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Abstract 23	

High-grade non-muscle invasive bladder cancer (HG-NMIBC) is a clinically unpredictable 24	

disease with greater risks of recurrence and progression relative to their low-intermediate-25	

grade counterparts. The molecular events, including those affecting the epigenome, that 26	

characterise this disease entity in the context of tumour development, recurrence and 27	

progression, are incompletely understood. We therefore interrogated genome-wide DNA 28	

methylation using HumanMethylation450 BeadChip-arrays in 21 primary HG-NMIBC 29	

tumours relative to normal bladder controls. Using strict inclusion-exclusion criteria we 30	

identified 1,057 hypermethylated CpGs within gene promoter-associated CpG islands, 31	

representing 256 genes. Bisulphite Pyrosequencing validated the array data and examined 32	

25 array-identified candidate genes in an independent cohort of 30 HG-NMIBC and 18 low-33	

intermediate-grade NMIBC. These analyses revealed significantly higher methylation 34	

frequencies in high-grade tumours relative to low-intermediate-grade tumours for the 35	

ATP5G2, IRX1 and VAX2 genes (p<0.05), and similarly significant increases in mean levels 36	

of methylation in high-grade tumours for the ATP5G2, VAX2, INSRR, PRDM14, VSX1, 37	

TFAP2b, PRRX1, and HIST1H4F genes (p<0.05). Although inappropriate promoter 38	

methylation was not invariantly associated with reduced transcript expression, a significant 39	

association was apparent for the ARHGEF4, PON3, STAT5a, and VAX2 gene transcripts 40	

(p<0.05). Herein, we present the first genome-wide DNA methylation analysis in a unique 41	

HG-NMIBC cohort, showing extensive and discrete methylation changes relative to normal 42	

bladder and low-intermediate-grade tumours. The genes we identified hold significant 43	

potential as targets for novel therapeutic intervention either alone, or in combination, with 44	

more conventional therapeutic options in the treatment of this clinically unpredictable 45	

disease. 46	

Key words: High-grade Non-Muscle Invasive Bladder Cancer, Epigenetics, Methylation, 47	

HumanMethylation450 BeadChip Array, Gene Expression 48	
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Introduction 49	

Bladder cancer is the ninth most common cancer worldwide.1 The majority of bladder 50	

cancers are transitional cell carcinomas (TCC), of which 70-80% are non-muscle invasive 51	

(NMIBC) at presentation.2 Poorly differentiated ‘high-grade’ (HG)-NMIBC is a clinically 52	

important sub-type, accounting for approximately 10-15% of all NMIBCs at presentation.3, 4, 53	

These high-grade tumours are typically more aggressive than their low- and intermediate-54	

grade counterparts, manifest by higher rates of recurrence and progression to invasive and 55	

metastatic disease despite intensive and prolonged intravesical treatment.5, 6  56	

 57	

The majority of NMIBCs are thought to be consequent to, and represent initiation and 58	

progression from, a complex interplay between sporadic, environmental, and heritable risk 59	

factors, including those that impact upon genetic and epigenetic pathways. NMIBCs and 60	

muscle invasive bladder cancers (MIBCs) have been shown to develop independently (‘the 61	

two pathway model’) on the basis of gain of function fibroblast growth factor receptor 3 62	

(FGFR3) mutations in NMIBC, and loss of function mutations in retinoblastoma 1 (RB1) and 63	

tumour protein 53 (p53) in MIBC,7-10 and have been shown to evolve from different cell 64	

types. 11, 12 However, the molecular pathways responsible for the evolution, outgrowth and 65	

progression of HG-NMIBC have not been subject to comprehensive study or investigation; 66	

indeed, it is currently unclear whether HG-NMIBCs arise as a discrete disease entity, 67	

whether they represent step-wise progression from low-intermediate-grade NMIBC tumours, 68	

or whether they sit at a molecular crossroads between NMIBC and MIBC.7, 13 11 This 69	

uncertainty is illustrated by the findings that high-grade tumours harbour abnormalities in 70	

common with low-intermediate-grade NMIBC, such as mutations of FGFR3 and/or rat 71	

sarcoma viral oncogene homolog (RAS) pathway genes14, 15, but also display extensive 72	

genetic instability and compromised regulation of vital cellular processes more in keeping 73	

with MIBC.14, 16 74	
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Epigenetic modifications are frequently implicated in the development of human 75	

malignancies, and in these cases, are typically apparent as inappropriate gene promoter 76	

CpG island DNA methylation, histone tail modification(s), aberrant expression of micro- and 77	

long non-coding-RNAs, and less frequently, loss of gene body/intergenic methylation.17, 18 78	

These heritable modifications, or epimutations, impact upon gene expression either alone or 79	

in combination, and promote tumour evolution and/or progression by suppressing the 80	

expression of growth inhibiting and/or apoptosis promoting genes, and less frequently by 81	

leading to relaxed control of expression of growth promoting genes.17, 19, 20 82	

Epigenetic modifications and associated gene silencing have been shown in NMIBC, and 83	

specific patterns of DNA methylation, histone modifications and microRNA expression have 84	

been reported as associated with tumour growth characteristics, patient/clinical outcomes 85	

and with field defect phenomena.21, 22 However, the majority of these reports have described 86	

epigenetic changes in heterogeneous populations of NMIBC, with an abundance of low- and 87	

intermediate-grade tumours relative to high-grade tumours. With the exception of our recent 88	

candidate-gene study23 and a single report investigating the Myopodin A gene24, HG-89	

NMIBCs have not been considered as a discrete entity for the investigation of epigenetic 90	

modifications. 91	

In this study, we interrogated DNA methylation on a genome-wide scale using methylation 92	

BeadChip-array technology, in a unique cohort of HG-NMIBCs. Through comparisons with 93	

methylation levels and gene-expression in low/intermediate-grade tumours, we extend the 94	

current understanding of bladder cancer tumourigenesis and identify potential epigenetic 95	

mechanisms implicated in the development of high-grade NMIBC, and those that might 96	

represent novel therapeutic drug-targets. 97	

  98	
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Results 99	

Technical Validation of array by Pyrosequencing: 100	

Subsequent to array processing, normalisation and peak-based correction (see patients and 101	

methods), a technical validation was performed by comparing array-derived β-values with 102	

Pyrosequencing-derived methylation values. Across 120 data-points (5 CpGs, 24 samples) 103	

encompassing a broad range of array β-values, a strong positive correlation was found 104	

between the methylation values (Spearman’s rank correlation r=0.912, p<0.00001; 105	

Supplemental Figure S1). 106	

 107	

In-house filtering criteria: 108	

CpGs showing differential methylation in HG-NMIBC relative to normal bladder controls were 109	

identified following a series of stringent filtering criteria, as described previously and shown 110	

in Figure 1.25, 26 On the basis of these criteria, a total of 1,057 CpGs, representing 256 111	

genes, were identified as hypermethylated (≥0.4 β-value increase) in 15 or more of the 21 112	

high-grade tumours, relative to their mean values in the normal bladder controls. 113	

 114	

Hierarchical clustering analyses: 115	

The filtered dataset was next subject to unsupervised hierarchical cluster analysis (Figure 116	

2): the high-grade tumours cluster independently from the normal bladder control samples. 117	

In these cases, methylation is barely detectable within the normal bladder samples, whereas 118	

15 or more of the high-grade tumours show inappropriate methylation across all 1,057 CpG 119	

dinucleotides, spanning 256 gene-promoter-associated CpG islands (Supplemental Table 120	

S2).  121	

 122	
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Independent validation by Pyrosequencing: 123	

We next selected 25 genes for independent validation by Pyrosequencing on the basis of 124	

their frequent methylation in the discovery cohort that comprised 21 high-grade tumours. 125	

These analyses revealed similar frequencies and mean levels of methylation as those 126	

apparent from the BeadChip array for 24 of the 25 genes. As further confirmation, we 127	

extended the Pyrosequence analyses to an independent investigation cohort of 30 HG-128	

NMIBC tumours. Similar frequencies and mean levels of methylation between the discovery 129	

and investigation cohorts reinforced our confidence in the array-derived data (Supplemental 130	

Table S3). At this stage, and to assess for potential confounders, we assessed associations 131	

between patient demographic data and methylation patterns across these 25 genes, using 132	

separate multivariate models. No correlations were identified in these analyses, suggesting 133	

demographic factors did not significantly impact upon the methylation patterns identified 134	

(data not shown). 135	

 136	

Differential subtype-specific promoter methylation in NMIBC: 137	

We next determined methylation across the 25 genes described above in HG-NMIBC 138	

relative to that apparent in low-intermediate-grade tumours and in comparison to normal 139	

bladder controls (Supplemental Table S4). Similar to other groups27 28, we displayed these 140	

methylation data, across the high-grade and low-intermediate-grade tumours and normal 141	

controls, by heatmap (Figure 3). This demonstrated heterogeneous patterns of methylation 142	

across the 51 high- and 18 low-intermediate-grade tumours relative to the normal bladder 143	

controls. Gene-specific differences in methylation were apparent between the high-grade 144	

tumours and their low-intermediate-grade counterparts on visual inspection. Closer 145	

examination of these data showed that the differences appeared to impact on either the 146	

relative frequency and/or the mean levels of methylation between these tumour subtypes. As 147	
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examples of these differences, the ten most differentially methylated genes are shown in 148	

Table 1.  149	

 150	

Methylation frequencies in high- and low-intermediate-grade tumours: 151	

For ten of the genes we took forward for further analyses (ATP5G2, HIST1H4F, INSRR, 152	

IRF8, IRX1, PRDM14, PRRX1, TFAP2b, VAX2 and VSX1), there was an higher frequency of 153	

methylation in high-grade tumours versus low-intermediate grade tumours (Table 1). 154	

Moreover, the increases were statistically significant for the ATP5G2, VAX2 and IRX1 genes 155	

(p<0.05), and approached significance for the INSRR, IRF8, PRDM14 and VSX1 genes.  156	

 157	

Mean levels of methylation in high- and low-intermediate-grade tumours: 158	

The mean levels of methylation in the high-grade tumours were next assessed by 159	

Pyrosequencing (right-sided panel of Table 1, and Figure 4); for eight of the ten genes, 160	

mean levels of methylation were significantly greater in high-grade tumours relative to their 161	

low-intermediate-grade counterparts. In addition, and as low-intermediate-grade tumours 162	

were not subject to array analyses relative to normal bladder, further pairwise-testing was 163	

performed. This analysis identified significant differences between mean levels of 164	

methylation in the low-intermediate-grade tumours and normal bladder in four of the ten 165	

genes assessed. The range, distribution and mean levels of methylation are shown in 166	

Figure 4, and show for each of the genes, a stepwise trend toward increasing methylation 167	

from normal bladder to low-intermediate and high-grade tumours. 168	

 169	

Methylation-Associated Changes in Gene Expression: 170	
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Across the high-grade NMIBC tumours, sufficient sample was available for gene expression 171	

analyses for 17 of the 25 genes. With the exception of the ARHGEF4 gene, promoter-172	

associated CpG island methylation was negatively correlated with transcript expression for 173	

all genes assessed (data not shown). Furthermore, the presence of promoter methylation 174	

was significantly correlated with reduced transcript expression for the PON3, STAT5a and 175	

VAX2 genes (Spearman’s correlation coefficients -0.60, -0.50 and -0.48 respectively, all 176	

p<0.05). Conversely, promoter methylation was significantly positively correlated with gene 177	

transcript expression for the ARHGEF4 gene (Spearman’s correlation coefficient 0.62, 178	

p<0.05). Figure 5 shows the expression levels for these four genes across the high-grade 179	

tumours. 180	

 181	

Gene Ontology analysis of inappropriately methylated genes: 182	

Gene Ontology analyses of the 256 differentially methylated genes identified ‘over-183	

representation’ of multiple categories of biological processes, molecular functions and 184	

pathways. In particular, highly significant over-representation was identified for specific 185	

biological processes, including regulation of RNA polymerase II activity and DNA 186	

transcription, and for pathways involving cell adhesion and PI3K-Akt signalling 187	

(Supplemental Table S5). 188	

  189	
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Discussion 190	

In common with most other tumour types, bladder cancers harbour epigenetic aberrations 191	

which are frequently apparent as inappropriate DNA methylation.8, 22, 29 However, reports are 192	

limited and largely confined to heterogeneous patient cohorts of NMIBC or MIBC;30 despite 193	

their clinical importance, high-grade NMIBC tumours are rarely investigated as a discrete 194	

entity in the context of disease and/or subtype-specific epigenetic modifications.23 To 195	

address this, we performed genome-wide analyses of DNA methylation using BeadChip 196	

array technology in high-grade NMIBC, comprising a discrete cohort of tumours recruited at 197	

initial presentation. This analysis, the first ‘450K array’ interrogation in bladder cancer, 198	

revealed multiple and novel frequently differentially methylated genes in these tumours 199	

relative to normal bladder. Through Pyrosequence analysis of sodium bisulphite converted 200	

DNA, we extended our analyses to include independent cohorts of high- and low-201	

intermediate-grade tumours. These investigations confirmed the array-derived data for the 202	

high-grade tumours, and showed them as harbouring significantly increased frequencies 203	

and/or mean levels of gene-specific methylation relative to low-intermediate-grade tumours. 204	

Moreover, for some of the genes investigated, a significant inverse correlation between 205	

promoter methylation and gene expression levels was apparent and suggests their potential 206	

as targets for therapeutic intervention.29 31 32 207	

 208	

Initially we performed a technical validation of the discovery cohort data by Pyrosequence 209	

analysis of converted DNA.25 33 34 In common with previous reports and across multiple 210	

genes, these analyses confirmed and reinforced the array-derived data.34 35 36 These 211	

analyses also showed that for the majority of regions investigated, methylation extended to 212	

include contiguous promoter-associated CpG sites. On the basis of  previous reports from 213	

our own and other groups,37 38 we employed stringent criteria (β-value differences ≥0.4) to 214	

identify differentially methylated genes across multiple CpG sites; such criteria are more 215	
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consistently associated with bona fide changes in methylation, and are more likely to show 216	

associations with gene expression.37, 39 40, 41 217	

The analysis of the discovery cohort of high-grade NMIBC identified 1,057 CpGs, across 256 218	

gene-promoter-associated CpG islands. Cluster analysis and heat map display of these 219	

regions revealed extensive and frequent differential methylation in the tumours relative to 220	

normal bladder controls. As our study represents the first 450K analysis of high-grade 221	

bladder cancer a direct ‘like-for-like’ comparisons of our findings with those of other groups 222	

was not possible; however, the number of differentially methylated sites we identified 223	

appeared to be lower than those previously reported in other tumour types.42 43 Potential 224	

explanations for these findings are the tumour type per se and/or the stringency of our 225	

inclusion-exclusion criteria and definition of differential methylation.44  226	

For the genes identified, we performed gene ontology and KEGG pathway analyses. In 227	

these cases we identified significant over-representation of genes in processes and 228	

pathways previously reported by other groups as subject to epigenetically-mediated 229	

dysregulation in tumour development. For examples, these included transcription and cell 230	

signalling and adhesion45-47, suggesting possible similar roles in high-grade bladder tumours, 231	

and their validity as targets for further investigation. 232	

We next extended our investigation of multiple novel genes to an independent cohort of 233	

high-grade tumours, and a cohort of low-intermediate-grade tumours for comparison. Similar 234	

frequencies and mean levels of methylation, as determined by Pyrosequence analysis, were 235	

apparent within the discovery and investigation cohorts of high-grade tumours, suggesting 236	

our approach for the identification of candidates by array analysis was robust. Interestingly, 237	

many of the genes identified as novel and differentially methylated were also inappropriately 238	

methylated in low-intermediate-grade tumours. However, and despite the absence of genes 239	

as being exclusively associated with either high- or low-intermediate-grade tumours, the 240	

frequency and mean levels of gene-promoter methylation in the high-grade tumours were 241	
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significantly higher than in the low-intermediate-grade tumours. Indeed, similar observations 242	

with respect to differences in the frequencies of methylation between high- and low-grade 243	

bladder tumours were first suggested by Ibragimova et al.47 Similar subtype and/or grade-244	

associated differences have been reported in other tumour types including, pituitary, breast, 245	

and colon cancer subtypes.37, 48, 49 In our analysis of NMIBC it remains unclear whether the 246	

increase in frequency and/or mean levels of methylation in the more aggressive tumours 247	

represents a more rapid accumulation of epigenetic changes during tumour progression, or 248	

reflects distinct epigenetic pathways of tumour development and outgrowth.50, 51 Our findings 249	

may therefore reflect either of the described scenarios in the more aggressive (high-grade) 250	

tumours and suggests that these tumours are either consequent to progression from low-251	

intermediate-grade tumours, or are the progeny of aberrations in distinct epigenetic 252	

pathways within these NMIBC subtypes. Moreover, the identification of different patterns of 253	

methylation between tumours represents an important area for future investigation. In this 254	

case, methylation may hold promise as an ‘at diagnosis’ biomarker of long-term tumour 255	

outcome, similar to that described in colorectal, breast and lung cancers. 52-54 256	

Although many of the novel genes we identified have not been previously reported in 257	

bladder cancer, their inappropriate methylation, accompanied with gene-silencing, has been 258	

reported in the context of other tumour types and suggests potential roles as tumour 259	

suppressor genes.55, 56 57 To determine associations between methylation and gene 260	

expression, we confined our studies to genes showing frequent and/or high mean levels of 261	

methylation. For the majority of gene-transcripts we investigated, promoter methylation was 262	

negatively correlated with reduced transcript expression, although not significantly so (data 263	

not shown). However, as described by our own and other groups, this may reflect a 264	

passenger-driver phenomenon where, in the ‘passenger’ context, gene expression is not 265	

directly influenced by the observed epigenetic modification(s).58	 59	 However, for four of 266	

seventeen transcripts we examined, significant correlations between methylation and 267	

transcript expression were apparent. In these cases, and for the PON3, STAT5a and VAX2 268	
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genes, promoter methylation was significantly associated with reduced gene expression, 269	

whilst the converse was true for the ARHGEF4 gene. Such associations are similar to those 270	

described previously in multiple other cancers and in NMIBC.	20, 21 43	 Indeed, for two of these 271	

genes, PON3 and STAT5a, previous studies in mice and cell-line models have described 272	

potential tumour suppressor roles.60 61 If this is the case, then these genes may represent 273	

important targets for further studies of functional the significance of methylation and reduced 274	

expression in a bladder tumour context, including in-vitro investigations of de-methylating 275	

agents designed to restore gene expression. 276	

In summary, we have presented the first comprehensive genome-wide DNA methylation 277	

analysis of NMIBC in a unique cohort of high-grade tumours. The study has reported an 278	

increase in the frequency and/or mean levels of methylation at gene promoter-associated 279	

CpG islands in high-grade tumours relative to their low-intermediate-grade tumour 280	

counterparts, that in some cases is associated with reduced gene expression. These 281	

findings suggest that epigenetic modifications, alone or in combination with other 282	

aberrations, are causal in the development and/or progression of this tumour type. Further 283	

studies are required to assess the functional significance of epigenetic changes in HG-284	

NMIBC; however, we suggest that the genes identified hold significant potential as targets 285	

for novel therapeutic interventions alone, or in combination, with conventional therapeutic 286	

options in the treatment of this clinically unpredictable disease. 287	

 288	

 289	

  290	
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Patients and methods 291	

Human tissue samples 292	

Primary tumour and normal bladder tissues used were provided by the Bladder Cancer 293	

Prognosis Programme (BCPP, National Research Ethics Service East Midlands - Derby 294	

06/MRE04/65.)62, the University of Birmingham Human Biomaterials Resource Centre 295	

(National Research Ethics Service (North West 5): 09/H1010/75), and the University 296	

Hospitals of North Midlands NHS Trust (National Research Ethics Service (South Central – 297	

Oxford C): 12/SC/0725). All samples were confirmed histologically as normal bladder 298	

urothelium (control, n=4), G3pT1 TCC (high-grade: discovery cohort n=21, investigation 299	

cohort n=30), and G1/2 pTa/1 TCC (low/intermediate-grade: n=18). As previously 300	

described23, patients received repeat bladder tumour resection (TURBT), cystectomy and/or 301	

intra-vesical therapy as recommended by European Association of Urology guidelines.63 All 302	

samples (details are provided in Supplemental Table S1) were stored at -80oC prior to 303	

nucleic acid extraction, as described below. 304	

 305	

DNA extraction and bisulphite modification 306	

Genomic DNA was extracted from tumour and control tissues using a standard phenol-307	

chloroform procedure 64, then bisulphite-converted using the EZ DNA Methylation Gold kit 308	

(Zymo Research) as we have previously described.37 Bisulphite-conversion of DNA was 309	

confirmed in all cases by successful PCR using primers specific to bisulphite-converted DNA 310	

(primer sequences in Supplemental Table S6). To increase the relative amount and stability 311	

of bisulphite-converted DNA, whole-genome amplification (WGA) was performed as 312	

previously described.37 313	

 314	

 315	
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Illumina 450K Methylation Bead-Array Analyses 316	

Bisulphite-converted DNA from 21 bladder tumours and three normal controls was 317	

hybridised to Infinium-based HumanMethylation450 BeadChip arrays (Illumina, San Diego, 318	

CA, USA) to quantify DNA methylation at approximately 480,000 CpG positions across the 319	

genome, representing more than 21,000 RefSeq genes. In this case, normal bladder was 320	

used as control for consistency with previous array analyses 35, 47, 65, and also to permit 321	

comparisons with earlier reports of non-muscle invasive bladder cancer. Arrays were 322	

processed according to the manufacturer’s instructions (performed by Barts and the London 323	

Genome Centre, UK), as described by us previously.66  324	

Raw array data were processed using GenomeStudio software and the bioinformatical 325	

platform ‘NIMBL’, as we 67, 68 and others69 have described. For each probe, the methylation 326	

status was reported as a methylation ‘β-value’, where ‘β’ is defined as the ratio of the 327	

methylated signal intensity over the summed intensity of the methylated and unmethylated 328	

signals + 100.40 β-values range from 0 (unmethylated) to 1 (fully methylated). NIMBL was 329	

used to perform ‘peak-based’ correction, to adjust for potential differences in array probe-330	

type sensitivity previously reported33; all comparative analyses of high-grade tumours to 331	

normal bladder controls, were performed on peak-based corrected β-values, as described by 332	

us previously.68  333	

Each array passed quality control assessment based upon the performance of internal 334	

controls and the distribution of β-values across all array CpGs. As previously described68, 335	

and represented by step 1 of Figure 1, we excluded all CpGs for which any of the 24 336	

samples displayed: (i) probe detection p-values >0.05 (unreliable probe data), or (ii) missing 337	

β-values (preventing analyses of all samples). We also excluded all CpG loci on allosomes 338	

(reducing confounding gender-based methylation differences). We used a series of stringent 339	

filtering criteria, shown in Figure 1 and described in the Results section, to identify 340	
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inappropriate methylation, defined as a β-value difference ≥0.4, in tumour samples relative 341	

to the mean of the normal bladder controls. 342	

 343	

Unsupervised hierarchical clustering using average linkage criteria was performed using 344	

Genesis software (v1.7.6).70 Gene Ontology (GO) analyses were performed using 345	

http://geneontology.org/ and http://gather.genome.duke.edu/, and Kyoto Encyclopaedia of 346	

Genes and Genomes (KEGG) analyses with http://www.genome.jp/kegg/ online platforms, 347	

respectively. Bonferroni correction71 was employed in all GO and KEGG pathway analyses. 348	

 349	

Technical validation of Methylation Bead-Chip Array Data 350	

Five CpG loci encompassing a broad range of β-values derived from 450k array analyses, 351	

were assessed by Pyrosequencing (described below), using identical samples, to 352	

independently validate the array data (β-values vs. methylation %). Correlation between the 353	

methods was assessed across a total of 120 CpGs using Spearman’s rank correlation, as 354	

shown in Supplemental Figure S1. Primer sequences are provided in Supplemental Table 355	

S6. 356	

 357	

Pyrosequencing™ of sodium bisulphite-converted DNA 358	

Validation of array data (discovery cohort) and further quantitative assessment of 359	

methylation in the independent (investigation) tumour cohort were performed by 360	

Pyrosequencing of sodium bisulfite-converted DNA, as previously described by us66, using a 361	

PyroMark Q24 Pyrosequencer, PyroMark Q24 Software 2.0 and PyroMark Gold Q24 362	

Reagents. Dependent on the specific gene, and the density of CpGs within their promoter-363	

associated CpG island, between five and nine consecutive CpG sites were assessed. 364	

Promoter methylation was defined in tumours if the mean level of methylation across the 365	

assessed CpG island was greater either than four standard deviations (4SD), or 20% above, 366	
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the mean of the normal controls.37 The number of tumours methylated for any given gene 367	

describes the frequency of methylation, whereas the mean percentage methylation per se of 368	

all of the CpGs surveyed within a gene describes the mean level of methylation. 369	

 370	

Quantitative RT-PCR 371	

Total RNA was extracted from control and tumour samples using a standard guanidinium 372	

thiocyanate-phenol-chloroform protocol 72. Complementary DNA (cDNA) was synthesised as 373	

described previously73. Thermal cycling using SYBR Green was as previously described74, 374	

with target genes normalised to glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as 375	

the endogenous control gene (Supplemental Table S6). Relative quantification of transcript 376	

expression was performed using the 2-∆∆ cycle threshold (CT) method75, and as previously 377	

described76. Reduced transcript expression in a tumour was defined where expression was 378	

at least 3-fold lower than the mean level of expression observed in control samples; the 379	

converse was true for increased transcript expression.37 38 77 380	

 381	

Non-Array Informatics and statistics. 382	

STATA (version 8, Stata Corporation, College Station, TX) was used to analyse methylation 383	

and gene expression data in tumour and normal cohorts using Fisher’s exact tests 384	

(frequency of methylation), Student’s t-tests (mean level of methylation), and Spearman 385	

correlation coefficients (associations between methylation and gene expression). p-values 386	

<0.05 were considered statistically significant. 387	

  388	
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East Midlands - Derby: 06/MRE04/65. 390	

The University of Birmingham Human Biomaterials Resource Centre (National Research 391	

Ethics Service (North West 5): 09/H1010/75. 392	

The University Hospitals of North Midlands NHS Trust (National Research Ethics Service 393	

(South Central – Oxford C): 12/SC/0725. 394	
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Reagents 396	

EZ DNA Methylation Gold kit, Zymo Research, D5005 397	

HumanMethylation450 BeadChip arrays, Illumina, WG-314-1003 398	

PyroMark Gold Q24 Reagents, Qiagen, 970802 399	

SYBR III brilliant green, Agilent, 600882 400	

  401	
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Figure Legends 636	

 637	

Figure 1. Array filtering steps. Summary of the steps implemented for the identification of 638	

CpGs hypermethylated in HG-NMIBC. The initial filtering steps (*) included exclusion of non-639	

significant probe data, probes with missing data and probes located on allsomes.  640	

RefSeq (National Center for Biotechnology Information Reference Sequence Database). 641	

CpG island based upon the UCSC genome browser definition from Gardiner-Garden and Frommer78.  642	

 643	

Figure 2. Unsupervised hierarchical clustering analysis of the 1,057 gene promter-644	

associated hypermethylated CpGs in HG-NMIBC. Heatmap and dendrogram of 645	

differentially methylated gene promoter-associated CpG sites identified by array analysis. 646	

The dendrogram above the heatmap separates normal bladder (green bar, n=3) and high-647	

grade-NMIBC bladder tumours (red bar, n=21). Each row represents an individual CpG 648	

locus, and each column represents a normal control or tumour sample (listed beneath the 649	

heatmap). The colour scale beneath the heatmap represents methylation status: 650	

unmethylated is yellow (β-value=0.0), and fully methylated is blue (β-value=1.0). 651	

 652	

Figure 3. Heatmap for 25 hypermethylated gene promoter-associated CpG islands. 653	

Pyrosequencing validation of 25 gene promoter-associated CpG islands, identified as 654	

frequently differentially methylated in high-grade tumours by 450k BeadChip-array analysis. 655	

As indicated above the heatmap, the four normal bladder controls are presented to the left-656	

side of the heatmap, followed by 18 low-intermediate-grade tumours, and 51 high-grade 657	

tumours (the combined discovery and investigation cohorts). Each row represents the 658	

promoter-associated CpG island of the indicated gene, and each colour block the mean level 659	

of methylation across the island. The colour scale beneath the heatmap represents 660	

methylation status: unmethylated is green (0.0% methylation), and fully methylated is red 661	

(100.0% methylated). 662	
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Figure 4. Mean levels of methylation in high-grade tumours relative to low-663	

intermediate-grade tumours and normal bladder. Top ten genes showing an increase in 664	

mean level of methylation (solid red bar) in high-grade tumours (HG, n=51) relative to low-665	

intermediate-grade tumours (LG, n=18) and in comparison to normal bladder controls (C, 666	

n=4). Each individual control or tumour sample is shown as an unfilled blue circle. Significant 667	

differences in the mean levels of methylation between the low-intermediate- and high-grade 668	

tumours, or between control and low-intermediate-grade tumours, are indicated by *, p<0.05, 669	

or **, p<0.005 (Student’s T-test). 670	

 671	

Figure 5. Association of methylation with gene transcript expression in HG-NMIBC. 672	

Tumour transcript expression in unmethylated (UM, unfilled circles) and methylated (M, filled 673	

circles) high-grade tumours, relative to normal bladder control (C, unfilled triangles) for the 674	

four genes showing significant Spearman’s correlation coefficients between promoter 675	

methylation and gene expression (PON3, STAT5a, VAX2 and ARHGEF4; p=0.0006, 676	

p=0.005, p=0.013 and p=0.0007, respectively). The double-headed arrow represents the 677	

threshold for 3-fold reduced expression relative to the mean of the normal controls (solid 678	

blue bar); expression at or below this threshold signifies reduced expression in tumour 679	

samples.  680	

 681	

 682	

  683	
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Tables 684	

 685	

 
METHYLATION	
	FREQUENCY  

MEAN	LEVEL	OF	
METHYLATION  

Gene	
Symbol 

High-grade Low-intermediate-
grade 

 High-grade Low-intermediate-
grade 

 

 Number			(%) Number			(%) P	value (%) (%) P	value 

ATP5G2 37/51		(72.5) 6/18		(33.3) 0.005 51.04 30.20 0.029 

VAX2 13/51		(25.5) 0/18		(0.0) 0.015 32.31 19.56 0.004 

IRX1 37/51		(72.5) 8/18		(44.4) 0.045 49.47 38.70 0.067 

INSRR 29/51		(56.9) 5/18		(27.8) 0.054 24.06 24.06 0.028 

IRF8 25/51		(49.0) 4/18		(22.2) 0.057 26.13 17.99 0.157 

PRDM14 45/51		(88.2) 12/18		(66.7) 0.066 60.14 46.06 0.029 

VSX1 44/51		(86.3) 12/18		(66.7) 0.086 56.37 38.26 0.0004 

TFAP2b 22/51		(43.1) 4/18		(22.2) 0.160 32.25 17.68 0.047 

PRRX1 27/51		(52.9) 7/18		(38.9) 0.413 47.03 34.36 0.041 

HIST1H4F 42/51		(82.4) 13/18		(72.2) 0.496 59.46 41.91 0.017 

 686	

Table 1. Genes showing the greatest methylation increase in high-grade relative to 687	

low-intermediate-grade NMIBC tumours. Top ten genes showing an increase in frequency 688	

of methylation (left side of table), and/or an increase in mean level of methylation (right side 689	

of table) in high-grade tumours relative to low-intermediate-grade tumours. For the left side 690	

of the table, the number and proportion of tumours methylated are displayed for the low-691	

intermediate- and high-grade cohorts, with p-value (Fishers exact, p<0.05 significant). For 692	

the right side of the table, the mean level of methylation across the low-intermediate- and 693	

high-grade tumour cohorts are displayed with p-value (Student’s T-Test, p<0.05 significant). 694	

Statistically significant p-values are displayed in bold. 695	
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Supplemental Data 696	

 697	

Figure S1. Technical validation of 450k BeadChip-array data. Correlation between array-698	

derived β-values (x-axis) and methylation percentage as determined by Pyrosequencing (y-699	

axis) for 5 CpGs (cg07778029, cg14456683, cg01227537, cg05661282 and cg26465391) 700	

across 24 samples is shown. Spearman-rank correlation coefficient r=0.912; p<0.00001. 701	

 702	

Table S1. Sample characteristics. 703	

 704	

Table S2. List of 256 differentially methylated genes. 705	

 706	

Table S3. Methylation in discovery and investigation high-grade tumour cohorts. 707	

 708	

Table S4. Frequency and mean levels of methylation in 25 genes for high- and low-709	

intermediate-grade tumours. 710	

 711	

Table S5. Gene Ontology and KEGG pathway annotation lists. 712	

 713	

Table S6. Primer sequences.	714	

 715	

 716	

 717	


