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Abstract

Computer Vision has recently witnessed great research advance towards auto-
matic facial points detection. Numerous methodologies have been proposed dur-
ing the last few years that achieve accurate and efficient performance. However,
fair comparison between these methodologies is infeasible mainly due to two is-
sues. (a) Most existing databases, captured under both constrained and uncon-
strained (in-the-wild) conditions have been annotated using different mark-ups
and, in most cases, the accuracy of the annotations is low. (b) Most pub-
lished works report experimental results using different training/testing sets,
different error metrics and, of course, landmark points with semantically differ-
ent locations. In this paper, we aim to overcome the aforementioned problems
by (a) proposing a semi-automatic annotation technique that was employed
to re-annotate most existing facial databases under a unified protocol, and
(b) presenting the 300 Faces In-The-Wild Challenge (300-W), the first facial
landmark localization challenge that was organized twice, in 2013 and 2015.
To the best of our knowledge, this is the first effort towards a unified annota-
tion scheme of massive databases and a fair experimental comparison of exist-
ing facial landmark localization systems. The images and annotations of the
new testing database that was used in the 300-W challenge are available from
http://ibug.doc.ic.ac.uk/resources/facial-point-annotations/.
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1. Introduction

During the last decades we notice a wealth of scientific research in com-
puter vision for the problem of facial landmark points localization using visual
deformable models. The main reason behind this are the countless applica-
tions that the problem has in human-computer interaction and facial expres-
sions recognition. Numerous methodologies have been proposed that are shown
to achieve great accuracy and efficiency. They can be roughly divided into two
categories: generative and discriminative. The generative techniques, which aim
to find the parameters that maximize the probability of the test image being
generated by the model, include Active Appearance Models (AAMs) [1, 2], their
improved extensions [3, 4, 5, 6, 7, 8, 9, 10] and Pictorial Structures [11, 12]. The
discriminative techniques can be further divided to those that use discriminative
response map functions, such as Active Shape Models (ASMs) [13], Constrained
Local Models (CLMs) [14, 15, 16] and Deformable Part Models (DPMs) [17],
those that learn a cascade of regression functions, such as Supervised Descent
Method (SDM) [18] and others [19, 20, 21], and, finally, those that employ
random forests [22, 23].

Arguably, the main reason why many researchers of the field focus on the
problem of face alignment is the plethora of publicly available annotated facial
databases. These databases can be separated in two major categories: (a) those
captured under controlled conditions, e.g. Multi-PIE [24], XM2VTS [25], FRGC-
V2 [26], AR [27], and those captured under totally unconstrained conditions
(in-the-wild), e.g. LFPW [28], HELEN [29], AFW [17], AFLW [30], IBUG [31].
All of them cover large variations, including different subjects, pose, illumi-
nation, expressions and occlusions. However, for most of them, the provided
annotations appear to have several limitations. Specifically:

• The majority of them provide annotations for a relatively small subset of
images.

• The annotation mark-up of each database consists of different number of
landmark points with semantically different locations.

• The accuracy of the provided annotations in some cases is limited.

The above issues are due to the fact that manual annotation of large databases
is a highly time consuming procedure that requires enormous workload and a
trained expert. Moreover, factors like fatigue and lack of concentration are
among the reasons why, in some cases, annotations are inaccurate. This high-
lights the need of creating a (semi-) automatic annotation tool.

Furthermore, by going through the published works of the last years, one can
easily notice that the setup of the experiments is not always correct. Researchers
employ different databases, experimental protocols and performance metrics,
which lead to unfair comparisons between existing methods. Some characteristic
such examples are the following:
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• Authors compare their techniques against other state-of-the-art, but they
do so by using, in many cases, completely different databases for training
compared to the ones that the other methods were originally trained on.

• Authors compare their techniques on specific databases by replicating the
originally presented curves and not the experiment.

• In some cases, authors report results on databases from which only a part
can be used by the community, as some of the training/testing images are
no longer publicly available.

Evidence shows that there is a lack of access to properly evaluate existing meth-
ods. Even though there exist open-source implementations of various state-of-
the-art techniques (the most characteristic example is Menpo [32]), researchers
still do not employ a unified benchmark. Since we are unaware of the achieved
performances, it is impossible to investigate how far we are from attaining satis-
factory performance. Therefore, a new evaluation needs to be carried out, using
a unified experimental protocol.

Various methods have been proposed in the literature for the task of land-
mark localization under semi-supervised or weakly-supervised settings [33, 34,
35, 36]. However, there are two major limitations of these methods. Firstly,
most existing methodologies require additional information regarding the input
images. Specifically, [33] employs the corresponding facial mask for each of the
training images. The purpose of these masks is to indicate which pixels belong
to the facial area and the only way to produce them is by manually annotating
each image. In [34], the training procedure requires as input the orientation
of each face depicted in the training images. Secondly, and most importantly,
existing methods, such as [35] and [36], have only been applied on images that
are captured under controlled conditions. The aforementioned issues, make the
existing methods incapable for the task of semi-automatic annotation of large
databases with in-the-wild images (most of the images are downloaded from the
web with simple search queries), which is a much more challenging task.

Semi-automatic annotation systems can greatly benefit from the employment
of generative models. Let us assume that we have cohorts of both annotated
and non-annotated images. By training a generative model, such as AAMs,
using the annotated images, we get a parametric model that describes the facial
shape and appearance. Most importantly, the model can naturally generate
novel instances of human face, by combining the shape and appearance variance
of the training annotated images. This could enable the generation of instances
that resemble accurately with the shape and appearance of the subjects in the
non-annotated images. For instance, by training a model using images from one
view (e.g. pose 15◦) with neutral expression and images from another view (e.g.
pose 0◦) with a non-neutral expression, one can fit the model to an instance that
has the non-neutral expression with pose of 15◦. However, the fitting procedure
of a generative deformable model is a very tedious task, mainly because many
of the models that have been proposed till now do not generalize well to unseen
images. One of the AAM variants that has satisfactory generalization properties
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is Active Orientation Models (AOMs) [3, 4]. AOMs are shown to be robust in
cases with large variations, such as occlusions, extreme illumination etc., and
outperform discriminative methodologies, such as CLMs [15], DPMs [17] and
SDM [18].

Motivated by the success of AOMs in generic face alignment, we propose, in
this paper, a semi-automatic technique for annotating in a time efficient manner
massive facial databases. We employed the proposed tool to re-annotate all
the widely used databases, i.e. Multi-PIE [24], XM2VTS [25], FRGC-V2 [26],
AR [27], LFPW [28], HELEN [29] and AFW [17]. The resulting annotations1

are, in many cases, more accurate than the original ones and employ a unified
mark-up scheme, thus overcome the limitations explained above.

Furthermore, in order to offer to the research community the ability to carry
out rational comparisons between existing and future proposed methods, we
organized two versions of the 300 Faces In-The-Wild Challenge (300-W), the first
automatic facial landmark detection in-the-wild challenge. The first challenge2

was organized in 2013 in conjunction with the IEEE International Conference
on Computer Vision (ICCV’13) [31]. The second conduct3 of the challenge was
completed in the beginning of 2015. In both conducts, the training set consisted
of the XM2VTS, FRGC-V2, LFPW, HELEN, AFW and IBUG databases that
were annotated using the proposed semi-automatic procedure. Additionally,
we collected and annotated a new challenging in-the-wild database that was
used for testing4. The 300-W database consists of 300 Indoor and 300 Outdoor
images downloaded from the web, thus captured under totally unconstrained
conditions. The performance of the submitted methods was evaluated using the
same fitting accuracy metric. The major difference between the two conducts
of the challenge is that in the first version we provided the bounding boxes of
the testing images to be used as initializations, while in the second version the
participants were required to submit systems that performed both face detection
and alignment. Additionally, contrary to the first version, in the second one the
submitted methods were also compared with respect to their computational
costs.

The contribution of this paper can be summarized as follows:

1. We propose a semi-automatic methodology for facial landmark points an-
notation. The proposed tool was employed in order to re-annotate large
facial databases and overcome the major issues of the original annotations.

2. We present and analyse the results of the 300 Faces In-The-Wild Chal-
lenge (300-W), the first facial landmark localization challenge, that was

1The annotations of XM2VTS, FRGC-V2, LFPW, HELEN, AFW and IBUG are publicly
available from http://ibug.doc.ic.ac.uk/resources/facial-point-annotations/.

2The first conduct of the 300-W Challenge (2013) is available in
http://ibug.doc.ic.ac.uk/resources/300-W/

3The second conduct of the 300-W Challenge (2015) is available in
http://ibug.doc.ic.ac.uk/resources/300-W IMAVIS/

4The 300-W database is publicly available from http://ibug.doc.ic.ac.uk/resources/facial-
point-annotations/. We provide the original and cropped, as well as the bounding boxes.
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conducted twice, in 2013 and 2015. The challenge is the first attempt to-
wards a fair comparison of existing methods using a unified experimental
protocol.

3. We make the very challenging 300-W dataset publicly available to the
research community. It was employed as testing set in both conducts of
the 300-W competition.

The rest of the paper is organized as follows: Section 2 gives an overview of
the available facial databases. Section 3 presents the proposed semi-automatic
methodology for facial landmark points annotations along with the re-annotated
databases. The 300-W challenge and the results are described in details in
Section 4. Finally, Section 5 summarizes the results of this work and draws
conclusions.

2. Overview of Existing Facial Databases

There exist numerous facial databases which partially justifies the research
advances for the task of face alignment. These databases exhibit large variations
in resolution, image quality, identity, head pose, facial expression, lighting con-
ditions and partial occlusion. As mentioned before, the existing databases can
be split in two major categories. The first category includes databases that are
captured under controlled conditions, normally within special indoor laborato-
ries/studios in which the camera position and the lighting source and intensity
can be controlled. In most of these databases, each subject is asked to perform
a posed facial expression, thus we find more than one images per subject. The
most popular such databases are Multi-PIE [24] (used for face recognition, ex-
pressions recognition, landmark points localization), FRGC-V2 [26] (used for
face recognition), XM2VTS [25] and AR [27] (both used for face recognition
and landmark points localization). The facial databases of the second major
category consist of images that are captured under totally unconstrained condi-
tions (in-the-wild). In most cases, these images are downloaded from the web
by making face-related queries to various search engines. The most notable
databases of this category are LFPW [28], HELEN [29], AFW [17], AFLW [30]
and IBUG [31] (all used for facial landmark points localization).

The majority of the aforementioned databases provide annotations for a
relatively small subset of images. Moreover, as shown in Fig. 1, they all have
different annotation schemes between them, leading in different number of points
with semantically different locations. There are also cases in which the accuracy
of the provided annotations is limited. Sections 2.1, 2.2 and Table 1 provide an
overview of the characteristics of all the commonly-used existing databases.

2.1. Facial databases under controlled conditions

Multi-PIE: The CMU Multi Pose Illumination, and Expression (Multi-
PIE) Database [24] contains around 750000 images of 337 subjects captured
under laboratory conditions in four different sessions. For each subject, there
are available images for 15 different poses, 19 illumination conditions and 6
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(a) MultiPIE/IBUG (b) XM2VTS (c) FRGC-V2 (d) AR

(e) LFPW (f) HELEN (g) AFW (h) AFLW

Figure 1: Landmarks configurations of existing databases. Note they all have different number
of landmark points with semantically different locations.

different expressions (neutral, scream, smile, squint, surprise, disgust). The
accompanying facial landmark annotations consist of a set of 68 points (Fig. 1a)
for images in the range [−45◦, 45◦].

XM2VTS: The Extended Multi Modal Verification for Teleservices and Se-
curity applications (XM2VTS) [25] database contains 2360 frontal images of 295
different subjects. Each subject has two available images for each of the four
different sessions. All subjects are captured under the same illumination condi-
tions and in the majority of images the subject has neutral expression. Facial
landmark annotations of the whole database are available, where 68 points are
provided for each image (Fig. 1b). However, the accuracy of the annotations in
some cases is limited and the locations of the provided points do not correspond
to ones of Multi-PIE.

FRGC-V2: The Face Recognition Grand Challenge Version 2.0 (FRGC-
V2) database [26] consists of 4950 facial images of 466 different subjects. Each
subject session consists of images captured under well-controlled conditions (i.e.,
uniform illumination, high resolution) and images captured under fairly un-
controlled conditions such as non-uniform illumination and poor quality. The
provided annotations consist of 5 landmark points (Fig. 1c) only.

AR: The AR Face Database [27] contains over 4000 images corresponding to
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Database conditions # faces # subjects # points pose

Multi-PIE
controlled

∼ 750000 337 68 [−45◦, 45◦]
XM2VTS 2360 295 68 0◦

FRGC-V2 4950 466 5 0◦

AR ∼ 4000 126 22 0◦

LFPW

in-the-wild

1035

−

35

[−45◦, 45◦]
HELEN 2330 194
AFW 468 6
AFLW 25993 21
IBUG 135 68

Table 1: Overview of the characteristics of existing facial databases.

126 subjects (70 male, 56 female). The images were captured in two sessions per
subject and have frontal pose with variations in facial expressions, illumination
conditions and occlusions (sunglasses and scarf). The images are annotated
using 22 landmark points (Fig. 1d).

2.2. Facial databases under in-the-wild conditions

LFPW: The Labeled Face Parts in the Wild (LFPW) database [28] contains
1287 images downloaded from the internet (i.e., google.com, flickr.com, and
yahoo.com). This database provides only the web URLs and not the actual
images. We were therefore able to download only a subset of 811 out of 1100
training images and 224 out of 300 test images, due to broken links. These
images contain large variations in pose, expressions, illumination conditions
and occlusions. The provided ground truth annotations consist of 35 landmark
points (Fig. 1e) and low accuracy is observed in several cases.

HELEN: The HELEN [29] database consists of 2330 images downloaded
from flickr.com web service, that contain a broad range of appearance variation,
including pose, illumination, expression, occlusion and identity. The approxi-
mate face size of each image is 500 × 500 pixels. The provided annotations
are very detailed and contain 194 landmark points (Fig.1f), but the accuracy is
limited.

AFW: The Annotated Faces in-the-wild (AFW) [17] database consists of
250 images with 468 faces, that is, more than one faces are annotated in each
image. The images exhibit similar variations with those in the aforementioned
in-the-wild databases. Facial landmark annotations are available for the whole
database, but the annotation mark-up consists of only 6 points (Fig. 1g).

AFLW: The Annotated Facial Landmarks in theWild (AFLW) [30] database
consists of 25993 images gathered from Flickr, exhibiting a large variety in ap-
pearance (e.g., pose, expression, ethnicity, age, gender) as well as general imag-
ing and environmental conditions. However, the employed annotation scheme
only includes 21 landmark points (Fig. 1h).

IBUG: The IBUG database was released as part of the first version of
the 300-W challenge [31]. It consists of 135 images downloaded from the web,
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with large variations in expression, illumination and pose. The provided facial
landmark annotations are produced by employing the annotation scheme of
Multi-PIE (Fig. 1a).

3. Semi-Automatic Annotation Tool

In this section, we propose a technique for semi-automatic annotation of
large databases, which takes advantage of the good generalization properties of
AOMs [3, 4].

3.1. Active Orientation Models

AOMs is a variant of AAMs [2]. Similar to AAMs, they consist of parametric
statistical shape and appearance models, and a deformation model. However,
the difference is that AOMs employ kernel PCA based on a similarity criterion
that is robust to outliers. Specifically, the appearance model of AOMs consists
of the principal components of image gradient orientations [37], which makes
them generalize well to unseen face instances.

Let us assume that we have a set of D training images, {I1, . . . , ID}, anno-
tated with N landmark points that represent the ground truth shape of each
image. A shape instance is defined as the 2N×1 vector s = [x1, y1, . . . , xN , yN ]T ,
where (xi, yi) are the coordinates of the i-th fiducial point. The shape model
is constructed by first aligning all training shapes using Generalized Procrustes
Analysis in order to remove global similarity transformations and then applying
Principal Component Analysis (PCA) on the aligned shapes to retrieve:

{

s̄,US ∈ R
2N×NS

}

, (1)

where s̄ is the mean shape and US consists of the first NS eigenvectors with the
highest variance. A novel shape instance can be generated as:

s = s̄+USp, (2)

where p = [p1, . . . , pNS
]T denotes the NS × 1 vector of shape parameters. The

deformation model consists of a warp function, denoted as W(p), which maps
all the pixels that belong into a shape instance generated from Eq. 2 with
parameters p to their corresponding locations in the mean shape s̄. We employ
the Piecewise Affine Warp, which evaluates the mapping using the barycentric
coordinates of the triangles extracted with Delaunay triangulation.

The appearance model of an AOM is based on normalized gradients [37]. Let
us denote an image in vectorial form as i with size L× 1, thus L is the number
of pixels. Moreover, we denote gx, gy to be the image gradients and φ =
arctan(gx/gy) the corresponding gradient orientation vector. The normalized
gradients extraction function is defined as:

Z(i) = 1√
L
[cosφT , sinφT ]T , (3)
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where cosφ = [cosφ(1), . . . , cosφ(L)]T and sinφ = [sinφ(1), . . . , sinφ(L)]T .
By employing the deformation model, we can define the shape-free normalized
gradients of an image i as the 2LA × 1 vector:

z(p) ≡ Z(i(W(p))), (4)

where LZ is the number of pixels that belong to the mean shape s̄, which has
the role of the reference shape. By applying PCA on the warped normalized
gradients of the training images, i.e. {z1, . . . , zD}, we construct an appearance
model of the form:

UZ ∈ R
2LZ×NZ , (5)

where UZ stores the first NZ eigenvectors with the highest variance. Note that
in order to preserve the robust property of the normalized gradients kernel, we
don’t subtract the mean appearance vector from the training set, so it ends up
as the first eigenvector. A novel appearance instance can be generated as:

z = UZc, (6)

where c = [c1, . . . , cNZ
]T denotes the NZ × 1 vector of appearance parameters.

Given a testing image t in vectorized form and the trained shape, appearance
and deformation models, the fitting procedure aims to minimize:

argmin
p,c

‖z(p)−UZc‖2, (7)

where z(p) denotes the normalized gradients of t, as defined in Eq. 4. This
optimization can be efficiently solved in an inverse compositional alternating
manner, as shown in [3, 4, 38].

3.2. Method

The main idea behind the proposed tool is to take advantage of the gener-
alization qualities of AOMs by building a model using annotated images with
various poses and expressions and generate the annotations on images with dif-
ferent poses and expressions. Specifically, let us denote a database that consists
of Nsubj subjects as DB. We assume that for each subject, images with differ-
ent expressions {Ej}, j ∈ {1, 2, . . . , Nexp}, and poses {Pk}, k ∈ {1, 2, . . . , Npos}
are available. Let V be a subset of annotated images and Q a subset of non-
annotated images of DB. The goal of our tool is to (1) generate annotations for
the subjects in Q which appear in V with different expressions and poses, and
(2) generate annotations for the subjects of Q that are not included in V . For
example, in Multi-PIE, the annotations for subjects with expressions “disgust”
at 0◦ and “neutral” at 15◦ are provided and we want to produce the annota-
tions for subjects with expression “disgust” at 15◦. In this case the annotated
and non-annotated subsets are defined as V = {Disgust , 0◦,Neutral , 15◦} and
Q = {Disgust , 15◦}, respectively.

In order to annotate the images in Q, we first train an AOM using the images
in V . The trained model is employed within an iterative fitting procedure which

9
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Figure 2: Flowchart of the proposed tool. Given a set of landmarked images V with various
poses and expressions, we aim to annotate a set of non-annotated images Q (1) with the same
subjects and different poses and expressions, or (2) with different subjects but similar pose
and expressions.

aims to augment the set of correctly annotated images in V and build a more
powerful AOM. Specifically, we fit the trained AOM to each image in Q and
manually classify the fitting results into two sets: Good denoted as Q and Bad
denoted as W = Q \ Q. After this procedure is completed, the initial set of
annotated images is augmented with Q, i.e. V ← V ∪ Q, a new AOM is built
using the updated V and the fitting procedure is repeated. This iterative process
is repeated until the cardinality of the subset W has not changed between two
consecutive iterations i.e., |Wt| − |Wt−1| == 0, thus we end up with fitting
results for all the images in Q. Note that we employ DPMs [17] to estimate the
initial landmarks locations for the first iteration of the above procedure.

In case Q has multiple images per subject (e.g. Multi-PIE, XM2VTS,
FRGC-V2, AR), the above method can be extended to further improve the
generated annotations. Specifically, let us assume that we have a subset of
images for each subject Qp ⊆ Q with Np number of images each, where p ∈
{1, 2, . . . , Nsubj}. For each such subset, we build and fit a Person Specific Model
(PSM) [39] in an “one-vs-rest” manner, that is we fit each image i ∈ Qp using
the PSM trained on the rest Np−1 images. This person-specific adaptation fur-
ther improves the results, especially since we employ person-specific AOMs. The
generated annotations of the images in Q can be further manually improved, as
a final step, although the above methodology ensures that minor corrections will
be required. Figure 2 and Algorithm 1 present the flowchart and pseudocode,
respectively, of the proposed semi-automatic annotation technique. Finally, the
above method can be readily applied to annotate a database DB1 using an
already annotated database DB2 by setting V = DB2 and Q = DB1.

3.3. Annotations

In this section, we present how the proposed tool was used in order to re-
annotate the databases presented in Sec. 2. The advantages of the generated
annotations1 are twofold: (1) They all have the same landmarks configuration,
i.e. the one employed in Multi-PIE (Fig. 1a), and (2) in many cases they are
more accurate than the original ones.

10
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Algorithm 1 Semi-automatic database annotation tool

Require: Annotated subset V, Non-annotated subset Q
Ensure: Annotations of Q
1: Initialize landmarks locations of Q.
2: Initialize Q1 = ∅, V1 = V and W1 = Q.
3: t = 1.
4: repeat
5: Train an AOM using Vt.
6: Fit the AOM to Wt.
7: Manually classify the fittings to Qt (Good) and Wt+1 =Wt \ Qt (Bad).
8: Update Vt+1 ← Vt ∪ Qt.
9: t→ t+ 1.

10: until |Wt| − |Wt−1| == 0
11: if multiple images per subject in Q. then
12: for each subject p = 1, 2, . . . , Nsubj do
13: Qp ⊆ Q is the subset with the Np images of the subject.
14: for each image i ∈ Qp do
15: Train a person-specific AOM using Qp \ {i}.
16: Fit the person-specific AOM to the image i.
17: end for
18: end for
19: end if
20: Check and manually correct, if necessary, the generated annotations of Q.

Multi-PIE: The available Multi-PIE annotations cover only the neutral
expression with pose [−45◦, 45◦] and multiple non-neutral expressions with pose
0◦. We employed the proposed tool to annotate 12570 images for 6 expressions,
all 337 subjects and poses in range [−30◦, 30◦].

XM2VTS: The images of XM2VTS’s first session were semi-automatically
annotated by setting V to be the subjects of Multi-PIE with neutral expression
and [−15◦, 15◦] poses. Subsequently, the annotated images of the first session
were employed to annotate the images of the second session, and so on for all
four available sessions. This procedure resulted in annotating 2360 images.

FRGC-V2: In the case of FRGC-V2, we first annotated a subset consisting
of two images per subject with two different illumination conditions. This subset
was annotated by employing images from Multi-PIE with six expressions and
[−15◦, 15◦] poses as V . The rest of FRGC-V2 was annotated using this initial
subset.

LFPW: Since LFPW database does not provide information regarding pose
and expression characteristics for any image, we manually clustered the images
in different poses {Pk} in the range [−30◦, 30◦]. The images of each such pose
cluster were semi-automatically annotated using images from Multi-PIE with
the same pose.

HELEN, AFW, IBUG: The rest of in-the-wild databases were annotated
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(a) Multi-PIE (b) XM2VTS

(c) FRGC-V2 (d) LFPW

(e) HELEN (f) AFW

Figure 3: Examples of the annotated images. For each database, the image on the left has
the original annotations and the one on the right shows the annotations generated by the
proposed tool. Note that in the case of Multi-PIE, even though the original and generated
annotations have the same configuration, the generated ones are more accurate.

using a common procedure. Specifically, Q consisted of the non-annotated
databaseDBi, and V was set equal to all the rest annotated in-the-wild databases
DBj , j = {1, 2, . . . , i− 1}.

Figure 3 shows examples for each database with the original annotations and
the annotations produced using the proposed semi-automatic methodology.

3.4. Efficiency

In order to assess the efficiency of the semi-automatic tool, we conducted the
following experiment. We used the testing set of Helen database (330 images)
as the annotated subset V while the non-annotated set Q was formed by ran-
domly selecting 1450 images from the training set of the same database. Note
that the selected images exhibit significant variations in pose, illumination and
occlusion. Then, we applied the proposed semi-automatic tool in order to gen-
erate the annotations. Figure 4 visualizes the cardinality of W and V at each
iteration until the termination of the procedure. The tool managed to generate

12



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

annotations of good quality for 1393 out of 1450 images. The annotations for
the rest 57 images were not adequately good mainly due to the existence of
extreme poses, occlusions and illumination conditions. Given that an expert
human annotator needs around 5 minutes to manually annotate from scratch
one image, we have to spend 7250 minutes in order to annotate all the images.
Instead, by using the proposed tool we dropped the requirement time for the
creation of annotations in 1671 minutes. More specifically, we spent 820 minutes
for the manual classification of fittings in Good and Bad, 549 minutes in order
to refine the automatically created 1393 annotations, and 285 minutes for the
manually annotation of the rest 57 images.
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Figure 4: The cardinality of W and V per iteration.

3.5. Discussion

In order to assess the variance of the manually annotated landmarks, we
considered the simplest case of annotating images with frontal faces without any
occlusion or expression. To this end, we selected such images of N = 80 different
subjects with frontal pose from the Multi-PIE database. All these images were
manually annotated by three expert annotators. Figure 5 plots the variance of
the manual annotations for each landmark point using an ellipse. Note that
the ellipses are coloured based on the standard deviation of the annotations,
normalized by the size of the face.

This experiment shows that the agreement level among the annotators is
high for the landmarks that correspond to the eyes and mouth. This is due
to the fact that these landmarks are located to facial features which are very
distinctive across all human faces. Instead, the standard deviation is high for
landmarks that do not have a clear semantic meaning. The chin is the most
characteristic example of this category, as it demonstrates the highest variance.
Finally, the result of this experiment suggests that it is more reliable to report
the performance of landmark localization techniques using the 49-points mark-
up (after removing the points of the face’s boundary), as done in both 300W
competitions.

13



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

0.008

0.012

0.016

0.020

0.024

0.028

0.032

N
o
r
m
a
l
i
z
e
d
 
S
t
a
n
d
a
r
d
 
D
e
v
i
a
t
i
o
n

Figure 5: Each ellipse denotes the variance of each landmark point with regards to three
expert human annotators. The colours of the points rank them with respect to their standard
deviation normalized by the face size.

4. 300 Faces In-The-Wild Challenge

In this section, we present the 300 Faces In-The-Wild Challenge (300-W),
the first facial landmark localization challenge that was held twice, in 2013 and
2015. The ultimate goal of the challenge is to provide a fair comparison between
different automatic facial landmark detection methods. To this end, the 300-W
database was collected and annotated using the same unified annotation scheme
described in Sec. 3, in order to be used as testing set. Section 4.1 gives more
details about the database and Sections 4.2 and 4.3 analyse the results of the
two conducts of the competition.

4.1. 300-W Database

The 300-W database4 is a newly-collected challenging dataset that consists
of 300 Indoor and 300 Outdoor in-the-wild images. It covers a large varia-
tion of identity, expression, illumination conditions, pose, occlusion and face
size. The images were downloaded from google.com by making queries such as
“party”, “conference”, “protests”, “football” and “celebrities”. Compared to
the rest of in-the-wild datasets, the 300-W database contains a larger percent-
age of partially-occluded images and covers more expressions than the common
“neutral” or “smile”, such as “surprise” or “scream”. We annotated the images
with the 68-points mark-up of Fig. 1a, using the semi-automatic methodology
presented in Sec. 3. The images of the database were carefully selected so that
they represent a characteristic sample of challenging but natural face instances
under totally unconstrained conditions. Thus, methods that achieve accurate
performance on the 300-W database can demonstrate the same accuracy in most
realistic cases. Consequently, the experimental results on this database indicate
how far the research community is from an adequately good solution to the
problem of automatic facial landmarks localization.
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Indoor Outdoor

# faces 300 300
# images 222 177
Image size (range in pixels) [20.3k, 17.3M ] [27.2k, 21.0M ]
Face size (range in pixels) [5.0k, 0.8M ] [4.7k, 2.0M ]
Interoccular Distance (range in pixels) [42, 477] [39, 805]

Table 2: Overview of the characteristics of the 300-W database.

Table 2 summarizes the characteristics of the database. Many images of
the database contain more than one annotated faces (293 images with 1 face, 53
images with 2 faces and 53 images with [3, 7] faces). Consequently, the database
consists of 600 annotated face instances, but 399 unique images. Finally, there
is a large variety of face sizes. Specifically, 49.3% of the faces have size in the
range [48.6k, 2.0M ] and the overall mean size is 85k (about 292× 292) pixels.

4.2. 300-W Challenge: First Conduct (2013)

The first conduct of the 300-W challenge2 was held in conjunction with IEEE
International Conference on Computer Vision (ICCV) in 2013 [31].

Training. LFPW, AFW, HELEN, XM2VTS and FRGC-V2 were provided for
training, along with the corrected annotations produced with the semi-automatic
annotation tool (Sec 3). The fact that only a very small proportion of images
in LFPW and HELEN have expressions different than “smile” motivated us to
collect and annotate the IBUG database. It consists of 135 images with highly
expressive faces under challenging poses and was provided to the participants
as an additional option for training. Furthermore, we computed the bounding
boxes of all the aforementioned databases by using our in-house face detector,
the one that is also employed in [16], which is a variant of [17]. Both the anno-
tations and the bounding boxes were made publicly available at the challenge’s
website2. Note that the participants were encouraged but not restricted to use
only the provided training sets and annotations.

Testing. To ensure a fair comparison between the submitted methodologies,
participants did not have access to the 300-W testing database. They were
requested to send us the compiled (binary) files of their pre-trained systems. On
our behalf, we extracted the face’s bounding box for each of the testing images
using the same methodology as the one employed for the training images4. These
bounding boxes were passed in to the submitted executables as initializations.
The accuracy of the fitting results was measured by the point-to-point RMS
error between each fitted shape and the ground truth annotations, normalized
by the face’s interoccular distance, as proposed in [17]. Specifically, by denoting

the fitted and ground truth shapes as sf = [xf
1 , y

f
1 , . . . , x

f
N , yfN ]T and sg =
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Figure 6: The 51-points mark-up is a subset of the 68-points one after removing the 17 points
of the face’s boundary. The interoccular distance is defined between the outer points of the
eyes.

[xg
1, y

g
1 , . . . , x

g
N , ygN ]T respectively, then the error between them is computed as:

RMSE =

∑N

i=1

√

(xf
i − xg

i )
2 + (yfi − ygi )

2

douterN
, (8)

where douter is the interoccular distance computed as the Euclidean distance
between the outer points of each eye, as shown in Fig. 6. For the employed
landmark configuration of Fig. 1a, the interoccular distance is defined as douter =
√

(xg
37 − xg

46)
2 + (yg37 − yg46)

2.

Participants. In total, there were six participants in this version of the challenge.
Below is a brief description of the submitted methods:

• Baltrusaitis et al. [40] propose a probabilistic patch expert technique that
learns non-linear and spatial relationships between the pixels and the
probability of a landmark being aligned. To fit the model they propose
a novel non-uniform regularised landmark mean-shift optimization tech-
nique which takes into account the reliabilities of each patch expert.

• Jaiswal et al. [41] use Local Evidence Aggregated Regression [42], in which
local patches provide evidence of the location of the target facial point
using Support Vector Regressors.

• Kamrul et al. [43] first apply a nearest neighbour search using global de-
scriptors and, then, aim to align local neighbours by dynamically fitting a
locally linear model to the global keypoint configurations of the returned
neighbours. Neighbours are also used to define restricted areas of the
input image in which they apply local discriminative classifiers. Finally,
an energy minimization approach is applied in order to combine the lo-
cal classifier predictions with the dynamically estimated joint keypoint
configuration model.
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(a) Indoor + Outdoor, 68 points
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(b) Indoor + Outdoor, 51 points
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(c) Indoor, 68 points
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(d) Indoor, 51 points
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(e) Outdoor, 68 points
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(f) Outdoor, 51 points

Figure 7: Fitting results of the first conduct of the 300-W challenge in 2013. The plots show
the Cumulative Error Distribution (CED) curves with respect to the landmarks (68 and 51
points) and the condtions (indoor, outdoor or both).

• Milborrow et al. [44] approach the problem with Active Shape Models
(ASMs) that incorporate a modified version of SIFT descriptors [45]. They
employ multiple ASMs and utilize the one that best estimates the face’s
yaw pose.
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Participant 68 points 51 points

Baltrusaitis et al. [40] 0.0486 0.0388
Jaiswal et al. [41] 0.0527 0.0506
Kamrul et al. [43] 0.0543 0.0551
Milborrow et al. [44] 0.1126 0.1145
Yan et al. [46] 0.0211 0.0199
Zhou et al. [47] 0.0205 0.0182

Oracle 0.0038 0.0040

Table 3: Median absolute deviation of the fitting results of the first conduct of 300-W challenge
in 2013, reported for both 68 and 51 points.

• Yan et al. [46] employ a cascade regression framework, where a series of
regressors are utilized to progressively refine the shape initialized by the
face detector. In order to handle inaccurate initializations from the face
detector, they generate multiple hypotheses and learn to rank or combine
them in order to get the final results. They estimate the parameters in
both “learn to rank” and “learn to combine” using a structural Support
Vector Machine framework.

• Zhou et al. [47] propose a four-level convolutional network cascade, where
each level is trained to locally refine the outputs of the previous network
levels. Moreover, each level predicts an explicit geometric constraint (face
region and component position) to rectify the inputs of the next levels,
which improves the accuracy and robustness of the whole network struc-
ture.

Results. The performance of the submitted systems was assessed based on both
the 68 and 51 points. As shown in Fig. 6, the 51 points are a subset of the 68
points after removing the 17 points of the face’s boundary. Figure 7 shows the
Cumulative Error Distribution (CED) curves using the error metric of Eq. 8.
The plots are divided based on the number of points (68 and 51) as well as
the images subsets (Indoor, Outdoor and Indoor + Outdoor). Table 3 reports
the median absolute deviation of the results and Fig. 10 shows some indicative
fitting shapes.

All methodologies demonstrated a lower performance on Outdoor scenes.
The main reason for this is the illumination variance which is much smaller
within an Indoor environment. However, another factor affecting the perfor-
mance is that the Outdoor images have larger variation in facial expressions
compared to the Indoor ones. This is because we picked specific keywords for
the selection of Outdoor images, such as “sports” and “protest”, which ended
up in a big number of images with various expressions, such as “surprise” and
“scream”, that are much more challenging than the expressions that are com-
monly seen in the Indoor ones, such as “smile” and “neutral”. We decided to
announce two winners: one from an academic institution and one from industry.
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Indoor Outdoor

# faces 300 300
# images 300 300
Image size (range in pixels) [16.2k, 3.3M ] [11.2k, 4.5M ]
Face size (range in pixels) [5.0k, 0.8M ] [4.7k, 2.0M ]
Interoccular Distance (range in pixels) [42, 477] [39, 805]

Table 4: Overview of the characteristics of the cropped images of the 300-W database.

Based on the results, the winners were (a) Yan et al. [46] from The National
Laboratory of Pattern Recognition at the Institute of Automation of the Chi-
nese Academy of Sciences, and (b) Zhou et al. [47] from Megvii company. It is
worth to mention that all groups achieved better results in the case of 51 points.

In order to show whether there is any room for further improvement on the
performance, we also report an Oracle curve. We built a statistical shape model
using the shapes of the training databases, as explained in Eq. 1, and kept the
first 25 components. Using this model, we compute and plot the reconstruction
error for each shape of the 300-W database. The reconstruction of a shape s
is achieved by first projecting as pr = UT (s − s̄), and then reconstructing as
sr = s̄+Upr. The resulting curve shows that the 300-W dataset is not saturated
and there is considerable room for further improvement.

4.3. 300-W Challenge: Second Conduct (2015)

The second conduct of the 300-W challenge was completed in the beginning
of 2015. The biggest difference compared to the previous conduct is that we were
no longer providing the bounding boxes of the images to the fitting methods.
On the contrary, the participants were required to submit systems that perform
both face detection and landmark localization. The three main reasons that led
us to this change are:

1. Various techniques perform differently when initialized with bounding
boxes that cover different facial region. For example, DPMs [17] tend
to return bounding boxes that only include facial texture and not any of
the subject’s hair, as usually done by the Viola-Jones detector [48].

2. There are methods, like DPMs [17] and Pictorial Structures [11, 12], that
do not require any initialization.

3. There are algorithms for which the training is coupled with the face de-
tector, such as SDM [18].

Of course, this change made the task even more challenging than before, since
the search region of each image became much larger with a lot of background
information.

300-W Images Cropping. As mentioned in Sec. 4.1, many of the 300-W images
contain more than one faces, which are not necessarily annotated. Consequently,
we cropped the images so that they all included only one face. The cropping
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Figure 8: Indicative examples of the way the images were cropped for the second conduct of
the 300-W challenge.

was performed in such a way to ensure that (1) only a single face is included
in each image and (2) DPMs [17] and Viola-Jones [48] achieve the best true
positive rate that they possibly can. Table 4 reports the characteristics of the
cropped images. Naturally, the only thing that changes compared to the ones
of the initial images in Tab. 2 is the image size (resolution). The mean size of
the cropped images is 0.4M pixels, which is much smaller than the 3.3M pixels
of the non-cropped images. Figure 8 shows some representative examples of the
way that the images were cropped. Note that the cropped images are provided
along with the original images of the 300-W database4.

Training. The training instructions were the same as in the previous conduct.
The authors were encouraged, but not restricted, to use LFPW, AFW, HELEN,
IBUG, FRGC-V2 and XM2VTS databases with the provided annotations.

Testing. The testing procedure followed the same rules as in the previous version
of the challenge. The participants were required to submit compiled pre-trained
systems, the performance of which was evaluated using the metric of Eq. 8.
The submitted systems could return nothing in case no face was detected or
the detected face was estimated to be a false positive. Consequently, in order
to facilitate the participants and make the competition less dependent to a face
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(a) Indoor + Outdoor, 68 points
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(b) Indoor + Outdoor, 51 points
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(c) Indoor, 68 points
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(d) Indoor, 51 points
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(e) Outdoor, 68 points
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(f) Outdoor, 51 points

Figure 9: Fitting results of the second conduct of the 300-W challenge in 2015. The plots
show the Cumulative Error Distribution (CED) curves with respect to the landmarks (68 and
51 points) and the condtions (indoor, outdoor or both).

detector’s performance, we suggested them to use one of the face detection meth-
ods that took part in the Face Detection Data Set and Benchmark (FDDB) [49].
Finally, in this conduct of the competition, the submitted methods were also
assessed with respect to their computational costs and a maximum limit of 2
minutes per image was typically set.
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Participant
# images mad

timings (secs)
with detection 68 points 51 points

Bongjin 584 (97.3%) 0.0271 0.0249 12.9
Y. Cheon 600 (100%) 0.1078 0.1040 0.17
J. Deng 599 (99.8%) 0.0226 0.0213 1.97
H. Fan 526 (87.7%) 0.0309 0.0294 1.29
J. Kranauskas 600 (100%) 0.0693 0.0659 2.46
S. Martin 597 (99.5%) 0.3461 0.3228 5.81
B. Martinez 600 (100%) 0.0514 0.0497 42.5
J. Shin 585 (97.5%) 0.0303 0.0287 12.6
M. Uricar 592 (98.7%) 0.0970 0.0945 3.46
F. Vojtech 591 (98.5%) 0.1047 0.0998 4.05

Oracle − 0.0038 0.0040 −

Table 5: Second conduct of the 300-W challenge. 2nd column: Number of images for which an
estimation of the landmarks was returned. 3rd and 4th columns: The mean absolute deviation
of the fitting results for both 68 and 51 points. 5th column: Mean computational cost per
method.

Results. The number of participants in this version of the competition was 10.
Figure 9 shows the CED curves of the submitted methodologies. Table 5 reports
the number of images for which an estimation of the landmarks was returned,
the mean absolute deviation of the results, as well as the mean computational
costs. The common subset of images for which all methods returned a detection
consists of 517 images. Figure 11 shows some indicative fitting results.

Based on the results, the winner of the competition is J. Deng with small
difference from the second best performing method of H. Fan. Even though the
technique of H. Fan is slightly more accurate, it returns results 526 images, as
opposed to the one of J. Deng that detects the landmarks in 599 images and
has a small mean absolute deviation. It is worth to notice that some systems
employed an unreliable face detector. This seems to be the case with S. Martin.
Their system returned an output for 597 images and, even though most of them
have an adequately accurate result, there is a percentage of about 26% of images
for which the error is very high because of false positive face detections. This
is the reason why their mean absolute deviation is high. Moreover, only three
submissions managed to return a detection for all 600 images: Y. Cheon, J.
Kranauskas and B. Martinez. The results indicate that especially in the case
of J. Kranauskas and B. Martinez, even though their methodologies are not
the most accurate ones, they are though very robust with small mean absolute
deviations. Finally, the system of J. Deng is also the third fastest one behind Y.
Cheon and H. Fan. It is worth to note that Y. Cheon technique is much faster
than the rest of the submissions (170 milliseconds per image) while achieving
quite accurate results.
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(a) Baltrusaitis et al. [40]

(b) Jaiswal et al. [41]

(c) Kamrul et al. [43]

(d) Milborrow et al. [44]

(e) Yan et al. [46]

(f) Zhou et al. [47]

(g) Ground truth

Figure 10: Fitting examples of the first conduct of the 300-W challenge in 2013. Each row
shows the fitted landmarks for each participating method.
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(a) Bongjin

(b) Y. Cheon

(c) J. Deng

(d) H. Fan

(e) J. Kranauskas

(f) S. Martin

(g) B. Martinez
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(h) J. Shin

(i) M. Uricar

(j) F. Vojtech

(k) Ground truth

Figure 11: Fitting examples of the second conduct of the 300-W challenge in 2015. Each row
shows the fitted landmarks for each participating method.

5. Discussion and Conclusions

The results of both conducts of the 300-W challenge shown in Figs. 7 and
9 clearly prove that, even though much progress has been made during the
last years, the research community is still far from accurately solving the prob-
lem of face alignment and that there is much room for further improvement.
This is indicated by the gap between the participants’ curves and the Ora-
cle, which is the minimum error that can be achieved using the specific train-
ing databases. Table 6 reports the percentage of images with error less than
{0.02, 0.03, 0.04, 0.05, 0.06} for the top techniques of both competitions as well
as the Oracle and makes it obvious that the gap is still huge, especially for small
error values.

Table 6 also shows that there was a small improvement on the state-of-the-
art performance between the first and the second conduct of the challenge. The
top performing methodologies have relatively small differences and are close
to each other. One of the main reasons behind this progress is the plethora
of training data from which discriminative methods can greatly benefit. For
example, techniques like Yan et al. [46] (cascade regression framework) and
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Method < 0.02 < 0.03 < 0.04 < 0.05 < 0.06

Yan et al. [46] 0.17% 4.17% 25.8% 54.0% 71.0%
Zhou et al. [47] 0% 2.50% 20.7% 47.7% 69.2%

J. Deng 0.17% 4.33% 26.8% 55.5% 74.3%
H. Fan 0.33% 14.3% 38.2% 62.0% 75.2%

Oracle 72.8% 97.2% 99.7% 99.8% 100%

Table 6: Percentage of images with fitting error less than the specified values for the winners
of the first (Yan et al. [46], Zhou et al. [47]) and second (J. Deng, H. Fan) 300-W challenges,
and Oracle. The error is based on 68 points using both indoor and oudoor images.

Zhou et al. [47] (convolutional network framework), can continually achieve
better results with continuous rise in the amount of training data.

Additionally, the 300-W challenge was only focused on the task of sparse
facial landmark points detection. Alignment using dense landmark mark-ups is
much more difficult and the performance would get worse. This is because the
more landmarks exist in the shape, there is more ambiguity about the semantic
locations at which they are located. Consider for example the 41 boundary
landmark points of the HELEN mark-up in Fig. 1f. Their locations have no
special semantic discrimination. On the contrary they are just located with an
approximately equal distance between them. Consequently, it is very hard to
accurate detect such points since there is no discriminative texture information
that describes them and which could drive the fitting procedure. This highlights
the need to further research how to select a relatively high number of landmark
points that are capable to describe all the characteristic areas of an object.

Moreover, another factor that contributed towards creating more accurate
and efficient alignment techniques is the great progress in the task of face de-
tection. Most landmark localization methodologies are very sensitive to the
initialization, thus the face detection performance. The results presented in the
Face Detection Data Set and Benchmark (FDDB) [49] show that current state-
of-the-art techniques achieve very good true positive rates. However, there is
still room for further improvement especially on images with in-the-wild condi-
tions.

Finally, most current research effort focuses on detecting the facial land-
marks and not tracking them within video sequences. We strongly believe that
more attention should be given towards developing techniques that can track
facial points in a robust manner, even under difficult conditions such as camera
movement, disappearance and re-appearance of the face, challenging background
and lighting, etc. Consequently, we believe that one promising step towards this
direction would be the organization of a challenge, similar to the 300-W one,
that focuses on facial landmark points tracking. The biggest difficulty of such a
competition would be the annotation of the thousands of frames of the videos.
However, using semi-automatic annotation tools as the one proposed in this pa-
per, the task would be simplified and annotations could be efficiently generated.
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· We propose a semi-automatic methodology for facial landmark points annotation. 

 

· We present and analyse the results of the 300 Faces In-The-Wild Challenge. 

 

· We make the challenging 300-W dataset publicly available to the research 

community. 
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