
A comparison of simple methods to
incorporate material temperature

dependency in the Green’s function method
for estimating transient thermal stresses in

thick walled power plant components

J. P. Rouse∗1 and C. J. Hyde1

1Department of Mechanical, Materials and Manufacturing

Engineering, University of Nottingham, Nottingham,

Nottinghamshire, NG7 2RD, UK

Abstract

The threat of thermal fatigue is an increasing concern for thermal power

plant operators due to the increasing tendency to adopt “two-shifting” op-

erating procedures. Thermal plants are likely to remain part of the energy

portfolio for the foreseeable future and are under societal pressures to gen-

erate in a highly flexible and efficient manner. The Green’s function method

offers a flexible approach to determine reference elastic solutions for tran-

sient thermal stress problems. In order to simplify integration, it is often

assumed that Green’s functions (derived from finite element unit temperat-

ure step solutions) are temperature independent (this is not the case due

to the temperature dependency of material parameters). The present work

offers a simple method to approximate a material’s temperature depend-

ency using multiple reference unit solutions and an interpolation procedure.

Thermal stress histories are predicted and compared for realistic temperat-

ure cycles using distinct techniques. The proposed interpolation method
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generally performs as well as (if not better) than the optimum single Green’s

function or the previously-suggested weighting function technique (partic-

ularly for large temperature increments). Coefficients of determination are

typically above 0.96, and peak stress differences between true and predicted

datasets are always less than 10 MPa.
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1 Introduction

There is a clear need in many industries to be able to predict the long-term
behaviour of components operating in demanding environments in order to
prevent/understand material failure. The aim is that with a greater understand-
ing of how a component reacts due to a particular loading pattern, remnant life
can be quantified. With this confidence, plant efficiency and longevity could be
maximised safely. In particular, pressure is mounting on thermal power plant
operators to generate electricity in an efficient and economical manner. Unit
loads are expected to fluctuate with higher frequencies and steeper “ramp up
and down” rates as drivers attempt to match market demands. Such so-called
“two-shifting” or “partial-load” operating conditions have been in use for many
years1; however, concern over their implementation is mounting as the amount
of time a plant has to come on line reduces2. Generally, as steam pressures and
temperatures vary with time, potentially large thermal stresses will develop in
thick-walled components, such as steam headers. The fluctuation of total stress
(mechanical and thermal) in components makes fatigue an important structural
integrity concern in power plant components; a problem that is significantly
complicated by the transient nature of thermal stresses. The present work looks
to establish a technique based on the Green’s function method that estimates
transient thermal stresses while accounting for temperature-dependent material
properties.

Many novel monitoring systems have been developed for assessing the
structural integrity of at-risk power plant components, including “on line” man-
agement systems that monitor power station load characteristics (such as main
steam temperature and pressure) and estimate component degradation using
generalised finite element models and creep/fatigue damage fraction rules3–6.
An example of one of these products is Areva’s fatigue monitoring system
FAMOSi (Erlangen, Germany)7,8, where thermal loads are recorded using on site
thermocouples and converted to thermal stresses using FEA (finite element ana-
lysis) models at critical points in a system. Alternatively, accurate stress histories
in a component may be estimated through bespoke analyses utilising complex
visco-plastic material models9; however, this is commonly computationally
intensive and is typically impractical for on line component assessment.

While these advances have shown some success, established design codes
and analysis procedures are still by far the most commonly-used tools in in-
dustry for component fitness assessment, along with frequent inspection during
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outage periods10. In the UK, the R511,12 procedure is commonly used for high
temperature assessment and the R613 procedure for low temperature fracture
assessment of power plant components. These step by step methods usually
involve decomposing a loading history into cycles. The likelihood of failure by
various mechanisms, such as plastic collapse, creep and fatigue, is calculated by
estimating damage accumulation and mechanism interaction factors.

The Green’s function method provides a general approach to estimate the
transient linear elastic thermal stress responses at a point in a structure by in-
tegrating the response due to a unit thermal load change. In the context of
steam headers, thermal stress histories may be estimated at a point of interest
for any bulk steam temperature history. While limited to linear analysis (due
to the inherent summation during integration), the Green’s function method
is still of use in component failure assessment, particularly where damage is
suspected to be localised. The Green’s function method (see Section 2.2) has
been show to be a useful tool in predicting transient thermal stresses by sev-
eral authors. In particular, the technique has been applied to fatigue analysis
problems in the nuclear power industry14–16. It has often been assumed (for
simplicity of integration) that Green’s functions are temperature independent.
In reality, this is not the case due to variations in material properties with tem-
perature. The work of Koo et al. suggested the implementation of a temperature-
dependent weighting function17; however, this neglects second order variations
(i.e., it assumes time-independent scaling of Green’s function). The present work
looks to compare this method to a developed interpolation procedure in order
to establish the importance of these second order effects.

2 Background

2.1 The Thermoelastic Problem

The governing equations for a linear coupled thermoelastic problem may be
derived from the fundamental principles of mechanics and thermodynamics.
When loads applied to a body give rise to variations in strain within the body,
variations in temperature are also observed. This causes heat flow and therefore
an increase in entropy for the body (this irrecoverable mechanical dissipation
is known as thermoelastic dissipation). There is an internal generation of heat
due to mechanical deformation that will affect the temperature field within a
body in addition to any thermal boundary conditions. Deformation, however, is
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not only controlled by the application of, say, body forces. Temperature fields
cause thermal expansion within elements of the body, generating additional
internal surface forces between the elements. There exists therefore a coupling
between the solutions for temperature and displacement fields, T(P, t) and
u(P, t), respectively (where P is a point within the body specified by coordinates
using the coordinate system x1, x2, x3 = x and t is time). For a linear coupled
thermoelastic problem, it may be shown that a unique solution may be found
(for a given set of initial and boundary conditions) using the heat equation with
mechanical coupling (Equation (1)), the equilibrium condition (Equation (2);
note the inclusion of an inertia term on the right hand side of the equation),
the strain-displacement relations (Equation (3)) and the stress-strain relations

(Equation (4))18. Note the use of indicial notation (
δgi

δxj
= gi,j, where gi is a vector

component in the i-th direction and xj is the basis vector in the j-th direction
of the coordinate system, i, j = 1, 2, 3) and the Einstein summation convention.
Note also that dots are used to denote derivatives with respect to time.

kT ,mm = ρCṪ + (3λ + 2µ) αT0ε̇kk (1)

σij,j + fi = ρüi (2)

εij =
1
2
(
ui,j + uj,i

)
(3)

σij = δijλεkk + 2µεij − δij (3λ + 2µ) αT (4)

where ε, σ and f are the small strain tensor, the stress tensor and the body force
vector field, respectively; T0 is a reference temperature at which, in the absence
of body forces, the material will be in a stress-free state. The material-dependent
parameters are thermal conductivity (k), density (ρ), specific heat capacity at
constant deformation (C) and the thermal expansion coefficient (α). Lamé’s
first and second parameter are defined in terms of Young’s modulus (E) and
Poisson’s ratio (ν) in Equation (5). δij is the Kronecker delta (δij = 1 if i = j, else
δij = 0).

λ =
Eν

(1 + ν) (1− 2ν)

µ =
E

2 (1 + ν)

(5)
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The existence of the coupling term in the energy equation (Equation (1))
greatly complicates the solution process for the thermoelastic problem (clearly,
temperature and displacement field solutions must be found simultaneously
to satisfy Equations (1)–(4) and the problem-specific initial and boundary con-
ditions). In general, temperature variations due to mechanical deformations
are small (particularly if the small strain theory is implemented). Similarly,
differences between heat transfer solutions in deformed and undeformed bodies
are also small (deformations from either thermal expansion or external mech-
anical agencies do not change the dimensions of the structure to such an extent
that heat transfer is significantly affected). If thermoelastic dissipation can be
neglected (as is almost always the case18), an uncoupled formulation may be
derived for the thermoelastic problem. In this case, internal heat generation due
to deformation is ignored, and temperature fields can be found first by solving
the well-known heat equation (Equation (6)), where κ is the thermal diffusivity
(κ = k/ρC). Once the temperature field has been determined, the correspond-
ing displacement field (dependent on thermal expansion and mechanical body
forces) may be found.

If the rate of change of the deformation rates are small (as is the case in
many engineering applications), inertia effects may be neglected, and the for-
mulation is termed quasi-static. In this case (with the absence of body forces),
the equilibrium equation simplifies to Equation (7). Strain-displacement and
stress-strain relations given in Equations (3) and (4), respectively, are still valid
in the uncoupled formulation.

κT ,mm = Ṫ (6)

σij,j = 0 (7)

2.2 The Green’s Function Method for Predicting Transient

Thermal Stresses

The thermoelastic problem has been defined in Section 2.1. Solutions for even
the uncoupled formulation with the component geometry used in the present
work (power plant steam header) are very complex and generally require nu-
merical methods (such as finite element analysis (FEA)) to estimate a solution. A
practical problem with this analysis strategy is that temperature, displacement
and, consequently, stress fields would need to be found for each new operating
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condition. It is not feasible to perform full FEA simulations of the header com-
ponents for each change to the bulk steam temperature or pressure. A solution
to this dilemma however exists through the use of Green’s functions.

It can be seen from Section 2.1 that the thermal stress solution is based on
the temperature field solution, both of which are unique and dependent on
the particular initial and boundary conditions of the problem. This uniqueness
allows the use of a Green’s function that finds the thermal stresses based on the
boundary conditions. It is therefore possible to determine the thermal stress
distribution without direct knowledge of the temperature or displacement fields.
As the present work is concerned with power plant header applications, the bulk
internal steam temperature may be used as a “driving” term for the thermal
stress field (it shall be assumed that external surfaces of the header are insulated,
and attention is restricted to the uncoupled formulation). Thermal stresses at
a point P in the header structure can be found by the integral in Equation (8),
where G(P, t− τ) is Green’s function, ψ(t) is the bulk internal steam temperature
and τ is the time integration variable.

σ(P, t) =
∫ t

0
G (P, t− τ)

dψ(τ)

dτ
dτ (8)

Numerical integration of Equation (8) may be accomplished using Equa-
tion (9), where
GSS(P) = lim

t→inf
G(P, t). In the present work, the temperature field is allowed to

reach equilibrium, and mechanical loads are not considered; therefore, GSS(P) =
0.

σ(P, t) = GSS(P)ψ(τ) +
t

∑
t−tCH

Ḡ (P, t− τ)∆ψ(τ) (9)

Ḡ (P, t− τ) represents the thermal stress response due to a unit temperature
step at the point of interest P (assuming no other loads are present in the struc-
ture). Green’s function may be represented by a sum of exponential terms (see
Equation (10)).

Ḡ(P, t) = exp

(
7

∑
m=1

Cm(P) (ln(t))m−1

)
(10)

The work of Koo et al. introduced temperature dependency in the Green’s
function method using a weighting function dependent on the bulk temperature
(W (ψ))17; see Equation (11). Note, for simplicity, this method will be refereed to
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as the “weight function” method for the reminder of the present work. Based on
the work of Koo et al., a fourth order polynomial has been assumed for use in a
comparison study (see Equation (12)).

σ(P, t) =
∫ t

0
G (P, t− τ)W (ψ)

dψ(τ)

dτ
dτ (11)

W (ψ) = A0 + A1ψ + A2ψ2 + A3ψ3 + A4ψ4 (12)

3 FEA Header models and Temperature Dependent

Material Properties

FEA models must be generated in order to determine the coefficients in Equa-
tion (10) and, thus, to define Green’s functions. FEA has been conducted in
the present work using the commercially-available code ABAQUS (Dassault
Systèmes, Paris, France). Since the present work looks to establish a method to
introduce temperature dependency in the Green’s function method, a simplified
two-stub penetration model has been used by way of example (see Figure 1a,
noting the plane of symmetry assumed between stub penetrations). Despite the
simplified geometry, shell and stub dimensions are similar to those found in
industry for P91 header components. Uncoupled thermoelastic analysis was
conducted by first determining a temperature field from a heat transfer sim-
ulation. An insulated exterior boundary condition was assumed (q̇ = 0) to
allow temperature fields in the model to reach equilibrium after the bulk steam
temperature experiences a step change. Heat conduction on the inside surface
of the header is controlled by convection (see Figure 1b), where the heat transfer
coefficient h is taken to be a temperature-independent constant 0.002 W/mm2K.
Once the transient temperature field has been determined, it can be used as
an input in mechanical analyses to estimate thermal stress histories. Boundary
conditions for the mechanical analysis can be seen in Figure 1c. An “equation”
type constraint19 is applied to the upper surface of the model (designated by
the label UZ = Constant in Figure 1c). This enforces equal displacements in the
Z direction between all nodes on this plane, thus ensuring it remains planar,
and the assumed symmetry holds. Tetrahedral quadratic elements where used,
namely DC3D10 (ABAQUS) for thermal analyses and C3D10 (ABAQUS) for
mechanical analyses (see Figure 1a for an example mesh)19. In has been indic-
ated in the literature that ligament cracking is a potential concern for header
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components, notably when thermal fatigue is a significant damage mechanism20.
As discussed previously, the Green’s function method allows for estimation of
stresses at a singular analysis point only. With these factors in mind and for the
illustration of the stress analysis potential of the Green’s function method, an
analysis point (P; see Figure 1a) is considered in the present work that represents
crack initiation at the inner bore20.

P

(a)

q̇ = hA∆T

(b)

Z

θr Uθ = 0
UZ = 0

UZ = Constant

(c)

Figure 1: Finite element analysis (FEA) models, showing: (a) the tetrahedral
mesh, exploiting the plane of symmetry between stub penetrations and showing
the location of the example point of interest P; (b) boundary conditions in the
thermal analyses; and (c) boundary conditions in the mechanical analyses.

A single material is assumed for the FEA model in the present work (vari-
ations in material properties at the stub weld are not considered). Temperature-
dependent material parameters are required in order to calculate transient
thermal stresses within the header models. Values for
Young’s modulus (E) and the instantaneous thermal expansion coefficient (α)
have been determined from monotonic tests performed on an Instron 8862
thermomechanical fatigue machine (operating under isothermal conditions,
Norwood, Massachusetts, USA) utilising radio frequency induction heating
and using a TA instruments Q400 thermomechanical analyser (New Castle,
Delaware, USA), respectively (see Table 1). Tested temperature ranges were
chosen to represent the typical bounds of operation for thermal power plant com-
ponents. The remainder of the material constants have been taken from the work
of Yaghi et al.21 (Table 2). A negligible dependency is assumed in density (ρ) and
Poisson’s ratio (ν) over the tested temperature range. As such, values for these
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quantities are taken to be 7.76× 10−6 kg/mm3 and 0.3, respectively. Temperature
dependent material properties are summarised in Figure 2.

Table 1: A summary of the temperature dependent material parameters (repres-
entative of a P91 chrome steel), determined through experimental analysis, used
in the FEA modelling.
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Table 2: A summary of the temperature dependent material constants (repres-
entative of a P91 chrome steel), taken from the work of Yaghi et al.21, used in the
FEA modelling.
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Figure 2: A summary of the temperature dependent material properties used in
the present work to represent a P91 chrome steel.

In order to apply the Green’s function method and the temperature inter-
polation techniques, realistic thermal stress histories must be generated from
the FEA models for representative bulk steam temperature profiles (mechanical
loading is neglected here, as it is a trivial exercise to scale linear elastic loads
based on varying internal pressures). Several “ramp up” temperature profiles
have been generated and analysed using the uncoupled thermoelastic procedure
(with temperature-dependent material parameters). These are summarised in
Table 3 and are representative of the high end limiting bulk steam temperature
increments and rates seen in two shifting plant. Plots of the ramp up temper-
ature profiles can be seen in Figure 3 with their respective labels (which are
used in the remainder of the present work). An oscillating temperature profile
(that represents a control signal correcting bulk steam temperature to a nominal
operating temperature of 550 °C) is also considered (see Figure 4), designated
Profile “I”. This profile was generated using Equation (13), using the parameters
B1 = 60, B2 = −3.978 × 10−3, B3 = π/50 and TM = 550 °C.

T(t) = B1eB2tsin(B3t) + TM (13)
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Table 3: A summary of bulk steam temperature “ramp up” profiles.
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Figure 3: Plots of the representative ramp up temperature profiles used to test
the various Green’s function implementation techniques.
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Figure 4: A plot of the representative oscillating (decay) temperature profile
used to test the various Green’s function implementation techniques.

4 Methodology Overview

Prior to discussing the proposed method to introduce temperature dependency,
it is worthwhile briefly discussing the procedure to determine temperature-
independent Green’s functions. Once the thermally-driven stress profile has
been determined from FEA for a unit bulk steam temperature step, the Green’s
function approximation shown in Equation (10) can by fitted (an example may
be seen in Figure 5). This defines the constants Cm, m = 1...7. A non-linear least
squares optimisation algorithm (the Levenberg—Marquardt algorithm) was
used in a MATLAB program (function
LSQNONLIN22, MathWorks, Natick, Massachusetts, USA) to optimise the val-
ues of Equation (10) in order to fit the FEA solution.
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Figure 5: An example of the Green’s function approximation (shown in equa-
tion (10)) fitted to the von Mises stress history from an uncoupled thermoelastic
FEA simulation (unit temperature step).

A schematic of the proposed interpolation technique is given in Figure 6.
The Green’s function method fundamentally relies on determining a reference
solution for a unit temperature step that may be integrated for a particular
thermal loading history. By including temperature dependency, this reference
solution will need to be altered over the thermal history. The proposed technique
achieves this by interpolating between solutions determined from temperature-
independent Green’s functions. Green’s functions are determined for unit tem-
perature steps, each of which has an associated representative temperature (taken
here to be the mean temperature for the unit step). Given some initial conditions
(σ = σti , T = Tti), stress increments can be determined for each Green’s function
(σt f T=T1 , σt f T=T2 ..., and so on, with the representative temperatures T1, T2, ...; see
Equation (14)).
Note that a different (temperature dependent) set of constants (Cm, m = 1...7) is
used to find each reference solution (σt f T=T1 , σt f T=T2 ...). These constant sets are
designated CmT=T1 , CmT=T2 , ... for representative temperatures T1, T2, ..., respect-
ively, in Equation (14). The relationship between the representative temperatures
and reference stress values may then be used to interpolate to the actual instant-
aneous temperature Tt f and, thus, find the estimated stress increment σt f . A
suitably high order polynomial may be used to model this relationship. For
M reference solutions and representative temperatures, Equation (15) may be
used, where Di, i = 1...M are the coefficients of the polynomial. Generating
the reference curves in this way allows the relationship between stress values
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predicted by particular Green’s functions at a time instant to change with time,

thus allowing the second order effect (
δ2σ

δtδT
) to be accounted for.

σt f T=T1 = ḠT=T1(P, t f ) = exp

(
7

∑
m=1

CmT=T1(P)
(
ln(t f )

)m−1

)

σt f T=T2 = ḠT=T2(P, t f ) = exp

(
7

∑
m=1

CmT=T2(P)
(
ln(t f )

)m−1

)

σt f T=T3 = ḠT=T3(P, t f ) = exp

(
7

∑
m=1

CmT=T3(P)
(
ln(t f )

)m−1

)
...

(14)

σt f (T) =
M

∑
i=1

DiTi−1 (15)

σ

σt f

σti
σt f T=T1

σt f T=T3

σt f T=T4

σt f T=T2

ti t f
(T = Tti) (T = Tt f )

σ

T
T1 T2 T3 T4

(T = Tt f )

Figure 6: A schematic of the proposed interpolation technique.

5 Results

5.1 Unit Temperature Steps

Thermal stress profiles were generated at the analysis point (P) defined in Figure
1a for unit bulk steam temperature changes using the modelling techniques
discussed in Section 3. Figure 7 highlights the difference in the thermal stress
responses due to a unit temperature step (as a result of temperature-dependent
material properties). For the analysis point considered, the hoop stress is the
dominant principal stress, and the other principal stresses are negligible. Equi-
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valent von Mises stresses are presented here, but these (as far as the Green’s
functions are concerned) may be taken to be the absolute of the maximum
principal stress.

Similar general trends are observed for all 6 components of the symmetric
stress tensor (there is development of thermal stress until a maximum value is
achieved, after which the thermal stress exponentially decays). Equation (10)
may therefore be used in general to describe the unit thermal response of for
the 6 stress components at a specific analysis point. Transient thermal stress
behaviour may then be approximated as before using the integration shown
in equation (9). Additionally, the temperature dependency method described
in section 4 may also be implemented for each of the stress components. The
present work only considers the von Mises stress. This provides a concise and
easy to follow way to compare the applicability of the tested methods. If a user
were to determine Green’s functions for all 6 stress components, the von Mises
Green’s function could be generated with little additional effort and be used as a
constraint to limit any interpolation errors accumulated when processing these
individual components.

Peak thermal stress values are observed for the 399°C-400°C case. Referring
to figure 2, it can be seen that this is due to the significant increase in the thermal
expansion coefficient α and the specific heat capacity C. This results in higher
internal forces being required for a particular temperature gradient (note thermal
conductivity k is relatively stable over the given temperature range). After 400°C
a marked reduction in Young’s modulus (E) is observed, leading to a loss of
stiffness in the material and hence a reduction in peak thermal stresses. Green’s
functions (defined by equation (10)) have been fitted to each unit step using the
method discussed in section 4. In all cases, the optimisation terminated due to
the change in the sum of squares between iterations falling below a tolerance
(set to 1x10−7), suggesting convergence on a local minimum. A summary of
the Green’s function coefficients can be seen in table 4. The weighting function
described by equations (11) and (12) has also been fitted to the unit responses
using the same optimisation technique and satisfying the same stopping criterion.
A summary of these coefficients may be found in table 5.
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(a) (b)

Figure 7: Variations in thermal stress responses due to unit step bulk steam
temperature increments, showing (a) general development and decay behaviour
and (b) magnified thermal stress development behaviour.
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Table 4: A summary of Green’s function coefficients fitted to the unit thermal
stress responses.
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Table 5: Coefficient values determined for the weighting function approach.

C1 -8.04x10−1

C2 5.13x10−1

C3 -2.16x10−2

C4 -7.68x10−3

C5 -7.19x10−6

C6 6.08x10−5

C7 -3.17x10−5

A0 1.00x10−1

A1 -1.43x10−2

A2 4.64x10−5

A3 -7.71x10−8

A4 5.45x10−11

5.2 Representative Temperature Profiles

In order to illustrate the importance of considering temperature dependency in
the Green’s function approach, unit Green’s functions have been used individu-
ally to predict each of the nine temperature profiles A–I (thus highlighting the
potential degree of stress over-/under-estimation). Plots of the true (FEA) and
predicted thermal stresses may be seen in Figures 8–10. Similarly, predictions of
the thermal stress histories have been made using the temperature dependency
techniques discussed (the weighting function and the proposed interpolation
technique, shown in Figures 11–13). In order to quantify the relative qualities of
fit, coefficients of determination (R2 23) and peak absolute differences between
predicted and true stresses (∆σVM) have been determined for each method.
These are summarised in Tables 6 and 7, respectively.
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(a) (b)

(c)

Figure 8: Predictions of thermal stress responses determined using individual
Green’s functions for: (a) ramp up Profile A; (b) ramp up Profile B; and (c) ramp
up Profile C. Sub figure (d) shows the legend used in the plots.
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(a) (b)

(c)

Figure 9: Predictions of thermal stress responses determined using individual
Green’s functions for: (a) ramp up Profile D; (b) ramp up Profile E; and (c) ramp
up Profile F. Sub figure (d) shows the legend used in the plots.
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(a) (b)

(c)

Figure 10: Predictions of thermal stress responses determined using individual
Green’s functions for: (a) ramp up Profile G; (b) ramp up Profile H; and (c)
oscillating Profile I. Sub figure (d) shows the legend used in the plots.
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(a) (b)

(c)

Figure 11: Predictions of thermal stress responses determined using the interpol-
ation and weighted Green’s functions methods for: (a) ramp up Profile A; (b)
ramp up Profile B; and (c) ramp up Profile C. Sub figure (d) shows the legend
used in the plots.
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(a) (b)

(c)

Figure 12: Predictions of thermal stress responses determined using the interpol-
ation and weighted Green’s functions methods for: (a) ramp up Profile D; (b)
ramp up Profile E; and (c) ramp up Profile F. Sub figure (d) shows the legend
used in the plots.
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(a) (b)

(c)

Figure 13: Predictions of thermal stress responses determined using the interpol-
ation and weighted Green’s functions methods for: (a) ramp up Profile G; (b)
ramp up Profile H; and (c) oscillating Profile I. Sub figure (d) shows the legend
used in the plots.
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Table 6: A summary of coefficients of determination (R2) for the test temperatures
profiles, fitted using the three Green’s function implementation methods.
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Table 7: A summary of peak differences between true (FEA) and predicted stress
values (∆σVM) for the test temperatures profiles, fitted using the three Green’s
function implementation methods.
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6 Discussion and Conclusions

The coefficient of determination (R2) provides a statistical measure to describe
the amount of variance accounted for in a model when predicting some “true”
data (taking limiting values of zero if no variance is accounted for and one
if all variance is accounted for23). The values determined for R2 shown in
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Table 6 are plotted in Figure 14 (note the range of values determined when
using individual Green’s functions is presented). Similarly, a plot of the peak
instantaneous stress differences (∆σVM; see Table 7) is given in Figure 15. This
quantity is of interest as, when attempting to quantify the threat of thermal
fatigue using a reference elastic solution, stress ranges experienced in a com-
ponent are one of the most fundamental ways to characterise a particular
loading scenario.

In all cases, solutions where temperature dependency was considered in the
Green’s function method showed an improvement in fitting quality. All results
were at least in the 98th percentile of the range predicted when using individual
Green’s functions (for the majority of cases, R2 and ∆σVM values were better than
even the optimum individual Green’s function solution). Despite the small num-
ber of load cases considered, some general comments can be made. R2 values are
comparable for most cases, and in almost all cases, the interpolation technique
resulted in lower ∆σVM values than the weighting function technique (suggest-
ing small stress over-/under-estimations). Anomalies to these observations are
found in load Cases E and F, where the weighting function method appears to
give superior results, represented by an approximate 2 MPa reduction in stress
differences. It is also noted from Figures 11–13 that load cases with large temper-
ature increments (Cases A, B, G and H) do not result in smooth stress develop-
ment curves that monotonically increase to a maximum value and then decay (i.e.,
there are “ripples” in the thermal stress histories; see Figure 11b in particular).
These features are not seen in more modest temperature step load cases.
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Figure 14: A plot to show the relative performance of the various implementation
methods (using R2).
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Figure 15: A plot to show the relative performance of the various implementation
methods (using ∆σVM).

Potential explanations for these behaviours can be found from analysis of
the individual Green’s function components themselves and, in particular, the
relative effects of the seven exponential components. These components are
plotted in Figure 16 using the Green’s function coefficients given in Table 4. Of
interest for the present work are the fifth and sixth order components (the C6

and C7 terms, respectively; most other components vary little over the given
temperature range), which can be seen to (in part) control stress decay in the
unit Green’s functions. Furthermore, there is a shift at around 450 °C, with the
sixth order component becoming more dominant in the decay characteristics
and the fifth order component becoming positive (leading to a small contribu-
tion in stress development). Over large temperature ranges, multiple Green’s
functions may be used with a wide range of decay characteristics. The “ripple”
features discussed previously are therefore due to the complex (time dependent)
interaction of these decay functions. While varying decay characteristics can
be accounted for in the proposed interpolation method, the time-independent
weight function assumes a scaling dependent only on temperature (hence, the
superior fit observed for the interpolation method in Cases A, B, G and H). Cases
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C–F used temperature ranges between 450 °C and 650 °C, where the relationship
between components in Green’s function is reasonably linear (with temperature)
and can therefore be accounted for using the weighting function. As the weight-
ing function coefficients are estimated by an optimisation procedure using all
unit responses, this linear relationship can be approximated, and local errors in
the (particularly in the 450 °C and 650 °C profiles) can be minimised.

The proposed interpolation method has been shown to be adept at predicting
thermal stress histories in thick-walled components. Over large temperature
ranges (>150 °C), where material properties may vary significantly, the interpol-
ation procedure has out performed the weighting method. For more modest
temperature ranges, the two methods are generally comparable. In addition
to the increased generality that the interpolation procedure offers, it is worth
highlighting important practical advantages. The order of the weighting func-
tion polynomial given in Equation (12) is ultimately dependent on the number
of reference solutions generated. In the present work, nine unit temperature
steps were applied to FEA models and used in the temperature dependency
methods. Fewer reference solutions may be used in practice, however, due
to practical limitations, potentially limiting the applicability of the weighting
function. While a greater number of reference solutions is beneficial to the
interpolation procedure, even a small number can be used to understand core
variations in stress profiles with representative temperature. Some aspects of
the second order effects may therefore also be captured. Future work will look
to quantify the effect the number of available reference solutions has on the
performance of the temperature dependency methods.

In conclusion, the present work has highlighted the importance of including
temperature dependency in the Green’s function method in order to better es-
timate transient thermal stresses for realistic bulk steam temperature increments
in thick-walled components. The proposed interpolation technique provides a
general procedure to incorporate temperature dependency in Green’s function
analysis. There is some suggestion from the results that the relative import-
ance of each Green’s function component varies with temperature and leads
to complex interactions between thermal stress development and decay terms.
Over larger temperature ranges, this has been seen to have an effect; how-
ever, for small temperature ranges, the weighting function method proposed by
Koo et al. appears to be satisfactory17. Future work will therefore focus on
increasing the number of load cases considered in order to verify the suggested
phenomenon and in accounting for spatial variations in material properties and
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chosen analysis points.

Figure 16: Decomposed Green’s functions, showing the relative importance of
the exponential components.
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