
 

 

Sequence and partial functional analysis of canine Bcl-2 family proteins 

 

Abstract 

Dogs present with spontaneous neoplasms biologically similar to human cancers. Apoptotic 

pathways are deregulated during cancer genesis and progression and are important for therapy. 

We have assessed the degree of conservation of a set of canine Bcl-2 family members with the 

human and murine orthologs. To this end, seven complete canine open reading frames were 

cloned in this family, four of which are novel for the dog, their sequences were analyzed, and 

their functional interactions were studied in yeasts. We found a high degree of overall and 

domain sequence homology between canine and human proteins. It was slightly higher than 

between murine and human proteins. Functional interactions between canine pro-apoptotic Bax 

and Bak and anti-apoptotic Bcl-xL, Bcl-w, and Mcl-1 were recapitulated in yeasts. Our data 

provide support for the notion that systems based on canine-derived proteins might faithfully 

reproduce Bcl-2 family member interactions known from other species and establish the yeast 

as a useful tool for functional studies. 

 

Key words: Bcl-2 family; canine; cloning; comparative sequence analysis; functional yeast 
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1. Introduction 

 

Rodent models, including genetically modified mice and xenografts in immunocompromised 

mice, are indispensable tools for cancer research (Rosol et al., 2003; Kelland, 2004; Sharpless 

and Depinho, 2006). They have evolved in recent years to a vast array of sophisticated models 

that are continuously broadening and deepening our knowledge of cancer biology (Cheon and 

Orsulic, 2011; Ruggeri et al., 2014). A number of limitations in the use of mice, however, have 

become apparent in recent years. These limitations include the restricted genetic diversity 

inherent to mouse laboratory strains as well as substantial differences between humans and 

mice in certain molecular regulatory pathways, both factors with potential impact on murine 

tumorigenesis models (Jacks, 1996; Balmain, 2002; Hahn and Weinberg, 2002; Young and 

Longmore, 2004; Cheon and Orsulic, 2011). Xenografts in immunocompromised mice are 

widely used for preclinical drug development (Kelland, 2004) although these animals provide 

a completely different microenvironment for tumor growth than the original host. In addition 

to a limited suitability for modeling metastasis, xenograft models offer a "reductionist" view 

since the cells used represent only a small selection of all possible combinations of genetic and 

epigenetic alterations leading to a certain morphological tumor subtype (Sharpless and 

Depinho, 2006). 

Spontaneous canine neoplasms offer the opportunity to complement data from rodents. Cancer 

is the most common cause of death in dogs (Vail and MacEwen, 2000). Canines, similarly to 

humans, constitute an outbred population with a much broader genetic background than rodent 

laboratory strains. In addition, canines are genetically more closely related to humans than 

rodents as shown from whole genome comparisons of the three species (Lindblad-Toh et al., 

2005), which is also reflected by a greater similarity at the metabolic level. Canines develop a 

range of spontaneous neoplasms often with histological characteristics and biologic behaviour 



 

 

similar to human tumors, including non-Hodgkin's lymphoma, soft-tissue sarcomas and 

osteosarcoma (Vail and MacEwen, 2000; Rosol et al., 2003; Khanna et al., 2004). Dogs share 

a common environment with people. Because of their increasing significance as companion 

animals, canine tumor patients are increasingly subjected to therapy and hence provide a yet 

underexploited resource for modeling both pathogenetic and therapy-related aspects of human 

cancer. 

Deregulated apoptosis is a hallmark of cancer (Hanahan and Weinberg, 2000) and plays roles 

in tumorigenesis and the development of resistance to therapy (Johnstone et al., 2002). The 

B-cell lymphoma-2 (Bcl-2) family is a large group of proteins which exert a key regulatory 

function in intrinsic apoptosis by controlling the integrity of the outer mitochondrial 

membrane (Cory and Adams, 2002). The family encompasses three major subgroups with 

different functions and displaying different subsets of conserved sequence motifs known as 

Bcl-2 homology (BH) domains which are the hallmark of this protein family (Kelekar and 

Thompson, 1998; Daniel et al., 2003). Most anti-apoptotic members (which comprise Bcl-2, 

Bcl-xL, Bcl-w, Mcl-1 and A1) contain BH domains 1 to 4. The multidomain pro-apoptotic 

members (Bax, Bak and Bok) are required for the execution of apoptosis through the 

mitochondrial pathway (Wei et al., 2001) and contain BH domains 1 to 3 (Chan and Yu, 

2004). The third subgroup is composed of several pro-apoptotic molecules (including Bad, 

Noxa and many others) called BH3-only proteins since they display only the BH3 domain. 

They either inhibit the anti-apoptotic members or activate the multidomain pro-apoptotic 

members. Following an appropriate apoptotic stimulus, the characteristic balance between 

anti-apoptotic and multi-domain pro-apoptotic members of normal cells is perturbed. As a 

result, the complete pro-apoptotic molecules oligomerize and form channels in the outer 

mitochondrial membrane which allow the release of apoptogenic factors (e.g. cytochrome c) 

from the intermembranous mitochondrial space into the cytosol (Westphal et al., 2011). 



 

 

Subsequently, specific proteolytic enzymes, the caspases, are activated and elicit the demise 

of the cell. The BH domains are the basis for the interactions between the members: a 

hydrophobic groove formed by specific residues of the BH1, BH2 and BH3 domains of the 

anti-apoptotic members interacts with the amphipathic helix of the BH3 domain of molecules 

of other subgroups (Cory and Adams, 2002). Comparatively little information is available, 

however, on this protein family and other molecules involved in apoptosis in canines. A small 

number of Bcl-2 family members have been cloned and partially characterized in the dog, 

including the complete coding sequences for Bcl-2, Bcl-xL, Mcl-1 and Bax (Sano et al., 2003; 

Sano et al., 2004). Differences at the molecular level within the intrinsic apoptotic pathway 

between humans and dogs have been reported in rare instances. For example, a consensus 

Akt phosphorylation site in human caspase-9 reported to mediate suppression of apoptosis is 

lacking in the dog (Cardone et al., 1998; Rodriguez et al., 2000). However, awareness of such 

variations is important because on one side they possibly impinge on the function of the 

pathway under physiological and neoplastic conditions, on the other side they may interfere 

with targeted therapies. 

The budding yeast Saccharomyces (S.) cerevisiae has been extensively used to functionally 

characterize human and murine Bcl-2 family members. Toxicity of Bax expression for yeasts 

and its abrogation by coexpression of Bcl-2, Bcl-xL and Mcl-1 first became evident in yeast 

two-hybrid studies of mammalian Bcl-2 family members (Sato et al., 1994). Subsequent 

investigations have shown that the mechanisms leading to yeast cell death caused by Bax 

partly rely on ancestral programmed cell death (PCD) machinery components (Ligr et al., 

1998; Khoury and Greenwood, 2008). Several agents can induce yeast PCD, including 

hydrogen peroxide, UV radiation, the absence of nutrients, hyperosmotic stress, acetic acid 

and aging (Farrugia and Balzan, 2012). Yeast PCD share some phenotypical and biochemical 

similarities with mammalian apoptosis, including the release of mitochondrial cytochrome c 



 

 

into the cytosol (Ludovico et al., 2002). This particular phenomenon - a hallmark of 

mammalian Bax action – has been demonstrated following Bax expression in yeast (Manon 

et al., 1997). To date, several studies of mammalian Bcl-2 family proteins in S. cerevisiae 

have focused on genetic analyses of Bax, Bcl-xL and Bcl-2, while this model has rarely been 

used, if at all, to characterize further members such as Bak, Bcl-w, and Mcl-1 for instance 

(Bodrug et al., 1995; Tao et al., 1997; Beaumont et al., 2013).  

In order to contribute to ongoing efforts in developing the canine model as a tool for cancer 

research, we herein perform an analysis of the sequences, some of which are novel for the 

dog, and study the function in the yeast, of selected canine Bcl-2 family proteins.  



 

 

2. Materials and methods 

 

2.1. Cell lines and cultures 

The Madin-Darby canine kidney (MDCK) cell line originates from an adult female Cocker 

Spaniel dog and it was purchased from the American Type Culture Collection (ATCC) 

(www.ATCC.org/). The cells were grown in Iscove's Mod. Dulbecco's Medium (Sigma, St. 

Louis, USA) supplemented with 10% fetal calf serum inactivated at 60°C, 2.5% HEPES buffer 

(Sigma, St. Louis, USA), 1% L-Glutamine (Sigma, St. Louis, USA) and 1% Penicillin-

Streptomycin solution (Sigma, St. Louis, USA). The canine normal keratinocyte line used 

originates from the skin of a healthy Beagle dog (Kolly et al., 2005). The cells were grown in 

Dulbeccos' Modified Eagles Medium (Sigma, St. Louis, USA) supplemented with 1% non-

essential amino acids, 1% sodium pyruvate, 1% penicillin/streptomycin and 15% fetal calf 

serum. All cell culture reagents were obtained from Gibco BRL life Sciences (Basel, 

Switzerland). Both cell lines were grown at 37 °C and a 5% CO2 atmosphere. 

 

2.2. RNA extraction, RT-PCR and cloning 

Total RNA was isolated from MDCK cells and/or from normal canine keratinocytes with the 

RNeasy Mini Kit (Qiagen, Hilden, Germany) according to the manufacturer's protocols. Then 

40 U Protector RNAse Inhibitor (Roche, Mannheim, Germany) was added to each RNA 

extract. cDNA was synthesized from 1µg of total RNA using the 1st strand cDNA Synthesis 

Kit for RT-PCR (AMV) and an oligo-dT-primer according to the manufacturer's instructions 

(Roche, Mannheim, Germany).  

Primers including the putative Start and Stop codons as deduced from publicly available 

sequence information and taking the human sequence as a reference (Tables 1 and 2) were 

designed either manually or by using the Primer3 website (http://frodo.wi.mit.edu/) (Rozen and 

http://frodo.wi.mit.edu/


 

 

Skaletsky, 2000). Reverse transcription PCR reactions were accomplished with 1µl of cDNA 

samples and Platinum Taq DNA Polymerase High Fidelity (Invitrogen, Carlsbad, CA, USA). 

Basic cycling parameters were as follows: initial denaturation at 94 °C for 1.5 min; 35 cycles 

of denaturation at 94 °C for 50 sec, annealing for 50 sec at 50-70 °C (a gradient was chosen on 

dependance of the primer melting temperature) and extension at 72 °C for a time adjusted to 

the expected size of the product (1 min per 1000 bp); final extension for 10 min at 72 °C. Each 

PCR reaction was optimized by adjusting the annealing temperature and the final magnesium 

concentration to yield a band with the size corresponding to the expected principal transcript 

for each molecule. After agarose gel separation, the amplificates obtained were recovered with 

MinElute Gel Extraction Kit (Qiagen, Hilden, Germany) and sent to a company (Microsynth 

AG, CH-9436 Balgach) for direct sequencing (Cycle Sequencing / Capillary Electrophoresis) 

with the primers used for amplification. If the amplification product corresponded to the 

expected sequence, the PCR was repeated using primers containing restriction enzyme sites 

suitable for cloning into the GST-tagged pGEX-4T2 vector (Invitrogen, Carlsbad, USA). 

Amplicons were cloned and transformed into DH5 alpha competent cells. Miniprep plasmid 

DNA was sequenced (Microsynth AG, CH-9436 Balgach) using the pGEX 5'- and 3'-

sequencing primers indicated by the manufacturer. Final cDNA sequences were derived from 

the consensus of at least three individual clones and were deposited in GenBank (Table 2). The 

correct identity of the clones was further confirmed at the protein level with immunoblot 

analyses with appropriate antibodies using lysates of transformed BL-21 Star E. coli harvested 

after induction with beta-D-thiogalactopyranoside as previously described by Keller et al. 

(2007). 

 

  



 

 

2.3. Computational analysis 

Putative canine protein sequences were derived from the cDNA sequences using a translation 

tool accessed via the ExPASy homepage (http://www.expasy.org/). Canine nucleotide coding 

sequences (cds) and deduced protein sequences were compared with human and murine 

counterparts (Table 2) using the EMBOSS sequence analysis tool provided by the European 

Bioinformatics Institute (http://www.ebi.ac.uk/emboss/align/). The nucleotide and the protein 

sequences were aligned with the needle method and the Blosum62 matrix algorithm, 

respectively. The exon/intron structure was derived by aligning the cds with the respective 

genome sequence using Splign, a mRNA-to-genomic alignment program available at NCBI 

(http://www.ncbi.nlm.nih.gov/) and confirmed using BLAT (Blast like alignment tool) on the 

MGC genome browser (http://mgc.ucsc.edu/) (Kent, 2002). The genomic sequence releases 

were CanFam3.1 [GCF_000002285.2] for canines, Mus musculus GRCm38.p1 

[GCF_000001635.21] for murines, and [GCF_000001405.22 GCF_000306695.1 

GCF_000002135.2 GCF_000002125.1] for humans. For domain comparisons we used human 

domain signatures indicated in UniProtKB/Swiss-Prot and additional relevant features as 

suggested from the literature.  

 

2.4. Subcloning and expression in S. cerevisiae 

The cDNAs containing the cds for the canine multidomain pro-apoptotic proteins Bax and Bak 

and the anti-apoptotic proteins Bcl-xL, Bcl-w, and Mcl-1 were subcloned by sticky-end ligation 

in a yeast expression vector (epitope tagging vector pESC, Invitrogen) containing the URA3 

selection marker. This vector contains two multiple cloning sites which are located downstream 

of the galactose inducible divergent promoters GAL1 and GAL10, respectively. Each cDNA 

was introduced individually in the vector. In addition, vectors were constructed with Bax or 

Bak paired with each one of the cDNAs for the anti-apoptotic proteins. Proper introduction of 

http://www.ebi.ac.uk/emboss/align/
http://www.ncbi.nlm.nih.gov/
http://mgc.ucsc.edu/


 

 

the cDNAs was verified by sequencing (Microsynth AG, CH-9436 Balgach) miniprep plasmid 

DNA using the pESC 5'- and 3'-sequencing primers indicated by the manufacturer. The yeast 

used throughout this study was strain BY4743 his3/leu2/met15/ura3 purchased from 

Euroscarf (D-60438 Frankfurt; Acc. No. Y20000). It was routinely cultured in YPAD (1% 

yeast extract, 2% Bacto peptone, 2% glucose, 40 mg Adenine sulfate) medium as described 

(Guscetti et al., 2005). The yeasts were transformed by electroporation in presence of 1 M 

sorbitol (Gene Pulser with Pulse Controller, Bio-Rad) according to a previously described 

protocol (Becker and Lundblad, 1994) with the empty plasmid and all plasmids described 

above. Selection was done on minimal 2% glucose medium without the selection marker URA. 

To monitor the effect of expression of the Bcl-2 family proteins, transformed yeasts were 

grown under aerobic conditions (shaken at 220 rpm, 30 °C) in 3 ml of liquid minimal medium 

containing 2% galactose (inducing) instead of glucose (repressing) and the optical density at 

600 nm (OD600) was measured every 6 hours until saturation. Each experiment was carried out 

in duplicate. In addition, a clonogenic assay was carried out by plating aliquots of 500 cells on 

minimal glucose medium, each in triplicate, after growth in inducing liquid medium for 24 and 

48 hours as previously described (Guscetti et al., 2005). All clonogenicity experiments were 

carried out at least in three independent instances. Statistical significance of clonogenicity data 

for yeasts expressing either Bax or Bak alone vs. all other proteins either individually or in 

combination was calculated by the student´s t test. Significance was set at a value of p = 0.05. 

 

2.5. Western Blots 

To verify expression of the respective protein after induction, representative culture samples 

collected at 24h or 48h after start of induction were analysed by western blot as previously 

described with minor modifications (Dettwiler et al., 2013). Briefly, protein extracts were 

prepared by mechanical lysis of the yeast cells (mixed to equal volumes of a lysis buffer 



 

 

containing 100 mM Tris-HCl at pH 6.8, 10% (v/v) glycerol, 3% (w/v) SDS, 5% (v/v) 2-

mercaptoethanol and 1% (w/v) bromophenol blue using glass beads and a Vortex mixer at 

maximum speed for 2 min. The extracts were run on 12% SDS-polyacrylamide gels, transferred 

to PVDF membranes (Immobilon-P Transfer Membrane, Millipore Corporation, Billerica, 

MA) by electroblotting. Following primary antibodies, all previously shown to cross-react with 

the recombinant canine protein expressed in bacteria, were used: anti-human Bax Ab-1 mouse 

monoclonal antibody, clone 2D2 (cat. no. MS-711-P0, Lab Vision Corporation, Thermo Fisher 

Scientific, Fremont, CA 94539, USA), applied at 0.5 ug/ml; anti-human Bak rabbit polyclonal 

antibody (cat. no. 06-536, Merck Millipore, Billerica, MA 01821, USA), applied in a 1:400 

dilution; anti-mouse Bcl-xL Ab-2 mouse monoclonal antibody, clone 7D9 (cat. no. MS-1334-

PO, Lab Vision Corporation, Thermo Fisher Scientific, Fremont, CA 94539, USA), applied at 

0.5 ug/ml; anti-human Bcl-w (16-29) rabbit polyclonal antibody (cat. no. 197209, Merck 

Chemicals Ltd., San Diego, CA 92121, USA), applied in a 1:400 dilution; and anti-human Mcl-

1 rabbit polyclonal antibody (cat. no. HPA008455-100UL, Atlas Antibodies AB, SE-106 91 

Stockholm, Sweden), applied in a 1:400 dilution. After incubation with the appropriate primary 

antibodies, horseradish-peroxidase labelled secondary antibodies were applied and binding was 

visualised using a chemiluminescent substrate. The PageRulerTM Plus Prestained Protein 

Ladder (Fermentas Life Sciences, Lot 00070238; Thermo Fisher Scientific, Fremont, CA 

94539, USA) was used to assess protein sizes.  



 

 

3. Results 

 

3.1. Nucleotide sequence comparison of canine Bcl-2 family members with the human and 

murine orthologues 

We have identified and cloned the coding sequence (cds) of seven canine Bcl-2 family 

members. Three sequences (Bcl-x, Bax and Mcl-1) have previously been reported by others 

(Sano et al., 2003; Sano et al., 2004), the remaining four (Bcl-w, Bak, Bad and Noxa) are novel 

for the dog and have been deposited in GenBank. All sequence accession numbers are indicated 

in Table 2. In this section we report basic data derived from our cDNA clones, and, for the sake 

of completeness, from the complete mRNA sequence for canine Bcl-2 previously deposited in 

GenBank by others. Alignment of the sequences with the dog genome showed 100% identity 

and canonical splice sites except where otherwise stated. Expected amino acid exchanges 

resulting from base mismatches are mentioned. In addition, a comparison with the reference 

sequences of the human and murine counterparts is presented (Table 3). 

Bcl-2 isoform .  The canine complete mRNA sequence for Bcl-2 available from GenBank 

was derived from peripheral mononuclear blood cells of an adult dog. The dog genome 

sequence displays a gap in the region containing the Bcl-2 gene resulting in 102 bases of the 

cds (from base 157 through 258) that could not be aligned. Mismatches were observed at 

positions 146 (T instead of C as in the genome sequence, resulting in a Phe instead of a Ser), 

148 (T instead of G, resulting in a Ser instead of an Ala), 327 (C instead of G), 330 (C instead 

of T) and 441 (T instead of C) of the cds. In addition a single base insertion was found at 

position 331 (G, eliciting a frame shift) of the cds. Comparison with the human Bcl-2 isoform 

cds (720 bp) revealed 92% identity for the canine sequence (720 bp) which is close to the 

homology observed between human and murine (711 bp) sequences (89%).  



 

 

Bcl-xL (BCL2L1).  The complete mRNA sequence for the canine anti-apoptotic Bcl-2 family 

member Bcl-xL available in GenBank was derived from lymphocytes of an adult dog. All our 

own clones (source: MDCK cells) showed a single nucleotide mismatch (C instead of T) at 

position 666 of the cds when compared to the GenBank sequence. The dog genome reference 

sequence indicates a C at this position. In all three species, the Bcl-xL cds (702 bp) is distributed 

over two exons. Overall, canines show a slightly higher homology with humans than with mice 

(97% and 94%, respectively).  

Bcl-w (BCL2L2).  The cds of the canine anti-apoptotic Bcl-2 family member Bcl-w generated 

in this study (source: MDCK cells) is, like the human and murine cds, 582 bp long and 

distributed over two exons. The identity of the canine Bcl-w cds with its human counterpart is 

95%, while the identity between human and mouse is 94%. 

Mcl-1.  The complete mRNA sequence for the canine anti-apoptotic Bcl-2 family member Mcl-

1 available in GenBank was derived from lymphocytes. Alignment of this sequence with our 

Mcl-1 cds (source: MDCK cells) showed a one base deletion, a one base insertion and four 

single nucleotide mismatches. Alignment of our sequence with the dog genome indicated one 

nucleotide mismatch at position 436 (C instead of T) in our sequence. Alignment of the 

GenBank cds with the dog genome revealed a single bp insertion at position 31 and a single 

base deletion 9 bp further on as well as five mismatches at positions 6 (T instead of C), 119 (G 

instead of A), 436 (C instead of T), 641 (A instead of G) and 978 (C instead of T). Two of these 

mismatches would lead each to a amino acid (aa) substitution (position 119: Arg instead of 

Lys; position 641: Gln instead of Arg), the latter involving the BH3-domain. The insertion at 

position 31 leads to a short frameshift resulting in the exchange of aa 11-13 (Arg-Thr-Gln 

instead of Gly-Leu-Asn); this region does not code for any known domain. In both humans and 

dogs, the Mcl-1 cds encompasses 1053 bp, in contrast to 996 bp in mice. In all three species 



 

 

investigated, the cds is distributed over three exons. The canine cds shares a higher homology 

with the human counterpart than the murine sequence (89% and 83% identity, respectively). 

Bak (BAK1).  The cds of the canine multi-domain pro-apoptotic Bcl-2 family member Bak 

generated in this work (source: MDCK cells) consists, like its human counterpart, of 636 bp 

distributed over five exons. The murine cds is six bp shorter (630 bp). The human sequence is 

more similar to the canine than to the murine sequence (90% and 80% identity, respectively).  

Bax variant .  The mRNA sequence comprising the complete cds of Bax available in GenBank 

was derived from a canine osteosarcoma cell line. Our own cds sequence is 100% identical to 

the GenBank sequence. The dog genome sequence displays a gap in the region containing the 

bax gene; where proper alignement was possible (position 1 through 477 of the cds) our 

sequence (source: MDCK cells) was 100% identical to the genome sequence. In all three 

species investigated, the cds is 579 bp long. In murines and humans it is distributed over six 

exons. The cds of both dogs and mice show a similar degree of homology with the human Bax 

var. alpha (93% and 90% identity, respectively). We additionally detected a splice form of the 

canine Bax cds, which is similar to the human Bax  version (GenBank accession no. 

NM_138762). Like its human counterpart, the cds consists of 126 bp divided into two exons. 

It shares 91% identity with the human Bax  cds. In silico translation predicts, like in humans, 

an hypothetical protein of 41 aa (identity human/canine: 83%). 

Bad.  The cds of the canine BH3-only Bcl-2 family member Bad generated from MDCK cells 

in this study consists of three exons, spanning 504 bp in length. This is three bp shorter than 

the human cds and 111 bp shorter than the murine cds, which spans over four exons. Since 

several gaps occur in the alignment between human and canine cds, we generated additional 

clones from a normal canine keratinocyte cell line (Kolly et al., 2005) to exclude a MDCK-

related artifact. Clones from both cell types yielded the same sequence. The canine Bad cds is 

86% identical to its human counterpart, whereas the identity between human and mouse is only 



 

 

65%, due to the additional coding exon at the 5'-end in the murine sequence. When only 

overlapping parts were compared, identity between human and mouse sequences was 82%. 

Noxa (PMAIP1).  The cds of the canine BH3-only Bcl-2 family member Noxa, generated from 

a normal canine keratinocyte cell line (Kolly et al., 2005) in this study, is distributed, like its 

human counterpart, over two exons with a total of 165 bp. It yields 87% identity with the human 

sequence. The murine cds is divided into three exons and spans 312 bp. The mouse sequence 

differs remarkably from the human (40% identity), which ensues from the presence of an 

additional coding exon at the 5'-end in the murine sequence. Comparison of overlapping parts 

only yielded 70% identity between human and mouse sequences. 

 

3.2. Protein sequence comparison of canine Bcl-2 family members with the human and murine 

orthologues 

We further analyzed in silico the protein sequences of the canine Bcl-2 members as deduced 

from the nucleotide sequences described above. The degree of conservation between humans, 

canines and mice of the whole proteins as well as of the most relevant domains, motifs and 

residues were determined (Table 4). All sequences and respective alignments are reported in 

Supplemental Figure 1.  

The overall identity of these proteins ranged from 76% to 100% between canines and humans, 

and from 34% to 99% between mice and humans. In all but one (Bcl-2 isoform alpha)cases 

there was a higher degree of homology between human and canine sequences than between 

human and murine sequences. The length of the Bcl-2 family proteins is relatively conserved 

in canines compared to humans, while it markedly differs for some murine proteins, in 

particular the BH3-only members Bad and Noxa. The anti-apoptotic family members are best 

conserved, with the two proteins Bcl-xL and Bcl-w 100% identical at the amino acid (aa) level 

between humans and dogs. In murines, three out of 15 Bcl-2 Homology (BH) domains analyzed 



 

 

in this subgroup differed from the human counterpart by one aa, while there were no differences 

in dogs. The transmembrane domains showed either 100% conservation in all three species 

(Bcl-xL, Bcl-w, Mcl-1) or slight differences with the human counterpart in the canine version 

(Bcl-2). The multi-domain pro-apoptotic members Bak and Bax showed a slightly lower degree 

of interspecies conservation than the anti-apoptotic members. In the mouse, all BH domains of 

these two molecules showed at least one aa exchange, three BH domains showed two aa 

exchanges. In the dog only two out of these six BH domains showed one aa exchange. The 

transmembrane domain of Bax is 100% conserved across the three species, that of Bak shows 

an exchange of four aa in mice and of two aa in dogs. Interestingly, the lowest overall and 

domain identity in the Bcl-2 family was observed with the two BH3-only proteins Bad and 

Noxa. This is particularly true for the murine molecules which are markedly longer than the 

canine and human counterparts. Comparison of these proteins between murines and humans 

yielded 58% and 34% identity for Bad and Noxa, respectively (while their overlapping regions 

showed 73% and 64% identity, respectively). 

Several human Bcl-2 family proteins present with cleavage sites for caspase-3 and other 

proteases. Figure 1 shows the comparative tetramer sequences preceding cleavage sites 

reported in the literature. Sequences 100% conserved in all three species include both caspase-

3 cleavage sites of Bcl-xL, the major caspase-3 cleavage sites of Mcl-1 and of Bad, and the 

calpain recognition sequence of Bax (Cheng et al., 1997; Clem et al., 1998; Fujita et al., 1998; 

Wood et al., 1998; Condorelli et al., 2001; Michels et al., 2004). 

 

3.3. Partial functional characterization of canine Bcl-2 family proteins in the yeast S. 

cerevisiae 

In this part we functionally analyzed interactions of a subset of canine Bcl-2 family members 

comprising the multidomain pro-apoptotic proteins Bax and Bak and the anti-apoptotic 



 

 

proteins Bcl-xL, Bcl-w and Mcl-1 in the yeast model S. cerevisiae. First, the proteins were 

expressed in inducing liquid media containing galactose, and yeast cell growth was monitored 

by measuring the OD600 at 6 h intervals. As expected, compared to yeasts containing the empty 

vector, cultures of yeasts expressing either Bax or Bak showed a growth delay, while the 

growth of yeasts expressing any of the anti-apoptotic proteins was unaffected (Fig. 2a). The 

growth delay caused by Bax or Bak was completely abrogated when any of the anti-apoptotic 

proteins was expressed concomitantly (Fig. 2b). This kind of growth delay has previously been 

described for human and/or murine Bax and Bak, and it has been attributed to reproductive cell 

death (Ligr et al., 1998; Xu et al., 1999; Guscetti et al., 2005). This notion was herein confirmed 

for the canine orthologs by using a clonogenic assay following 24 and 48 hours of protein 

expression. The data is presented in Fig. 3a and 3b. Expression of either Bak or Bax alone 

resulted in a reduction of the percentage of viable and reproduction-competent yeasts to 20-

10% (Bak) or 3-1% (Bax) of yeasts carrying the empty vector. In contrast, Bcl-xL and Mcl-1 

showed a slight degree of toxicity which was most apparent at 48 h of expression (Fig. 3b). 

The effect of Bax and Bak was abrogated through concomitant expression of each of the anti-

apoptotic proteins Bcl-w, Bcl-xL, and Mcl-1. Extracts from yeasts transformed with the 

corresponding cDNAs showed distinct bands for each protein in Western blots indicating their 

expression (Fig. 4). 

 

  



 

 

4. Discussion 

 

We have carried out a comparative sequence analysis of a representative number of canine Bcl-

2 family members, at both the nucleotide and protein level. A high sequence homology was 

found between the canine proteins and their human and murine counterparts. Notably, the 

canine sequences showed a higher degree of homology with the human sequences than the 

murine sequences, which is consistent with a faster mutation rate in mice as compared to dogs 

and people (Lindblad-Toh et al., 2005) and supports in principle the dog as a model organism 

for diseases involving deregulation of mitochondrial apoptosis. Bcl-2 family proteins have 

been assigned a central importance in the pathogenesis of various human cancer syndromes 

(Kelly and Strasser, 2011; Nys and Agostinis, 2012). Likewise, they have been implicated in 

the pathogenesis of diverse canine tumors including for instance hemangiosarcoma, mammary 

tumors, tumors of neural and hematopoetic origin (Sano et al., 2003; Kumaraguruparan et al., 

2006a; Kumaraguruparan et al., 2006b; Yan et al., 2006; Murakami et al., 2008; Ide et al., 

2010; Strefezzi et al., 2012; Dettwiler et al., 2013).  

Proteins are assigned to the Bcl-2 family owing to the presence of at least one of four BH 

domains (Kelekar and Thompson, 1998; Daniel et al., 2003). These domains mediate the 

interplay between the Bcl-2 family members, which controls the integrity of the mitochondrial 

membrane. Structural studies have shown the basis for interactions between the different 

subgroups (Cory and Adams, 2002). The fact that several domains participate in forming a 

functionally important scaffold-like structure might explain the limited overall and domain 

interspecies variation found in anti-apoptotic members of the Bcl-2 family. In contrast, the 

BH3-only members Bad and Noxa showed the least degree of overall interspecies conservation. 

This might derive from the fact that the BH3-only subgroup members exert their apoptosis-

related function through one single domain as opposed to members of the other subgroups. 



 

 

Both murine Bad and Noxa significantly differ from their human and canine counterparts by 

displaying an additional coding exon. In addition, murine Noxa displays a second BH3-domain 

motif (Oda et al., 2000). In contrast, regulatory serine residues (Ser 75, 99, 118, 134 in humans) in 

Bad are conserved among the three species at nearly the same locations. Phosphorylation of 

these residues upon a pro-survival stimulus maintains Bad in an inactive state and bound to 

cytosolic 14-3-3Sigma proteins (Bae et al., 2001). Recent studies have revealed that the anti-

apoptotic members of the Bcl-2 family each bear a unique pattern of interaction with peptides 

derived from BH3 domains of BH3-only molecules (Certo et al., 2006) providing the basis for 

the development of therapeutic compounds targeting these interactions (Liu and Wang, 2012). 

The strong degree of conservation of the dog proteins suggest that this species is potentially 

well-suited for modeling interactions of Bcl-2 family members and related therapeutic 

peptides.  

Apoptosis is executed through cleavage of proteins at specific recognition sites through specific 

proteases, mainly through caspases (Cory and Adams, 2002). Several members of the Bcl-2 

protein family display protease cleavage sites, and their cleavage products have been shown in 

general to enhance apoptotic activity (Cheng et al., 1997; Clem et al., 1998; Fujita et al., 1998; 

Wood et al., 1998; Condorelli et al., 2001; Michels et al., 2004) and in some cases to mediate 

apoptotic activity (Ofengeim et al., 2012). Sequence comparison between human, canine and 

murine Bcl-2 family members has revealed a number of fully conserved cleavage sites. Some 

of the remaining cleavage sites conserved to less than 100%, such as e.g. the motif present in 

canine Bcl-2, might still be functional based on the sequence, while others, such as for example 

the minor cleavage site of Bad, are likely not functional. The impact of sequence variants on 

function should be verified experimentally. Conservation of protease recognition motifs across 

species support their biological relevance on one side and the validity of the canine model on 

the other side. 



 

 

Comparison of the sequences generated in this study with the canine genome sequence as well 

as with mRNA sequences previously submitted to Genbank by others revealed a generally high 

degree of concordance. Except for the gap in the genome sequence in the region coding for 

Bax and for a single base mismatch in the cds of Mcl-1 all sequences generated in this study 

(4119 bases) were 100% identical with the dog genome sequence. Another gap in the genome 

sequence hindered proper alignment of the Bcl-2 cds available from Genbank. Nevertheless, 

the dog genome third release coverage has been estimated at 99.8% of the euchromatic portion 

of the genome, and the rate of sequencing errors within genes has been drastically reduced 

compared to the previous release (Lindblad-Toh et al., 2005; Hoeppner et al., 2014). 

Mismatches either represent sequencing errors, single nucleotide polymorphisms, somatic cell 

variation, or RNA editing (Furey et al., 2004). All of our novel cds were also predicted by the 

automated prediction program GNOMON at NCBI with the exception of Noxa. In addition, 

the automated program predicted an additional sequence at the 5'-end of canine Bad that was 

not supported by own 5'-RACE data (data not shown). Comparisons of previous GenBank 

entries with the dog genome revealed conspicuous mismatches for Bcl-2 and Mcl-1. An 

analysis of approximately 30,000 non-redundant human mRNA sequences suggested that 

mRNA collections may contain a substantial number of errors (Furey et al., 2004). 

We have used the well-characterized eukaryotic yeast S. cerevisiae for the expression and 

functional analysis of the canine Bcl-2 proteins cloned herein. This unicellular organism is 

easy to manipulate genetically and it has previously been extensively used for functional 

studies of human Bcl-2 family proteins since considered to be devoid of homologs of the Bcl-

2 family (Fleury et al., 2002; Priault et al., 2003; Guscetti et al., 2005; Khoury and 

Greenwood, 2008). This notion has recently been questioned since the description of a yeast 

protein variously referred to as Bxi1p (Bax inhibitor-1) or Ybh3p (Yeast BH3-only protein) 

(Büttner et al., 2011; Cebulski et al., 2011). However, while its classification and function are 



 

 

still debated, it did not visibly interfere with the experiments in this study. Expression of 

canine Bcl-2 family members in yeast has not been described before. Here, we successfully 

performed a functional analysis of five canine Bcl-2 family members in this model organism, 

namely the pro-apoptotic members Bak and Bax and the anti-apoptotic members Bcl-w, Bcl-

xL and Mcl-1. As previously described for the human and/or murine orthologs (Ink et al., 

1997; Tao et al., 1997; Ligr et al., 1998), expression of canine Bak and Bax showed a lethal 

effect in yeast. Moreover, this effect was abrogated on co-expression of the anti-apoptotic 

members Bcl-xL, Mcl-1 and Bcl-w as previously demonstrated for large part of their human 

orthologs in yeast (Tao et al., 1997; Beaumont et al., 2013). To our knowledge, abrogation of 

the effect of Bak by Bcl-w has not been previously reported in this model. We therefore 

consider the yeast system as suitable for the functional assessment of canine Bcl-2 family 

members and their interactions. Future use of the model could encompass e.g. the addition of 

BH3-only proteins (Guscetti et al., 2005) or the comparative exploration of the effects of 

specific compounds on interactions between Bcl-2 family members of canine versus human 

origin (Silva et al., 2011) thus further assessing the potential value of the canine model. 

Several murine models, in particular genetically engineered mouse models, have proven 

invaluable for mechanistic and drug discovery studies (Cheon and Orsulic, 2011; Ruggeri et 

al., 2014). As a specific example, the Eµ-myc lymphoma model has been successfully used to 

model the efficacy of the Bcl-2 antagonist ABT-737 against an aggressive lymphoma subtype 

(Mason et al., 2008), and its derivative ABT-199 is currently tested in phase II and III studies 

(Besbes et al., 2015). Provided the canine and human molecules behave similarly, 

spontaneous dog tumors could provide an additional frame for testing such compounds in a 

clinical setting. 

  



 

 

5. Conclusions 

 

In summary, we have performed a comparative as well as a functional analysis of a 

representative set of canine Bcl-2 family members. Our analysis revealed a high degree of 

sequence similarity in the canine Bcl-2 family proteins compared to their human counterparts, 

especially within domains. Functional interactions of selected canine multidomain pro-

apoptotic with anti-apoptotic members were recapitulated in a yeast model. This in vitro model 

might provide a valuable tool for instance for testing therapies specifically targeting this protein 

family and, subsequently, to further establishing spontaneous dog neoplasms as models for 

human cancer. 
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Supplemental Figure S1 

 

Alignments of Bcl-2 proteins of human, canine, and murine origin and principal domains and 

motifs 

 

Alignment for Bcl-2 isophorm alpha 

 

 

Human   1 MAHAGRTGYDNREIVMKYIHYKLSQRGYEWDAGDVGAAPPGAAPAPGIFSSQPGHTPHPA    60 

Canine   1 MAHAGRTGYDNREIVMKYIHYKLSQRGYEWDAGEAGAAPPGAAPAPGIFSSQPGRAPAP-    59 

Murine   1 MAQAGRTGYDNREIVMKYIHYKLSQRGYEWDAGDADAAPLGAAPTPGIFSFQPESNPMPA    60 

 

 

Human  61 ASRDPVARTSPLQTPAAPGA-------AAGPALSPVPPVVHLTLRQAGDDFSRRYRRDFA   113 

Canine  60 ------ARTSPPPPPAAPAAAAAAAADAAGPAPSPVPPVVHLTLRQAGDDFSRRYRRDFA   113 

Murine  61 VHRDMAARTSPLR-PLV--A-------TAGPALSPVPPVVHLTLRRAGDDFSRRYRRDFA   110 

 

 

Human 114 EMSSQLHLTPFTARGRFATVVEELFRDGVNWGRIVAFFEFGGVMCVESVNREMSPLVDNI   173 

Canine 114 EMSSQLHLTPFTARGRFATVVEELFRDGVNWGRIVAFFEFGGVMCVESVNREMSPLVDNI   173 

Murine 111 EMSSQLHLTPFTARGRFATVVEELFRDGVNWGRIVAFFEFGGVMCVESVNREMSPLVDNI   170 

 

 

Human 174 ALWMTEYLNRHLHTWIQDNGGWDAFVELYGPSMRPLFDFSWLSLKTLLSLALVGACITLG  233 

Canine 174 ALWMTEYLNRHLHTWIQDNGGWDAFVELYGPTMQPLFDFSWLSLKALLSLALVGACITLG  233 

Murine 171 ALWMTEYLNRHLHTWIQDNGGWDAFVELYGPSMRPLFDFSWLSLKTLLSLALVGACITLG  230 

 

 

Human 234 AYLGHK  239 

Canine 234 AYLGHK  239 

Murine 231 AYLGHK  236 

 

Alignment for Bcl-xL (BCL2L1) 

 

 

Human   1 MSQSNRELVVDFLSYKLSQKGYSWSQFSDVEENRTEAPEGTESEMETPSAINGNPSWHLA    60 

Canine   1 MSQSNRELVVDFLSYKLSQKGYSWSQFSDVEENRTEAPEGTESEMETPSAINGNPSWHLA    60 

Murine   1 MSQSNRELVVDFLSYKLSQKGYSWSQFSDVEENRTEAPEETEAERETPSAINGNPSWHLA    60 

 

 

Human  61 DSPAVNGATGHSSSLDAREVIPMAAVKQALREAGDEFELRYRRAFSDLTSQLHITPGTAY   120 

Canine  61 DSPAVNGATGHSSSLDAREVIPMAAVKQALREAGDEFELRYRRAFSDLTSQLHITPGTAY   120 

Murine  61 DSPAVNGATGHSSSLDAREVIPMAAVKQALREAGDEFELRYRRAFSDLTSQLHITPGTAY   120 

 

 

Human 121 QSFEQVVNELFRDGVNWGRIVAFFSFGGALCVESVDKEMQVLVSRIAAWMATYLNDHLEP   180 

Canine 121 QSFEQVVNELFRDGVNWGRIVAFFSFGGALCVESVDKEMQVLVSRIAAWMATYLNDHLEP   180 

Murine 121 QSFEQVVNELFRDGVNWGRIVAFFSFGGALCVESVDKEMQVLVSRIASWMATYLNDHLEP   180 

 

 

Human 181 WIQENGGWDTFVELYGNNAAAESRKGQERFNRWFLTGMTVAGVVLLGSLFSRK  233 

Canine 181 WIQENGGWDTFVELYGNNAAAESRKGQERFNRWFLTGMTVAGVVLLGSLFSRK  233 

Murine 181 WIQENGGWDTFVDLYGNNAAAESRKGQERFNRWFLTGMTVAGVVLLGSLFSRK  233 
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Alignment for Bcl-w (BCL2L2) 

 

 

Human   1 MATPASAPDTRALVADFVGYKLRQKGYVCGAGPGEGPAADPLHQAMRAAGDEFETRFRRT    60 

Canine   1 MATPASAPDTRALVADFVGYKLRQKGYVCGAGPGEGPAADPLHQAMRAAGDEFETRFRRT    60 

Murine   1 MATPASTPDTRALVADFVGYKLRQKGYVCGAGPGEGPAADPLHQAMRAAGDEFETRFRRT    60 

 

 

Human  61 FSDLAAQLHVTPGSAQQRFTQVSDELFQGGPNWGRLVAFFVFGAALCAESVNKEMEPLVG   120 

Canine  61 FSDLAAQLHVTPGSAQQRFTQVSDELFQGGPNWGRLVAFFVFGAALCAESVNKEMEPLVG   120 

Murine  61 FSDLAAQLHVTPGSAQQRFTQVSDELFQGGPNWGRLVAFFVFGAALCAESVNKEMEPLVG   120 

 

 

Human 121 QVQEWMVAYLETRLADWIHSSGGWAEFTALYGDGALEEARRLREGNWASVRTVLTGAVAL   180 

Canine 121 QVQEWMVAYLETRLADWIHSSGGWAEFTALYGDGALEEARRLREGNWASVRTVLTGAVAL   180 

Murine 121 QVQDWMVAYLETRLADWIHSSGGWAEFTALYGDGALEEARRLREGNWASVRTVLTGAVAL   180 

 

Human 181 GALVTVGAFFASK  193 

Canine 181 GALVTVGAFFASK  193 

Murine 181 GALVTVGAFFASK  193 
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Alignment for Mcl-1 

 

 

Human   1 MFGLKRNAVIGLNLYCGGAGLGAGSGGATRPGGRLLATEKEASARREIGGGEAGAVIGGS    60 

Canine   1 MFGLKRNAVIGLNLYCGGAGLGAGSGGASSSGGRLLASGKEATTRREGGGGEAGAVIGGS    60 

Murine   1 MFGLRRNAVIGLNLYCGGASLGAGGGSPA--GARLVA--EEAKARRE-GGGEA-------    48 

 

 

Human  61 AGASPPSTLTPDSRRVARPPPIGAEVPDVTATPARLLFFAPTRRAAPLEEMEAPAADAIM   120 

Canine  61 AGASPPTTLAPDARRVARPSPIGAEGPNVSATPPRLLLLAPPCRASPPEEMEGPAADAIM   120 

Murine  49 -------ALLPGARVVARPPPVGAEDPDVTASAERRLHKSPGLLAVPPEEMAASAAAAIV   101 

 

 

Human 121 SPEEELDGYEPEPLGKRPAVLPLLELVGESGNNTSTDGSLPSTPPPAEEEEDELYRQSLE   180 

Canine 121 SPEEELDGYEPEPLGKRPAVLPLLELVGEASSGPGMDGSLPSTPPPAEEEEDELYRQSLE   180 

Murine 102 SPEEELDGCEPEAIGKRPAVLPLLERVSEAAKSSGADGSLPSTPPPPEEEEDDLYRQSLE   161 

 

 

Human 181 IISRYLREQATGAKDTKPMGRSGATSRKALETLRRVGDGVQRNHETAFQGMLRKLDIKNE   240 

Canine 181 IISRYLREQATGAKDAKPLGGSRAASRKALETLRRVGDGVQRNHETAFQGMLRKLDIKNE   240 

Murine 162 IISRYLREQATGSKDSKPLGEAGAAGRRALETLRRVGDGVQRNHETAFQGMLRKLDIKNE   221 

 

 

Human 241 DDVKSLSRVMIHVFSDGVTNWGRIVTLISFGAFVAKHLKTINQESCIEPLAESITDVLVR   300 

Canine 241 DDVKSLSRVIVHVFSDGVTNWGRIVTLISFGAFVAKHLKSINQESCIEPLAESITDVLVR   300 

Murine 222 GDVKSFSRVMVHVFKDGVTNWGRIVTLISFGAFVAKHLKSVNQESFIEPLAETITDVLVR   281 

 

 

Human 301 TKRDWLVKQRGWDGFVEFFHVEDLEGGIRNVLLAFAGVAGVGAGLAYLIR  350 

Canine 301 TKRDWLVKQRGWDGFVEFFHVEDLEGGIRNVLLAFAGVAGVGAGLAYLIR  350 

Murine 282 TKRDWLVKQRGWDGFVEFFHVQDLEGGIRNVLLAFAGVAGVGAGLAYLIR  331 
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Alignment for Bak 
 

 

Human   1 MASGQGPGPPRQECGEPALPSASEEQVAQDTEEVFRSYVFYRHQQEQEAEGVAAPADPEM    60 

Canine   1 MASGQGPGPPRRECGEAAPSSTSEEQVARDTEEVFRSYVFYRHRQEQEAEGAAVPADPEM    60 

Murine   1 MASGQGPGPPKVGCDES--PSPSEQQVAQDTEEVFRSYVFYLHQQEQETQGAAAPANPEM    58 

 

  

Human  61 VTLPLQPSSTMGQVGRQLAIIGDDINRRYDSEFQTMLQHLQPTAENAYEYFTKIATSLFE   120 

Canine  61 VTLPLEPSSTMGQVGRQLAIIGDDINQRYDSEFQAMLQHLQPTAENAYEYFTKIASSLFE   120 

Murine  59 DNLPLEPNSILGQVGRQLALIGDDINRRYDTEFQNLLEQLQPTAGNAYELFTKIASSLFK   118 

 

 

Human 121 SGINWGRVVALLGFGYRLALHVYQHGLTGFLGQVTRFVVDFMLHHCIARWIAQRGGWVAA   180 

Canine 121 SGINWGRVVALLGFGYRLALHVYQRGLTGFLGQVTRFVADFMLHHCIARWIAQRGGWVAA   180 

Murine 119 SGISWGRVVALLGFGYRLALYVYQRGLTGFLGQVTCFLADIILHHYIARWIAQRGGWVAA   178 

 

 

Human 181 LNLGNGPILNVLVVLGVVLLGQFVVRRFFKS  211 

Canine 181 LNLGNGPILNVLIVLSVVLLGQFVVRRFFKS  211 

Murine 179 LNFRRDPILTVMVIFGVVLLGQFVVHRFFRS  209 

 

 

 

Alignment for Bax var. alpha 
 

 

Human   1 MDGSGEQPRGGGPTSSEQIMKTGALLLQGFIQDRAGRMGGEAPELALDPVPQDASTKKLS    60 

Canine   1 MDGSGEQPRGGGPTSSEQIMKTGALLLQGFIQDRAGRMGGETPELPLEQVPQDASTKKLS    60 

Murine   1 MDGSGEQLGSGGPTSSEQIMKTGAFLLQGFIQDRAGRMAGETPELTLEQPPQDASTKKLS    60 

 

 

Human  61 ECLKRIGDELDSNMELQRMIAAVDTDSPREVFFRVAADMFSDGNFNWGRVVALFYFASKL   120 

Canine  61 ECLKRIGDELDSNMELQRMIAAVDTDSPREVFFRVAAEMFSDGNFNWGRVVALFYFASKL   120 

Murine  61 ECLRRIGDELDSNMELQRMIADVDTDSPREVFFRVAADMFADGNFNWGRVVALFYFASKL   120 

 

 

Human 121 VLKALCTKVPELIRTIMGWTLDFLRERLLGWIQDQGGWDGLLSYFGTPTWQTVTIFVAGV   180 

Canine 121 VLKALCTKVPELIRTIMGWTLDFLRERLLGWIQDQGGWDGLLSYFGTPTWQTVTIFVAGV   180 

Murine 121 VLKALCTKVPELIRTIMGWTLDFLRERLLVWIQDQGGWEGLLSYFGTPTWQTVTIFVAGV   180 

 

 

Human 181 LTASLTIWKKMG  192 

Canine 181 LTASLTIWKKMG  192 

Murine 181 LTASLTIWKKMG  192 
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Alignment for Bad 
 

 

Human   1 ------------------------------------------MFQIPEFEPSEQEDSSSA    18 

Canine   1 ------------------------------------------MFQIPEFEPSEQEDSSPA    18 

Murine   1 MGTPKQPSLAPAHALGLRKSDPGIRSLGSDAGGRRWRPAAQSMFQIPEFEPSEQEDASAT    60 

 

 

Human  19 ERGLGPSPAGDGPSGSGKHHRQAPGLLWDASHQQEQPTSSSHHGGAGAVEIRSRHSSYPA    78 

Canine  19 NRGLGPSPTGDRPPSPGKHQQTAPGLLGEAGHQQGQPASRKHHGGAGA-ETRSRHSSFPA    77 

Murine  61 DRGLGPSLTEDQP---GPY--LAPGLLGSNIHQQGRAATNSHHGGAGAMETRSRHSSYPA   115 

   

 

Human  79 GTEDDEGMGEEP-SPFRGRSRSAPPNLWAAQRYGRELRRMSDEFVDSFKKGLPRPKSAGT   137 

Canine  78 GTDEDEGMEEEELSPFRGRSSSAPPNLCAARRYGRELRRMSDEFQGSF-KGLPRPKSAGT   136 

Murine  116 GTEEDEGMEEEL-SPFRGRSRSAPPNLWAAQRYGRELRRMSDEFEGSF-KGLPRPKSAGT   173 

 

 

Human  138 ATQMRQSSSWTRVFQSWWDRNLG--------  160 

Canine  137 ATQMRQSPSWTRVIQSWWDRNLGRGGSAPSQ  167 

Murine  174 ATQMRQSAGWTRIIQSWWDRNLGKGGSTPSQ  204 

 

 

Alignment for Noxa (PMAIP1) 
 

 

Human   1 -------------------------------------------------MPGKKARKNAQ    11 

Canine   1 -------------------------------------------------MPGRKARKSAQ    11 

Murine   1 MPGRKARRNAPVNPTRAELPPEFAAQLRKIGDKVYCTWSAPDITVVLAQMPGKSQKSRMR    60 

 

 

Human  12 -PSPARAPAELEVECATQLRRFGDKLNFRQKLLNLISKLFCSGT   54 

Canine  12 -PGPTRAPEELEVECAIQLRKFGDKLNFRQKLLNLLSKLFRSGT   54 

Murine  61 SPSPTRVPADLKDECA-QLRRIGDKVNLRQKLLNLISKLFNLVT  103 

 

 

 

 

 

 

Legend: 

Alignments are slightly modified from a CLUSTAL format alignment by MAFFT (v7.182) 

Non-identical amino acids are labelled in bold red; 

domains (labelled in gray): BH1, BH2, BH3, BH4 = Bcl-2 Homology Domain 1 to 4; TM = Transmembrane domain;  

MTD = Mitochondrial Targeting Domain; PS = phosphorylation site (Serine or Threonine residues) 
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Figure legends 

 

Fig. 1  Interspecies conservation of protease (caspase and calpain) recognition motifs in 

indicated Bcl-2 family members.  

 

Fig. 2  Growth curves of yeast expressing Bcl-2 family proteins grown in minimal inducing 

medium. A: expression of proapoptotic proteins Bak and Bax impose marked growth 

retardation. B: co-expression of anti-apoptotic Bcl-2 family proteins abrogates the growth 

retardation effect of Bak and Bax. The curves are deduced from OD600 measurements at 6h 

intervals and are representative of two independent experiments. 

 

Fig. 3  Clonogenic assay of yeast cultures induced to express different Bcl-2 family proteins 

by growth in liquid galactose media for 24h (a) and 48h (b), followed by plating on non-

inducing, glucose containing, solid media, and growth for 72h at 30 °C. The columns indicate 

the mean value and standard error of the mean (SEM) of at least three independent experiments. 

Expression of Bak and Bax results in massively reduced clonogenicity. This effect is more 

pronounced after protein expression of 48h (b) compared to 24h (a) and is abrogated by co-

expression of anti-apoptotic proteins. Values for Bax and Bak are significantly different from 

all other values (** p<0.0001, *P=0.019, student’s t test). 

 

Fig. 4  Western blots of yeasts transformed with plasmids containing the indicated canine 

Bcl-2 family cDNAs, cultured in liquid inducing medium for 24 h and labelled with the 

indicated antibodies. Relevant marker sizes are indicated. (a): lane 1, vector only; lane 2, Bcl-

w; lane 3, Bcl-w+Bak; lane 4, Bcl-w+Bax; lane 5, Bcl-x+Bak; lane 6, Bcl-x+Bax, lane 7, 



 

 

Mcl-1+Bak; lane 8, Mcl-1+Bax. (b): lane 1, vector only; lane 2, Bcl-w. (c): lane 1, vector 

only; lane 2, Bcl-x. (d): lane 1, vector only; lane 2, Mcl-1. 

  



 

 

Figure 1 

 

  



 

 

Figure 2a 
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Figure 2b 
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Figure 3a 

 

 

  



 

 

Figure 3b 

 

 

  



 

 

Figure 4 

 

 

  



 

 

Table 1.  Primers for amplification of canine Bcl-2 family cDNAs 
      

Molecule Forward primer Reverse primer 

   
   

Bcl-xL (BCL2L1) 5`-CCATCCCTATTATAAAAATGTCTCA-3` 5`-GGGTAAGTGGGTGGTCAGTG-3` * 

Bcl-w (BCL2L2) 5`-GGATGGCGACCCCAGCC-3` 5`-GCTCACTTGCTCGCAAAAAAG-3` 

Mcl-1 5`-AGGAGCTTGCGATGTTCGG-3` 5`-CACTTAAAAGGCTATCTTATTAG-3` 

Bak 5`-GAGAAATGGCATCCGGGC-3` 5`-CCTCTGGGAGTCATGATTTG-3` 

Bax var. alpha 5`-TGATGGACGGGTCCGGGG-3` 5`-GGCCTCAGCCCATCTTTTTC-3` 

Bad 5`-AGAGCATGTTCCAGATCCC-3` 5`-GGACGCGGGACGGGTCAC-3` 

Noxa (PMAIP1) 5`-AGATGCCCGGCCGGAAG-3` 5`-ATCAAGGTTCCTGAGCGGAAG-3` 

      

Start- and stop-codons are indicated in bold  
* Stop-codon is upstream of primer sequence 

   
 

  



 

 

Table 2.   Accession numbers of Bcl-2 family members used in this study 
        

 Nucleotide and protein sequence accession number for indicated species  

Molecule Human1 Canine2 Murine1 

        
    

Bcl-2 isoform alpha NM_000633.2, NP_000624.2 AB154172.1, BAD05044.1  NM_009741.4, NP_033871.2 

Bcl-xL(BCL2L1) NM_138578.1, NP_612815.1 AB073983.1, BAB71819.1 NM_009743.5, NP_033873.3 

Bcl-w (BCL2L2) NM_004050.4, NP_004041.1 DQ116955.13, AAZ22484.13 NM_007537.1, NP_031563.1 

Mcl-1 NM_021960.4, NP_068779.1 AB093582.2, BAC21258.1 NM_008562.3, NP_032588.1 

Bak NM_001188.3, NP_001179.1 DQ002813.13, AAY19401.13 NM_007523.2, NP_031549.2 

Bax variant alpha NM_138761.3, NP_620116.1 AB080230.1, BAC53619.1 NM_007527.3, NP_031553.1 

Bad NM_004322.3, NP_004313.1 DQ127247.13, AAZ32936.13 NM_007522.3, NP_031548.1 

Noxa (PMAIP1) NM_021127.2, NP_066950.1 DQ449072.13, ABE02691.13 NM_021451.2, NP_067426.1 

        
    
1Reference Sequences available at NCBI 

2GenBank accession numbers 

3Own submission 

 

  



 

 

Table 3.  Interspecies comparison of Bcl-2 family 

members coding sequences  
              

Molecule 

No. of coding 

exons 
 Coding sequence 

identity 

Hu Ca Mu   Hu / Ca Hu / Mu 
       

Bcl-2 isoform alpha 2 ? 2  92% 89% 

Bcl-xL (BCL2L1) 2 2 2  97% 94% 

Bcl-w (BCL2L2) 2 2 2  95% 94% 

Mcl-1 3 3 3  89% 83% 
       

Bak 5 5 5  90% 80% 

Bax variant alpha 6 ? 6  93% 90% 
       
Bad 3 3 4  86% 65% 

Noxa 2 2 3  87% 40% 

              
       
Hu: human; Ca: canine; Mu: murine     
?: alignment to genome sequence incomplete    
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