-known
auto-BTs: see [40, 42], as well of course as [2] for the standard case with ck = 0, k = 1, 2, . . . , n− 1, and Fii = 0
(an alternative formulation being given in [17]). These auto-BTs map from solutions vii of (3.6) for parameter
value α̃n to solutions uii of the same equation for parameter value αn, i.e.,

(∂x + 2uii)G[uii, Fii]−
(
αn −

1

2

)
= 0. (3.12)

Taking into account the above considerations, we obtain:

Lemma 3.1

Let v be an upper-triangular solution of (3.3) for upper-triangular F . Then, if the matrix K[M [v], F ] is singular,
we must have α̃n = 1/2. Similarly, if the matrix K[M [−v], F ] is singular, then we must have α̃n = −1/2.

Proof

If v and F are upper-triangular, then det (K[M [v], F ]) =
∏m
i=1G[vii, Fii], and if for some i = 1, 2, . . .m we have

G[vii, Fii] = 0 then, since vii satisfies (3.6), we must have α̃n = 1/2. Similarly, if v and F are upper triangular,
then det (K[M [−v], F ]) =

∏m
i=1H[vii, Fii], and if for some i = 1, 2, . . .m we have H[vii, Fii] = 0 then, since vii

satisfies (3.7), we must have α̃n = −1/2.
2
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Remark 3.1

There is a further simplification that we may make in equations (3.1) and (3.3). We recall that in Section 2.1
we used a shift in x to set c0 = 0 in our matrix PII hierarchy. We may further shift x in (3.1) via x→ x+ 2λk,
where λk is any one of the eigenvalues of F̂ : absorbing this shift in the coefficient matrix F̂ , we see that the
result is to replace F̂ in (3.1) by F̂ − λkI. This then means replacing F in (3.3) by F − λkI. Thus, when F
is upper triangular, we can always use a shift on x to set at least one of its diagonal elements equal to zero
(perhaps making others nonzero): see the examples in Section 4.

3.2 Classes of initial solutions

Let us now turn to the iterative generation of solutions of equation (3.1) by means of the auto-BTs f , g and
k. We thus consider the problem of finding initial solutions of equation (3.3), or equivalently (2.17), including
through the use of an ansatz, where F is similar to some original F̂ appearing in (3.1). This represents the
extension foreseen in [52] of our results therein for the matrix PII equation to the matrix PII hierarchy. We
discuss here four classes of initial solution of (3.3). The first two classes of initial solution that we consider
are direct analogs of the initial solutions used in the scalar PII case. We assume throughout this section, and
without loss of generality, that F in equation (3.3) has been taken to be (in Jordan canonical form or) upper
triangular.

3.2.1 Initial solution A

As our first class of initial solution of the matrix hierarchy (3.3) we take:

v0 = 0 for parameter value α̃n = β = 0. (3.13)

Since v0 = 0, F and xI are upper-triangular, then so are the solutions v1 = frt−1v0 and v2 = stv0 of (3.3)
obtained as in Lemma 2.1 for each positive integer parameter value α̃n = t = 1, 2, 3, . . ., as well as the solutions
v3 = rtv0 and v4 = gstv0 of (3.3) obtained as in Lemma 2.2 for each non-positive integer parameter value
α̃n = −t = 0,−1,−2,−3, . . .. Since in the construction of these solutions the auto-BTs f , r and s are applied to
solutions of (3.3) corresponding to integer values of the parameter α̃, we see from Lemma 3.1 that the matrices
K[M [v], F ] and K[M [−v], F ] appearing in these auto-BTs are always non-singular.

The first part of Proposition 2.3 applied to equation (3.3) then tells us that v1 = v2 and v3 = v4, i.e., using
the auto-BTs f and g, we obtain exactly one solution of equation (3.3) for each integer value of the parameter
α̃n.

Proceeding as described in Section 3.1.2, the transformation p then yields exactly one solution pv1 = pv2
of (3.1) for each positive integer value of the parameter α̃n, as well as exactly one solution pv3 = pv4 of (3.1)
for each non-positive integer value of the parameter α̃n: these solutions, exactly one for each integer value of
the parameter α̃n, correspond to the action of compositions of the auto-BTs f and g on the initial solution
v̂0 = pv0 = 0 of (3.1).

We now assume that F̂ is symmetric and apply the second part of Proposition 2.3 to equation (3.1): since
v̂0 = 0, the auto-BT k does not yield additional solutions of (3.1). Compositions of the auto-BTs f , g and k
yield, for each integer value of the parameter α̃n, exactly one solution of (3.1) with F̂ symmetric.

The solutions of (3.1) described here are matrix analogues of the rational solutions of the scalar PII hierarchy
(the iterative construction of rational solutions of members of the scalar PII hierarchy has been considered in
[60, 61, 62, 40]). In the special case F̂ = 0, they reduce to the form (rational solution of scalar hierarchy)×I.
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3.2.2 Initial solution B

As our second class of initial solution of the matrix hierarchy (3.3) we take:

v0 general solution of K[M [v], F ] = 0 for parameter value α̃n = β =
1

2
, (3.14)

i.e., the general solution of the basic special integral K[M [v], F ] = 0 of the matrix PII hierarchy (3.3) (see
(2.17)). This equation can be written as the system

K[w,F ] = 0, w = M [v] = vx − v2, (3.15)

from where, linearizing the second of these equations, we see that the general solution of (3.14) can be obtained
from that of the system

K[w,F ] = 0, (3.16)

yxx + wy = 0 (3.17)

as v = −yxy−1. Recall that F is upper-triangular.
The equation

K[w,F ] = Mn +

n−1∑
k=1

ckMk + F − 1

2
xI = 0, (3.18)

for n ≥ 2, is just the matrix PI hierarchy [49]. Our initial solution v0 is to be obtained by solving the equation
yxx + wy = 0, where w is the general solution of (3.18), and then setting v = −yxy−1. Of course, we do not
expect explicit solutions of (3.18): even the simplest case n = 2 with w and F scalar, equivalent to the first
Painlevé equation, does not have any solutions expressible in terms of classical functions. For n = 1, equation
(3.18) reads w + F − 1

2xI = 0, and so y is to be obtained as the solution of the matrix Airy equation

yxx =

(
F − 1

2
xI

)
y. (3.19)

This case n = 1 was discussed in [52].
Beginning with the initial solution defined by (3.14), we obtain, as in Lemma 2.3, the solutions v1 = frtv0

and v2 = stv0 of (3.3) for each positive half-odd-integer parameter value α̃n = t+ 1
2 = 1

2 ,
3
2 ,

5
2 , . . ., and also, as

in Lemma 2.4, the solutions v3 = rt+1v0 and v4 = gstv0 of (3.3) for each negative half-odd-integer parameter
value α̃n = −t − 1

2 = − 1
2 ,−

3
2 ,−

5
2 , . . .. Here we define fv0 = v0, which implies rv0 = −v0, even though

K[M [v0], F ] = 0.
In the construction of these solutions, we require that the matrices K[M [v], F ] and K[M [−v], F ] appearing

in the auto-BTs f , r and s are non-singular. In order to show that this is indeed so, let us consider the special
case of upper-triangular matrices. That is, instead of the general solution of K[M [v], F ] = 0, we ask that v0 be
the general upper-triangular matrix solution of this equation. This solution can be obtained as v = −yxy−1,
where y is the general upper-triangular matrix solution of (3.17) and w the general upper-triangular matrix
solution of (3.18) (we recall that F has been taken to be upper-triangular). For this special choice of v0, all
solutions constructed as described above are also upper-triangular (since xI is also upper-triangular). In the
construction of v1, for t = 0 we obtain v1 = v0, and for t > 0 the first application of r yields −v0, solution for
parameter value α̃n = − 1

2 . Similarly, in the construction of v3, for all t ≥ 0, the first application of r again
yields −v0, solution for parameter value α̃n = − 1

2 . These results are by definition, and are the only applications
of f and r in v1 and v3 to a solution of (3.3) for parameter value α̃n = 1

2 . Furthermore, the auto-BT s used in
the construction of v2 and v4 is never applied to a solution of (3.3) for parameter value α̃n = − 1

2 . From Lemma
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3.1 it then follows that, in the construction of these upper-triangular solutions, the matrices K[M [v], F ] and
K[M [−v], F ] appearing in the auto-BTs f , r and s are always non-singular (except for three special instances,
where the result of the application of f and r on v0 has been defined). Since taking v0 to be the general
upper-triangular matrix solution of K[M [v], F ] = 0 represents making a choice of particular solution of this
equation, it follows that the matrices K[M [v], F ] and K[M [−v], F ] appearing in the auto-BTs f , r and s are
always non-singular where our initial solution is instead defined as in (3.14) (again, except for three special
instances, where the result of the application of f and r on v0 has been defined).

The first part of Proposition 2.4 applied to equation (3.3) then tells us that, with our initial solution defined
as in (3.14), v1 = v2 and v3 = v4, i.e., using the auto-BTs f and g we obtain exactly one solution of equation
(3.3) for each half-odd-integer value of the parameter α̃n.

Proceeding as described in Section 3.1.2, the transformation p then yields exactly one solution pv1 = pv2
of (3.1) for each positive half-odd-integer value of the parameter α̃n, as well as exactly one solution pv3 = pv4
of (3.1) for each negative half-odd-integer value of the parameter α̃n: these solutions, exactly one for each
half-odd-integer value of the parameter α̃n, correspond to the action of compositions of the auto-BTs f and g
on the initial solution v̂0 = pv0 of (3.1).

We now assume that F̂ is symmetric and apply the second part of Proposition 2.4 to equation (3.1): the
auto-BT k yields an additional solution of (3.1) if and only if v̂0 is non-symmetric. That is, compositions of the
auto-BTs f , g and k yield, for each half-odd-integer value of the parameter α̃n, exactly one or two solutions of
(3.1) with F̂ symmetric, depending on whether v̂0 is symmetric or non-symmetric, respectively.

The solutions of (3.1) described here are matrix analogues of the iterated special integral solutions of the
scalar PII hierarchy (we note that for n ≥ 2 the explicit generation of such sequences of solutions in the scalar
case has not in fact been much considered, as in order to start this process a solution of a member of the PI
hierarchy is required; a remark on the structure of such iterated solutions for n = 2 if a generic solution of PI is
assumed, with a comparison being made to the iterated Airy case for n = 1, can, however, be found in [2] (some
brief comments can also be found in [61] for n = 2, as well as in [62])). For n = 1, they are matrix analogues of
the iterated special integral solutions of scalar PII , these last being expressible in terms of Airy functions.

Finally we remark that choosing as initial solution v0 of (3.3) the general solution of K[M [−v], F ] = 0 for
parameter value α̃n = β = − 1

2 yields the same results as choosing (3.14) (since g maps between these two initial
solutions).

3.2.3 Initial solution C

Let us now consider upper triangular solutions of (3.3) (recall that F is upper-triangular). If v is upper-triangular
then its diagonal elements vii satisfy the equations (3.6), and its non-diagonal elements vij , j > i, satisfy linear
equations.

We may then take the diagonal elements of an upper-triangular initial solution v0 to be vii = 0 for parameter
value αn = β = 0, and the non-diagonal elements vij , j > i, to be the general solutions of the resulting linear
equations. These linear equations may be solved recursively along diagonals parallel to the leading diagonal,
with the last linear equation to be solved being that for the upper-right-hand corner element v1m.

Employing the same reasoning as in Section 3.2.1, and using Lemma 3.1, we see that in the subsequent
construction of the upper-triangular solutions v1 = frt−1v0 and v2 = stv0 of (3.3), as in Lemma 2.1, for each
positive integer parameter value α̃n = t = 1, 2, 3, . . ., and also of the upper-triangular solutions v3 = rtv0 and
v4 = gstv0 of (3.3), as in Lemma 2.2, for each non-positive integer parameter value α̃n = −t = 0,−1,−2,−3, . . .,
the matrices K[M [v], F ] and K[M [−v], F ] appearing in the auto-BTs f , r and s are always non-singular.

Since we now have v0 6= 0, the first part of Proposition 2.3 applied to equation (3.3) tells us that v1 6= v2 and
v3 6= v4, i.e., using the auto-BTs f and g, we obtain two distinct solutions of equation (3.3) for each integer value
of the parameter α̃n. The diagonal elements of these solutions, which give rational solutions of the members
of the scalar Painlevé hierarchies (3.6), coincide, and are identical to the diagonal elements of the solutions
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obtained in Section 3.2.1.
Proceeding as described in Section 3.1.2, the transformation p then yields two solutions pv1 and pv2 of

(3.1) for each positive integer value of the parameter α̃n, as well as two solutions pv3 and pv4 of (3.1) for each
non-positive integer value of the parameter α̃n: these pairs of distinct solutions for each integer value of the
parameter α̃n correspond to the action of compositions of the auto-BTs f and g on the initial solution v̂0 = pv0
of (3.1).

We now assume that F̂ is symmetric and apply the second part of Proposition 2.3 to equation (3.1): if our
nonzero v̂0 is either symmetric or antisymmetric, the auto-BT k does not yield additional solutions of (3.1);
otherwise, it provides a further two distinct solutions of (3.1). Compositions of the auto-BTs f , g and k thus
yield, for each integer value of the parameter α̃n, either two or four distinct solutions of (3.1) with F̂ symmetric.

The solutions of (3.1) described here are generalizations of those obtained in Section 3.2.1, i.e., they are
generalizations of our matrix analogues of the rational solutions of the scalar PII hierarchy.

3.2.4 Initial solution D

Once again we consider upper triangular solutions of (3.3) (F is upper-triangular): the diagonal elements vii
of an upper-triangular solution v of (3.3) satisfy the equations (3.6), and its non-diagonal elements vij , j > i,
satisfy linear equations.

We may then take the diagonal elements vii of an upper-triangular initial solution v0 to be given as

vii general solution of G[vii, Fii] = 0 for parameter value α̃n = β =
1

2
, (3.20)

i.e., the general solution of the basic special integral G[vii, Fii] = 0 of the scalar generalized PII hierarchy (3.6)
(see [40, 43], as well as [16, 37, 44] for the case of the standard PII hierarchy), and the non-diagonal elements
vij , j > i, to be the general solutions of the resulting linear equations. Again, these linear equations may be
solved recursively along diagonals parallel to the leading diagonal, with the last linear equation to be solved
being that for the upper-right-hand corner element v1m. In Section 3.2.2 we discussed taking as initial solution
the general upper-triangular matrix solution of K[M [v], F ] = 0 for αn = β = 1

2 , itself a particular case of the
choice of initial solution (3.14). The choice of initial solution proposed here is a generalization of this particular
case.

We define fv0 = v0, which implies rv0 = −v0, even though K[M [v0], F ] is singular (note that in Section
3.2.2 we had K[M [v0], F ] = 0, but now we have that K[M [v0], F ] is strictly upper-triangular). Using the same
arguments as used with regard to the upper-triangular matrices discussed in Section 3.2.2, as well as Lemma
3.1, we then see that in the subsequent construction of the upper-triangular solutions v1 = frtv0 and v2 = stv0
of (3.3), as in Lemma 2.3, for each positive half-odd-integer parameter value α̃n = t + 1

2 = 1
2 ,

3
2 ,

5
2 , . . ., and

also of the upper-triangular solutions v3 = rt+1v0 and v4 = gstv0 of (3.3), as in Lemma 2.4, for each negative
half-odd-integer parameter value α̃n = −t − 1

2 = − 1
2 ,−

3
2 ,−

5
2 , . . ., the matrices K[M [v], F ] and K[M [−v], F ]

appearing in the auto-BTs f , r and s are always non-singular (except for the same three special instances as
discussed in Section 3.2.2, where the result of the application of f and r on v0 is as has been defined above).

The first part of Proposition 2.4 applied to equation (3.3) then tells us that, with our initial solution defined
as above, v1 = v2 and v3 = v4, i.e., using the auto-BTs f and g we obtain exactly one solution of equation
(3.3) for each half-odd-integer value of the parameter α̃n. The diagonal elements of these solutions are identical
to the diagonal elements of the solutions obtained in Section 3.2.2 in the above-mentioned particular case with
initial solution the general upper-triangular matrix solution of K[M [v], F ] = 0 for αn = β = 1

2 .
Proceeding as described in Section 3.1.2, the transformation p then yields exactly one solution pv1 = pv2

of (3.1) for each positive half-odd-integer value of the parameter α̃n, as well as exactly one solution pv3 = pv4
of (3.1) for each negative half-odd-integer value of the parameter α̃n: these solutions, exactly one for each
half-odd-integer value of the parameter α̃n, correspond to the action of compositions of the auto-BTs f and g
on the initial solution v̂0 = pv0 of (3.1).
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We now assume that F̂ is symmetric and apply the second part of Proposition 2.4 to equation (3.1): the
auto-BT k yields an additional solution of (3.1) if and only if v̂0 is non-symmetric. That is, compositions of the
auto-BTs f , g and k yield, for each half-odd-integer value of the parameter α̃n, exactly one or two solutions of
(3.1) with F̂ symmetric, depending on whether v̂0 is symmetric or non-symmetric, respectively.

The solutions of (3.1) described here are generalizations of the matrix analogues of iterated special integral
solutions of the scalar PII hierarchy obtained in Section 3.2.2 in the above-mentioned particular case where the
initial solution v0 of (3.3) is taken to be the general upper-triangular matrix solution of K[M [v], F ] = 0 for
αn = β = 1

2 .
We also remark that, in the same way as in Section 3.2.2, choosing as initial solution of (3.3) an upper-

triangular v0 with vii the general solution of H[vii, Fii] = 0 and with non-diagonal elements vij , j > i, the
general solutions of the resulting linear equations, for parameter value α̃n = β = − 1

2 , yields the same results as
those obtained from the choice of initial solution made here (since g maps between these two initial solutions).

Remark 3.2

With respect to the application of auto-BTs discussed above, for the classes of initial solutions B, C and D, we
note that when F̂ is symmetric, a condition that an initial solution v̂0 6= 0 of (3.1) be symmetric or (for α̃n = 0)
antisymmetric will in general mean imposing restrictions on this initial solution: see Section 4 for examples.

4 Examples

4.1 Example One

As a first example, we consider the construction of solutions of (3.1) by transforming to (3.3) and then seeking
initial solutions of this last equation of class C. We assume that the matrix F in (3.3) is upper-triangular with
nonzero elements appearing only on the leading diagonal and the adjacent upper diagonal. This class of matrices
then includes the Jordan canonical form of F̂ . We may, moreover, use a shift on x as described in Remark 3.1
in order to set at least one of the diagonal elements of F equal to zero (perhaps making others nonzero). The
elements of the leading diagonal we label as aj , j = 1, 2, . . . ,m, and the elements of the adjacent upper diagonal
as bj , j = 1, 2, . . . ,m− 1. We seek an initial solution v = v0 of (3.3) as an upper-triangular matrix, where the
diagonal elements are taken to be vii = 0 and the parameter value to be α̃n = β = 0, and the non-diagonal
elements vij , j > i, are taken to be the general solutions of the resulting linear equations. These linear equations
may be solved recursively along diagonals parallel to the leading diagonal.

It is clear from the form of ψ[u] (2.2) and φ[u] (2.3), and so also of the recursion operator (2.6), that all
nonlinearities in (3.3) are of odd order, and so in particular are of order greater than or equal to three. Thus,
since we are assuming as initial solution v0 a strictly upper-triangular matrix, we see that for m ≤ 3 the
nonlinear terms in (3.3) make no contribution to the linear equations for vij , j > i. For m ≥ 4, the nonlinear
terms in (3.3) lead to inhomogeneous terms in these equations, involving the solutions of equations arising along
lower diagonals. The terms vF + Fv provide linear terms, as well as such inhomogeneous terms.

Let us consider the cases m = 2, 3, 4. We label the elements of our upper-triangular initial solutions v0 as
V1, . . . , Vm−1, W1, . . . ,Wm−2 and Z. That is, for m = 2 we take

F =

(
a1 b1
0 a2

)
, v0 =

(
0 V1
0 0

)
, (4.1)

for m = 3

F =

 a1 b1 0
0 a2 b2
0 0 a3

 , v0 =

 0 V1 W1

0 0 V2
0 0 0

 , (4.2)
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and for m = 4

F =


a1 b1 0 0
0 a2 b2 0
0 0 a3 b3
0 0 0 a4

 , v0 =


0 V1 W1 Z
0 0 V2 W2

0 0 0 V3
0 0 0 0

 . (4.3)

For n = 1 in (3.3) and m = 2, 3, 4, we obtain that the above elements of our initial solutions v = v0 for parameter
value α̃1 = β = 0 of the second order member of our matrix PII hierarchy, i.e.,

vxx − 2v3 + vF + Fv − xv − α1I = 0, (4.4)

satisfy the linear equations

Vk,xx − xVk + (ak + ak+1)Vk = 0, k = 1, . . . ,m− 1, (4.5)

Wk,xx − xWk + (ak + ak+2)Wk + bk+1Vk + bkVk+1 = 0, k = 1, . . . ,m− 2, (4.6)

Zxx − xZ + (a1 + a4)Z + b3W1 + b1W2 − 2V1V2V3 = 0. (4.7)

For n = 2 in (3.3) and m = 2, 3, 4, we obtain that the above elements of our initial solutions v = v0 for parameter
value α̃2 = β = 0 of the fourth order member of the matrix PII hierarchy, i.e.,

vxxxx−4vxxv
2−4v2vxx−2vvxxv−2v2xv−2vv2x−6vxvvx+6v5+c1(vxx−2v3)+vF+Fv−xv−α2I = 0, (4.8)

satisfy the linear equations

Vk,xxxx + c1Vk,xx − xVk + (ak + ak+1)Vk = 0, k = 1, . . . ,m− 1, (4.9)

Wk,xxxx + c1Wk,xx − xWk + (ak + ak+2)Wk + bk+1Vk + bkVk+1 = 0, k = 1, . . . ,m− 2, (4.10)

Zxxxx + c1Zxx − xZ + (a1 + a4)Z + b3W1 + b1W2 − 4V1,xxV2V3 − 2V1V2,xxV3

−4V1V2V3,xx − 2V1,xV2,xV3 − 6V1,xV2V3,x − 2V1V2,xV3,x − 2c1V1V2V3 = 0. (4.11)

Solving the above systems of linear equations, and similar such systems arising for greater values of m and n,
then provides us with our initial solutions v0. As described in Section 3.2.3, we may then use our auto-BTs to
obtain, for each integer value of the parameter α̃n, solutions of our matrix PII hierarchy (3.1) (reversing also
any shift in x, of the kind discussed in Remark 3.1, that we may have used).

As a concrete example let us consider the case m = 3 and

F̂ =

 d− bi− c+ 2a b+ di− ci+ ai b− ci+ ai
b+ di− ci− ei+ 2ai bi− d+ c+ e− a bi+ c− a

di+ ei− ci c− e− d c

 , (4.12)

where a, b, c, d, e are constant. This matrix has eigenvalues λ = a, c, e. A shift x → x + 2a leads us to the
consideration of the system (3.1) but now with F̂ → F̂ − aI, i.e., with

F̂ =

 d− bi− f b+ di− fi b− fi
b+ di− fi− gi bi− d+ f + g f + bi
di+ gi− fi f − g − d f

 , (4.13)

where f = c− a and g = e− a. We now take

P =

 1 −i 0
i 1 −1
0 1 1

 , (4.14)
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and thus transform from (3.1) with (4.13) to (3.3) with

F =

 0 b 0
0 f d
0 0 g

 . (4.15)

This is of the form considered in (4.2). Our shift on x has resulted in setting the first element on the leading
diagonal of F equal to zero. For n = 1 and n = 2 the systems of linear equations satisfied by the elements V1,
V2 and W = W1 of the initial solution v0 as given in (4.2) are

V1,xx − xV1 + fV1 = 0, (4.16)

V2,xx − xV2 + (f + g)V2 = 0, (4.17)

Wxx − xW + gW + dV1 + bV2 = 0, (4.18)

and

V1,xxxx + c1V1,xx − xV1 + fV1 = 0, (4.19)

V2,xxxx + c1V2,xx − xV2 + (f + g)V2 = 0, (4.20)

Wxxxx + c1Wxx − xW + gW + dV1 + bV2 = 0, (4.21)

respectively. Solving the above systems of linear equations in order to obtain a nonzero initial solution v0, our
auto-BTs f and g and the transformation p then allow us to obtain, for each integer value of the parameter α̃n,
two distinct solutions of our second and fourth order matrix PII equations given by (3.1) for n = 1 and n = 2,
in this case m = 3 and with F̂ given by (4.13). Reversing the shift made on x then yields two distinct solutions
of these equations with F̂ given by (4.12).

Let us briefly consider the process of recursively solving such linear equations. As illustrative examples, we
discuss first of all the system (4.16)—(4.18), and secondly the system (4.19)—(4.21) where, in order to shorten
the discussion, we take c1 = 0. Equations (4.16) and (4.17) are Airy equations, and have general solutions

V1 = ν1Ai(x− f) + ν2Bi(x− f) and V2 = ν3Ai(x− f − g) + ν4Bi(x− f − g) (4.22)

respectively, where all νi are arbitrary constants and Ai(z) and Bi(z) are the usual Airy functions (linearly
independent solutions of the Airy equation Yzz = zY). The general solution of equation (4.18) can be obtained
using variation of parameters. The corresponding homogeneous equation Wxx−xW + gW = 0 is again an Airy
equation, with general solution W1 given by

W1 = ν5Ai(x− g) + ν6Bi(x− g) (4.23)

where ν5 and ν6 are arbitrary constants, and variation of parameters thus leads to the particular solution W2

of (4.18) given by

W2 = Ai(x− g)

∫
(dV1 + bV2)Bi(x− g)

W
dx−Bi(x− g)

∫
(dV1 + bV2)Ai(x− g)

W
dx (4.24)

where V1 and V2 are as given by (4.22) andW is the Wronskian of Ai(x−g) and Bi(x−g). The general solution
of the system (4.16)—(4.18) then consists of V1 and V2 as given by (4.22) along with W = W1 +W2.

We recall that the general solution of the Airy equation Yzz = zY can be obtained via everywhere-convergent
series solutions about the ordinary point z = 0:

Y = µ0Y0 + µ1Y1 = µ0

∞∑
n=0

Γ( 2
3 )z3n

9nn!Γ(n+ 2
3 )

+ µ1z

∞∑
n=0

Γ( 4
3 )z3n

9nn!Γ(n+ 4
3 )

(4.25)
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where µ0 and µ1 are arbitrary constants. (see, e.g., [63]). The two linearly independent solutions Y0 and Y1
form a basis of solutions of the Airy equation. In particular, making in (4.25) the choices µ0 = 3−

2
3 /Γ( 2

3 ) and

µ1 = −3−
4
3 /Γ( 4

3 ), and µ0 = 3−
1
6 /Γ( 2

3 ) and µ1 = 3−
5
6 /Γ( 4

3 ), yields Ai(z) and Bi(z) respectively. We now turn to
the system (4.19)—(4.21) with c1 = 0. Each equation in this system is either a homogeneous or inhomogeneous
fourth order Airy equation. The general solution of the fourth order Airy equation Yzzzz = zY can, just as
for the Airy equation itself, be expressed using everywhere-convergent series solutions about the ordinary point
z = 0. Indeed, such series solutions for the fourth order Airy equation have been constructed in [64, 65], about
the ordinary point τ = 0 for the fourth order Airy equation in the form Yττττ + τY = 0 (i.e., with z = −τ).
The resulting series solutions are found to be of the form

Y =

3∑
k=0

µkYk, Yk = τk
∞∑
n=0

ak,nτ
5n, where all ak,0 = 1, (4.26)

where all µk are arbitrary constants. Similarly to the case of the Airy equation itself, the linearly independent
solutions Yk, k = 0, 1, 2, 3, form a basis of solutions of the fourth order Airy equation, and appropriate linear
combinations allow the construction of further (equivalent) sets of four linearly independent solutions. One such
set [64, 65] of four linearly independent solutions of Yττττ + τY = 0 consists of the fourth order Airy function
of the first kind Ai4(τ) — this function is an analogue of the usual Airy function Ai(z) and is obtained from

(4.26) by making a specific choice of the constants µk — along with three other functions, denoted by Ãi4(τ),
G3(τ) and G4(τ), which may also be defined via appropriate choices of the constants µk in (4.26). Using this
set of four functions, we may, for our case c1 = 0, write the general solutions of (4.19) and (4.20) as

V1 = ν1Ai4(−(x− f)) + ν2Ãi4(−(x− f)) + ν3G3(−(x− f)) + ν4G4(−(x− f)) (4.27)

and

V1 = ν5Ai4(−(x− f − g)) + ν6Ãi4(−(x− f − g)) + ν7G3(−(x− f − g)) + ν8G4(−(x− f − g)) (4.28)

respectively, where all νi are arbitrary constants. The general solution of equation (4.21) with c1 = 0 can be
obtained using variation of parameters: the corresponding homogeneous equation Wxxxx − xW + gW = 0 is
again a fourth order Airy equation, with general solution W1 given by

W1 = ν9Ai4(−(x− g)) + ν10Ãi4(−(x− g)) + ν11G3(−(x− g)) + ν12G4(−(x− g)) (4.29)

where once again all νi are arbitrary constants; variation of parameters then leads to the particular solution W2

of the inhomogeneous equation given by

W2 = Ai4(−(x− g))

∫
W1

W
dx+ Ãi4(−(x− g))

∫
W2

W
dx+G3(−(x− g))

∫
W3

W
dx+G4(−(x− g))

∫
W4

W
dx,

(4.30)

whereW is the Wronskian of the four functions Ai4(−(x−g)), Ãi4(−(x−g)), G3(−(x−g)) and G4(−(x−g)), and
where each Wk is this same Wronskian but with the k-th column (i.e., the column with entries defined in terms

of the k-th of the four functions Ai4(−(x− g)), Ãi4(−(x− g)), G3(−(x− g)) and G4(−(x− g))) replaced by the
column (0, 0, 0,−dV1 − bV2)T , with V1 and V2 being as in (4.27) and (4.28). The general solution of the system
(4.19)—(4.21) for c1 = 0 then consists of V1 and V2 as given by (4.27) and (4.28), along with W = W1 + W2.
[The steps described here can also be followed for c1 6= 0: the general solution of the homogeneous equation
Yττττ + c1Yττ + τY = 0 can be expressed using everywhere-convergent series solutions; linear combinations of
the series obtained can be used to define four linearly independent solutions; using any four such functions, we
can give expressions for the general solutions of (4.19) and (4.20), as well as of (4.21) by variation of parameters.]
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Let us now consider the case where F̂ in (4.13) is symmetric. This requires g = 0 and b = di, i.e., F̂ = F̂s
where

F̂s =

 2d− f 2di− fi di− fi
2di− fi −2d+ f f − d
di− fi f − d f

 . (4.31)

In particular, we note that V1 and V2 must then satisfy the same homogeneous linear equations. We also note
that, corresponding to v0 as given in (4.2), we have the initial solution v̂0 of (3.1) for n = 1 and n = 2, with
F̂ = F̂s, given by

v̂0 = Pv0P
−1 =

 −iV1 + V2 + iW V1 + iV2 −W V1
V1 + iV2 −W iV1 − V2 − iW iV1

iV2 −V2 0

 . (4.32)

In the case where v̂0 is neither symmetric nor antisymmetric, our auto-BTs f , g and k allow us to obtain,
for each integer value of the parameter α̃n, four distinct solutions of our second and fourth order matrix PII
equations given by (3.1) for n = 1 and n = 2, in this case m = 3 and with F̂ = F̂s. For nonzero v̂0 either
symmetric or antisymmetric, the auto-BTs f , g and k yield, for each integer value of the parameter α̃n, two
distinct solutions of these equations. Reversing the shift made on x then provides respectively four or two
distinct solutions of these equations with F̂ = F̂s + aI.

We see that in order that the initial solution v̂0 as given by (4.32) be symmetric, we must impose the
restiction V1 = iV2: we recall that V1 and V2 satisfy the same homogeneous linear equations. In order that the
initial solution v̂0 as given by (4.32) be antisymmetric, we must impose the restictions V1 = −iV2 and W = 0:
we note again that V1 and V2 satisfy the same homogeneous linear equations, and also that for b = di and
V1 = −iV2 the linear equations satisfied by W are homogeneous, so we may take W = 0 as a solution.

4.2 Example Two

As a second example, we consider, for the case m = 2, the construction of solutions of (3.1) with

F̂ =

(
3a− bi− 2c 2ai+ b− 2ci
3ai+ b− 3ci −2a+ bi+ 3c

)
, (4.33)

where we seek initial solutions of corresponding equations (3.3) of class D. The matrix (4.33) has eigenvalues
λ = a, c. A shift x→ x+ 2a leads us to consider the system (3.1) but now with F̂ → F̂ − aI, i.e., with

F̂ =

(
−2d− bi −2di+ b
−3di+ b 3d+ bi

)
, (4.34)

where d = c− a. Let us take

P =

(
1 −2i
i 3

)
, (4.35)

thus transforming from (3.1) with (4.34) to (3.3) with

F =

(
0 b
0 d

)
. (4.36)

For an initial solution

v0 =

(
U1 V
0 U2

)
, (4.37)
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U1, U2 and V must satisfy, in the case n = 1 of a second order matrix PII equation (4.4), the system

U1,xx − 2U3
1 − xU1 − α1 = 0, (4.38)

U2,xx − 2U3
2 − xU2 + 2dU2 − α1 = 0, (4.39)

Vxx − 2(U2
1 + U1U2 + U2

2 )V − xV + dV + b(U1 + U2) = 0, (4.40)

and in the case n = 2 of a fourth order matrix PII equation (4.8), the system

U1,xxxx − 10U2
1U1,xx − 10U1U

2
1,x + 6U5

1 + c1(U1,xx − 2U3
1 )− xU1 − α2 = 0, (4.41)

U2,xxxx − 10U2
2U2,xx − 10U2U

2
2,x + 6U5

2 + c1(U2,xx − 2U3
2 )− xU2 + 2dU2 − α2 = 0, (4.42)

Vxxxx − 2(2U2
1 + U1U2 + 2U2

2 )Vxx − 2(2U2
1 + U1U2 + 2U2

2 )xVx − 2(U2
1,x + 3U1,xU2,x + U2

2,x)V

−2(3U1U1,xx + 2U2U1,xx + 2U1U2,xx + 3U2U2,xx)V + 6(U4
1 + U3

1U2 + U2
1U

2
2 + U1U

3
2 + U4

2 )V

+c1[Vxx − 2(U2
1 + U1U2 + U2

2 )V ]− xV + dV + b(U1 + U2) = 0. (4.43)

For our initial solution v0 of class D, we assume that U1 satisfies the basic special integral G[U1, 0] = 0, and
that U2 satisfies the basic special integral G[U2, d] = 0, for parameter value αn = β = 1

2 , i.e., in the case n = 1,

U1,x − U2
1 −

1

2
x = 0, (4.44)

U2,x − U2
2 + d− 1

2
x = 0, (4.45)

for α1 = β = 1
2 , and in the case n = 2,

U1,xxx − 2U1U1,xx + U2
1,x − 6U2

1U1,x + 3U4
1 + c1(U1,x − U2

1 )− 1

2
x = 0, (4.46)

U2,xxx − 2U2U2,xx + U2
2,x − 6U2

2U2,x + 3U4
2 + c1(U2,x − U2

2 ) + d− 1

2
x = 0, (4.47)

for α2 = β = 1
2 . Solutions U1 and U2 of the basic special integrals (4.44) and (4.45) then give solutions of

(4.38) and (4.39); equations (4.44) and (4.45) are linearisable and their solutions can be expressed using Airy
functions. Likewise, solutions U1 and U2 of the basic special integrals (4.46) and (4.47) give solutions of (4.41)
and (4.42); equations (4.46) and (4.47) correspond to the k = 3 case of the Chazy XI equation, and may be
solved using the first Painlevé transcendent as follows [9]. Equation (4.47) may be written

Wxx + 3W 2 + c1W + d− 1

2
x = 0, W = U2,x − U2

2 (4.48)

(and similarly for equation (4.46)). The first of these is just the first Painlevé equation; the second can be
linearised via U2 = −ψx/ψ onto ψxx+Wψ = 0. (For n ≥ 3, the equations G[vii, Fii] = 0 can be solved similarly
using the solutionsW of higher order members of the first Painlevé hierarchy and this linear equation.) Obtaining
as above the solutions U1 and U2 of equations (4.44) and (4.45), or (4.46) and (4.47), the third element V of
our initial solution v0 is then obtained by solving the corresponding linear equations, i.e., (4.40) or (4.43),
respectively. It is in this way that we construct our initial solution of class D. Our auto-BTs f and g and the
transformation p then yield, for each half-odd-integer value of the parameter α̃n, exactly one solution of our
second and fourth order matrix PII equations given by (3.1) for n = 1 and n = 2, in this case m = 2 and with
F̂ given by (4.34). Reversing the shift made on x then yields exactly one solution of these equations with F̂
given by (4.33).
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Let us now consider the case where F̂ in (4.34) is symmetric. This requires d = 0, i.e., F̂ = F̂s where

F̂s =

(
−bi b
b bi

)
. (4.49)

In particular, we note that U1 and U2 must then satisfy the same first or third order equations. We also note
that, corresponding to v0 as given in (4.37), we have the initial solution v̂0 of (3.1) for n = 1 and n = 2, with
F̂ = F̂s, given by

v̂0 = Pv0P
−1 =

(
3U1 − 2U2 − iV 2iU1 − 2iU2 + V
3iU1 − 3iU2 + V −2U1 + 3U2 + iV

)
. (4.50)

In the case where v̂0 is non-symmetric, our auto-BTs f , g and k allow us to obtain, for each half-odd-integer
value of the parameter α̃n, two distinct solutions of our second and fourth order matrix PII equations given by
(3.1) for n = 1 and n = 2, in this case m = 2 and with F̂ = F̂s. For symmetric v̂0, the auto-BTs f , g and k
yield, for each half-odd-integer value of the parameter α̃n, exactly one solution of these equations. Reversing
the shift made on x then provides respectively two distinct solutions or exactly one solution of these equations
with F̂ = F̂s + aI. We see that in order that the initial solution v̂0 as given by (4.50) be symmetric, we must
impose the restriction U1 = U2: we recall that U1 and U2 satisfy the same first or third order equations.

5 Discussion and conclusions

In this paper we have described how the auto-BTs of our matrix PII hierarchy (2.14) can be used to obtain
sequences of solutions, starting with one of four classes of initial solution, for parameter values αn = β = 0 or
αn = β = 1/2. This is an extension of our previous results, presented in [52], where we discussed the use of
auto-BTs to generate sequences of solutions, with four classes of initial solution, for our matrix PII equation
(2.8).

As explicit examples, we have considered initial solutions of class C, for αn = β = 0, and of class D, for
αn = β = 1/2: we seek upper triangular initial solutions, and as solutions vii of members of the scalar generalised
PII hierarchy on the leading diagonal we take respectively vii = 0 or vii the general solution of a basic special
integral of the scalar hierarchy, with non-diagonal elements vij , j > i of our initial solutions being obtained, for
both classes, as the general solutions of recursively-solved linear equations. We note that solving basic special
integrals of the scalar generalised second Painlevé hierarchy requires use of the solutions of the scalar generalised
first Painlevé hierarchy, which seems natural in the context of a study of our matrix PII hierarchy. It would
also seem natural to allow the use of the solutions of the scalar generalised second Painlevé hierarchy, which
would then permit us to further generalize the classes of upper-triangular initial solutions for αn = β = 0 and
αn = β = 1/2 (or more generally) by allowing us to assume the diagonal elements vii to be solutions of this
scalar hierarchy other than vii = 0 or the general solution of a basic special integral. Within this context, we
believe the linear equations for non-diagonal elements thus derived to be worthy of further study (see examples
in Section 4.2); we will return to this topic in future papers.

The application of auto-BTs to an initial solution is not, of course, the only way of obtaining solutions of our
matrix PII hierarchy (2.14). One alternative, for example, is that used in [66] for the “fully noncommutative”
PII hierarchy presented therein: it is shown that each member of this hierarchy has a solution, connected to
the Fredholm determinant of the n-th Airy matrix Hankel operator, which has a certain asymptotic behaviour.

In order to understand the relationship between solutions of the hierarchy presented in [66] and our matrix
PII hierarchy (2.14), let us rewrite the latter in the form

(∂x +Au)K̃[M [u]] + uE + Eu− xu− αnI = 0, (5.1)
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where K̃[M [u]] is given by

K̃[w] = Mn +

n−1∑
k=1

ckMk, (5.2)

w = M [u] = ux − u2, and the quantities Mk are defined recursively as described in Section 2.1. This is to be
compared to the hierarchy given in [66], for the matrix function W of the variables s1, s2, . . . , sm, defined as(

d

dS
+AW

)
Mn[M [W ]] + (−4)n(WS + SW ) = 0, where

d

dS
=

m∑
i=1

∂si (5.3)

and S is the diagonal matrix S = diag(s1, s2, . . . , sm). We now observe that, contrary to the claim made in [66],
the hierarchy (5.3) corresponds in fact to a special case of our matrix PII hierarchy (5.1). In order to see this,
in (5.3) we make the change of variables1 si =

∑m
j=1 aijxj , where the nonsingular matrix A = (aij) is such that

ai1 = 1, i = 1, 2, . . . ,m. It then follows that ∂x1
=
∑m
i=1 ∂si and S = x1I +G, where G is the diagonal matrix

G = diag (x̃1, x̃2, . . . , x̃m) with x̃i =
∑m
j=2 aijxj , i = 1, 2, . . . ,m. Thus we obtain the nonautonomous ordinary

differential equation hierarchy

(∂x1 +AW )Mn[M [W ]] + 2(−4)nx1W + (−4)n(WG+GW ) = 0, (5.4)

for W = W (x1), wherein the variables x2, x3, . . . , xm appear as constant parameters in the matrix G. Finally,
the rescaling W (x1) = 2(−1)n+1u(y), x1 = 1

2 (−1)n+1y, allows us to set the coefficient of the nonautonomous
term to −1. The resulting equation is then precisely of the form (5.1), but with independent variable y, in the
special case where ck=0, k = 1, 2, . . . , n− 1, αn = 0, and E is diagonal: E = (−1)nG with G as above.

Alternatively, let us consider (5.1) in the special case where ck = 0, k = 1, 2, . . . , n − 1, αn = 0 and E is
diagonalisable onto a matrix diag(σ1, σ2, . . . , σm) for parameters σk, k = 1, 2, . . . ,m, which means that we may
always assume E = (−1)ndiag(t1, t2, . . . , tm) for parameters tk = (−1)nσk, k = 1, 2, . . . ,m. In (5.1) we make
the change of variables u(x) = 1

2 (−1)n+1W (x1), x = 2(−1)n+1x1 − 2(−1)n+1t1, which gives

(∂x1 +AW )Mn[M [W ]] + (−4)n(WH +HW ) = 0, (5.5)

where H = diag(x1, x1 + x2, x1 + x3, . . . , x1 + xm) and xk = tk − t1, k = 2, 3, . . . ,m. Setting s1 = x1 and
sk = x1 + xk, k = 2, 3, . . . ,m, and noting that ∂x1

=
∑m
i=1 ∂si and H = S, we then obtain (5.3). We

note that asymptotic results are given in [66] in the regime s → +∞ where s = 1
m

∑m
j=1 sj . Under the

above transformation from (5.1), with E = (−1)ndiag(t1, t2, . . . , tm), to (5.3), we have the correspondence
s = 1

2 (−1)n+1x+ 1
m

∑m
j=1 tj .

The fact that the hierarchy (5.3) corresponds to a special case of the matrix PII hierarchy (5.1) then means
that the result given in [66] provides a solution also of this special case of (5.1), or equivalently of (3.3), i.e.,
the special case αn = 0, all ck = 0, k = 1, 2, . . . ,m, and E diagonal as discussed above. This then provides
a further choice of initial solution v0 of (3.3) for α̃n = β = 0, to which we can apply our auto-BTs and thus
obtain solutions for integer values of α̃n other α̃n = 0. We note here that our proposed initial solutions of class
C, whose construction is discussed in Section 3.2.3, whilst lower triangular, are in the general case solutions
of a broader class of equations than the subcase of (5.1) equivalent to (5.3), i.e., are solutions of equations to
which the results in [66], unless further restrictions are made, do not apply. The reason for this (apart from
not assuming that all ck = 0, k = 1, 2, . . . ,m) is that we do not assume that F , taken to be upper-triangular in
Section 3.2.3, corresponds to a diagonalisable matrix F̂ in (3.1). This is the case, for example, for the concrete
example discussed in Section 4.1 where the matrix F̂ given by (4.12) is not assumed to be diagonalisable: it is
non-diagonalisable, for example, when f = 0 and bd 6= 0, or in the symmetric case (4.31) when d 6= 0.

1Compare with deriving d’Alembert’s solution of the wave equation (∂t + ∂x)(∂t − ∂x)z = 0 by transforming to ∂ζ∂ξz = 0
where t = ζ + ξ, x = ζ − ξ, but here with only one combination of derivatives

∑m
i=1 ∂si , e.g., when solving wt + wx = wζ = 0.
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Finally, we remark that a matrix PII hierarchy with non-commuting “independent” variable x, i.e., similar
to the noncommutative second Painlevé equation presented in [67] in a more general algebraic setting, can be
obtained by assuming such non-commutativity in the derivation of the matrix PII hierarchy (2.1) given in [49],
replacing xI with the non-commuting x (x′ = 1) and not expanding B1[w]x, with the result that 2gn−1xu in
(2.1) is replaced by gn−1(ux+xu) (and αnI by a scalar central parameter αn). We will return to such examples
in later papers. We will also continue our study of matrix hierarchies with scalar independent variable.
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A Solutions of classes of equations

In Section 3.1.1 we used the transformation p to permit a choice of the coeeficient matrix in the equations of
our matrix PII hierarchy. We prefer to think of the transformation p as one which allows us to fix a form of
this coefficient matrix, rather than as an auto-BT. We could, however, in addition to the auto-BTs f , g and k,
consider also the actions of a finite number of transformations of a similar form to p,

qi : û = Qiv̂ Q
−1
i , Ê = QiF̂ Q

−1
i , (A.1)

with each Qi a nonsingular constant matrix: these transformations map from solutions v̂ of (3.1) with coefficient
matrix F̂ to solutions û of

ψ[û]

(
R̃n−1[û]ûx +

n−1∑
k=1

ckR̃k−1[û]ûx

)
+ ûÊ + Êû− xû− α̃nI = 0, (A.2)

i.e., of the same equation but with coefficient matrix Ê (and the same parameter value α̃n).
Since compositions of such transformations give transformations of the same form (qiqj v̂ = Q v̂ Q−1 with

Q = QiQj), and since the mappings qi and k commute with f and g, we have that any composition of
transformations qi, k, f and g acting on v̂0 can be written as

kγ
j∏
i=1

(qik)v̂ or qγ0

j∏
i=1

(kqi)v̂, γ ∈ {0, 1}, j ∈ {0, 1, 2, . . .}, (A.3)

where in each case
v̂ = f ε2rq v̂0 or v̂ = gε2sq v̂0 (A.4)

is a solution of (3.1) obtained as described in Sections 3.1.1 and 3.1.2. (In the above expressions the product
with j = 0 is taken to be the identity transformation.) Similarly, the result of acting with the same composition
of transformations qi, k, f and g on F̂ is

kγ
j∏
i=1

(qik)F̂ or qγ0

j∏
i=1

(kqi)F̂ , γ ∈ {0, 1}, j ∈ {0, 1, 2, . . .}, (A.5)
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since f and g leave F̂ unchanged. It thus remains to consider the result of the above compositions of mappings
qi and k on a solution v̂ of (3.1) and its corresponding coefficient matrix F̂ , v̂ having been obtained from v̂0
using the auto-BTs f and g and so in general being a solution of (3.1) for some new parameter value α̃n.

It is, however, straightforward to show that the results of the above compositions on v̂ and F̂ can always be
written either in the form

Q v̂ Q−1 and QF̂ Q−1, (A.6)

for some nonsingular constant matrix Q (for γ = j = 0 in (A.3) and (A.5), Q = I), or in the form

Q v̂T Q−1 and QF̂T Q−1, (A.7)

again for some nonsingular constant matrix Q (for γ = 1 and j = 0 in the first expressions in (A.3) and (A.5),
i.e., for kv̂ and kF̂ as considered in Sections 3.1.1 and 3.1.2, Q = I).

Thus, when considering the result of a composition of transformations qi, k, f and g on v̂0, F̂ and α̃n,
having obtained the solution v̂ of (3.1) as given in (A.4), for the same coefficient matrix F̂ but in general for
some new parameter value α̃n, we then obtain either a solution similar to v̂ for a coefficient matrix similar
to F̂ , or a solution similar to kv̂ for a coefficient matrix similar to kF̂ . The inclusion of transformations qi
thus leads us to the derivation of solutions of equivalence classes of equations, where we define two equations
as equivalent if their coefficient matrices are similar. In the particular case where F̂ is symmetric, we obtain
solutions similar to v̂ and kv̂ for coefficient matrices similar to F̂ , i.e., solutions of equations equivalent to (3.1)
for the above-mentioned new parameter value α̃n.
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