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Abstract: The plant root cap, surrounding the very tip of the growing root, perceives and 

transmits environmental signals to the inner root tissues. In Arabidopsis thaliana, auxin released 

by the root cap contributes to the regular spacing of lateral organs along the primary root axis. 

Here, we show that the periodicity of lateral organ induction is driven by recurrent programmed 

cell death at the most distal edge of the root cap. We suggest that synchronous bursts of cell 

death in lateral root cap cells release pulses of auxin to surrounding root tissues, establishing the 

pattern for lateral root formation. The dynamics of root cap turnover may therefore coordinate 

primary root growth with root branching in order to optimize the uptake of water and nutrients 

from the soil.  

 

 

 



Main Text:  

The root cap is the outermost tissue covering the root tip and represents a major root-

rhizosphere interaction site (1-3). It is commonly recognized as a protective tissue for the 

meristematic cells of the root apex and as a sensory organ that perceives environmental signals 

such as gravity, water and nutrients to direct root growth (4-6). Although it persists during the 

lifespan of roots, it is subjected to a regeneration process in which new cell layers are 

continuously produced internally while superficial cell layers are regularly sloughed off. In 

Arabidopsis, the root cap consists of a central columella and peripheral lateral root cap cells (7). 

Programmed cell death (PCD) of lateral root cap cells occurs when they reach the onset of the 

elongation zone (fig. S1A) (8, 9). This region is also designated as the oscillation zone, as it 

displays massive oscillations in gene expression (10). These oscillations periodically define the 

prebranch sites, which may further develop as lateral roots (10). Root cap-specific conversion of 

the auxin precursor indole-3-butyric acid (IBA) into indole-3-acetic acid (IAA), creates a local 

auxin source that is essential for the oscillating transcriptional mechanism which installs the 

regular spacing of lateral roots (11, 12).  

Analysis of the transcriptional auxin signalling output reporter DR5rev:VENUS-N7 (13) by 

stereomicroscopy, revealed a striped DR5 pattern in the most distal lateral root cap cells, a 

pattern that could also be observed for the root cap expressed early stage programmed cell death 

(PCD) marker pPASPA>>H2A-GFP (Fig. 1, A and B, fig. S1) (8). In vivo time-lapse imaging of 

vertically growing roots showed that the most distal stripe of DR5 expression faded out every ~4 

hours (Fig. 1C, fig. S2, A and B, Movie S1). When tracing back the site of origin of lateral root 

primordia (n = 96) (Fig. 1C), we found that all primordia were initiated at positions where a 

distal DR5 stripe had vanished. Furthermore, the disappearance of the DR5 signal from the 

lateral root cap preceeded the DR5:Luciferase maximum in the oscillation zone (fig. S3) and 

occurred with a similar periodicity (fig. S2B). By rotating the roots by 135°, the orientation of 

root growth is corrected towards the gravity vector and a bend is formed. During the 

reorientation, the period of DR5 oscillations in the oscillation zone is transiently shortened, and 

lateral root formation is stimulated (10, 14-16). Likewise, the period between successive losses 

of DR5 stripes was also shortened from ~4 to ~2 hours (fig. S2, C and D, and Movie S2). 

Altogether, these results show that the disappearance of the DR5 signal from the lateral root cap, 



the DR5 oscillations in the oscillation zone and the formation of lateral root primodium are 

temporally and spatially interconnected. 

The longitudinal extent of the lateral root cap is developmentally restricted by induction of 

PCD in the most distal lateral root cap cells (8), raising the possibility that the periodic 

disappearance of the DR5 signal coincides with PCD in the lateral root cap. Consistently, 

pPASPA3>>H2A-GFP showed a striped pattern in the lateral root cap (Fig. 1B). Moreover, co-

expression of the DR5rev:VENUS-N7 reporter with pPASPA3:NLS-tdTomato revealed 

overlapping expression in the most distal lateral root cap cells (Fig. 2A, and fig. S4A). Time-

lapses showed that both signals disappeared synchronously (Fig. 2A, and fig. S4B), with a period 

of ~4h (fig. S2B), and spatially correlating with sites of new lateral root primordia (Movie S3). 

Moreover, a 135° gravistimulation also transiently decreased the periodicity of disappearance of 

PASPA3 stripes to ~2 hours (fig. S2D, and Movie S4). Thus, PCD in the lateral root cap is 

predictive of lateral root formation.  

In Arabidopsis, the accurate timing of PCD in the lateral root cap requires the transcription 

factor SMB (8, 17). pSMB:NLS-GFP stripes overlapped with pPASPA3:NLS-tdTomato stripes in  

the most distal lateral root cap and disappeared ~ 4 hours (fig. S2B and S4C). The smb-3 mutant 

exhibits delayed PCD of the lateral root cap cells (8, 17), and as a result, has an increased 

number of the lateral root cap cells that ectopically extend into the elongation zone (fig. S5, A 

and B) (8, 17). In this mutant, the typical stripe-like pattern of DR5 expression had disappeared 

(Fig. 2B) while the signal intensity was reduced and extended into the elongation zone (fig. S5, 

A and C). Moreover, we observed a more variable periodicity of DR5:Luciferase oscillations 

(fig. S5D), fewer prebranch sites and lateral roots (fig. S5, E to H). Strong activation of SMB-

GR (10 µM Dexamethasone (Dex)) triggers ectopic formation of tracheary element-like cells and 

growth arrest of all tissues (17). Over a 2-day treatment with ≤ 1 µM Dex, root growth was 

maintained (fig. S6A) while showing a pronounced and specific PCD in the lateral root cap cells 

(fig. S6B). Additionally, these roots lacked DR5 stripes (Fig. 2C), DR5:Luciferase oscillations 

(Fig. 2, D and E, and Movie S5) and the number of pre-branch sites and lateral roots was reduced 

respectively by 79.4% and 87.5% at 0.3 µM Dex (Fig. 2F, and fig. S6, A and C). When plants 

were transferred back to control medium, the newly formed root segment reestablished normal 

growth with the production of a normal lateral root cap and lateral roots (fig. S6, D to F). In 

contrast, the part of the root that was formed during Dex treatment remained devoid of lateral 



roots (fig. S6, D and E). These results indicate that the controlled and recurrent PCD of the 

lateral root cap cells is the driving factor for gene expression oscillations in the oscillation zone 

and subsequent lateral root induction. 

Oscillations are modulated by a local auxin source in the root cap, derived from the auxin 

precursor IBA (11, 12). Moreover, genetic ablation of the lateral root cap cells represssed the 

capacity to produce extra lateral roots in response to exogenous IBA application in Dex-treated 

35S:SMB-GR (fig. S6G). Therefore, we asked whether the auxin response that we observed in 

the root cap itself could be required for lateral root patterning. We conditionally repressed the 

auxin response in the lateral root cap cells by activation of a stabilized allele of the auxin 

response repressor IAA17/AXR3 (pSMB:axr3-1-GR) (5, 18). Dex treatment resulted in 

agravitropic root growth (fig. S7A) and loss of DR5 expression in the lateral root cap cells (fig. 

S7, B and C), but this did not alter the PCD process (fig. S7D) and did not affect the lateral root 

number (fig. S7E). Constitutive transactivation of UAS:axr3-1 in the lateral root cap only slightly 

reduced lateral root formation, whereas transactivation of UAS:axr3-1 in xylem pole pericycle 

cells blocked lateral root formation (fig. S7F) (19). Therefore a transcriptional auxin response in 

the lateral root cap itself is not a decisive factor for lateral root patterning. 

Alternatively, auxin transport from the root cap to the root proper could be the connecting 

element for the oscillatory behavior in gene expression in the elongation zone. Consistently, 

time-lapse analyses of the semi-quantitative auxin input reporter R2D2 revealed a marked 

increase of auxin levels in epidermal cells, prior to loss of cellular integrity of adjacent lateral 

root cap cells (Fig. 3A, Movie S6) (20). This suggests that auxin released from lateral root cap 

cells during a late stage of PCD is efficiently taken up by the abutting epidermal cells. To 

understand how this could result in auxin signalling in stele cells of the oscillation zone, we 

adopted an in silico auxin-transport model (21) to simulate the auxin dynamics in the root apex 

(See Supplementary Information for further details). Simulating the PCD of distal lateral root cap 

cells, under the assumption that PCD leads to a release of auxin into the surrounding apoplast, 

generated a transient auxin peak in stele cells in the elongation zone (Fig. 3, B to D, fig. S8, and 

Movie S7), consistent with the oscillating activation of the DR5:Luciferase. When defects in 

either auxin uptake or IBA conversion are prescribed, the model fails to predict such a transient 

increase in stele auxin levels after lateral root cap cell turn-over (Fig. 3, B to D, fig. S8, and 

Movie S7). Our model suggests that the shootward auxin flux to the oscillation zone requires 

http://www.nature.com/nature/journal/vaop/ncurrent/fig_tab/nature13663_SV1.html
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lateral root cap-expressed AUX1 (fig. S9, A and B), while auxin production was predicted to 

create high auxin levels in the lateral root cap prior to PCD.  

Consistent with these simulations, we observed a reduced DR5 signal in the lateral root cap 

which was correlated with less prebranch sites and lateral roots in ibr1ibr3ibr10 and aux1 

mutants (Fig. 4, A and B). Moreover, PCD in the most distal lateral root cap cells was closely 

associated with increased auxin in the underlying epidermal cells (Fig. 3A, Movie S6). We 

further tested the contribution of auxin transport within the lateral root cap by tissue-specific 

complementation of the aux1 mutant. In agreement with model predictions (fig. S9, C to E), 

transactivation of AUX1 in the root cap rescued the defect in lateral root formation and 

agravitropic growth of aux1 mutants (fig. S9, F and G). Thus, auxin transported within the 

(lateral) root cap allows the root cap to communicate with the elongation zone for establishing 

sites for lateral roots to develop. This process ensures that IBA-derived auxin can be transported 

towards the oscillation zone.  

The auxin-transport topologies in our model also include carrier-mediated efflux and 

apoplastic diffusion. In the presence of influx carriers and auxin production, simulations lacking 

carrier-mediated efflux failed to generate an auxin transient in the elongation zone, but generated 

an auxin accumulation in the lateral root cap (Fig. 3, B to D, fig. S8, and Movie S7). In our 

model diffusion rates were positively correlated with the strenght of the auxin peak in the stele. 

However, such higher apoplastic diffusion rate could not compensate for a lack in auxin efflux in 

our simulations (fig. S10). In an attempt to identify the components of this auxin transport 

machinery, we analysed pin2 and pin2 abcb1 abcb19 mutants. Although these mutants are 

severely defective in shootward auxin transport and gravitropism, similar to aux1 (23), they did 

not show defects in lateral root formation, nor did they have a reduced sensitivity to IBA (fig. 

S11, A to D), raising the possiblity that this reflux model requires the global features of the PIN 

and ABCB localization for directing auxin into the oscillation zone (26, 27). We could find 

further evidence by using three chemically unrelated auxin transport inhibitors 1-N-

NaphtylPhtalamic Acid (NPA), 2-[4-(diethylamino)-2-hydroxybenzoyl]benzoic acid (BUM), and 

benzyloxy-IAA (Bz-IAA), that target mainly ABCB-type transporters (NPA and BUM) (22, 23), 

or generally interfere with AUX1, PIN and ABCB-based auxin transport (Bz-IAA) (24). 

Consistent with our simulations, treatments with any of these inhibitors preserved the occurrence 

of PCD in the lateral root cap (fig. S11E), but resulted in ectopic DR5 activity in the lateral root 
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cap and epidermis (Fig. 4, C and D, fig. S11, F and G, and Movie S8), as well as impaired 

DR5:Luciferase oscillations (Movie S9) and lateral root formation (Fig. 4E, and fig. S11, H and 

I), corroborating the auxin reflux model (25). Although we could not completely resolve the 

molecular mechanism for auxin efflux at present, our data underscores the necessity of auxin 

transport in the coordination of PCD in the most distal lateral root cap cells with oscillatory gene 

expression in the oscillation zone for lateral root spacing (fig. S12). 

During the exploration of the soil, root tips sense, through the root cap, the nutrient and water 

status of the soil they are traversing, as well as obstacles they may encounter (6, 28). 

Transduction of that information may serve to control the periodicity of programmed cell death, 

thus altering the frequency of lateral root development. In this way root systems may adjust 

development according to the quality of the soils they are passing through. 
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Fig. 1. Periodic disappearance of lateral root cap-DR5 expression correlates with the sites 

of lateral root initiation. (A and B) 3D-projection of confocal z-stacks (PI stained, left panels) 

and macroview stereo microscope images (right panels) of respectively, (A) the auxin responsive 

marker DR5rev:VENUS-N7 expression and, (B) the PCD marker pPASPA3>>H2A-GFP in 

seedling root tips. EZ, elongation zone; MZ, meristematic zone. (C) Time lapse imaging of 

growing DR5rev:VENUS-N7 roots over a growth period of 18 hours. Red arrows: the 

disappearance of a DR5 stripe in the lateral root cap. White arrow: a lateral root initiation site at 

the site where the DR5 stripe disappeared previously. Insets show the gradual reduction of DR5 

signal intensity in the most distal lateral root cap cells highlighted by the arrowhead during the 

first 3 h. ‘g’ and associated arrow indicate the gravitational vector. Scale bars, 100 µm.  

 

 

 

 

 

 



 
Fig. 2. Disappearance of DR5 expression in the lateral root cap is triggered by PCD. (A) 

3D-projection of confocal z-stacks of a DR5rev:VENUS-N7 (green) and pPASPA3:NLS-

tdTomato (red) expressing transgenic seedling root tip imaged over time. Yellow indicates 

coexpression of both makers. The right panels represent a close-up of the yellow boxed region in 

the left panel over a 30 min time-frame. Blue inset boxes indicate a set of nuclei expressing both 

markers that undergo PCD between the 0’ and 30’ time points. Blue arrows indicate a set of 

lateral root cap nuclei for positional reference. (B and C) Macroview stereo microscopic view of 

DR5rev:VENUS-N7 expression in root tips of 3-day-old (B) Col-0 and smb-3 seedlings and (C) 

35S:SMB-GR seedlings treated for 24h with or without 1 µM Dex. White arrows: DR5 stripes in 

the lateral root cap. (D) Kymograph representing DR5:Luciferase expression in Col-0 and 



35S:SMB-GR transgenic seedlings over 20 h treatment with 1 µM Dex. Dashed lines highlight 

the position of the oscillation zone. White arrow: onset of DR5 maximum; black arrow: 

prebranch site indicated by persistent DR5 signal. (E) Quantification of DR5:Luciferase 

luminescence over time measured along the dashed lines shown in (D). Red arrows: oscillation 

peaks. (F) Quantification of prebranch site number in 5-day-old 35S:SMB-GR seedlings treated 

with Dex since day 3 after germination (n > 10). The prebranch sites from the newly grown 

primary root after transfer were counted. **P < 0.01 indicates significant difference by Student’s 

t test (n > 30). Data are means ± s.d. Scale bars, 200 µm. 

 

 

 

 



 

Fig. 3. Predicted auxin distributions and dynamics in the root tip. (A) 3D-projection of 

confocal z-stacks of a R2D2 root tip, co-stained with PI, imaged over time. The right panels 

represent a close-up of the yellow boxed region in the left panel over an 80 min time-frame. 

White arrows indicate the disappearance of YFP signals in epidermal cells, and blue arrows 

indicate the appearance of PI-stained nuclei in lateral root cap cells, as a late stage PCD marker, 

at positions where R2D2 signals in the epidermis changed at earlier time-points (see also Movie 

S6). (B) Predicted steady-state distribution of auxin within a 3D axisymmetric multicellular 

geometry, for wild type, and in the situations with defects in IBA-to-IAA conversion, AUX1-

mediated influx and polar carrier-mediated efflux respectively. Auxin concentrations are colour 

coded according to the rainbow scale on the right-hand side. (C and D) Predicted auxin dynamics 

in the (C) epidermal cells and (D) the stele cells underlying the most distal LRC cells after PCD. 

Results show the auxin concentrations relative to that at t=0, taken as an average of the four 

epidermal cells (marker in red) or stele cells (marked in yellow) highlighted in (B). Scale bars, 

50 µm.  



 

Fig. 4. Auxin flux carriers facilitate auxin transport from the lateral root cap into the 

oscillation zone. (A) DR5rev:VENUS-N7 expression in 3-day-old Col-0, ibr1ibr3ibr10 mutant in 

control conditions, in macroview stereomicroscope images. White arrows indicate the nuclear 

DR5 signal in lateral root cap cells. (B) Quantification of DR5rev:VENUS-N7 signal in lateral 

root cap, prebranch site number per root, and lateral root density in Col-0, ibr1ibr3ibr10, and 

aux1 seedlings (P < 0.05 by one way ANOVA and Tukey’s test as post hoc analysis, n > 10). (C 

and D) DR5rev:VENUS-N7 expression and quantification in 3-day-old Col-0 germinated on 10 

μM NPA, 0.3 μM BUM, and 3 μM BZ-IAA expanded DR5 expression in WT compared to Col-0 

in (A). (E) Quantification of prebranch site number in 5-day-old DR5:Luciferase seedlings 

treated for 2 days with 10 μM NPA, 0.3 μM BUM, and 3 μM BZ-IAA. The prebranch sites 

formed in the newly grown primary root after transfer were measured. *P < 0.05 and **P < 0.01 

compared to Mock-treatment Col-0 in (A) by Student’s t test (n > 30). Data are means ± s.d. 

Scale bars, 200 µm. 

 


