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1. Introduction

Given a group G, acting on a topological space X, it is often useful to have a set of 
representatives of the orbit, G\X, which are “reduced” with respect to some suitable 
definition. In number theory the most prominent example is the reduction theory of the 
modular group Γ = PSL2(Z). This gives rise to a large number of interesting applications 
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including the classical theory of Gauss for binary quadratic forms and continued fractions, 
as well as more recent developments in modular and automorphic forms.

In the case of the modular group the topological space can be viewed as the complex 
upper-half plane H = {z = x + iy ∈ C | y > 0} and the action is given by Möbius 
transformations. The most commonly used set of representatives of Γ\H is given by the 
following set

F = {z = x + iy ∈ C | −1/2 ≤ x ≤ 1/2, |z| ≥ 1} .

This is an example of a closed fundamental domain, meaning that it tessellates the upper 
half-plane, H = ΓF , and different copies overlap only on the boundary, i.e. V F◦∩WF◦ =
∅ if V �= W ∈ Γ. By the covering property it is clear that for any z ∈ H there exists 
some A ∈ Γ such that Az ∈ F and it is easy to see that unless z is equivalent to a point 
on the boundary of F this element A is unique. This geometric reduction can then be 
translated into a reduction theory of, for instance, binary quadratic forms, by noting 
that the action of Γ on q(x, y) = ax2 + bxy + cy2 with discriminant Δ = b2 − 4ac < 0 is 
equivalent to the action of Γ on the point x0 = 1

2a (−b + i
√

|Δ|) in the upper half-plane.
The goal and raison d’être of the current paper is to present, for the first time, an 

explicit reduction algorithm for Hilbert modular groups which applies to any totally real 
number field and can be proven to return a reduced point and terminates in polynomially 
bounded time for a fixed field. With notation as in the following sections our main result 
is the following.

Theorem 1. Given a totally real number field K and z = x + iy ∈ HK there exists an 
explicit algorithm (Algorithm 12), which finds an element A ∈ ΓK such that Az ∈ FK , 
where FK is a certain fundamental domain for ΓK . Furthermore, the runtime of this 
algorithm is polynomial in N(x), N(y), N 

(
y−1) as z varies.

We will follow a construction of fundamental domains for Hilbert modular groups that 
originated with Blumenthal [1] and was further improved by e.g. Maaß [15], Herrmann 
[12] and Tamagawa [21]. A comprehensive description of this method is given in the 
lecture notes by Siegel [17, Ch. 3.2] and it is this presentation we have mainly followed.

The fundamental domains for quadratic fields and in particular Q(
√

5) and some 
others of class number one have been studied in more detail both theoretically and 
numerically by e.g. Götzky [9], Cohn [3,4], Deutsch [6,7], Jespers, Kiefer and del Río 
[13], and Quinn and Verjovsky [16].

The intention with the presentation of this paper is to make sure that the exposition is 
as self-contained as possible and that all details and notations are clear to the reader, in 
particular, regarding which groups we consider. The following three sections, 2, 3 and 4, 
are therefore mainly aiming at reformulating elementary results from mainly Siegel [17, 
Ch. 3.2] and van der Geer [23] but also other sources, into a common language. We start 
with a brief summary of number fields and embeddings, followed by a section on Hilbert 
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modular groups and the different types of elements. After this we give a theoretical 
presentation of the fundamental domain and the different components involved. This 
is followed by Section 5, where a detailed analysis of the proof of the existence of a 
closest cusp gives rise to Theorem 5, which is the theoretical foundation behind the 
algorithm.

After all necessary theoretical results are presented we then give the actual reduc-
tion Algorithm, separated in two algorithms to be more comprehensive. After this we 
provide a selection of detailed examples with the aim to demonstrate the veracity and 
effectiveness of the algorithm, covering examples of class number greater than one and 
degree greater than two, both of which previous numerical methods have not been able 
to deal with successfully. As a conclusion we mention some proposed further work and 
applications.

It should be noted that all algorithms mentioned in this paper are implemented using 
SageMath [22] and are available as a Python package at [20]. Furthermore, all examples 
presented in Section 7 (and more) are available in Jupyter notebook format as part of 
this package.

Motivation and future applications

Our interest in reduction theory for Hilbert modular groups stems from two different 
problems. The first problem is regarding dimension formulas for vector-valued Hilbert 
modular forms. This is part of ongoing work joint with Skoruppa and Boylan, cf. e.g. 
[18] and [19]. One of the necessary ingredients for dimension formulas is the number 
of elliptic fixed points, and in the vector-valued case it is also necessary to know the 
corresponding stabilizers. The number of elliptic fixed points is well known for quadratic 
fields but for higher degrees this is a hard problem for which a computational approach 
currently seems to be the only option. While there are many computational approaches, 
both algebraic and analytic, at some point they generally require some form of reduction 
to produce representative elements.

The second problem is the computation of non-holomorphic Hilbert modular forms. 
One of the key ingredients in the so-called automorphy (or Hejhal’s) method for com-
puting Maaßcusp forms on Hecke triangle groups and subgroups of the modular groups 
is the existence of an efficient reduction algorithm. Cf. e.g. [11]. While many parts of 
this algorithm need to be modified to work over fields other than Q, the main obstacle 
so far has been the lack of a general reduction algorithm. With the existence of the cur-
rent algorithm the hope is that a computational approach to non-holomorphic Hilbert 
modular forms is finally within reach.

From an algorithmic perspective it is clear the most important improvement would 
be to find a better bound for the embeddings or norms in Theorem 5. While we believe 
that most of the bounds are close to optimal in the general setting it might be possible 
to hard-code the case of, say, a quadratic field, more efficiently.
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2. Number fields and embeddings

Let K be a totally real number field of degree n over Q with ring of integers OK

and unit group U . Choose an integral basis α1, . . . , αn of OK and a set of generators 
(fundamental units) ε1, . . . , εn−1 of U . Let ϕi : K ↪→ R, i = 1, . . . , n be the embeddings 
of K into R and define the norm and trace on K/Q by

N := NK/Q : α 
→
∏

ϕi (α) and Tr := TrK/Q : α 
→
∑

ϕi (α) .

When there is no risk of confusion we sometimes write αi for ϕi(α). The ideal class 
number of K is denoted by h and we let c1, . . . , ch be the set of ideal classes, with c1 the 
trivial class, and a1 = (1), a2, . . . , ah a fixed set of ideal class representatives, chosen by 
selecting a fixed ideal of smallest norm in each class.

An element α ∈ K is said to be totally positive, and we write α � 0, if ϕi(α) > 0 for all 
embeddings ϕi. To further simplify certain formulas we introduce the rings CK = C⊗QK

and RK = R ⊗QK and view CK as an algebra over both C and K with the multiplication 
operations defined in the natural way. More precisely, for pure tensors z, z′ ∈ CK with 
z = z ⊗ a and z′ = z′ ⊗ a′ for some z, z′ ∈ C and a, a′ ∈ K we define

zz′ = zz′ ⊗ aa′, z′z = zz′ = (z′z) ⊗ a, a′z = za′ = z ⊗ (a′a),

and then extend these operations to the whole of CK by linearity, and similarly for 
elements of RK . The real and imaginary parts of z = z ⊗ a are defined by

(z) = (z) ⊗ a ∈ RK and �(z) = �(z) ⊗ a ∈ RK ,

again extended linearly, and we will write a general z ∈ CK as z = x+ iy with x = �(z)
and y = (z). The embeddings ϕi are extended to embeddings of CK in C and RK in 
R, respectively, by setting

ϕi(z) = ϕi(z ⊗ a) = zϕi(a)

and we use these to define the trace and norm on CK and RK . An element x ∈ RK is said 
to be totally positive, written x � 0, if ϕi(x) > 0 for all embeddings ϕi and similarly we 
write x � y, or equivalently, y � x, if x − y � 0. If z ∈ CK then |z| ∈ RK is defined 
by ϕi(|z|) = |ϕi(z)| for all i. We define an analog of the standard upper half-plane by 
setting

HK = {z ∈ CK | (z) � 0} .

Many classical results about Hilbert modular groups and forms are formulated in terms 
of n copies of the standard upper half-plane

Hn = {(z1, . . . , zn) ∈ Cn | (zi) > 0, 1 ≤ i ≤ n}
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but it is very easy to translate results between this and HK using the embedding ϕ of 
CK into Cn (as vector spaces) given by

z 
→ ϕ (z) = (ϕ1(z), . . . , ϕn(z)) ∈ Cn.

3. Hilbert modular groups

For the purpose of this paper it is most natural to define the Hilbert modular group 
for K as the projective group

ΓK = PSL2(OK) � SL2(OK)/{±I2},

where I2 is the 2-by-2 identity matrix, and we usually represent the elements of ΓK

by the associated matrices. In connection with cusps it is also natural to consider the 
following group associated with an integral ideal b of K:

Γ (OK ⊕ b) =
{(

α β
γ δ

)
, α, δ ∈ OK , β ∈ b−1, γ ∈ b, αδ − βγ = 1

}
⊆ PSL2(K).

The group PSL2(K) acts on HK by linear fractional transformations:

A(z) = αz + β

γz + δ
:= (αz + β) (γz + δ)−1 if A =

(
α β
γ δ

)
∈ PSL2(K), (3.1)

and this action is extended as usual to P 1(K) by setting

A (ρ : σ) = (αρ + βσ : γρ + δσ) if (ρ : σ) ∈ P 1(K). (3.2)

Elements of PSL2(K) can be classified, for instance, by using the trace of the associated 
matrix. For convenience we use the same terminology as in GL2(R) and we say that A
is:

• parabolic if Tr(A) = ±2,
• elliptic if |Tr (A)| � 2, and
• hyperbolic if |Tr(A)| � 2.

It is clear that A is elliptic, parabolic or hyperbolic precisely if all embeddings ϕi(A) are 
of the corresponding type in GL2(R). An element that does not belong to any of these 
types is simply said to be mixed. It is not hard to show that A is parabolic if and only 
if it has a unique fixed point in P 1(K), elliptic if and only if it has a unique fixed point 
in HK and hyperbolic if and only if it has two fixed points in P 1(K). For more details 
see e.g. Freitag [8, II.§2-§3].
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3.1. Element and generators of the Hilbert modular group

If α ∈ OK and ε ∈ U we define the following elements of ΓK :

Tα :=
(

1 α

0 1

)
, E(ε) :=

(
ε 0
0 ε−1

)
and S :=

(
0 −1
1 0

)
.

and note that the corresponding actions on HK are given by the maps

Tα : z 
→ z + α, E(ε) : z → ε2z and S : z → −z−1.

For an integral ideal a ⊆ OK we define the translation module of a by

Ta :=
{
T β | β ∈ a

}

and if H � U is generated by εa1
1 , εa2

2 , . . . , εan−1
n−1 then the set of multipliers of H is

MH := {E(ε) | ε ∈ H} � 〈E(εa1
1 )〉 × · · · ×

〈
E(εan−1

n−1 )
〉
.

Let β1, . . . , βn and β′
1, . . . , β

′
n be integral bases of a and a−1. It is clear that the translation 

modules are finitely generated, more precisely

Ta �
〈
T β1

〉
× · · · ×

〈
T βn

〉
and Ta

−1 �
〈
T β′

1
〉
× · · · ×

〈
T β′

n
〉
.

It follows by a result of Vaserštĕın [24] (see also [14] and [23, p. 82]) that Γ(OK ⊕ a) is 
generated by upper and lower-triangular matrices and since these can all be expressed 
in terms of the elements S and Tα it is generated by the set

{S, T β1 , T β2 , . . . , T βn , T β′
1 , . . . , T β′

n}.

As a special case we conclude that ΓK = Γ(OK⊕OK) is generated by {S, Tα1 , . . . , Tαn}. 
This set of generators is very simple and an immediate extension of the well-known 
generators S and T = T 1 for PSL2(Z). Unfortunately, in the case of ΓK , these generators 
do not have the same geometric significance and in particular do not correspond to 
side-pairing transformations. They are therefore not immediately useful in a reduction 
algorithm. It is therefore common to consider a slightly larger set of generators including 
elements E(ε) with ε ∈ U even though these can of course be expressed by the other 
generators using, for instance, the algorithms introduced in [10].
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3.2. Cusps of Hilbert modular groups

The set of cusps of ΓK , in other words, fixed points of parabolic elements, can be 
identified with the projective line P 1(K) = K ∪{∞} where the cusp at infinity, ∞, is as 
usual a convenient symbol for the class (1 : 0). Most results below are well-known and 
for proofs and further details we refer the reader to e.g. [23] or [5]. Note that Δ(OK , b−1)
in the notation of [5] corresponds to the group Γ(OK ⊕ b) in our notation.

Every cusp λ ∈ P 1(K) can be represented by (ρ : σ) for some non-unique pair 
ρ, σ ∈ OK with associated fractional ideal aρ,σ = (ρ, σ). It is easy to see that different 
representatives for λ give rise to fractional ideals in the same ideal class, denoted by 
cλ ∈ Cl(K). For any λ ∈ P 1(K) we assume that ρ and σ are chosen such that (ρ, σ) = aj

for some ideal class representative aj .
Furthermore, the ideals associated with (ρ : σ) and A (ρ : σ) are identical if A ∈ ΓK

since det(A) = 1. It can be shown that the map λ 
→ cλ is a bijection from ΓK\P 1(K) →
Cl(K) and therefore the number of ΓK-equivalence classes of cusps is equal to h, the 
ideal class number of K, and we choose λ1 = ∞, . . . , λh as representatives for Γ\P 1(K)
such that λj is associated with cj and we write λj = (ρj : σj) with (ρj , σj) = aj .

It is easy to see that the stabilizer of the cusp ∞ in ΓK is given by

ΓK,∞ :=
{
TαE(ε) =

(
ε ε−1α
0 ε−1

)
: z 
→ ε2z + α, ε ∈ U , α ∈ OK

}
� TOK

� U2.

Corresponding to each cusp representative λj = (ρj : σj) we choose a cusp normalizing 
map, Aj ∈ PGL2(OK), such that Aj (∞) = λj and

Aj =
(

ρj ξj
σj ηj

)

with ξj , ηj ∈ a
−1
j and ρjηj − σjξj = 1. In the notation of [5] Aj is an (aj , a−1

j )-matrix. 
The map Aj is unique up to multiplication by an element in ΓK,∞ on the right and we 
have

A−1
j ΓKAj = Γ(OK ⊕ a2

j ).

As an alternative to studying the set of cusp representatives λ1, . . . , λh of ΓK it is 
therefore possible to consider the cusp at ∞ for the collection of groups Γ 

(
OK ⊕ a2

j

)
for 

j = 1, . . . , h, with stabilizers

Γ(OK ⊕ a2
j )∞ =

{
TαE(ε) =

(
ε ε−1α
0 ε−1

)
: z 
→ ε2z + α, ε ∈ U , α ∈ a

−2
j

}
� T a

−2
j � U2.

For an arbitrary cusp μ ∈ P 1(K) we choose a map Uμ ∈ ΓK such that Uμ (μ) = λI(μ)
where I(μ) is a unique integer in {1, 2, . . . , h} and define the cusp normalizer of μ as
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Aμ = U−1
μ AI(μ).

It is now easy to show (see e.g. [17]) that the stabilizer of an arbitrary cusp μ ∈ K in 
ΓK can be written as

ΓK,μ = AμΓ(OK ⊕ a2
I(μ))∞A−1

μ

where aI(μ) is the ideal corresponding to the cusp representative λI(μ) which is equivalent 
to μ. In particular, all elements that stabilizes μ in ΓK can be written as AμT

αE(ε)A−1
μ

for some ε ∈ U and α ∈ a
−2
I(μ).

4. The fundamental domain

The fundamental domain we describe in this section is essentially the same as that 
used by Bluhmenthal [1], Mass [15], Tamagawa [21], Siegel [17] and others. The main 
difference in these authors’ approaches is in the description of the “bottom” part which 
consists of a collection of hypersurfaces. Here we adopt the description given by Siegel 
[17] since it is easy to use for the explicit reduction algorithm. We have aimed to provide 
sufficient details to demonstrate the appropriateness and correctness of the algorithm 
and refer to [17] for details and proofs.

4.1. Reduction with respect to units

We use log : R+ → R to denote the natural logarithm and without risk of confusion 
we use the same notation for the extended map log : R+

K → Rn defined by log(x) =
(logϕ1(x), . . . , logϕn(x)). It is immediate from Dirichlet’s unit theorem that the group 
of units squared, U2, corresponds to an integral lattice Λ of rank n − 1 in Rn, explicitly 
given by:

Λ = log(U2) =
{
log(ε) : ε ∈ U2} =

{
n−1∑
k=1

ak log(|εk|) : ak ∈ 2Z
}
.

The vectors log |εk| = (log |ϕ1εk|, . . . , log |ϕnεk|)t form a basis of Λ and we let BΛ =
(brk)1≤r≤n,1≤k≤n−1 ∈ Mn×n−1(R) with brk = log |ϕr(εk)| denote the corresponding 
basis matrix. Since all units have norm 1 it is easy to see that Λ is contained in the 
n − 1-dimensional hyperplane

H = {u ∈ Rn | u1 + . . . + un = 0} .

We follow the explicit construction by Siegel and choose KΛ = BΛ[−1, 1[n−1 as a funda-
mental parallelepiped for Λ and say that a vector in H is Λ-reduced if it belongs to KΛ. 
If y ∈ R+

K we define ỹ = y · (Ny)−1/n and observe that Nỹ = 1, hence log(ỹ) ∈ H and 
we say that y is U2-reduced if log(ỹ) is Λ-reduced. This means that we can write
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BΛY = log(ỹ), (4.1)

where Y ∈ [−1, 1[n−1. The complete coordinate map YΛ : R+
K → [−1, 1[n−1 is then de-

fined by setting YΛ(y) = Y where Y satisfies (4.1). Observe that if b = (b1, . . . , bn−1)t ∈
Zn−1 then

BΛb =
n−1∑
k=1

bk log |εk|

and therefore, if ε = εb11 · · · εbn−1
n−1 ∈ U then YΛ(ε2y) = YΛ(y) + 2b. It follows that if 

we are given a y ∈ R+
K with YΛ(y) = (Y1, . . . , Yn−1) and choose bi = − 

⌊
Yi

2 + 1
2
⌋

then 
E(ε)y = ε2y will be U2 reduced. Here �x� is the nearest integer to x, defined as the 
unique integer n satisfying x − 1/2 ≤ n < x + 1/2.

It is easy to see that KΛ � Λ\Rn−1 is isomorphic via the logarithm map to a fun-
damental domain for the action of the set of multipliers MU on R+

K . For the explicit 
computations of reduced vectors it is useful to have the following explicit estimates in 
terms of the absolute row sums of BΛ:

ri(BΛ) =
n−1∑
j=1

|log |ϕiεj || , 1 ≤ i ≤ n,

and we observe that ‖BΛ‖∞ = max ri(BΛ).

Lemma 2. If u ∈ Rn is Λ-reduced then |ui| ≤ ri(BΛ).

Proof. If u ∈ KΛ then u = BΛY for some Y ∈ [−1, 1]n−1 and hence

|ui| = (BΛY)i ≤
n−1∑
j=1

|log |ϕiεj || |Yj | ≤ ri(BΛ). �

The following corollary is now immediate.

Corollary 3. If y ∈ R+
K then there is a unit ε ∈ U2 such that

(Ny)1/ne−ri(BΛ) ≤ |ϕi(εy)| ≤ (Ny)1/neri(BΛ) for all 1 ≤ i ≤ n.

4.2. Reduction with respect to translations

Let a be an integral ideal in OK and choose an integral basis β(a)
1 , . . . , β(a)

n of a. Using 
the embedding map we identify a with a lattice of rank n in Rn, also denoted by a. The 
basis matrix for this lattice is denoted by Ba and we choose a fundamental polytope 
Ka = Ba[−1/2, 1/2[n. For an element x ∈ RK we define the a-coordinate vector Xa(x)
by the equation
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BaXa(x) = ϕ(x)

and say that x is a-reduced if ϕ(x) ∈ Ka, or in other words, if Xa(x) = (X1, . . . , Xn)
with −1/2 ≤ Xk < 1/2 for all ks.

If α =
∑n

k=1 akβ
(a)
k ∈ a then Xa(α) = (a1, . . . , an) and it is clear that Xa(x + α) =

(X1 + a1, . . . , Xn + an) and hence, if we choose ak = − �Xk� then Tαx = x + α will be 
a-reduced.

4.3. Fundamental domain for the cusp stabilizer

Let λ ∈ P 1(K) be a cusp of ΓK , aλ the corresponding representative ideal and b = a
−2
λ

with an integral basis β(b)
1 , . . . , β(b)

n . For an element z ∈ HK we define zλ = xλ + iyλ =
A−1

λ z and say that z is reduced with respect to λ if xλ is reduced with respect to b and 
yλ is reduced with respect to U2. We let Cλ denote the set of all such reduced points, 
more precisely

Cλ =
{
z ∈ HK | Xb(xλ) ∈ [−1/2, 1/2[n and YΛ(yλ) ∈ [−1, 1[n−1} .

It is easy to show that the set Cλ is indeed a fundamental domain for the action of 
ΓK,λ = AλΓ(OK ⊕ a2

λ)A−1
λ on HK . Note that for the modular group, PSL2(Z), the 

analogue of the domain Cλ is the strip −1/2 < �(z) ≤ 1/2.

4.4. Cuspidal regions

If the regions Cλ in the previous section are analogues of the vertical strip we will 
now look at the analog of the curved part of the fundamental domain, given by |z| ≥ 1. 
For the modular group this can be interpreted in terms of a reflection in the isometric 
circle corresponding to the map given by z 
→ −z−1. An analog interpretation is valid 
for Hilbert modular groups but it is much harder to work out precisely which reflections 
to include even for small number fields of class number 1.

If z = x + iy ∈ HK we define Δ(z, ∞), the distance to the cusp at ∞, by

Δ(z,∞) = N (z)−1/2

and the distance to an arbitrary cusp μ = (ρ : σ) with associated ideal a = (ρ, σ) is

Δ(z, μ) = N (a)−1 N(A−1
μ z)−1/2 = N (a)−1 N (y)−1/2 N(|−σz + ρ|2)1/2 (4.2)

= N(a)−1N
(
(−σx + ρ)2 y−1 + σ2y

) 1
2
,

where N(a) is the norm of the ideal a. This expression is independent of the choice of 
representatives ρ and σ as well as the choice of Aμ. Observe that the normalization factor 
N(a)−1, which accounts for the independence of the choices of ρ and σ is present in [23]
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but not in [17]. The expression Δ(z, μ) is in fact bi-invariant under ΓK , in other words, 
Δ (Az, Aμ) = Δ (z, μ) for all A ∈ ΓK . We will show later, in Lemma 4, that for every 
z ∈ HK there exists a cusp λ which is closest to z and it follows that the invariant height

Δ(z) = inf
{
Δ(z, λ) | λ ∈ P 1(K)

}
is well-defined, invariant under ΓK and Δ(z) = Δ(z, λ) for some cusp λ (not necessarily 
unique).

We are now fully prepared to give the definition of the fundamental domain that we 
are interested in. For a cusp representative λj with 1 ≤ j ≤ h we let Fj denote the set 
of λj-reduced points that are closest to λj , in other words:

Fj =
{
z ∈ Cλj

| Δ (z) = Δ(z, λj)
}
.

It can then be shown (cf. e.g. [17]) that the set

FK = ∪h
j=1Fj

is a fundamental domain for the action of ΓK on HK . Given that FK is a fundamental 
domain we now turn to the problem of reducing a point z to its representative inside FK . 
It is clear that the as soon as we find a closest cusp, say μ ∈ P 1(K), which is equivalent to 
a cusp representative λj with Uμ(μ) = λj then λj is a closest cusp to Uμz and we can use 
the straight-forward reduction with respect to units and translations from Sections 4.1
and 4.2 to find an ε ∈ U2 and α ∈ a

−2
j such that z∗ = Aλj

TαE(ε)A−1
λj

Uμz belongs to 
Fj .

The reduction with respect to units and translations is essentially done in constant 
time independent of z and has been efficiently implemented by many authors, cf. e.g. [2]. 
The practical and theoretical complexity of the reduction algorithm is almost entirely 
in the finding of the closest cusp. The next section is dedicated to auxiliary results 
and details on how our algorithm for finding the closest cusp works and we will then 
summarize the actual algorithm in the following section.

5. Finding the closest cusp

Our approach to finding the closest cusp λ is to analyze the existence and conditional 
uniqueness proofs from the lecture notes of Siegel [17] and find explicit and efficient 
bounds for all constants involved. The general idea was already present in a slightly 
different form in the work of Maaß [15] but note that some of the explicit constants 
present, in e.g. Hilfssatz II, are in general weaker than those we obtain here. The aim of 
this section is to include sufficient details in the proofs for a reader to be able to both 
understand and verify the functionality of the associated code [20] as well as being able 
to implement these algorithms independently.
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Lemma 4. If z ∈ HK then there exists a cusp λ ∈ P 1(K) such that

Δ(z, λ) ≤ Δ(z, μ) ∀μ ∈ P 1(K).

Proof. Let z = x + iy ∈ HK be fixed. It is sufficient to show that for any given cusp μ
there exists only a finite number of cusps λ such that Δ(z, λ) ≤ Δ(z, μ).

It follows from Section 3.2 that we can assume that λ = (ρ : σ) where ρ and σ are 
chosen such that (ρ, σ) = ai for some class group representative ai and in particular 
N((ρ, σ)) ≤ C where

C = max {N(a1), . . . ,N(ah)} .

We now consider Δ(z, λ) as a function of the algebraic integers σ and ρ and write

Δz(ρ, σ) := Δ(z, (ρ : σ)) = N((ρ, σ))−1
(
N
(
(−σx + ρ)2 y−1 + σ2y

)) 1
2
.

It is sufficient to show that if d > 0 there exists only a finite number of pairs ρ, σ ∈ OK

modulo units, such that Δz (ρ, σ) < d. Given such a pair write

Δz(ρ, σ) = N((ρ, σ))−1(Nw)1/2,

where w = (−σx + ρ)2 y−1 + σ2y ∈ R+
K . It follows from Corollary 3 that there exists a 

unit ε ∈ U such that

∣∣ϕi

(
ε2w

)∣∣ ≤ eri(BΛ)(Nw) 1
n ≤ eri(BΛ)d2/nC2/n, for all 1 ≤ i ≤ n.

Setting δi = eri(BΛ)d2/nC2/n we can therefore assume that σ and ρ have been chosen 
such that |ϕi (w) | ≤ δi, and hence that

ϕi(σ2y) ≤ δi and ϕi((−σx + ρ)2 y−1) ≤ δi.

It follows that the coordinates of the embeddings of σ and ρ are bounded by

|σi|2 ≤ δiy
−1
i and (5.1)

|ρi − σixi|2 ≤ δiyi. (5.2)

The inequalities (5.1) and (5.2) clearly define a bounded domain in Rn × Rn and the 
statement follows since the embeddings of OK form a lattice in Rn. �

An immediate consequence of the previous proof, and in particular (5.1), (5.2) and 
the inequality N(σ2y) < N(w), is the following result which is crucial to our algorithm.
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Theorem 5. Let z ∈ HK and assume that there is a cusp λ with Δ(z, λ) = d. Then a 
closest cusp can be chosen as (ρ : σ) where the embeddings of ρ and σ satisfy the following 
bounds:

|σi| ≤ Di · d1/ny
−1/2
i and |ρi − xiσi| ≤ Di · d1/ny

1/2
i ,

where

Di = C1/ne
1
2 ri(BΛ),

and, additionally, the norms are bounded by

N (|σ|) ≤ dCN (y)−1/2 and N (|−σx + ρ|) ≤ dCN (y)1/2 .

To apply the previous theorem we need to find an initial cusp λ. It is, for instance, 
always possible to choose ∞, in which case d = Δ (z,∞) = N(y)−1/2, or 0, in which case 
d = Δ (z, 0) = N(y)−1/2N(x2 + y2)1/2. However, it is clear that we would like to obtain 
as small initial bound as possible and if N(y) is small than we need to find another cusp 
to start with.

Fortunately there is a method which seems to work well in practice when N (y) is 
small. This method was introduced by Bouyer and Streng [2] and the main idea is to use 
LLL reduction to find a vector of short norm, −σz + ρ, in the lattice Lz = OKz + OK

and the corresponding cusp (ρ : σ) will then be close to z by (4.2).

Remark 6. It should be noted that the LLL reduction method by itself does not nec-
essarily yield the closest cusp, as the LLL algorithm is not guaranteed to return the 
shortest vector and the definition of distance Δ(z, (ρ : σ)) also involves the norm of the 
ideal (ρ, σ). For a provably correct algorithm (in all degrees) it is therefore necessary 
to combine this preliminary optimization with an exhaustive search using the explicit 
bounds of Lemma 5.

Since the only integer in OK with norm less than 1 is 0 the norm bound of Theorem 5
immediately implies the following.

Corollary 7. Let z = x + iy ∈ HK . If N(y) > C then ∞ is the closest cusp to z.

Unfortunately it is in general not so easy to find the closest cusp and we will see that 
it is often necessary to compare distances to many different cusps. However, the number 
of comparisons needed can sometimes be reduced by using the following Lemma and 
Corollary.

Lemma 8. There exists a constant d > 0, depending only on K, such that for all z =
x + iy ∈ HK , if λ and μ are cusps of K with Δ(λ, z) < d and Δ(μ, z) < d then λ = μ.
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Proof. Let z = x + iy ∈ HK . Assume that λ = (σ : ρ) and μ = (σ1 : ρ1) satisfy 
Δ(λ, z) < d and Δ(μ, z) < d for some positive d. Observe that the algebraic integer 
ρσ1 − σρ1 can be written

ρσ1 − σρ1 = (−σx + ρ)y−1/2σ1y1/2 − (−σ1x + ρ1)y−1/2σy1/2.

Since (5.1) and (5.2) apply to both (σ, ρ) and (σ1, ρ1) it is easy to see that

ϕi (|ρσ1 − σρ1|) ≤ 2δi,

where δi = eri(BΛ)d2/nC2/n. It follows that N (ρσ1 − σρ1) ≤ 2n
∏

δi and hence, if d <
C−12−n/2e−

∑
ri(BΛ) then we must have ρσ1 − σρ1 = 0 so μ = λ. �

Corollary 9. Let z = x + iy ∈ HK . If λ is a cusp with Δ(λ, z) < C−12−n/2e−
∑

ri(BΛ)

then λ is the closest cusp to z.

The previous lemma also has the geometric consequence that it is possible to decom-
pose the fundamental domain F into a compact part and disjoint cuspidal parts.

6. Algorithms

We will now describe the actual reduction algorithm in detail. The key idea is to use 
Theorem 5 to find bounded regions in Rn where the embeddings of the numerators and 
denominators of potential closest cusps must be located. We then compare the distance 
to z for each of the candidate cusps, except if one of the distances is less than the bound 
in Corollaries 7 or 9, in which case we terminate the search early.

Recall that we have a fixed integral basis α1, . . . , αn of OK and a corresponding lattice 
in Rn with basis matrix BOK

. If β ∈ OK is given by β =
∑n

i=1 Xiαi for some integer 
vector X ∈ Zn then the embeddings of β correspond to the vector ϕ(β) = BOK

X in Rn. 
If we can bound the vector ϕ(β) in a parallelotope P it follows that X must belong to 
the polytope B−1

OK
(P ) and we thus need to find vectors with integer coordinates inside 

this set.
A preliminary investigation of the performance showed that the most efficient way 

to find these seems to be to search for integer vectors in a bounding parallelotope of 
B−1

OK
(P ), which we denote by BP (B−1

OK
(P )), and apply the embedding map to test 

whether or not to include them in the result. Using this idea together with Theorem 5
gives us the following algorithm.

Algorithm 10 (Finding the closest cusp). Let K be a fixed totally real number field, all 
notation be as above and let z = x + iy ∈ HK .

Step 1: If N(y) > C return ∞ = (0 : 1) as the closest cusp.
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Step 2: Use the LLL reduction to find a potentially closest cusp, λ, and set d =
min {Δ(z, λ),Δ(z,∞),Δ(z, 0)}.

Step 3: Recall that C = max (N(a1), . . .N(ah)) and Di = maxC1/ne
1
2 ri(BΛ). Define

ai = Did
1/ny

−1/2
i , 1 ≤ i ≤ n, and set

Pσ = [−a1, a1] × · · · × [−an, an] and P̂σ = BP (B−1
OK

(Pσ)).

Step 4: Compute the integral points X(1), . . . , X(M) of P̂σ, and for each 1 ≤ j ≤ M :
(a) Compute the corresponding ϕ(σ) = BOK

Xj and if

N (σ) > dCN (y)−1/2 or ϕ(σ) /∈ Pσ,

remove the corresponding X(j) from the list and repeat for the next j, if not, 
go to the next step.

(b) Set b±j,i = σixi ± yiai, and let

Pρ,j = [b−j,1, b
+
j,1] × · · · × [b−j,n, b

+
j,n] and P̂ρ,j = BP (B−1

OK
(Pρ,j)).

(c) Compute the integral points Y(j,1), . . . , Y(j,N(j)) of P̂ρ,j, and for each 1 ≤
i ≤ N(j), compute ϕ(ρ) = BOK

Y(j,i) and if ϕ(ρ) /∈ Pρ,j remove the corre-
sponding Y(j,i) from the list.

After relabeling the remaining vectors if necessary we find that a closest cusp to z can 
now be found corresponding to a pair in the finite set{

(ρ, σ) | σ = BOK
X(j), ρ = BOK

Y(j,k), 1 ≤ j ≤ M ′, 1 ≤ k ≤ N ′(j)
}

where M ′ and N ′(j) are some positive integers.

Remark 11. Note that we do not make explicit use of the norm bound for ρ here, it is 
instead part of finding the minimal distance in the final set.

We can now combine Algorithm 10 with the reduction by units and translation de-
scribed in Section 4 to formulate the complete reduction algorithm.

Algorithm 12 (Reduction algorithm). Let K be a fixed totally real number field, let z ∈
HK and assume all notation is as above,

Step 1: Use Algorithm 10 to find the closest cusp to z, say μ.
Step 2: Find the cusp representative, λj, corresponding to μ and Uμ ∈ ΓK such that 

Uμ(μ) = λj.
Step 3: Set zλj

= A−1
j Uμz = xλj

+ iyλj
.

Step 4: Let Y = YΛ(yλj
) and define ε = εb11 . . . ε

bn−1
n−1 where bk = − 

⌊
Yk

⌋
.
2
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Table 1
Times to find closest cusp of z = i1 for different fields.

Field Q(
√

5) Q(
√

10) Q(α1) Q(α2)
Time / ms 13 ms 19 ms 124 ms 387 s

Step 5: Set z′ = E(ε)zλj
= x′ + iy′.

Step 6: Let X = X
a
−2
j

(x′) and define α = a1β1 + · · · + anβn where ak = − �Xk� and 

β1, . . . , βn is an integral basis for a−2
j .

Step 7: Set A = AjT
αE(ε)A−1

j Uμ.

Then A ∈ ΓK and Az ∈ Fj ⊆ F .

6.1. A brief analysis of runtime and performance

It is clear that reduction within the cuspidal domain is essentially of constant time 
with respect to z. The run-time is therefore essentially proportional to the total number 
of potential σs and ρs that are investigated in Algorithm 10 and each of these numbers 
are proportional to the volumes of the corresponding polytopes. It is of little practical 
use to make a very precise run-time analysis here but by using appropriate upper bounds 
it is easy to see that for a fixed totally real number field K the run-time is polynomial in 
‖x‖∞ , ‖y‖∞ and ‖y−1‖∞ as z varies. Similarly, if z is fixed and we let K vary then the 
run-time is exponential in the degree of K and ‖BΛ‖∞, and polynomial in C, 

∥∥B−1
OK

∥∥
∞

and ‖BOK
‖∞. While algebraic quantities like the discriminant and regulator of K do 

play a direct role also in the reduction by units and translations, these can be bounded 
by the respective matrix norms.

While a more precise analysis for the dependency on z is not too difficult to perform, 
a detailed analysis on the precise dependency on the number field is more complex due 
to the number of different parameters involved. For testing the runtime in practice it is 
convenient to consider the point z = i1 since it will always be closest to both 0 and ∞ and 
the preliminary search using LLL does not provide any better bound. Table 1 contains 
times to find the closest cusp of i1 for the different fields we consider in Section 7. Here 
α1 and α2 have minimal polynomials α3

1 −α2
1 − 2α1 + 1 and α3

2 − 36α2 − 1, respectively. 
For a more systematic comparison regarding the dependency on the discriminant we also 
compared quadratic fields of class number one and discriminant up to 100. See Table 2. 
The difference in timing between discriminant 93 and 97 of a factor over 200 is striking. 
It highlights that the influence of the discriminant is vastly overshadowed by that of the 
size of the embeddings of the fundamental units. The lengths in question here are ≈ 3.37
and ≈ 9.32, respectively, and exp(9.3 − 3.3) ≈ 403.

All computations below were performed on a single 2 GHz Xeon E5-2660 core and 
the reported time is an average of 100 runs.
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Table 2
Times to find closest cusp of z = i1 for quadratic fields of discriminant D and class number 1.

D 5 8 12 13 17 21 24 28 29 33 37 41 44
Time / ms 12 14 14 13 17 14 18 20 14 37 17 47 23

D 53 56 57 61 69 73 76 77 88 89 92 93 97
Time / ms 15 26 167 30 23 1087 178 16 201 488 33 24 4740

6.2. A note on the implementation

The algorithms described above are currently implemented as part of a package in 
Python with parts written in Cython and are dependent on SageMath [22]. The package 
is available from [20] and open sourced under GPLv3+.

7. Examples

The aim of the examples presented here is to demonstrate how the algorithm works 
as well as making it easy for readers to verify the correctness. We will consider three 
examples in detail: first the standard example of K1 = Q(

√
5), which has degree 2, 

discriminant 5 and class number 1, then K2 = Q(
√

10) which has degree 2, discrimi-
nant 40 and class number 2, followed by K3 = Q(α) where α has minimal polynomial 
α3 − α2 − 2α + 1, which has degree 3, discriminant 49 and class number 1. The compu-
tations involved in these three examples are demonstrated in the accompanying Jupyter 
notebooks that can be found in [20]

Example 13. Consider K = Q 
(√

5
)

with fundamental unit ε = 1
2 (1 +

√
5), ring of integers 

OK = Z ⊕ Zε and class number 1. Here

BΛ =
(

log(1
2 (1 +

√
5)) log(1

2 (
√

5 − 1))
)
,

BOK
=

(
1 1

2
(
1 +

√
5
)

1 1
2
(
1 −

√
5
)
)
, B−1

OK
= 1

−
√

5

(
1
2 (1 −

√
5) −1

2 (1 +
√

5)
−1 1

)

and it is immediate to see that

r1(BΛ) = r2(BΛ) ≈ 0.48, D1 = D2 ≈ 1.27, ‖BOK
‖∞ ≈ 2.62, and

∥∥B−1
OK

∥∥
∞ = 1.

Consider now Algorithm 10 applied to z = y = i1 ∈ Hn. Since y1 = y2 = 1 the first 
bounds are given by a1 = a2 = D1 and it can be computed that Pσ is the polygon 
bounded by the vertices

B−1
OK

((±D0,±D0)) = {(0.57, 1.14), (1.27, 0.0), (−0.57,−1.14), (−1.27, 0.0)}.

For this z the preliminary reduction does not produce any better cusp than ∞ and the 
norm bound is given by CN (y)−1/2 = 1. The domain Pσ and its pre-image together 
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Fig. 7.1. BOK
(Pσ) and Pσ together with N(σ) = 1 for z = i1 and K = Q(

√
5).

with the embedded points of OK and Z2 and the curves indicating the norm bound are 
shown in Fig. 7.1. Note that we show the actual domain B−1

OK
(Pσ) and not the bounding 

box for extra clarity.
It is clear from the figure that the only integral points in Pσ are X(1) = (0, 0), 

X(2) = (1, 0) and X(3) = (−1, 0) so the three candidates for σ are 0, 1 and −1. The value 
σ = 0 of course corresponds to the cusp at infinity so we can choose ρ = 1 in this case. 
For σ = ±1 we get Pρ,2 = Pσ so the candidates for ρ are 0 and ±1. The potential cusps 
are therefore ∞ = (1 : 0), c1 = (0 : 1), c2 = (1 : 1) and c3 = (−1 : 1). The corresponding 
distances are Δ(z, ∞) = N(y)−1/2 = 1, Δ(z, (0 : 1)) = N (y)1/2 = 1 and

Δ(z, (1 : 1)) = N
(
y−1 + y

)1/2 = 2.

Therefore both ∞ = (1 : 0) and 0 = (0 : 1) are closest cups.
If we consider instead z = 1

2 i1 then a preliminary search (using e.g. the LLL method) 
finds the cusp 0 = (0 : 1) and it is easy to see that Δ(z, ∞) = 2 and Δ(z, 0) = 1/2. We 
can therefore apply the algorithm with an initial estimate of d = 1/2. This leads to the 
same bounds for σ: |σi| ≤ D0 but the bounds for ρ get scaled: |ρi| ≤ D0/2 ≈ 0.636. The 
candidate cusps are therefore simply (1 : 0) = ∞ and (0 : 1) with the closest cusp being 
(0 : 1).

If we had not performed the initial search and instead simply used d = Δ (z,∞) = 2
for the initial bound we would have obtained 9 candidates for sigma and in the end 9
candidates for closest cusp.

Example 14. Consider K2 = Q 
(√

10
)

with fundamental unit ε = 3 +
√

10, ring of integers 
OK = Z ⊕Z

√
10 and class number 2. The cusp representatives are
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λ1 = ∞ and λ2 = (2 :
√

10)

Note that the norm of the ideal associated with λ2 is N 
((

2,
√

10
))

= 2. We now find 
that

BΛ =
(

log((3 +
√

10)) log(
√

10 − 3))
)
,

BOK
=

(
1

√
10

1 −
√

10

)
and B−1

OK
= 1

−2
√

10

(
−
√

10 −
√

10
−1 1

)
,

and it is immediate to see that

r1(BΛ) = r2(BΛ) ≈ 1.81, D1 = D2 ≈ 3.51, ‖BOK
‖∞ ≈ 4.16, and

∥∥B−1
OK

∥∥
∞ = 1.

Consider now again Algorithm 10 applied to z = y = i1 ∈ Hn. Since y1 = y2 = 1 the 
first bounds are given by a1 = a2 = D0 ≈ 3.51 and Pσ is the polygon bounded by the 
vertices

B−1
OK

((±D0,±D0)) ≈ {(−3.51, 0), (0, 1.11), (0,−1.11), (3.51, 0)}.

For this particular z the preliminary reduction does not produce any better cusp than 
∞ and the norm bound is given by CN (y)−1/2 = 2. The domain Pσ and its pre-image 
together with the embedded points of OK and Z2 are shown in Fig. 7.2. We see that 
there are only 3 possibilities for σ: −1, 0 and 1 and these result in 10 candidate cusps. 
Comparing all these we see that the cusps ∞ and 0 are both closest with distance 
Δ(z, ∞) = Δ(z, 0) = 1.

Changing to the point z = i12 , the preliminary search finds a tentative closest cusp 0
with a distance of 1/2 so we can use the algorithm with d = 1/2, which results in the 
same bounds for σ as before and we find three candidate cusps 0, 1 and −1 with the 
cusp 0 being the unique closest cusp, with distance Δ (z, 0) = 1/2.

To demonstrate the algorithm works for other cusps than infinity, consider the point 
z = (2.58 + 0.5i, 0.5 + 0.5i). The preliminary search gives only the potential closest 
cusp ∞ so we will apply the algorithm with d = 2 and the norm bound |σ1σ2| ≤ 8. 
We find 13 candidates for σ and 35 distinct candidate cusps, from which we find that 
μ = (

√
10 :

√
10 + 2) is the closest, with distance ≈ 1.59. It is not hard to check that μ

is equivalent to λ2 under the element

(
−5 −2

√
10 + 9

−2
√

10 + 1 4
√

10 − 10

)
∈ ΓK .

Applying the complete reduction map to z gives w = Bz with w ≈ (−0.669 + 0.036i,
0.709 + 0.004i) and
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Fig. 7.2. BO−1
K2

(Pσ) and Pσ together with the curve N(σ) = 2 for z = i1, K2 = Q(
√

10).

B =
(
−2

√
10 − 9 9

−4
√

10 − 9 4
√

10

)
∈ ΓK .

Example 15. To demonstrate that the method works also in degree 3, consider K3 =
Q (α) where α has minimal polynomial α3 − α2 − 2α + 1. This field has degree 3, class 
number 1, discriminant 49, fundamental units ε1 = 2 − α2 and ε2 = α2 − 1 and OK has 
an integral basis

β1 = 1, β2 = α, β3 = α2 − 2.

The real embeddings of α are approximately (−1.247, 0.445, 1.802) and we find the rele-
vant numerical bounds to be:

r(BΛ) ≈ (1.40, 0.810, 1.03), D ≈ (2.01, 1.499, 1.674),

‖BOK
‖∞ ≈ 4.05, and

∥∥B−1
OK

∥∥
∞ = 1.

Let z = i1 and apply Algorithm 10 to find closest cusps. In the first step we find 5
candidates for σ. See Fig. 7.3, which shows the polyhedron together with the surfaces 
N (σ) = 1. The two points which do not satisfy the norm bound are drawn in lighter 
gray, the others in black. In the end we find 8 candidates for the closest cusp and we 
find (as usual) that the cusps ∞ and 0 are both closest with a distance of 1.

Example 16. Just to give an idea of how it works in a more complicated example, consider 
K = Q (α) where α has a minimal polynomial x3 − 36x − 1. Then K has discriminant 
20733, class number 5 and its label in the LMFDB is 3.3.20733.1. The fundamental units 
are ε1 = −α and ε2 = −α− 6 and OK has an integral basis
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Fig. 7.3. BOK3
(Pσ) and Pσ for z = i1, K3 = Q(α) with α3 − α2 − 2α + 1.

β1 = 1, β2 = α, β3 = 1
3
(
α2 + α− 23

)
.

The real embeddings of α are approximately (−5.986, −0.028, 6.014) and we find the 
relevant numerical bounds to be:

‖BΛ‖∞ ≈ 6.06, D0 ≈ 52.22, ‖BOK
‖∞ ≈ 13.41, and

∥∥B−1
OK

∥∥
∞ = 1.

Using Algorithm 10 with z = i1 we find 9 candidates for σ, in total 3396 candidate cusps 
and as usual the cusps 0 and ∞ are both closest with distance 1.
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