
Coalition Logic with Individual, Distributed and Common
Knowledge∗

Thomas Ågotnes
Department of Information Science and Media Studies
University of Bergen, PB. 7802, 5020 Bergen, Norway

thomas.agotnes@infomedia.uib.no

Natasha Alechina
School of Computer Science

University of Nottingham, Nottingham NG8 1BB, UK
nza@cs.nott.ac.uk

December 1, 2015

Abstract

Coalition logic is currently one of the most popular logics for multi-agent systems. While logics combining
coalitional and epistemic operators have received considerable attention, completeness results for epistemic ex-
tensions of coalition logic have so far been missing. In this paper we provide several such results and proofs. We
prove completeness for epistemic coalition logic with common knowledge, with distributed knowledge, and with
both common and distributed knowledge, respectively. Furthermore, we completely characterise the complexity
of the satisfiability problem for each of the three logics. We also study logics with interaction axioms connecting
coalitional ability and knowledge.

1 Introduction
Coalition Logic (CL) [25] is arguably one of the most popular logics that emerged in multi-agent systems research
in recent years. The main construction in coalition logic is of the form [G]φ, where G is a set of agents and φ a
formula, intuitively meaning that G is effective for φ, or that G can make φ come true no matter what the other
agents do. Coalition logic allows reasoning about groups of agents having a winning strategy is one shot games, or
in general being able to achieve some outcome in interaction with the environment or other groups of agents.

One of the most studied extensions of logics of coalitional ability such as CL is adding knowledge operators
of the type found in epistemic logic [8, 22, 27]: both individual knowledge operators Ki where i is an agent, and
different types of group knowledge operators EG, CG and DG where G is a finite group of agents, standing for
everybody-knows, common knowledge and distributed knowledge, respectively. EGφ means that every agent in
the group G knows that φ, and is definable as a conjunction of statements about individual knowledge. The latter
two operators are not definable using individual knowledge modalities. CGφ means that everybody in G knows
that φ, but in addition everybody knows that everybody knows that φ, and everybody knows that everybody knows
that everybody knows that φ, etc. DGφ means that if the agents in G combine their knowledge, they will come
to know that φ (for example, if agent i knows that ψ and agent j knows that ψ → φ, then D{i,j}φ holds even if
neither i nor j know that φ).

Combining coalitional ability operators and epistemic operators in general and group knowledge operators in
particular lets us express many potentially interesting properties of multi-agent systems, such as [28]:
∗A preliminary version of this paper, titled Epistemic Coalition Logic: Completeness and Complexity, was presented at AAMAS 2012.

1

• Kiφ→ [{i}]Kjφ: i can communicate her knowledge of φ to j;

• CGφ→ [G]ψ: common knowledge in G of φ is sufficient for G to ensure that ψ;

• [G]ψ → DGφ: distributed knowledge in G of φ is necessary for G to ensure that ψ;

• DGφ→ [G]EGφ: G can cooperate to make distributed knowledge explicit.

In this paper we study axiomatisation and complexity of variants of epistemic coalition logic (ECL), extensions
of coalition logic with operators for individual knowledge and different combinations of common knowledge and
distributed knowledge. The question whether existing axiomatisations of CL and epistemic logics with group
modalities together produce a complete axiomatisation of the corresponding extension has not been answered so
far 1. Here, we show that this is indeed the case. We furthermore completely characterise the computational
complexity of the satisfiability problem for these extensions. Note that since CL is not a normal modal logic, the
results presented in this paper do not follow from general results on products of modal logics, as for example in
[9].

In this paper we combine standard coalitional ability operators and standard epistemic operators, i.e., we do not
change the original semantics of either type of operator. It is well known [21, 20] that there are several interesting
variants of “ability” under imperfect knowledge; e.g., being able to achieve something without necessarily knowing
it, vs. knowing that one is able to achieve something but not necessarily knowing how, vs. knowing how one can
achieve something. As discussed in the literature [21, 20], even in the face of imperfect information all of these
variants are potentially interesting, and it is important to be able to distinguish between them; for example, the
first variant can be used to identify agents or groups who can make something come about if they get enough
information, in contrast with those who cannot no matter how much information they get. While the two variants
of “ability” just mentioned can be expressed with combinations of operators with standard semantics ([{i}]φ and
Ki[{i}]φ respectively, in the case of a single agent), in order to be able to express the latter (knowledge of ability
“de re”), operators with alternative semantics are needed [21, 26, 18, 20]. We do not consider such operators in
the current paper. Also, while knowledge of ability “de re” makes sense in (e.g.) AT L, it is not as relevant for CL
with standard semantics because the standard semantic models of CL abstracts away the notion of action identity
that is needed to formalise this concept (this problem can of course be solved by using semantic models with more
information about actions, such as the standard models ofAT L). Even though ECLwith standard semantics cannot
express knowledge of ability “de re”, it can express many other interesting properties (including the examples above
as well as the other “variants” of ability under imperfect knowledge). In this paper we axiomatise and study the
two first variants of ability mentioned above, in a language with both coalitional and epistemic operators. The first
is captured by not requiring any interaction properties between the coalitional and the epistemic operators. Taking
the first type of ability as a primitive notion, makes it possible to distinguish between it ([{i}]φ) and the second
type (Ki[{i}]φ) in the same language. We also axiomatise and study the second type of “ability” as a primitive
notion, by adding interaction axioms of the type [{i}]φ↔ Ki[{i}]φ.

The rest of the paper is organised as follows. In the next section we first give a brief review of coalition logic,
and how it is extended with epistemic operators. We then, in each of the three following sections, consider basic
epistemic coalition logic with individual knowledge operators extended with common knowledge, with distributed
knowledge, and with both common and distributed knowledge, respectively. For each of these cases we show a
completeness result. The reason that we consider each of these three systems separately, rather than only the most
expressive logic with both common and distributed knowledge, is first, that we want to carefully chart the results
for different combinations of operators (a common practice, also in epistemic logic), and, second, that separate
proofs for the common and distributed knowledge cases are useful for further extensions for logics with only these
epistemic operators. In Section 6 we consider the computational complexity of the three systems, and in Section 7
we study systems with interaction axioms. We briefly survey related work in Section 8 and conclude in Section 9.

1In an unpublished abstract of a talk given at the LOFT workshop in 2004 [12], the authors propose an axiomatisation of AT L (which
subsumes CL) with individual knowledge and common knowledge operators. However, a completeness result or proof has not been published
(personal communication, Valentin Goranko).

2

2 Background
We will define several extensions of propositional logic, with the primitive connections ¬ and ∧, and the usual
derived connectives, such as φ ∨ ψ for ¬(¬φ ∧ ¬ψ) and φ → ψ for ¬φ ∨ ψ, will be used. We will also define
a number of Hilbert-style axiomatic systems S, and by `S φ we mean that the formula φ is derivable in system
S (under the standard definition of derivability in axiomatic systems). By an S-consistent set of formulas, we
mean a set from which a contradiction is not derivable in S. By a maximal S-consistent set of formulas (in a fixed
language) we mean an S-consistent set such that no proper superset of it (in this language) is consistent.

2.1 Coalition Logic
We give a brief overview of Coalition Logic (CL) [25]. Assume a countable set Θ of atomic propositions, and a
finite non-empty set N of agents. A coalition is a set G ⊆ N of agents. We sometimes abuse notation and write a
singleton coalition {i} as i.

The language of CL is defined by the following grammar:

φ ::= p | ¬φ | φ ∧ φ | [G]φ

where p ∈ Θ and G ⊆ N .
A coalition model is a tuple M = (S,E, V), where

• S is a non-empty set of states;

• V is a valuation function, assigning a set V (s) ⊆ Θ to each state s ∈ S;

• E assigns a truly playable effectivity function (see below) E(s) over N and S to each state s ∈ S.

An effectivity function [25] over N and a set of states S is a function E that maps any coalition G ⊆ N to a set of
sets of states E(G) ⊆ 2S . An effectivity function is truly playable [25, 11] iff it satisfies the following conditions
(when X ⊆ S, X denotes the complement S \X):

E1 ∀s ∈ S∀G ⊆ N : ∅ 6∈ E(s)(G) (Liveness)

E2 ∀s ∈ S∀G ⊆ N : S ∈ E(s)(G) (Safety)

E3 ∀s ∈ S∀X ⊆ S : X 6∈ E(s)(∅)⇒ X ∈ E(s)(N) (N -maximality)

E4 ∀s ∈ S∀G ⊆ N∀X ⊆ Y ⊆ S : X ∈ E(s)(G)⇒ Y ∈ E(s)(G) (outcome monotonicity)

E5 ∀s ∈ S∀G1, G2 ⊆ N∀X,Y ⊆ S : X ∈ E(s)(G1) and Y ∈ E(s)(G2)⇒ X ∩ Y ∈ E(s)(G1 ∪ G2), where
G1 ∩G2 = ∅ (superadditivity)

E6 Enc(s)(∅) 6= ∅, where Enc(s)(∅) is the non-monotonic core of the empty coalition, namely

Enc(s)(∅) = {X ∈ E(s)(∅) : ¬∃Y (Y ∈ E(s)(∅) and Y (X)}

An effectivity function that only satisfies E1-E5 is called playable. On finite domains an effectivity function is
playable iff it is truly playable [11], because on finite domains E6 follows from E1-E5.

A CL formula is interpreted in a state s in a coalition model M as follows:

M, s |= p iff p ∈ V (s)

M, s |= ¬φ iff M, s 6|= φ

M, s |= (φ1 ∧ φ2) iff (M, s |= φ1 and M, s |= φ2)

M, s |= [G]φ iff φM ∈ E(s)(G)

3

where φM = {t ∈ S : M, t |= φ}.
The axiomatisation CL of coalition logic consist of the following axioms and rules:

Prop Substitution instances of propositional tautologies

G1 ¬[G]⊥

G2 [G]>

G3 ¬[∅]¬φ→ [N]φ

G4 [G](φ ∧ ψ)→ [G]ψ

G5 [G1]φ ∧ [G2]ψ → [G1 ∪G2](φ ∧ ψ), if G1 ∩G2 = ∅

MP `CL φ, φ→ ψ ⇒`CL ψ

RG `CL φ↔ ψ ⇒`CL [G]φ↔ [G]ψ

CL is sound and complete with respect to all coalition models [25].
The following monotonicity rule is derivable [25], and will be useful later:

Mon `CL φ→ ψ ⇒`CL [G]φ→ [G]ψ

2.2 Adding Knowledge Operators
Epistemic extensions of coalition logic were first proposed in [28]2. They are obtained by extending the language
with epistemic operators, and the models with epistemic accessibility relations.

An epistemic accessibility relation for agent i over a set of states S is a binary equivalence relation∼i⊆ S×S.
An epistemic coalition model, henceforth often simply called a model, is a tuple

M = (S, {∼i: i ∈ N}, E, V)

where (S,E, V) is a coalition model and ∼i is an epistemic accessibility relation over S for each agent i.
Epistemic operators come in two types: individual knowledge operators Ki, where i is an agent, and group

knowledge operators CG andDG whereG is a coalition, for expressing common knowledge and distributed knowl-
edge, respectively. Formally, the language of CLCD (coalition logic with common and distributed knowledge), is
defined by extending coalition logic with all of these operators:

φ ::= p | ¬φ | φ ∧ φ | [H]φ | Kiφ | CGφ | DGφ

where p ∈ Θ, i ∈ N ,H ⊆ N and ∅ 6= G ⊆ N . WhenG is a coalition, we writeEGφ as a shorthand for
∧
i∈GKiφ

(everyone in G knows φ).
The languages of the logics CLK, CLC and CLD are the restrictions of this language with no CG and no DG

operators, no DG operators, and no CG operators, respectively.
The interpretation of these languages in an (epistemic coalition) model M is defined by adding the following

clauses to the definition for CL:

M, s |= Kiφ iff ∀t ∈ S, (s, t) ∈∼i⇒M, t |= φ

M, s |= CGφ iff ∀t ∈ S, (s, t) ∈∼CG⇒M, t |= φ

M, s |= DGφ iff ∀t ∈ S, (s, t) ∈∼DG⇒M, t |= φ

where ∼CG= (
⋃
i∈G ∼i)∗, R∗ denotes the transitive closure of the relation R, and ∼DG= (

⋂
i∈G ∼i). We use |= φ

to denote the fact that φ is valid, i.e., that M, s |= φ for all models M and states s in M .

2In that paper forAT L; CL is a fragment ofAT L.

4

2.2.1 Some Auxiliary Definitions

The following are some auxiliary concepts that will be useful in the following.
Intuitively, a pseudomodel is like a model except that distributed knowledge is “not quite” the intersection of

individual knowledge. Formally, a pseudomodel is a tuple M = (S, {∼i: i ∈ N}, {RG : ∅ 6= G ⊆ N}, E, V)
where (S, {∼i: i ∈ N}, E, V) is a model and:

• RG ⊆ S × S is an equivalence relation for each G ⊆ N , G 6= ∅

• For any i ∈ N , Ri =∼i

• For any G, H , G ⊆ H implies that RH ⊆ RG

The interpretation of a CLCD formula in a state of a pseudomodel is defined as for a model, except for the case for
DG which is interpreted by the RG relation:

M, s |= DGφ iff ∀t ∈ S, (s, t) ∈ RG ⇒M, t |= φ

An epistemic model is a model without the E function, i.e., a tuple (S, {∼i: i ∈ N}, V). An epistemic
pseudomodel is a pseudomodel without the E function, i.e., a tuple (S, {∼i: i ∈ N}, {RG : ∅ 6= G ⊆ N}, V)
(where RG has the properties above). When M = (S, {∼i: i ∈ N}, E, V) is a model or M = (S, {∼i: i ∈
N}, {RG : ∅ 6= G ⊆ N}, E, V) is a pseudomodel, we refer to (S, {∼i: i ∈ N}, V) as M ’s underlying epistemic
model.

We refer to (pseudo)models where E does not satisfy the E6 property as playable (pseudo)models (to distin-
guish them from models that are “truly playable”).

We say that a formula φ is satisfied in a (playable) (pseudo)model M , if M, s |= φ for some state s in M .

3 Coalition Logic with Common Knowledge
In this section we consider the logic CLC, extending coalition logic with operators for individual knowledge and
common knowledge. The axiomatisation CLC is the result of extending CL with the following standard axioms
and rules for individual and common knowledge (see, e.g., [8]):

K Ki(φ→ ψ)→ (Kiφ→ Kiψ)

T Kiφ→ φ

4 Kiφ→ KiKiφ

5 ¬Kiφ→ Ki¬Kiφ

C CGφ→ EG(φ ∧ CGφ)

RN `CLC φ⇒`CLC Kiφ

RC `CLC ψ → EG(φ ∧ ψ)⇒`CLC ψ → CGφ

It is easy to show that CLC is sound with respect to all models.

Lemma 1 (Soundness) For any CLC-formula φ, `CLC φ implies |= φ.

5

3.1 Completeness
In the remainder of this section we show that CLC also is complete. Before giving all the details, we describe the
outline of the proof. We first construct a canonical playable model M c, using standard definitions of the canonical
epistemic accessibility relations [16] and Pauly’s definition of the canonical effectivity functions [25]. There are
two potential problems with M c: first, it is not necessarily truly playable (i.e., it is not necessarily a model), and,
second, the truth lemma (stating that a formula is true in a state/maximal consistent set of formulas if and only if
it is an element of this set) does not necessarily work for the case CGφ. To take care of these problems we filtrate
M c through an appropriately defined closure of a given consistent formula, to obtain a finite model Mf . This is
a standard technique for dealing with transitive closure operators such as the Kleene star in PDL [17] and indeed
common knowledge. In our case the standard technique must be extended to deal with the effectivity functions. For
us the technique has the convenient side effect that playability and true playability coincide (E1-E5 implies E6) on
the resulting model, since it is finite. However, it remains to be shown that filtration does not break the playability
properties E1-E5, and that Mf satisfies the truth lemma for the combined (epistemic-coalitional) language.

Now, to the details.

Theorem 1 Any CLC-consistent formula is satisfied in some model.

Proof We define a canonical playable model M c = (Sc, {∼ci : i ∈ N}, Ec, V c) as follows:

Sc is the set of all maximal CLC-consistent sets of formulas;

s ∼ci t iff {ψ : Kiψ ∈ s} = {ψ : Kiψ ∈ t};

X ∈ Ec(s)(G) (for G 6= N) iff there exists ψ such that {t ∈ Sc : ψ ∈ t} ⊆ X and [G]ψ ∈ s;

X ∈ Ec(s)(N) iff Sc \X 6∈ Ec(s)(∅);

p ∈ V c(s) iff p ∈ s.

That ∼ci is an equivalence relation is immediate. That Ec(s) is playable (satisfies E1-E5) can be shown in exactly
the same way as in the completeness proof for CL [25]. The idea behind the model construction of course is that
a formula belongs to a state s in a model iff it is true there (the truth lemma). However, the canonical model is in
general not guaranteed to satisfy every consistent formula in the CLC language; the case of CG in the truth lemma
does not necessarily hold. Therefore we are going to transform M c by filtration into a finite model for a given
CLC consistent formula φ. Note that since φ is consistent, it will belong to at least one s in M c.

We abbreviate {s ∈ Sc : ψ ∈ s} as [ψ]c. Note that if for any two formulas ψ1 and ψ2, [ψ1]c ⊆ [ψ2]c, then
`CLC ψ1 → ψ2 (since Sc contains all sets of formulas maximally consistent with respect to CLC).

Let cl(φ) be the least set such that

• cl(φ) contains all subformulas of φ,

• cl(φ) is closed under single negations,3

• CGψ ∈ cl(φ)⇒ KiCGψ ∈ cl(φ) for all i ∈ G, and

• [G]ψ ∈ cl(φ), G 6= ∅ ⇒ CG[G]ψ ∈ cl(φ).

We are going to filtrate M c through cl(φ). The resulting model Mf = (Sf , {∼fi : i ∈ N}, Ef , V f) is
constructed as follows:

Sf = {[s]cl(φ) : s ∈ Sc} where [s]cl(φ) = s ∩ cl(φ). We will omit the subscript cl(φ) in what follows for
readability.

[s] ∼fi [t] iff {ψ : Kiψ ∈ [s]} = {ψ : Kiψ ∈ [t]}.

V f ([s]) = {p : p ∈ [s]}.
3A set X is closed under single negations if for every χ ∈ X , if χ is not of the form ¬ψ, then ¬χ ∈ X .

6

X ∈ Ef ([s])(G) iff
{
∀u ∈ Sc if [u] = [s] then [φX]c ∈ Ec(u)(G) G 6= N
∃u ∈ Sc[u] = [s] and [φX]c ∈ Ec(u)(G) G = N

where φX =
∨

[t]∈X φ[t] and

φ[t] is a conjunction of all formulas in [t]. To see that Ef is well defined, observe that [s] = [s′] ⇒
Ef ([s])(G) = Ef ([s′])(G) for any G.

We first show some useful properties of the definitions above.

Lemma 2 For any state u in M c and formula ψ ∈ cl(φ),

1. [
∨

[u]:ψ∈[u] φ[u]]
c = [ψ]c

2. [ψ]c ∈ Ec(u)(G) iff [G]ψ ∈ u, for any G

Proof

1. Assume Sf contains n + k states, [t1], . . . , [tn] contain ψ and [s1], . . . , [sk] contain ¬ψ. Clearly, φ[t1] ∨
. . .∨ φ[tn] ∨ φ[s1] . . .∨ φ[sk] is provably equivalent in CLC to >. Consider φ[t1] ∨ . . .∨ φ[tn]. It is provably
equivalent to (ψ ∧ φ[t1])∨ . . .∨ (ψ ∧ φ[tn]). Since for every [si] such that ¬ψ ∈ [si], (ψ ∧ φ[si]) is provably
equivalent to ⊥,

(ψ ∧ φ[t1]) ∨ . . . ∨ (ψ ∧ φ[tn])
is provably equivalent to

(ψ ∧ φ[t1]) ∨ . . . ∨ (ψ ∧ φ[tn]) ∨ (ψ ∧ φ[s1]) ∨ . . . ∨ (ψ ∧ φ[sk])

which in turn is provably equivalent to

ψ ∧ (φ[t1] ∨ . . . ∨ φ[sk])

which in turn is equivalent to ψ ∧ > hence to ψ.

2. First we consider the case when G 6= N . The direction to the left is immediate: if [G]ψ ∈ u then [ψ]c ∈
Ec(u)(G) by definition. For the other direction assume that [ψ]c ∈ Ec(u)(G), i.e., there is some γ such that
[γ]c ⊆ [ψ]c and [G]γ ∈ u. Since `CLC γ → ψ, by the monotonicity rule it follows that [G]ψ ∈ u.

For the case when G = N , consider first the direction to the left. Let [N]ψ ∈ u. Then ¬[∅]¬ψ ∈ u. If
there existed a formula χ such that [χ]c ⊆ [¬ψ]c and [∅]χ ∈ u, we would get, by the monotonicity rule,
[∅]¬ψ ∈ u, which would make u inconsistent; hence no such χ exists and [¬ψ]c 6∈ Ec(u)(∅). But then by
the definition of Ec for N and the fact that [¬ψ]c = Sc \ [ψ]c, we get [ψ]c ∈ Ec(u)(N).

For the direction to the right, let [ψ]c ∈ Ec(u)(N); then by the definition of Ec for N , [¬ψ]c 6∈ Ec(u)(∅).
Then there is no formula χ such that [χ]c ⊆ [¬ψ]c and [∅]χ ∈ u; in particular, [∅]¬ψ 6∈ u. This implies that
¬[∅]¬ψ ∈ u and [N]ψ ∈ u.

o

We now prove that for every θ ∈ cl(φ), Mf , [s] |= θ iff θ ∈ [s]. The proof is by induction on the length of θ
(the length of a formula is the number of symbols required to write down the formula).

case θ = p trivial

case booleans trivial

case θ = Kiψ: standard epistemic logic

case θ = [G]ψ,G 6= N

Mf , [s] |= [G]ψ iff ψM
f ∈ Ef ([s])(G) iff ∀u ∈ Sc if [u] = [s] then [

∨
[t]∈ψMf φ[t]]

c ∈ Ec(u)(G) iff (by
the inductive hypothesis) u ∈ Sc, [u] = [s] ⇒ [

∨
ψ∈[t] φ[t]]

c ∈ Ec(u)(G) iff (by Lemma 2.1) ∀u ∈ Sc,
[u] = [s] ⇒ [ψ]c ∈ Ec(u)(G) iff (by Lemma 2.2) ∀u ∈ Sc, [u] = [s] ⇒ [G]ψ ∈ u, which, since
[G]ψ ∈ cl(φ), holds iff [G]ψ ∈ [s].

7

case θ = [G]ψ,G = N

Mf , [s] |= [G]ψ iff ψM
f ∈ Ef ([s])(G) iff ∃u ∈ Sc[u] = [s] and [

∨
[t]∈ψMf φ[t] ∈ E

c(u)(G) iff (by the
inductive hypothesis) ∃u ∈ Sc[u] = [s] and [ψ]c ∈ Ec(u)(G) iff (by Lemma 2.1) ∃u ∈ Sc [u] = [s] and
[ψ]c ∈ Ec(u)(G) iff (by Lemma 2.2) ∃u ∈ Sc [u] = [s] and [G]ψ ∈ u, which, since [G]ψ ∈ cl(φ), holds iff
[G]ψ ∈ [s].

case θ = CGψ

The proof is similar to that in [29]. First we show that in Mf , if CGψ ∈ cl(φ), then CGψ ∈ [s] iff every
state on every

⋃
i∈G ∼

f
i path from [s] contains ψ.

Suppose CGψ ∈ [s]. The proof is by induction on the length of the path. If the path is of 0 length, then since
CGψ implies ψ in CLC and maximally consistent sets are deductively closed, and by ψ ∈ cl(φ) we have
ψ ∈ [s]. We also have CGψ ∈ [s] by the assumption.

Inductive hypothesis: if CGψ ∈ [s], then every state on every
⋃
i∈G ∼

f
i path of length n from [s] contains

ψ and CGψ. Inductive step: let us prove this for paths of length n + 1. Suppose we have a path [s] ∼fi1
[s1] . . . ∼fin [sn] ∼fin+1

[sn+1]. By the inductive hypothesis, ψ,CGψ ∈ [sn]. Since sn is deductively closed

and Kin+1CGψ ∈ cl(φ), we have Kin+1CGψ ∈ [sn]. Since [sn] ∼fin+1
[sn+1] and the definition of ∼fin+1

,
CGψ ∈ [sn+1] and hence since ψ is derivable from CGψ in CLC, ψ ∈ [sn+1].

For the other direction, suppose that every state on every
⋃
i∈G ∼f path from [s] contains ψ. Prove that

CGψ ∈ [s]. Let SG,ψ be the set of all [t] such that every state on every
⋃
i∈G ∼f path from [t] contains ψ.

Note that each [t] is a finite set of formulas so we can write its conjunction φ[t]. Consider a formula

χ =
∨

[t]∈SG,ψ

φ[t]

Similarly to [29] it can be proved that `CLC φ[s] → χ, `CLC χ→ ψ and `CLC χ→ EGχ. And from that
follows that `CLC φ[s] → CGψ hence CGψ ∈ [s].

Now we prove that Mf , [s] |= CGψ iff CGψ ∈ [s]. CGψ ∈ [s] iff every state on every
⋃
i∈G ∼

f
i path from

[s] contains ψ iff for every [t] reachable from [s] by a
⋃
i∈G ∼

f
i path, Mf , [t] |= ψ iff Mf , [s] |= CGψ.

It is obvious that inMf ,∼fi are equivalence relations. So what remains to be proved is that Ef satisfies E1-E6.
Since Sf is finite, it suffices to show E1-E5, which for finite sets of states entail E6.

Proposition 1 Mf satisfies E1-E5.

Proof

E1 Note that φ∅ is the empty disjunction, ⊥.

First, consider the case that G 6= N . ∅ ∈ Ef ([s])(G) iff (by definition of Ef) ∀u ∈ Sc[u] = [s] ⇒
[⊥]c ∈ Ec(u)(G) iff ∀u ∈ Sc[u] = [s] ⇒ ∅ ∈ Ec(u)(G). Since Ec satisfies E1, ∅ 6∈ Ec(s)(G), so,
∅ 6∈ Ef ([s])(G).

Second, consider the case that G = N . ∅ ∈ Ef ([s])(G) iff ∃u ∈ Sc[u] = [s] and [⊥]c ∈ Ec(u)(G) iff
∃u ∈ Sc[u] = [s] and ∅ ∈ Ec(u)(G). Since Ec(u) satisfies E1 for every u, ∅ 6∈ Ec(u)(G) for every u, so
∅ 6∈ Ef ([s])(G).

E2 First, consider the case that G 6= N . Sf ∈ Ef ([s])(G) iff ∀u ∈ Sc[u] = [s]⇒ [
∨

[t]∈Sf φ[t]]
c ∈ Ec(u)(G) iff

∀u ∈ Sc[u] = [s]⇒ Sc ∈ Ec(u)(G). Since Ec(u) satisfies E2 for every u, Sf ∈ Ef ([s])(G).

Second, consider the case that G = N . Sf ∈ Ef ([s])(G) iff ∃u ∈ Sc[u] = [s] and [
∨

[t]∈Sf φ[t]]
c ∈

Ec(u)(G) iff ∃u ∈ Sc[u] = [s] and Sc ∈ Ec(u)(G). Since Ec(s) satisfies E2, Sf ∈ Ef ([s])(G) (take
u = s).

8

E3 Let X 6∈ Ef ([s])(∅). Then there is an u such that [u] = [s] and [φX]c 6∈ Ec(u)(∅). Note that [φX]c is the
complement of [φX]c, since φX = ¬φX . Since Ec(u) satisfies E3, this means that there is an u such that
[u] = [s] and [φX]c ∈ Ec(u)(N). Hence X ∈ Ef ([s])(N) by definition of Ef ([s])(G) in the case G = N .

E4 Let X ⊆ Y ⊆ Sf and X ∈ Ef ([s])(G). Clearly `CLC φX → φY . Hence [φX]c ⊆ [φY]c. First, consider the
case that G 6= N . Since X ∈ Ef ([s])(G), we have [φX]c ∈ Ec(u)(G) for every u ∈ Sc such that [u] = [s].
Since Ec(u) satisfies E4, [φY]c ∈ Ec(u)(G) for every such u, so Y ∈ Ef ([s])(G).

Second, consider the case thatG = N . SinceX ∈ Ef ([s])(G), we have [φX]c ∈ Ec(u)(G) for some u ∈ Sc
such that [u] = [s]. Since Ec(u) satisfies E4, [φY]c ∈ Ec(u)(G) for some such u, so Y ∈ Ef ([s])(G).

E5 Let X ∈ Ef ([s])(G1) and Y ∈ Ef ([s])(G2) and G1 ∩G2 = ∅.
First, consider the case that G1 ∪ G2 6= N : for every u such that [u] = [s], [φX]c ∈ Ec(u)(G1) and
[φY]c ∈ Ec(u)(G2) and since Ec(u) satisfies E5, [φX]c ∩ [φY]c ∈ Ec(u)(G1 ∪ G2) for every such u.
Note that [φX]c ∩ [φY]c = [

∨
[t]∈X∩Y φ[t]]

c. Since for every u such that [u] = [s], [
∨

[t]∈X∩Y φ[t]]
c ∈

Ec(u)(G1 ∪G2), we have that X ∩ Y ∈ Ef ([s])(G1 ∪G2).

Second, consider the case that G1 ∪G2 = N . We consider the three sub-cases:

G1 = N,G2 = ∅: We have that there exists a u′ such that [u′] = [s] and [φX]c ∈ Ec(u′)(G1), and
that for every u such that [u] = [s], [φY]c ∈ Ec(u)(G2). Since Ec(u′) satisfies E5, [φX]c ∩
[φY]c ∈ Ec(u′)(G1 ∪ G2). By the same argument as in the G1 ∪ G2 6= N case, that means
that [

∨
[t]∈X∩Y φ[t]]

c ∈ Ec(u′)(G1 ∪ G2), and since G1 ∪ G2 = N that means that X ∩ Y ∈
Ef ([s])(G1 ∪G2).

G2 = N,G1 = ∅: Symmetric to the argument above.

G1 6= ∅, G2 6= ∅, G1 ∪G2 = N : We have that for all u such that [u] = [s], [φX]c ∈ Ec(u)(G1) and [φY]c ∈
Ec(u)(G2). Take u = s. Since Ec(s) satisfies E5, [φX]c ∩ [φY]c ∈ Ec(s)(G1 ∪ G2). By the same
argument as above, [

∨
[t]∈X∩Y φ[t]]

c ∈ Ec(s)(G1 ∪ G2), and since G1 ∪ G2 = N that means that
X ∩ Y ∈ Ef ([s])(G1 ∪G2).

o

Since φ is CLC-consistent, it will belong to at least one s in M c, hence to one of [s] in Nf , hence by the truth
lemma it is satisfied in Mf .

This concludes the proof of Theorem 1. o

Corollary 1 (Completeness of CLC) For any CLC-formula φ, |= φ implies `CLC φ.

By ignoring the cases which involve CG operators in the completeness proof for CLC, we also get the follow-
ing.

Corollary 2 (Completeness of CLK) For any CLK-formula φ, |= φ implies `CLK φ.

4 Epistemic Coalition Logic with Distributed Knowledge
In this section we consider the logic CLD, extending coalition logic with individual knowledge operators and
distributed knowledge.

The axiomatisation CLD is obtained by extending CL with the following standard axioms and rules for indi-
vidual and distributed knowledge (see, e.g., [8]):

K Ki(φ→ ψ)→ (Kiφ→ Kiψ)

T Kiφ→ φ

4 Kiφ→ KiKiφ

9

5 ¬Kiφ→ Ki¬Kiφ

RN `CLD φ⇒`CLD Kiφ

DK DG(φ→ ψ)→ (DGφ→ DGψ)

DT DGφ→ φ

D4 DGφ→ DGDGφ

D5 ¬DGφ→ DG¬DGφ

D1 Kiφ↔ Diφ

D2 DGφ→ DHφ, if G ⊆ H

Again, soundness is straightforward.

Lemma 3 (Soundness) For any CLD-formula φ, `CLD φ implies |= φ.

4.1 Completeness
In the remainder of this section we show thatCLD also is complete. An outline of the proof is as follows. As in the
case of CLC, we start with the canonical model construction. However, rather than constructing a playable model,
we construct a playable pseudomodelM c. The truth lemma for the combined epistemic-coalitional language holds
for M c, but the relations interpreting distributed knowledge are not necessarily the intersections of the individual
epistemic accessibility relations. The idea is to transform M c into a proper model, which has the E1-E6 properties,
without breaking the truth lemma. This is done in two additional steps. First, M c is transformed into a finite
pseudomodel Mf , as in the case of CLC. The transformation preserves satisfaction, as well as the playability
properties (and E6 follows from finiteness). Using pseudomodels that are then transformed into proper models is
a common way to deal with intersection in general and distributed knowledge in particular [31]. We can in fact
now make directly use of an existing completeness result and proof for epistemic logic with distributed knowledge
[8], by taking the (finite) epistemic pseudomodel underlying Mf and transforming it into a proper (not necessarily
finite) epistemic model which is used as the underlying epistemic model of the final model M ′. It remains to
be shown that the transformation did not break the true playability properties, nor satisfaction of formulae in the
closure.

Now, to the details.
For a set of formulae s, let Kas = {Kaφ : Kaφ ∈ s} and DGs = {DGφ : DGφ ∈ s}.

Definition 1 (Canonical Playable Pseudomodel) The canonical playable pseudomodel M c = (Sc, {∼ci : i ∈
N}, {RcG : ∅ 6= G ⊆ N}, Ec, V c) for CLD is defined as follows:

• Sc is the set of maximal CLD-consistent sets.

• s ∼ci t iff Kis = Kit

• sRGt iff DHs = DHt for all H ⊆ G

• X ∈ Ec(s)(G) (for G 6= N) iff there exists ψ such that {t ∈ Sc : ψ ∈ t} ⊆ X and [G]ψ ∈ s.

• X ∈ Ec(s)(N) iff Sc \X 6∈ Ec(s)(∅).

• V c(s) = {p : p ∈ s}

Lemma 4 (Pseudo Truth Lemma) For any formula φ, M c, s |= φ iff φ ∈ s.

Proof The proof is by induction on φ. The epistemic cases are exactly as for standard normal modal logic. The
case for coalition operators is exactly as in [25]. o

10

It is easy to check that ∼ci are equivalence relations and E1-E5 hold for Ec.

Lemma 5 (Finite Pseudomodel) Every CLD-consistent formula φ is satisfied in a finite pseudomodel.

Proof The proof is exactly as in Theorem 1, namely the construction ofMf , but starting with a Canonical Playable
Pseudomodel rather than Canonical Playable Model; the definition of M c contains the clause

ΓRG∆ iff ∀H ⊆ G{ψ : DHψ ∈ Γ} = {ψ : DHψ ∈ ∆}

We add the following condition to the closure: Diψ ∈ cl(φ) iff Kiψ ∈ cl(φ).
We define Mf to be a pseudomodel instead of a model, by adding the clause:

[s]RfG[s′] iff ∀H ⊆ G{ψ : DHψ ∈ [s]} = {ψ : DHψ ∈ [s′]}

We show that Mf is indeed a pseudomodel:

• Rfi =∼fi : this follows from the fact that Kiφ ∈ [s] iff Diφ ∈ [s] for any i, φ and s, which holds because of
the Kiφ→ Diφ axiom and the new closure condition above.

• G ⊆ H ⇒ RfH ⊆ R
f
G: this holds by definition.

We add a case for θ = DGψ to the inductive proof. This case is proven in exactly the same way as the θ = Kiψ
case: the definitions of ∼fi and RfG are of exactly the same form (in particular, RfG is also an S5 modality). The
proof that E1-E6 hold in the resulting pseudomodel is the same as in the proof of Theorem 1 for Ef . o

We are now going to transform the pseudomodel into a proper model; it is a well-known technique for dealing
with distributed knowledge. In fact, we can make direct use of a corresponding existing result for epistemic logic
with distributed knowledge, and extend it with the coalition operators/effectivity functions. We here give the more
general result for the language with also common knowledge, which will be useful later.

Theorem 2 ([8]) If Mp = (S, {∼i: i ∈ N}, {RG : ∅ 6= G ⊆ N}, V) is an epistemic pseudomodel, then there is
an epistemic model M ′p = (S′, {∼′i: i ∈ N}, V ′) and a surjective (onto) function f : S′ → S such that for every
s′ ∈ S′ and formula φ ∈ ELCD, Mp, f(s

′) |= φ iff M ′p, s
′ |= φ.

Proof This result is directly obtained from the completeness proof for ELCD sketched in [8, p. 70]. For a more
detailed proof (for a more general language), see [31, Theorem 9]. o

Theorem 3 If a formula is satisfied in some finite pseudomodel, then it is satisfied in some model.

Proof Let M = (S, {∼i: i ∈ N}, {RG : ∅ 6= G ⊆ N}, E, V) be a finite pseudomodel such that M, s |= φ.
Let Mp = (S, {∼i: i ∈ N}, {RG : ∅ 6= G ⊆ N}, V) be the epistemic pseudomodel underlying M , and let
M ′p = (S′, {∼′i: i ∈ N}, V ′) and f : S′ → S be as in Theorem 2. Let f−1(X) = {s′ ∈ S′ : f(s′) ∈ X} for any
set X ⊆ S. Finally, let M ′ = (S′, {∼′i: i ∈ N}, E′, V ′) where E′ is defined as follows:

• For G 6= N : Y ∈ E′(u)(G) ⇔ ∃X ⊆ S, (Y ⊇ f−1(X) and X ∈ E(f(u))(G))

• for G = N : Y ∈ E′(u)(G) ⇔ Y 6∈ E′(u)(∅)

Two things must be shown: that M ′ is a proper model, and that it satisfies φ.
Since M ′p is an epistemic model, to show that M ′ is a model all that remains to be shown is that E′ is truly

playable. We now show that that follows from true playability of E.

E1 Note that f−1(X) = ∅ iff X = ∅.
For G 6= N , ∅ ∈ E′(u)(G) iff (by definition of E′) ∃X ⊆ S, (∅ ⊇ f−1(X)and X ∈ E(f(u))(G)) iff
∅ ∈ E(f(u))(G)) which is impossible sinceM satisfies E1. Note that in particular this proves ∅ 6∈ E′(u)(∅),
which we will use in the E2 case below.

For G = N , ∅ ∈ E′(u)(G) iff S′ 6∈ E′(u)(∅) and we’ll see that this is impossible in the E2 case below.

11

E2 Note that f−1(S) = S′.

For G 6= N , S′ ∈ E′(u)(G) iff (by definition of E′) ∃X ⊆ S, (S′ ⊇ f−1(X)and X ∈ E(f(u))(G)), and
by taking X = S we get that S′ ∈ E′(u)(G) holds since S′ ⊇ f−1(S) and S ∈ E(f(u))(G). Note that in
particular this proves S′ ∈ E′(u)(∅), which we needed in the E1 case above.

For G = N , S′ ∈ E′(u)(G) iff ∅ 6∈ E′(u)(∅) and this was proved in the E1 case above.

E3 ∀u ∈ S′∀Y ⊆ S′ Y 6∈ E′(u)(∅)⇒ Y ∈ E′(u)(N) follows immediately from the definition for E′(u)(N).

E4 E′ is monotonic by definition for G 6= N .

For N , assume X ⊆ Y and X ∈ E′(u)(N). Then X 6∈ E′(u)(∅). Since we already know that E′ is
monotonic for G = ∅ and Y ⊆ X , Y 6∈ E′(u)(∅). So Y ∈ E′(u)(N).

E5 Let u ∈ S′, f(u) = s, G1, G2 ⊆ N such that G1 ∩ G2 = ∅, X ′, Y ′ ⊆ S′, X ′ ∈ E′(u)(G1) and Y ′ ∈
E′(u)(G2). We must show that X ′ ∩ Y ′ ∈ E′(u)(G1 ∪G2). We reason by cases for G1 and G2.

First, consider the case that G1 ∪ G2 6= N . We must show that there is a Z such that f−1(Z) ⊆ X ′ ∩ Y ′
and Z ∈ E(s)(G1 ∪ G2). We have that there are X,Y such that f−1(X) ⊆ X ′ and X ∈ E(s)(G1) and
f−1(Y) ⊆ Y ′ and Y ∈ E(s)(G2). Take Z = X ∩Y . It is easy to see that f−1(X ∩Y) = f−1(X)∩ f−1(Y)
(from the defintion of f−1(·)), and we thus get that f−1(Z) = f−1(X) ∩ f−1(Y) ⊆ X ′ ∩ Y ′. From
X ∈ E(s)(G1) and Y ∈ E(s)(G2) and superadditivity of E we get that Z ∈ E(s)(G1 ∪G2).

Second, consider the case that G1 = N or G2 = N . Without loss of generality, assume the former. That
implies that G2 = ∅. We must show that X ′ ∩ Y ′ ∈ E′(u)(N), i.e., that X ′ ∩ Y ′ 6∈ E′(u)(∅). Assume
otherwise, i.e., that X ′ ∩ Y ′ ∈ E′(u)(∅), in other words that X ′ ∪ Y ′ ∈ E′(u)(∅). As G2 = ∅ we also
have that Y ′ ∈ E′(u)(∅), and by E5 for E′ for the case that G1 = G2 = ∅ 6= N (proven above) we get
that (X ′ ∪ Y ′) ∩ Y ′ ∈ E′(u)(∅). I.e., X ′ ∩ Y ′ ∈ E′(u)(∅). By E4 for E′ (proven above), we get that
X ′ ∈ E′(u)(∅). But that contradicts the fact that X ′ ∈ E(u)(G1) with G1 = N .

Finally, consider the case that G1 ∪ G2 = N and G1 6= N and G2 6= N . We must show that X ′ ∩ Y ′ ∈
E′(u)(N), i.e., that X ′ ∩ Y ′ 6∈ E′(u)(∅), i.e., that there does not exist a Z such that f−1(Z) ⊆ X ′ ∩ Y ′ and
Z ∈ E(s)(∅). Assume otherwise, that such a Z exists. Let X,Y be such that

f−1(X) ⊆ X ′ and X ∈ E(s)(G1)
f−1(Y) ⊆ Y ′ and Y ∈ E(s)(G1)

which exist because X ′ ∈ E′(u)(G1) and Y ′ ∈ E′(u)(G2). From superadditivity of E we get that

X ∩ Y ∈ E(s)(N) (1)

It follows that
X ∩ Y 6∈ E(s)(∅) (2)

because otherwise ∅ = (X ∩ Y) ∩ (X ∩ Y) ∈ E(s)(N) by E5 for E, which contradicts E1 for E. We
furthermore have that

X ′ ⊆ f−1(X) ⊆ f−1(X)

Y ′ ⊆ f−1(Y) ⊆ f−1(Y)
(3)

which follow immediately from the facts that f−1(X) ⊆ X ′ and f−1(Y) ⊆ Y ′ and the definition of f−1(·).
From (3) it follows that

X ′ ∪ Y ′ ⊆ f−1(X ∪ Y) (4)

From (4) and the assumption that Z ∈ E(s)(∅) we get that f−1(Z) ⊆ f−1(X ∪ Y), and it follows, by
surjectivity of f , that

Z ⊆ X ∩ Y (5)

By (5) and the assumption that Z ∈ E(s)(∅) we get that X ∩ Y ∈ E(s)(∅). But this contradicts (2).

12

E6 We must show that E
′nc(u)(∅) 6= ∅, for any u. Let s = f(u), and let X ∈ Enc(s)(∅) (exists because of E6

for E). We show that f−1(X) ∈ E′nc(u)(∅). First, we have that f−1(X) ∈ E′(u)(∅); this follows from the
fact that X ∈ E(s)(∅) and the definition of E′. Second, assume, towards a contradiction, that there exists
a Y (f−1(X) such that Y ∈ E

′
(u)(∅). By the definition of E′, this means that there is a Z such that

f−1(Z) ⊆ Y and Z ∈ E(s)(∅). Since Y (f−1(X) and f−1(Z) ⊆ Y it follows that f−1(Z) (f−1(X).
It is easy to see (from surjectivity of f) that it follows that Z (X , and this contradicts the assumption that
Z ∈ E(s)(∅) and X ∈ Enc(s)(∅).

In order to show that M ′ satisfies φ, we show that M, f(u) |= γ iff M ′, u |= γ for any u ∈ S′ and any γ, by
induction in γ. All cases except γ = [G]ψ are exactly as in the proof of Theorem 2.

For the case that γ = [G]ψ, the inductive hypothesis is that for all proper subformulae χ of [G]ψ, and any v,
M, f(v) |= χ iff M ′, v |= χ. We can state this as {v : M ′, v |= χ} = f−1(χM), or χM

′
= f−1(χM).

First, consider the case that G 6= N . Let f(u) = s. M ′, u |= [G]ψ iff ψM
′ ∈ E′(u)(G) iff there is an X such

that f−1(X) ⊆ ψM
′

and X ∈ E(s)(G). This holds iff ψM ∈ E(s)(G) iff M, s |= [G]ψ. For the implication to
the left take X = ψM ; for the implication to the right observe that f−1(X) ⊆ f−1(ψM) implies that X ⊆ ψM ,
and ψM ∈ E(s)(G) follows from X ∈ E(s)(G) by outcome monotonicity of E.

Second, consider the case thatG = N . M, s |= [N]ψ iff ψM ∈ E(s)(N) iff (*) ¬ψM 6∈ E(s)(∅) iff (as above)
¬ψM ′ 6∈ E′(u)(∅) iff M ′, u |= [N]ψ. (*): one direction E3, the other direction E5 and E1. o

Corollary 3 (Completeness of CLD) For any CLD-formula φ, |= φ implies `CLD φ.

5 Epistemic Coalition Logic with both Common and Distributed Knowl-
edge

In this section we consider the logic CLCD, extending coalition logic with operators for individual knowledge,
common knowledge and distributed knowledge.

The axiomatisation CLCD is obtained by extending CL with the axioms and rules of CLC and CLD.

Lemma 6 (Soundness) For any CLCD-formula φ, `CLCD φ implies |= φ.

Completeness can in fact be shown in exactly the same way as for CLD, except that there is an extra clause
for CGφ in the proof of satisfaction which is taken care of in the same way as in the proof for CLC.

Theorem 4 Any CLCD-consistent formula is satisfied in some finite pseudomodel.

Proof The proof is identical to the proof of Lemma 5, starting with the canonical playable pseudomodel, with the
addition of the inductive clause θ = CGψ as in the proof of Theorem 1. o

We can now use the same approach as in the case of CLD.

Theorem 5 If a CLCD formula is satisfied in some finite pseudomodel, it is satisfied in some model.

Proof The proof goes exactly like the proof of Theorem 3, using Theorem 2. The definition of the model M ′ is
identical to the definition in Theorem 3, as is the proof that it is a proper model. For the last part of the proof, i.e.,
showing that M ′ satisfies φ, note that the last clause in Theorem 2 holds for epistemic logic with both distributed
and common knowledge. Thus, the proof is completed by only adding the inductive clause for [G]φ, which is done
in exactly the same way as in Theorem 3. o

13

Corollary 4 (Completeness of CLCD) For any CLCD-formula φ, |= φ implies `CLCD φ.

6 Computational Complexity
The following complexity result is an easy consequence of known results for other logics:

Theorem 6 The satisfiability problem for CLC and for CLCD is EXPTIME-complete.

Proof EXPTIME-hardness follows from EXPTIME-hardness of S5n + C [16]. EXPTIME upper bound follows
from the upper bound for AT EL [30]. o

The next result is much less obvious.

Theorem 7 The satisfiability problem for CLD is PSPACE-complete.

Proof PSPACE-hardness follows from PSPACE-hardness of S5n [16] and also from PSPACE-hardness of CL
[25].

We now consider the PSPACE upper bound. We first define a notion of a tableau for a CLD formula. We
show that a CLD formula φ is satisfiable if, and only, if, there is a CLD tableau for it (Lemma 7). Then we
give a procedure HMP that given a CLD formula φ, attempts to construct a CLD tableau for it. We prove that
this construction succeeds if and only if φ is satisfiable (Lemma 9). The structure constructed by HMP (φ) is
exponential in |φ|, however we show that there is an algorithm that checks whether HMP (φ) will return true that
runs in space polynomial in |φ|.

Before defining a CLD tableau we need a notion of a closure of a CLD formula φ, to be used in the tableau
construction. Without loss of generality, we assume that in φ all modalities Ki are replaced with Di and the only
propositional connectives in φ are ¬ and ∧. Let ccl(φ) be the smallest set of formulas satisfying the following
conditions:

ccl1 ccl(φ) contains all subformulas of φ

ccl2 ccl(φ) is closed under single negations

ccl3 [N]ψ ∈ ccl(φ)⇒ [∅]¬ψ ∈ ccl(φ)

ccl4 [∅]ψ ∈ ccl(φ)⇒ [N]¬ψ ∈ ccl(φ)

Note that the size (the number of formulas) of ccl(φ) is at most 2|φ|, hence it is polynomial in |φ| (unlike the
closure for CL formulas defined in [25]; the latter was first observed to be exponential by Hoang Nga Nguyen and
corrected in [24], a published version is in [3]).

Definition 2 A CLD tableau for a formula φ is a tuple T = (S,L,R1, . . . , Rn), where S is a set of states, Ri for
each agent i is a binary relation on S, and L is a labelling function which associates with each state s ∈ S a set
L(s) ⊆ ccl(φ) of formulas such that

T0 For some state s0 ∈ S, φ ∈ L(s0)

PT L(s) is a fully expanded propositional tableau, that is, a set of formulas satisfying

PT(a) if ¬¬ψ ∈ L(s) then ψ ∈ L(s);

PT(b) if ψ ∧ ψ′ ∈ L(s), then ψ,ψ′ ∈ L(s);

PT(c) if ¬(ψ ∧ ψ′) ∈ L(s), then either ¬ψ ∈ L(s) or ¬ψ′ ∈ L(s); and

PT(d) L(s) does not contain ψ and ¬ψ for any ψ

PT(e) for every ψ ∈ L(s), and every subformula ψ′ of ψ, either ψ′ ∈ L(s) or ¬ψ′ ∈ L(s)

ET1 if DGψ ∈ L(s), then ψ ∈ L(s)

14

ET2 if ¬DGψ ∈ L(s), then there exists t with (s, t) ∈ Ri for all i ∈ G and ¬ψ ∈ L(t)

ET3 if (s, t) ∈ Ri for every i ∈ G, then DHψ ∈ L(s) iff DHψ ∈ L(t) for every H ⊆ G

CT1 If [N]ψ ∈ L(s), then ¬[∅]¬ψ ∈ L(s), and if ¬[∅]¬ψ ∈ L(s), then [N]ψ ∈ L(s)

CT2 if [G1]ψ1, . . . , [Gk]ψk ∈ L(s) for k > 0 where Gi are pairwise disjoint, then there exists s′ ∈ S such that
{ψ1, . . . , ψk} ⊆ L(s′)

CT3 if [G1]ψ1, . . . , [Gk]ψk,¬[G]ψ ∈ L(s), where Gi are pairwise disjoint and non-empty,
⋃
iGi ⊆ G, then

there exists s′ ∈ S such that {ψ1, . . . , ψk,¬ψ} ⊆ L(s′)

Intuitively, ET1 - ET3 describe epistemic conditions on a tableau, and CT1 - CT3 conditions ensuring satisfia-
bility in coalition logic and closely correspond to conditions on a function v used by Pauly to define a satisfiability-
checking game for CL in [25].

The structure that we refer to as a tableau following [16] is also called a Hintikka set or Hintikka structure (see
for example [2]).

Observe that since ccl(φ) contains finitely many formulas, a CLD tableau for φ can always be assumed to be
finite (intuitively, if there is an infinite tableau for φ, then it can be transformed into a finite tableau by identifying
all the states with the same label L(s), since there are finitely many possible L(s) ⊆ ccl(φ). It is easy to check
that the resulting structure still satisfies all the conditions of Definition 2.)

Lemma 7 A CLD formula φ is satisfiable if, and only if, there is a CLD tableau T = (S,L,R1, . . . , Rn) for φ.

Proof The direction from left to right (if a formula has a model, then it has a tableau) is relatively routine and is
left out. It follows the proof in [16] for the epistemic part and in [25] and [24] for the coalition logic part.

The difficult direction is constructing a model given a tableau. Suppose T = (S,L,R1, . . . , Rn) is a tableau for
φ, in particular φ ∈ s0 for some s0 ∈ S. We construct M = (S,E, {∼i: i ∈ N}, V) as follows. The set of states
S is the same as in T . For each i ∈ N , ∼i is the reflexive, symmetric, transitive closure of Ri. V (s) = L(s)∩Θ4.
For convenience, we introduce an abbreviation J(ψ) = {s : ψ ∈ L(s)}.

Finally, we define E as follows: X ∈ E(s)(G) for G 6= N iff X = S or there exist [G1]ψ1, . . . , [Gk]ψk ∈
ccl(φ), k > 0, such that all of the following properties hold:

(def1) G1 ∪ . . . ∪Gk ⊆ G

(def2) Gi are pairwise disjoint

(def3)
⋂
i J(ψi) ⊆ X

(def4) [G1]ψ1, . . . , [Gk]ψk ∈ L(s)

X ∈ E(s)(N) iff X 6∈ E(s)(∅).
We need to prove that E so defined satisfies conditions E1-E6.

E1 E1 holds for G 6= N and s ∈ S because if for some ψ1, . . . , ψk such that they conform to the definition of E,
we had

⋂
i J(ψi) ⊆ ∅ (by def3) then by CT2, {ψ1, . . . , ψk} would have to belong to a label of some state

s′ ∈ S hence
⋂
i J(ψi) 6= ∅.

E1 for G = N : ∅ 6∈ E(s)(N) because by construction S ∈ E(s)(∅).

E2 E2 holds for G 6= N by construction. Since by E1 for ∅, ∅ 6∈ E(s)(∅), by construction of E for N , S ∈
E(s)(N).

E3 E3 holds in all states by construction of E for N .

4Recall that Θ is the set of propositional variables.

15

E4 E4 holds for G 6= N because due to (def3) if X ∈ E(s)(G), then Y ∈ E(s)(G) for any Y ⊇ X) (in other
words, E is monotonic by construction). For the case of N , let X ∈ E(s)(N) and X ⊆ Y . By construction,
X 6∈ E(s)(∅). Suppose by contradiction that Y ∈ E(s)(∅). Since Y ⊆ X and E(s)(∅) is monotonic due to
(def3), X 6∈ E(s)(∅): a contradiction. Hence Y 6∈ E(s)(∅) and Y ∈ E(s)(N).

E5 LetG∩H = ∅ andX ∈ E(s)(G) and Y ∈ E(s)(H). SupposeG andH are non-empty andX,Y are different
from S. By the construction of E, there are G1, . . . , Gk and H1, . . . ,Hm such that [Gi]ψi and [Hj]χj
conform to (def1)-(def4). Note also that sinceG andH are disjoint andGi ⊆ G andHj ⊆ H ,Gi andHj are
also all pairwise disjoint. It is an easy consequence of (def3) for both ψi and χj that

⋂
i J(ψi)∩

⋂
j J(χj) ⊆

X ∩ Y and hence X ∩ Y ⊆ E(s)(G∪H). If Y = S, X ∩ Y = X and we can use G ⊆ G∪H to show that
X ∩ Y ⊆ E(s)(G ∪H) holds (just replace

⋃
iGi ⊆ G with

⋃
iGi ⊆ G ∪H). For G and H both empty,

the argument is similar to above.

For G = ∅ and H = N , since G ∪ H = N so we need to show X ∩ Y ∈ E(s)(N). Assume to the
contrary that X ∩ Y ∈ E(s)(∅). Then X ∩ Y ∈ E(s)(∅) by superadditivity of E(s)(∅) shown above, and
Y ∈ E(s)(∅) by monotonicity of E(s)(∅), so Y 6∈ E(s)(N), a contradiction.

E6 E6 holds because M is finite.

Now we prove that for every ψ ∈ ccl(φ), ψ ∈ L(s) implies M, s |= ψ and ¬ψ ∈ L(s) implies M, s |= ¬ψ.
The proof proceeds by induction on the length of ψ.

case ψ = p immediate since p ∈ V (s) by construction iff p ∈ L(s).

case booleans follows easily by induction since L(s) is a fully expanded propositional tableau.

case ψ = DGχ Suppose ¬DGχ ∈ L(s). Then by ET2, there exists t ∈ S such that Ri(s, t) holds for all i ∈ G
and ¬χ ∈ L(t). Since for every i, Ri ⊆∼i, s ∼i t holds for all i ∈ G, hence s and t are connected by⋂
i ∼i. By the inductive hypothesis, M, t |= ¬χ, so M, s |= ¬DGχ.

Let DGχ ∈ L(s). We need to show that for all t such that s ∼i t for all i ∈ G, χ ∈ L(t) (this will give
M, t |= χ by the inductive hypothesis, and hence M, s |= DGχ). In a simple case when Ri(s, t) holds for
all i ∈ G, we know that DGχ ∈ L(t) by ET3, and then by ET1, χ ∈ L(t). Now suppose that Ri(s, t)
for some or all i ∈ G does not hold, but (s, t) belongs to a reflexive symmetric transitive closure of Ri
for all i ∈ G. If s ∼i t for each i ∈ G is added by reflexivity, that is, s = t, then χ ∈ L(t) by ET1.
Otherwise, there is a chain s0, s1, . . . , sk in T such that s0 = s, sk = t, and for every pair sj , sj+1, either
Ri(sj , sj+1) holds or Ri(sj+1, sj), for all i ∈ G. In either case, DGχ ∈ L(sj) iff DGχ ∈ L(sj+1), hence
χ ∈ L(sj) iff χ ∈ L(sj+1), hence by induction χ ∈ L(t), so M, t |= χ by the inductive hypothesis, and
hence M, s |= DGχ.

case ψ = [G]χ

We need to show that for any [G]χ ∈ ccl(φ), if [G]χ ∈ L(s), then J(χ) ∈ E(s)(G), and if J(χ) ∈ E(s)(G),
then [G]χ ∈ L(s).

First we prove both directions for G 6= N . Let [G]χ ∈ L(s), then J(χ) ∈ E(s)(G) by construction of E.

Suppose J(χ) ∈ E(s)(G). If J(χ) = S, suppose by contradiction that ¬[G]χ ∈ L(s), then by CT3 ¬χ
should be in L(s′) for some s′ ∈ S: a contradiction with J(χ) = S.

If J(χ) 6= S, then there are [G1]ψ1, . . . , [Gk]ψk satisfying conditions (def1)-(def4), in particular
⋂
i J(ψi) ⊆

J(χ) and [G1]ψ1, . . . , [Gk]ψk ∈ L(s). Assume by contradiction that¬[G]χ ∈ L(s). Since [G1]ψ1, . . . , [Gk]ψk,¬[G]χ ∈
L(s), by CT3, {ψ1, . . . , ψk,¬ψ} ⊆ L(s′) for some s′ ∈ S. This means that there is s′ ∈

⋂
i J(ψi) such that

s′ 6∈ J(χ): a contradiction with
⋂
i J(ψi) 6⊆ J(χ). So [G]χ ∈ L(s).

Now let us consider G = N . If [N]χ ∈ L(s), then by CT1, ¬[∅]¬χ ∈ L(s). By the proof above for G 6= N ,
J(¬χ) 6∈ E(s)(∅). This implies J(χ) 6∈ E(s)(∅), hence J(χ) ∈ E(s)(N).

If J(χ) ∈ E(s)(N), then by construction J(¬χ) 6∈ E(s)(∅). By the preceding argument, [∅]¬χ 6∈ L(s). By
CT1, [N]χ ∈ L(s).

o

16

Next we define a procedure HMP for constructing a tableau for a CLD formula φ. The terminology is mainly
taken from [16]. Since [16] gives a procedure for S5n and only sketch modifications required for adding D for the
grand coalition, we adapted a rule for DG from the tableaux algorithm for multi-agent epistemic logics with CG
an DG modalities for arbitrary coalitions proposed in [2].

We need the following terminology to define HMP . ψ ∈ Γ is a witness that Γ is not a propositional tableau if
one of the clauses PT(a) - PT(c) with Γ in place of L(s) does not apply to ψ; similarly ψ is a witness that Γ is not
fully expanded if PT(e) does not hold for ψ; Γ is blatantly inconsistent if PT(d) with Γ in place of L(s) is violated.

The procedure below constructs a pre-tableau, and we will show later (in the proof of Lemma 9) how to
construct a tableau from the result. A pre-tableau is a graph with two kinds of nodes: if L(s) is a fully expanded
propositional tableau, we call s a state, otherwise it is an internal node. There are three kinds of edges: pt edges, i
edges for i ∈ N , and ct edges. pt edges and ct edges form a tree, and i edges ‘almost’ form a tree (two nodes can
have multiple i edges between them, and i edges are intended to be symmetric and transitive, so a node can have
a back edge to an i-ancestor). To be precise, i edges form a symmetric transitive tree where edges are labelled by
sets G of agents.

Procedure HMP (φ)

1. Construct a tree consisting of a single root node s0 with L(s0) = {φ}.

2. Repeat each of (a)-(d) below exhaustively until none of (a)-(d) applies:

(a) Creating pt-successor nodes:

i. if s is a leaf of the tree, L(s) is not blatantly inconsistent, L(s) is not a propositional tableau, and
ψ is the first (in some lexicographic ordering of formulas in L(s)) witness to this fact, then
A. if ψ is of the form ¬¬ψ′, then create a pt child s′ of s in the tree and set L(s′) = L(s)∪ {ψ′}
B. if ψ is of the form ψ1 ∧ ψ2, then create a pt child s′ of s in the tree and set L(s′) = L(s) ∪
{ψ1, ψ2}

C. if ψ is of the form ¬(ψ1 ∧ ψ2), then create two pt children s1 and s2 of s and set L(si) =
L(s) ∪ {¬ψi}.

ii. s is a leaf of the tree, L(s) is not blatantly inconsistent, L(s) is not a fully expanded propositional
tableau, and ψ is the first (in some lexicographic ordering of subformulas of formulas in L(s))
witness to this fact, then create two pt-children s1 and s2 of s and set L(s1) = L(s) ∪ {ψ},
L(s2) = L(s) ∪ {¬ψ}.

(b) Creating i-successor nodes:5 if s is a leaf of the tree and L(s) is a fully expanded propositional tableau,
for each ψ such that ¬DGψ ∈ L(s) let

L′′(s, ψ) = {DHψ
′ : DHψ

′ ∈ L(s) and H ⊆ G} ∪

{¬DHψ
′ : ¬DHψ

′ ∈ L(s) and H ⊆ G} ∪ {¬ψ}

If there is no node s′′ in the tree that is an i ancestor of s6 for all i ∈ G, or s′′ = s, such that
L′′(s, ψ) ⊆ L(s′′), then create a node s′ with L(s′) = L′′(s, ψ) and create an i-edge between s and s′

for all i ∈ G.

(c) Creating ct-successor nodes:

i. for each maximal subset of L(s) of the form [G1]ψ1, . . . , [Gk]ψk where Gi are pairwise disjoint,
create a ct-successor s′ with L(s′) = {ψ1, . . . , ψk}

ii. for each maximal subset of L(s) of the form ¬[G]ψ, [G1]ψ1, . . . , [Gk]ψk where Gi are pairwise
disjoint and non-empty and

⋃
iGi ⊆ G, create a ct-successor s′ with L(s′) = {¬ψ,ψ1, . . . , ψk}

5This step creates a witness for each formula of the form ¬DGψ in L(s), that is a state t epistemically connected to s for all i ∈ G and
such that ¬ψ ∈ L(t). This makes sure that condition ET2 of Definition 2 is satisfied. Note that if s and t are epistemically connected for all
agents in G, then they are epistemically connected for all agents in H ⊆ G, so it should hold that DHψ

′ ∈ L(s) iff DHψ
′ ∈ L(t).

6By an i-ancestor of a node s we mean a node t such that a path from t to s contains only i edges and pt edges.

17

(d) Marking nodes satisfiable: if s is not marked satisfiable then mark s satisfiable if either

i. L(s) is not a fully expanded propositional tableau and some pt successor s′ of s is marked satisfi-
able, or L(s) is a fully expanded propositional tableau and
A. L(s) does not contain DGψ and ¬ψ for any ψ
B. L(s) does not contain a pair of formulas [∅]ψ, [N]¬ψ or a pair of formulas [∅]¬ψ, [N]ψ ∈

L(s), for any ψ
C. L(s) is not blatantly inconsistent
D. either s has no i-successors or ct-successors and no rules for creating i or ct successors are

applicable
E. or s has i-successors and/or ct-successors and all of them are marked satisfiable.

(e) If the root of the tree is marked satisfiable, then return true, otherwise return false.

Lemma 8 The HMP procedure terminates.

Proof To show termination, we will show that the depth of the tree costructed by HMP is bounded by O(|φ|3)
and the branching factor is bounded by O(3|φ|). Observe that ccl(φ) has size (cardinality) at most 2|φ|, and that a
consistent L(s) can have size (cardinality) at most |φ|.

Consider a branch of the pre-tableau. It consists of pt, i and ct edges. Intuitively, every time an i or ct edge
is added, it leads from a state to an internal node. The internal node will have a path of pt edges from it to
another state, from where again an i or a ct edge will be added. The maximal length of such a pt path between
an internal node s and a state t (starting with a singleton set L(s) and adding at most |φ| − 1 formulas to obtain
a fully expanded propositional tableau L(t)) is |φ|. The number of ct edges on a path is bounded by the number
of nestings of coalitional modalities in φ, which is at most |φ| (since each ct edge reduces the depth of nesting of
coalitional modalities by 1). Now consider i edges, or tuples of parallel i edges for various DG, G ⊆ N added
by step 2(b). Note that there are only at most |φ| such DG occurring in ccl(φ). If s and t are connected by

⋂
i∈G

i edges, then the modal depth for DHχ ∈ L(t) formulas, for H ⊆ G, in
⋂
i∈H i-successors does not change.

However the maximal number of consecutive
⋂
i∈H i successors on a path is |φ| (because there can be no more

than |φ| distinct states s, t on an
⋂
i∈H -path with {DHψ : DHψ ∈ L(s)} = {DHψ : DHψ ∈ L(t)}), and the

modal depth of L(s) decreases after an intervening
⋂
i∈H i step where H 6⊆ G step, or a ct-step. The maximal

length of a path is thus O(|φ|3).
The branching factor of the pre-tableau is possibly exponential because of the number of ct-children of a node.

The number of maximal subsets of the form {G : [G]ψ ∈ L(s)} such that all members of the subset are disjoint
can be exponential in the number of formulas in L(s), 3|L(s)|/3 to be precise; the argument is as in [23] for the
number of cliques in a graph (one can think of Gi as vertices, and there is an edge between Gi and Gj if they are
disjoint).

Since there is a bound on both the branching factor and the depth of the tree constructed by HMP (φ), the
procedure terminates. o

Lemma 9 A CLD formula φ is satisfiable if and only if HMP (φ) returns true.

Proof First suppose that HMP (φ) returns true. We show how to construct a tableau for φ using the pre-tableau
constructed by HMP (φ). A tableau is obtained by keeping only the states marked satisfiable and dropping all pt
and ct edges. Ri edges are added as follows. If s and t are states, and there is a path of s, s1, . . . , sk, t between
them, where s1, . . . , sk are internal nodes, there is an i edge between s and s1, and the rest of the edges are pt
edges, then add Ri(s, t). Then take a reflexive symmetric transitive closure of each Ri. Observe that ET1 holds
because only nodes marked satisfiable are retained, and ET2 and ET3 hold because if t is an i-successor of s for
i ∈ G, then s and t agree on all formulas of the form DHψ with H ⊆ G. CT2-CT3 hold because of step (c)
and CT1 holds because of only retaining nodes marked satisfiable (check (d(B)). Note that one of the states (pt
successor of the root of the pre-tableau) contains φ. By Lemma 7, φ is satisfiable.

For the other direction, we show that if HMP (φ) returns false, then φ is CLD-inconsistent and hence unsat-
isfiable. Exactly as in [16], it can be shown that if a node s is not marked as satisfiable because it is either blatanly

18

inconsistent or one of its i successors is inconsistent, then L(s) is CLD-inconsistent hence CLD unsatisfiable. For
the case of one of ct successors of s being inconsistent, observe that this will make L(s) inconsistent with respect
to CL axioms G1 and G5.

Hence, if the root of the pre-tableau is not marked satisfiable, then φ is unsatisfiable. o

Lemma 10 It can be checked, using depth first search, in space polynomial in |φ|, whether HMP (φ) will return
true.

Proof The pre-tableau tree constructed by HMP (φ) is (doubly) exponential in |φ|, however we show, similarly
to the proof in [16], that it is possible to check using only polynomial space whether HMP (φ) will return true.
This is done by exploring the pre-tableau in a depth-first manner instead of constructing it as a complete tree.

In the proof of Lemma 8 we have shown that the depth of the tree is bounded by O(|φ|3). A branch of this
length can be stored using polynomial space, provided every search node also has size polynomial in |φ|, and
backtracking information (which branch to explore next) can also be represented using polynomial space.

Clearly, since the number of formulas in L(s) is at most |φ|, and the length of each formula is at most |φ|, L(s)
can be represented in space polynomial in |φ|.

To represent backtracking information, we need to be able to iterate through successors of a node using poly-
nomial amount of space. There is a difficulty with CLD compared to pure epistemic logic, in that the branching
factor of the pre-tableau is possibly exponential because of the number of ct-children of a node. However, an index
of each such child requires polynomial space (if we number them from subset 1 to subset 3|φ|, we can index them
using log(3|φ|) bits which is O(|φ|)). The idea is that we generate an index of each next ct successor one at a time
and re-use the space to generate the next index when the check for the previous ct successor returns true.

Given that the length of a path, hence the depth of the stack, is bounded by a polynomial in |φ|, and the size of
each search node on the stack is also bounded by a polynomial in |φ|, the algorithm requires space polynomial in
|φ|. o

This completes the proof that CLD satisfiability problem is PSPACE-complete. o

7 Adding Interaction Axioms
The relationship between knowledge and ability has received substantial interest in the literature; see [1] for a
recent overview. In particular, it has been noted that under imperfect information we can talk about several “levels”
of ability [21, 18, 20], and that all of them are potentially interesting. For example, here are four different properties
of an agent’s ability to make φ come about, under the assumption that the agent has imperfect knowledge about the
world:

1. The agent cannot make φ come about (there is no action the agent can perform that will ensure φ);

2. the agent is able to make φ come about, but she doesn’t necessarily know it (there is an action the agent can
perform that will ensure φ, but that is not necessarily the case in other states the agent considers possible);

3. the agent is able to make φ come about and knows it, but does not necessarily know how (in every state the
agent considers possible there is an action that will ensure φ, but not necessarily the same action in each
state);

4. the agent is able to make φ come about and knows how (there is an action that will make φ come about in
every state the agent considers possible).

As discussed in the introduction, all of these different variants are potentially interesting, and it is important to
be able to distinguish between them [21, 20]. Similar properties can be defined for groups of agents, using some
notion of group knowledge such as distributed or common knowledge. The three first properties can intuitively be
expressed in ECL as ¬[i]φ, [i]φ and Ki[i]φ, respectively. The fourth property, knowledge de re of the ability to
make φ come about, cannot be expressed using standard combinations of epistemic and coalitional ability operators

19

with standard semantics, and is also not even semantically definable in models which use effectivity functions rather
than actions, as discussed in the introduction.

An advantage of the logics discussed so far, taking the second variant of ability mentioned above as a primary
notion, is that it allows us to distinguish the second ([i]φ) and third type (Ki[i]φ) in the same language. Still, it
would be interesting to see what happens if we take the variant of ability in point 3 above as the primary notion
– what is the logic of that notion of ability? As far as we know there are no existing completeness or complexity
results taking the notion of de dicto knowledge-based ability as a primary notion.

In other words, we are interested in models where an agent (or a group) is able to make something come about
if and only if they know that they can make it come about. Formally: X ∈ E(s)(i) iff ∀t such that s ∼i t,
X ∈ E(t)(i) (note that the “if” direction holds immediately by reflexivity of the ∼i relation). This is equivalent to
I1 in the following, where we also include corresponding interaction properties for groups:

I1 s ∼i t⇒ E(s)(i) = E(t)(i)

I2 s ∼CG t⇒ E(s)(G) = E(t)(G)

I3 s ∼DG t⇒ E(s)(G) = E(t)(G)

While I1 says that a single agent always knows what he can do, I2 and I3 say that a group always knows, either by
distributed or common knowledge, what it can do.

These properties are captured by the following axioms, respectively (this claim will be made more precise in
the following).

KAI [i]φ→ Ki[i]φ

KAC [G]φ→ CG[G]φ

KAD [G]φ→ DG[G]φ

Note that the implication in the other directon holds for all of these axioms, because a truth (T) axiom holds for
each of these notions of knowledge. Thus, the intended notion of ability is captured: an agent or a group is able to
make something come about if and only if they know it.

We now define the logics CLK+, CLC+ and CLD+. The languages of these logics are the languages of CLK,
CLC and CLD, respectively. The models of the logics are the classes of epistemic coalition models with the
properties I1, I2 and I3, respectively. Interpretation is defined as before. We write |=CLK+ φ to mean that φ is valid
on all CLK+ models, and similarly for the other logics.

Let CLK+, CLC+ and CLD+ be the result of extending the axiomatisations CLK, CLC and CLD with
axioms KAI, KAC and KAD, respectively. The following is immediate.

Lemma 11 (Soundness) For any CLK-formula φ, `CLK+ φ implies |=CLK+ φ. For any CLC-formula φ, `CLC+

φ implies |=CLC+ φ. For any CLD-formula φ, `CLD+ φ implies |=CLD+ φ.

Proof The proof is routine. We show the case for CLD+: validity of the axiom KAD. Let M, s |= [G]φ. This
means that E(s)(G) ⊆ φM . By I3, for all t with s ∼DG t, E(s)(G) = E(t)(G). Hence for all t with s ∼DG t,
M, t |= [G]φ. Hence M, s |= DG[G]φ. o

We now prove completeness of two of these three logics, before we look at computational complexity.

7.1 Completeness
Theorem 8 Any CLC+-consistent formula is satisfied in some model with the I2 property.

20

Proof The proof is an adaption of the proof of Theorem 1 in Section 3. In the following we say “as before” to
mean “as in the proof of Theorem 1”.

The canonical playable model M c = (Sc, {∼ci : i ∈ N}, Ec, V c) is defined exactly like in Theorem 1. Let
φ be a consistent formula. The closure cl(φ) is also defined as before. We also use the abbreviation [ψ]c for
{s ∈ Sc : ψ ∈ s}.

The filtration Mf = (Sf , {∼fi : i ∈ N}, Ef , V f) is constructed as follows (the only difference to the construc-
tion in the proof of Theorem 1 is the definition of Ef):

Sf is {[s]cl(φ) : s ∈ Sc} where [s]cl(φ) = s ∩ cl(φ). We will omit the subscript cl(φ) in what follows for
readability.

[s] ∼fi [t] iff {ψ : Kiψ ∈ [s]} = {ψ : Kiψ ∈ [t]}.

V f ([s]) = {p : p ∈ [s]}.

X ∈ Ef ([s])(G) iff
{
∀t, u ∈ Sc if [s] ∼fG [t] and [u] = [t] then [φX]c ∈ Ec(u)(G) G 6= N

∃t, u ∈ Sc[s] ∼fG [t] and [u] = [t] and [φX]c ∈ Ec(u)(G) G = N

where ∼fG is shorthand for the transitive closure of
⋃
i∈G ∼

f
i , φX =

∨
[t]∈X φ[t] and φ[t] is a conjunction of

all formulas in [t]. To see that Ef is well defined, observe that [s] = [s′] ⇒ Ef ([s])(G) = Ef ([s′])(G) for
any G.

In the following we use ∼fG as shorthand for the transitive closure of
⋃
i∈G ∼

f
i , as in the definition above.

We now prove by induction on the length of θ that for every θ ∈ cl(φ), Mf , [s] |= θ iff θ ∈ [s].

case θ = [G]ψ,G 6= N

Mf , [s] |= [G]ψ iff ψM
f ∈ Ef ([s])(G) iff ∀t, u ∈ Sc if [s] ∼fG [t] and [u] = [t] then [

∨
[t]∈ψMf φ[t]]

c ∈
Ec(u)(G) iff (by the inductive hypothesis) ∀t, u ∈ Sc, [s] ∼fG [t] and [u] = [t] ⇒ [

∨
ψ∈[t] φ[t]]

c ∈
Ec(u)(G) iff (by Lemma 2.1) ∀t, u ∈ Sc, [s] ∼fG [t] and [u] = [t] ⇒ [ψ]c ∈ Ec(u)(G) iff (by Lemma
2.2) ∀t, u ∈ Sc, [s] ∼fG [t] and [u] = [t]⇒ [G]ψ ∈ u.

We now show that ∀t, u ∈ Sc, [s] ∼fG [t] and [u] = [t] ⇒ [G]ψ ∈ [u] holds iff [G]ψ ∈ [s]. The implication
towards the right is immediate: take t = u = s (∼fG is reflexive). For the other direction, let t and u be
such that [s] ∼fG [t] and [u] = [t], and assume that [G]ψ ∈ [s]. We must show that [G]ψ ∈ [u]. By the
definition of ∼fG, there are [s1], . . . , [sk] and i1, . . . , ik−1 such that [s1] ∼fi1 · · · ∼

f
ik−1

[sk] and [s] = [s1]

and [t] = [sk]. We now show that for any j, 1 ≤ j ≤ k − 1, [G]ψ ∈ [sj] ⇒ [G]ψ ∈ [sj+1]. Assume
that [G]ψ ∈ [sj]. By axiom KAC and the closure conditions, CG[G]φ ∈ [sj]. By axiom C and the closure
conditions, KijCG[G]ψ ∈ [sj]. By definition of ∼fij , KijCG[G]ψ ∈ [sj+1]. By the truth axiom (T) for Kij

and for CG (derivable), [G]ψ ∈ [sj+1]. It follows that [G]ψ ∈ [t], and thus that [G]ψ ∈ [u] since [G]ψ is in
the closure.

case θ = [G]ψ,G = N

Mf , [s] |= [G]ψ iff ψM
f ∈ Ef ([s])(G) iff ∃t, u ∈ Sc[s] ∼fG [t] and [u] = [t] and [

∨
[t]∈ψMf φ[t]]

c ∈
Ec(u)(G) iff (by the inductive hypothesis) ∃t, u ∈ Sc [s] ∼fG [t] and [u] = [t] and [

∨
ψ∈[t] φ[t]]

c ∈
Ec(u)(G) iff (by Lemma 2.1) ∃t, u ∈ Sc [s] ∼fG [t] and [u] = [t] and [ψ]c ∈ Ec(u)(G) iff (by Lemma
2.2) ∃t, u ∈ Sc [s] ∼fG [t] and [u] = [t] and [G]ψ ∈ u.

We now show that ∃t, u ∈ Sc [s] ∼fG [t] and [u] = [t] and [G]ψ ∈ u holds iff [G]ψ ∈ [s]. The implication
towards the left is immediate: take t = u = s. For the other direction, let [s] ∼fG [t] and [u] = [t] and
[G]ψ ∈ u. We must show that [G]ψ ∈ s. By similar reasoning as in the G = N case (and symmetry of the
∼fG relation, we get that [G]ψ ∈ [t] and [G]ψ ∈ [s].

All other cases Exactly as in the proof of Theorem 1.

21

Proposition 2 Mf satisfies E1-E5.

Proof

E1 Again, recall that φ∅ is the empty disjunction, ⊥.

First, consider the case thatG 6= N . ∅ ∈ Ef ([s])(G) iff (by definition ofEf) ∀t, u ∈ Sc[s] ∼fG [t] and [u] =

[t] ⇒ [⊥]c ∈ Ec(u)(G) iff ∀t, u ∈ Sc[s] ∼fG [t] and [u] = [t] ⇒ ∅ ∈ Ec(u)(G). Since Ec satisfies E1,
∅ 6∈ Ec(s)(G), and since ∼fG is reflexive, ∅ 6∈ Ef ([s])(G).

Second, consider the case that G = N . ∅ ∈ Ef ([s])(G) iff ∃t, u ∈ Sc[s] ∼fG [t] and [u] = [t] and
[⊥]c ∈ Ec(u)(G) iff ∃t, u ∈ Sc[s] ∼fG [t] and [u] = [t] and ∅ ∈ Ec(u)(G). Since Ec(u) satisfies E1 for
every u, ∅ 6∈ Ec(u)(G) for every u, so ∅ 6∈ Ef ([s])(G).

E2 First, consider the case thatG 6= N . Sf ∈ Ef ([s])(G) iff ∀t, u ∈ Sc[s] ∼fG [t] and [u] = [t]⇒ [
∨

[t]∈Sf φ[t]]
c ∈

Ec(u)(G) iff ∀t, u ∈ Sc[s] ∼fG [t] and [u] = [t] ⇒ Sc ∈ Ec(u)(G). Since Ec(u) satisfies E2 for every u,
Sf ∈ Ef ([s])(G).

Second, consider the case that G = N . Sf ∈ Ef ([s])(G) iff ∃t, u ∈ Sc[s] ∼fG [t] and [u] = [t] and
[
∨

[t]φ[t]∈Sf φ[t]]
c ∈ Ec(u)(G) iff ∃t, u ∈ Sc[s] ∼fG [t] and [u] = [t] and Sc ∈ Ec(u)(G). Since Ec(s)

satisfies E2, Sf ∈ Ef ([s])(G) (take t = u = s).

E3 Let X 6∈ Ef ([s])(∅). Then there is a t and an u such that [s] ∼fG [t] and [u] = [t] and [φX]c 6∈ Ec(u)(∅).
[φX]c is the complement of [φX]c, since φX = ¬φX . Since Ec(u) satisfies E3, this means that there are t, u
such that [s] ∼fG [t], [u] = [t] and [φX]c ∈ Ec(u)(N). Hence X ∈ Ef ([s])(N) by definition of Ef ([s])(G)
in the case G = N .

E4 Let X ⊆ Y ⊆ Sf and X ∈ Ef ([s])(G). As before, [φX]c ⊆ φY]c. First, consider the case that G 6= N . Since
X ∈ Ef ([s])(G), we have [φX]c ∈ Ec(u)(G) for every t, u ∈ Sc such that [s] ∼fG [t] and [u] = [t]. Since
Ec(u) satisfies E4, [φY]c ∈ Ec(u)(G) for every such t and u, so Y ∈ Ef ([s])(G).

Second, consider the case that G = N . Since X ∈ Ef ([s])(G), we have [φX]c ∈ Ec(u)(G) for some
t, u ∈ Sc such that [s] ∼fG [t] and [u] = [t]. Since Ec(u) satisfies E4, [φY]c ∈ Ec(u)(G) for some such t, u,
so Y ∈ Ef ([s])(G).

E5 Let X ∈ Ef ([s])(G1) and Y ∈ Ef ([s])(G2) and G1 ∩G2 = ∅.

First, consider the case that G1 ∪ G2 6= N : for every t, u such that [s] ∼fG [t] and [u] = [t], φX]c ∈
Ec(u)(G1) and [φY]c ∈ Ec(u)(G2) and since Ec(u) satisfies E5, [φX]c ∩ [φY]c ∈ Ec(u)(G1 ∪ G2) for
every such t, u. Again, note that [φX]c ∩ [φY]c = [

∨
[t]∈X∩Y φ[t]]

c. Since for every t, u such that [s] ∼fG [t]

and [u] = [t] [
∨

[t]∈X∩Y φ[t]]
c ∈ Ec(u)(G1 ∪G2), we have that X ∩ Y ∈ Ef ([s])(G1 ∪G2).

Second, consider the case that G1 ∪G2 = N . We consider the three sub-cases:

G1 = N,G2 = ∅: We have that there exist t′, u′ such that [s] ∼fG [t′] and [u′] = [t′] and [φX]c ∈ Ec(u′)(G1),
and that for every t, u such that [s] ∼fG [t] and [u] = [t], [φY]c ∈ Ec(u)(G2). Since Ec(u′) satis-
fies E5, [φX]c ∩ [φY]c ∈ Ec(u′)(G1 ∪ G2). By the same argument as in the G1 ∪ G2 6= N case,
that means that [

∨
[t]∈X∩Y φ[t]]

c ∈ Ec(u′)(G1 ∪ G2), and since G1 ∪ G2 = N that means that
X ∩ Y ∈ Ef ([s])(G1 ∪G2).

G2 = N,G1 = ∅: Symmetric to the argument above.

G1 6= ∅, G2 6= ∅, G1 ∪G2 = N : We have that for all t, u such that [s] ∼fG [t] and [u] = [t], [φX]c ∈
Ec(u)(G1) and [φY]c ∈ Ec(u)(G2). Take t = u = s. Since Ec(s) satisfies E5, [φX]c ∩ [φY]c ∈
Ec(s)(G1 ∪ G2). By the same argument as above, [

∨
[t]∈X∩Y φ[t]]

c ∈ Ec(s)(G1 ∪ G2), and since
G1 ∪G2 = N that means that X ∩ Y ∈ Ef ([s])(G1 ∪G2).

o

22

Finally, we must show the following.

Proposition 3 Mf satisfies I2.

Proof Let [s] ∼fG [t]. Let X ∈ Ef ([s])(G); we show that X ∈ Ef ([t])(G) (proof of inclusion in the other
direction is symmetric).

Consider the case thatG 6= N . Let t′, u ∈ Sc, [t] ∼fG [t′] and [u] = [t′]. We must show that [φX]c ∈ Ec(u)(G)

(*). By transitivity of ∼fG we have that [s] ∼fG [t], and thus (*) follows from the fact that X ∈ Ef ([s])(G).
Consider the case that G = N . From X ∈ Ef ([s])(G) we have that there exist t′, u ∈ Sc such that [s] ∼fG [t′],

[u] = [t′], and [φX]c ∈ Ec(u)(G). From transitivity of ∼fG we have that [t] ∼fG [t′], and it follows that also
X ∈ Ef ([t])(G) because ∃t′, u ∈ Sc[t] ∼fG [t′] and [u] = [t′] and [φX]c ∈ Ec(u)(G). o

This completes the proof of Theorem 8, since φ belongs to one of the maximal consistent sets and hence is
satisfied in the constructed model. o

Corollary 5 (Completeness of CLC+) For any CLC-formula φ, |=CLC+ φ implies `CLC+ φ.

Corollary 6 (Completeness of CLK+) For any CLK-formula φ, |=CLK+ φ `CLK+ φ.

Proof The proof is exactly like in the case of CLC+, with the following modification: in the definition of Ef , let
∼fG be ∼fi when G = {i} is a singleton, and the identity relation otherwise. o

7.2 Computational Complexity
Theorem 9 The satisfiability problem for CLD+ is PSPACE-complete.

Proof We modify the definition of the closure ccl(φ) of a formula φ from the proof of Theorem 7 by adding an
extra condition:

[G]ψ ∈ ccl(φ)⇒ DG[G]ψ ∈ ccl(φ)

We add the following condition on L(s) to the definition of a CLD tableau from the proof of Theorem 7:

ECT [G]ψ ∈ L(s)⇒ DG[G]ψ ∈ L(s)

Then we prove a lemma corresponding to Lemma 7 for CLD+:

Lemma 12 An CLD+ formula φ is satisfiable if, and only if, there is a CLD+ tableau T = (S,L,R1, . . . , Rn)
for φ.

Proof The direction from left to right (if there is a model for φ, then there is a tableau for φ) is straightforward.
As in the proof of Lemma 7, we construct a model M = (S,E, {∼i: i ∈ N}, V) for φ given a tableau

T = (S,L,R1, . . . , Rn). The construction of S,E, {∼i: i ∈ N}, V is exactly as before. We need to prove that

∀i ∈ G(s ∼i t)⇒ ∀X(X ∈ E(s)(G)⇔ X ∈ E(t)(G))

Let us assume that s ∼i t. By the argument from the proof of Lemma 7, for all χ such that DGχ ∈ L(s),
χ ∈ L(t), and vice versa. Because of the ECT condition, [G]ψ ∈ L(s) entails DG[G]ψ ∈ L(s), so for every ψ,
[G]ψ ∈ L(s) iff [G]ψ ∈ L(t). In particular, [N]ψ ∈ L(s) iff [N]ψ ∈ L(t), and hence by CT1, ¬[∅]¬ψ ∈ L(s) iff
¬[∅]¬ψ ∈ L(t).

A simple inspection of the construction of E(s)(G) for G 6= N in the proof of Lemma 7 shows that if s and t
agree on [G]ψ formulas, then for every X , X ∈ E(s)(G)⇔ X ∈ E(t)(G). The case for G = N follows because
s and t agree on all formulas of the form [∅]ψ. o

23

The HMP (φ) procedure needs to be modified as follows. Node s can only be marked as satisfiable if for no ψ,
[G]ψ,¬DG[G]ψ ∈ L(s).

Since the closure and the node label still remain polynomial in the original formula φ, the rest of the complexity
proof goes through. o

8 Related Work
In this section, we briefly survey related work, which falls in two categories: the work that introduces proof
techniques for proving completeness and analysing complexity of logics of coalitional ability and for epistemic
logics separately; and the work on combining logics of coalitional ability and epistemic logic. We mentioned some
work on the interaction of knowledge and ability in the preceeding sections of the paper. For a survey of that work,
see [1].

Coalition Logic was introduced by Pauly, and many of the proof techniques we used here originate from his
paper [25]. Other logics of coalitional ability have also been extensively studied, for example Alternating-time
Temporal Logic (AT L) [4], and STiT logics [5]. The techiques developed for those logics influence developments
for CL as well, especially since as observed in [10], CL is a fragment of AT L. Most of the known meta-logical
results for the logics of coalitional ability have been about computational complexity and expressive power. Com-
pleteness results have been harder to obtain, with Goranko’s and van Drimmelen’s completeness proof for AT L
[13], Pauly’s completeness proof for CL [25] and Broersen and colleagues’ completeness proofs for different vari-
ants of STiT logic [7, 6, 19] being notable exceptions.

There exists an even larger body of work on epistemic logic, both on axiomatisation and complexity, for
example, [8, 22, 27]. Filtration techniques for group modalities have been studied extensively in [27], and tableau
techniques introduced in [16] and developed for example in [2].

Epistemic extensions of coalitional ability have also been studied before. One of the most well known ones is
AT EL,AT L extended with epistemic operators. In [28], some axioms ofAT EL are given, but there is no attempt
to prove completeness. Complexity of of AT EL was analysed in [30]. Guelev and colleagues [15, 14] proved
completeness of a fragment of AT L with distributed knowledge operators and ‘de re’ knowledge of strategies.
Broersen and colleagues [6, 19] proved completeness of variants of STiT logic that include individual knowledge
operators, but not group knowledge operators. In [19] adding group knowledge operators is listed as an important
challenge.

9 Conclusions
This papers settles several hitherto unsolved problems. It proves completeness of coalition logic extended with dif-
ferent combinations of group knowledge operators. The axioms for the epistemic modalities are standard in epis-
temic logic, but the completeness proofs require non-trivial combinations of techniques. The proofs are given in
detail, and can be used and extended in future work. The paper furthermore completely characterises the computa-
tional complexity of the considered logics. They are all decidable. We can conclude that adding coalition operators
to epistemic logic comes “for free” without changing the complexity of the satisfiability problem: the extension of
epistemic logic with distributed and common knowledge with coalition operators remains EXPTIME-complete, the
extension of epistemic logic with only distributed knowledge with coalition operators remains PSPACE-complete.

We studied two variants of coalitional ability in this paper. The first is standard ability, with no knowledge
requirements, allowing us to distinguish between standard ability and knowledge of ability. By adding interaction
axioms, we also obtained axiomatisations of another notion of ability, namely being able to make something come
about if and only if you know that you can make it come about.

There are some open problems. We have not characterised the complexity of the satisfiability problem for
CLC+; we conjecture that it is EXPTIME-complete. We also have not proven completeness of CLD+; we con-
jecture that the logic is complete. Completeness and complexity of logics with other interaction properties is also
interesting for future work.

24

Acknowledgements We thank the reviewers for their detailed and thorough comments that helped us to improve
the paper.

References
[1] T. Ågotnes, V. Goranko, W. Jamroga, and M. Wooldridge. Knowledge and ability. In H. P. van Ditmarsch,

J. Y. Halpern, W. van der Hoek, and B. P. Kooi, editors, Handbook of Logics for Knowledge and Belief.
College Publications, London, 2015. Forthcoming.

[2] M. Ajspur, V. Goranko, and D. Shkatov. Tableau-based decision procedure for the multiagent epistemic logic
with all coalitional operators for common and distributed knowledge. Logic Journal of the IGPL, 21(3):407–
437, 2013.

[3] N. Alechina, B. Logan, H. N. Nguyen, and A. Rakib. Logic for coalitions with bounded resources. Journal
of Logic and Computation, 21(6):907–937, December 2011.

[4] R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time temporal logic. Journal of the ACM, 49:672–
713, 2002.

[5] N. Belnap and M. Perloff. Seeing to it that: a canonical form for agentives. Theoria, 54:175–199, 1988.

[6] J. Broersen. A complete STIT logic for knowledge and action, and some of its applications. In M. Baldoni,
T. C. Son, M. B. van Riemsdijk, and M. Winikoff, editors, Declarative Agent Languages and Technologies
VI, 6th International Workshop, DALT 2008, Estoril, Portugal, May 12, 2008, Revised Selected and Invited
Papers, volume 5397 of Lecture Notes in Computer Science, pages 47–59, 2009.

[7] J. Broersen, A. Herzig, and N. Troquard. A normal simulation of coalition logic and an epistemic extension.
In D. Samet, editor, Proceedings of the 11th Conference on Theoretical Aspects of Rationality and Knowledge
(TARK-2007), Brussels, Belgium, June 25-27, 2007, pages 92–101, 2007.

[8] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning About Knowledge. The MIT Press, Cambridge,
Massachusetts, 1995.

[9] D. M. Gabbay and V. B. Shehtman. Products of modal logics, part 1. Logic Journal of the IGPL, 6(1):73–146,
1998.

[10] V. Goranko. Coalition games and alternating temporal logics. In Proceeding of the Eighth Conference on
Theoretical Aspects of Ra tionality and Knowledge (TARK VIII, pages 259–272. Morgan Kaufmann, 2001.

[11] V. Goranko, W. Jamroga, and P. Turrini. Strategic games and truly playable effectivity functions. Autonomous
Agents and Multi-Agent Systems, 26:288–314, 2013.

[12] V. Goranko, W. Jamroga, and G. van Drimmelen. Axiomatic systems for alternating time temporal epistemic
logics (extended abstract).

[13] V. Goranko and G. van Drimmelen. Complete axiomatization and decidability of alternating-time temporal
logic. Theoretical Computer Science, 353(1):93–117, 2006.

[14] D. P. Guelev and C. Dima. Epistemic ATL with perfect recall, past and strategy contexts. In M. Fisher,
L. van der Torre, M. Dastani, and G. Governatori, editors, Computational Logic in Multi-Agent Systems -
13th International Workshop, CLIMA XIII, Montpellier, France, August 27-28, 2012. Proceedings, volume
7486 of Lecture Notes in Computer Science, pages 77–93. Springer, 2012.

[15] D. P. Guelev, C. Dima, and C. Enea. An alternating-time temporal logic with knowledge, perfect recall and
past: axiomatisation and model-checking. Journal of Applied Non-Classical Logics, 21(1):93–131, 2011.

25

[16] J. Y. Halpern and Y. Moses. A guide to completeness and complexity for modal logics of knowledge and
belief. Artif. Intell., 54(2):319–379, 1992.

[17] D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. MIT Press, 2000.

[18] A. Herzig and N. Troquard. Knowing how to play: Uniform choices in logics of agency. In Proceedings of
AAMAS’06, pages 209–216, 2006.

[19] A. H. J. Broersen and N. Troquard. What groups do, can do, and know they can do: an analysis in normal
modal logics. Journal of Applied Non-Classical Logic, 19(3):261–289, 2009.

[20] W. Jamroga and T. Ågotnes. Constructive knowledge: what agents can achieve under imperfect information.
Journal of Applied Non-Classical Logics, 17(4):423–475, 2007.

[21] W. Jamroga and W. van der Hoek. Agents that know how to play. Fundamenta Informaticae, 63:185–219,
2004.

[22] J.-J. C. Meyer and W. van der Hoek. Epistemic Logic for AI and Computer Science. Cambridge University
Press: Cambridge, England, 1995.

[23] J. W. Moon and L. Moser. On cliques in graphs. Israel Journal of Mathematics, 3:23–28, 1965.

[24] H. N. Nguyen. Reasoning about resource-bounded multi-agent systems. PhD thesis, University of Notting-
ham, 2011.

[25] M. Pauly. A modal logic for coalitional power in games. Journal of Logic and Computation, 12(1):149–166,
2002.

[26] P. Y. Schobbens. Alternating-time logic with imperfect recall. Electronic Notes in Theoretical Computer
Science, 85(2), 2004.

[27] W. van der Hoek and J.-J. C. Meyer. A complete epistemic logic for multiple agents combining distributed
and common knowledge. In M. Bacharach, L. Gerard-Varet, P. Mongin, and H. Shin, editors, Epistemic Logic
and the Theory of Games and Decisions, pages 35–68. Kluwer Academic Publishers, Dordrecht, 1997.

[28] W. van der Hoek and M. Wooldridge. Cooperation, knowledge and time: Alternating-time temporal epistemic
logic and its applications. Studia Logica, 75:125–157, 2003.

[29] H. van Ditmarsch, W. van der Hoek, and B. Kooi. Dynamic Epistemic Logic, volume 337 of Synthese Library.
Springer, 2007.

[30] D. Walther. ATEL with common and distributed knowledge is ExpTime-complete. In Proceedings of M4M-4:
the 4th Workshop on Methods for Modalities, 2005.

[31] Y. Wang and T. Ågotnes. Public announcement logic with distributed knowledge. In H. van Ditmarsch,
J. Lang, and S. Ju, editors, Third International Workshop, LORI 2011, Guangzhou, China, October 10-13,
2011. Proceedings, volume 6953 of Lecture Notes in Computer Science/Lecture Notes in Artificial Intelli-
gence. Springer, 2011.

26

