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Abstract16

Plant sizes within populations often exhibit multimodal distributions, even when17

all individuals are the same age and have experienced identical conditions. To18

establish the causes of this we created an individual-based model simulating the19

growth of trees in a spatially-explicit framework, which was parameterised using20

data from a long-term study of forest stands in New Zealand. First we demonstrate21

that asymmetric resource competition is a necessary condition for the formation of22

multimodal size distributions within cohorts. In contrast, the legacy of small-scale23

clustering during recruitment is transient and quickly overwhelmed by density-24

dependent mortality. Complex multi-layered size distributions are generated when25

established individuals are restricted in the spatial domain within which they can26

capture resources. The number of modes reveals the effective number of direct27

competitors, while the separation and spread of modes are influenced by distances28

among established individuals. Asymmetric competition within local neighbour-29

hoods can therefore generate a range of complex size distributions within even-aged30

cohorts.31
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Introduction35

Individual organisms within natural populations usually vary greatly in size. A36

description of the distribution of sizes is a common starting point for many de-37

mographic studies [e.g. 1, 2, 3]. This is especially the case for plants, where size38

distributions are often considered to convey information regarding the stage of39

development of a stand or the processes occurring within a population [4]. In40

the absence of asymmetric competition or size-related mortality, the sizes of indi-41

viduals within an even-aged cohort should be approximately normally-distributed42

around a single mode, allowing for some variation in growth rate. More commonly43

a left-skew is observed during early stages of cohort development; this is attributed44

to smaller-sized individuals receiving insufficient resources to maintain growth, ul-45

timately increasing their likelihood of mortality [5, 6]. Size-thinning thereafter46

reduces the degree of skewness [7, 8, 9] such that the distribution converges on47

a common maximum size [2]. Finally, as individuals die through disturbance or48

senescence, and recruitment into lower size classes occurs, populations shift to a49

size distribution referred to as reverse J-shaped, where a high density of of small50

individuals is combined with a small number of large dominants. This is a common51

pattern in old-growth forests, especially those dominated by shade-tolerant species52

which can persist in small size classes [e.g. 10].53

A range of statistical models exist to capture these transitions in size distribu-54

tions [4, 11]. Nevertheless, such simple models are unable to capture the behaviour55

of many systems. Multimodality of size distributions is widely observed in nature56

[2, 7, 12]. This is particularly true of plant populations [see Table 1 in 13], even57

when all individuals are known to have recruited simultaneously [14]. The preva-58
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lence of multimodality is likely to have been underestimated due to a failure to59

apply appropriate statistical tests [e.g. 15]. In some studies, even when multi-60

modal distributions are observed, they are overlooked or dismissed as anomalous61

[e.g. 8, 11, 16].62

When larger organisms monopolise access to resources it increases the asym-63

metry of competition among individuals [17]. Small individuals face combined64

competition from all neighbours larger than themselves, whereas large individuals65

are unaffected by their smaller neighbours. This is particularly likely to be the66

case for light competition among vascular plants, where taller stems capture a67

greater proportion of available radiation and determine access for those beneath68

[18]. As larger individuals can thereby maintain higher growth rates, incipient69

bimodality will be reinforced [12], at least until light deprivation causes mortality70

among smaller individuals [1]. Stand development models are able to generate71

bimodal patterns when resources for growth become limited [19, 20, 21]. Never-72

theless, though the potential for bimodality to arise from competitive interactions73

is well-known, previous models have only been able to reproduce it within a narrow74

range of parameters [19, 20], leading to the conclusion that it is the least likely75

cause of bimodality in natural size distributions [12]. A range of alternative mech-76

anisms might give rise to multimodality, including abiotic heterogeneity whereby77

large stem sizes are indicative of favourable environmental conditions [22], or se-78

quential recruitment of overlapping cohorts [12]. Finally, the initial spatial pattern79

of recruits may itself create complex variation in the sizes of individuals.80

In this study we argue that instead of being unusual or aberrant, multimodality81

is an expected outcome whenever strong asymmetries in competition among indi-82

viduals occur in cohorts of sessile species. We sought to determine the conditions83
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under which multimodal size distributions form in spatially-structured populations84

using an individual-based modelling approach. Such models have the potential to85

derive new insights into fundamental ecological processes as they often demonstrate86

emergent properties which cannot be predicted from population-level approaches87

[23]. In order to parameterise our models we used a long-term dataset of 250 plots88

in New Zealand in which the sizes of over 20 000 Fuscospora cliffortioides (Hook.89

f.) Heenan & Smissen (≡ Nothofagus solandri var. cliffortioides (Hook. f.) Poole)90

trees have been monitored since 1974 [9, 24, 25]. These data are used to obtain91

plausible parameters for our simulation model, which is then employed to explore92

the causes of multimodality in virtual populations.93

Our predictions were that (a) the size distribution of individuals would carry94

a long-term signal of the spatial patterns at establishment, and that (b) asymme-95

tries in competitive ability would increase the degree of bimodality, which once96

established would strengthen through time, until resource deprivation removed97

weaker competitors from the population. Finally, we aimed to test whether (c)98

manipulating the distance and number of competitors within local neighbourhoods99

would generate variation in the number and positions of modes within cohort size100

distributions. Through this work we demonstrate that complex size distributions101

with multiple modes can be generated within cohorts even in homogeneous envi-102

ronmental space and when individuals are initially arranged in a regular grid. We103

show that multimodality is not a transient phase, but is maintained for the pro-104

jected lifespan of a cohort. Finally, we show that the eventual size reached by any105

individual depends upon interactions with others in its immediate neighbourhood106

throughout its lifetime.107
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Materials and methods108

The simulation model109

All parameters used in the text are summarised in Appendix 1. The growth model110

is derived from a basic energy conservation principle. We assume throughout111

that resources in the model refer to light (and therefore carbohydrates acquired112

through photosynthesis), though in principle the model could be extended to other113

resources with appropriate parameterisation. Recruitment and age-related senes-114

cence are not included in the model. The resources E that an individual acquires115

in a unit of time t are distributed between the resources used to increase its size116

Mg and all other metabolic and maintenance costs Mm. This is expressed math-117

ematically as a general energy budget E = Mg + Mm. Assuming that resource118

intake scales with biomass m as Ei ∝ m3/4 [26], and a linear relation between119

maintenance costs and biomass Mm ∝ m, we can write a simple individual growth120

rate equation:121

dm

dt
= am3/4 − bm (1)

where a and b are constants and the units are chosen such that an increase of one122

unit in biomass requires one unit of resources. A mathematically equivalent model,123

but with slightly different interpretation, has been proposed previously [18, 27, 28].124

Equation 1 describes the potential growth rate of an individual in the absence of125

competition.126

The potential rate of energy uptake of an individual is reduced when it competes127

with neighbours and thus they share the available light. In order to take this into128
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account the growth rate in the presence of competition can be expressed as129

dm

dt
= am3/4 − bm−

∑
j

I(m,mj, dj) (2)

where Ij represents the reduction in biomass growth of a given individual due to130

competition with another individual j of mass mj and at a distance dj from the131

focal tree. The competitive response is obtained by summing Ij over all interacting132

neighbours. We only took pairwise interactions into account, summed across all133

interactions for each individual. This maintained computational efficiency of the134

simulations [29]. An individual died if its maintenance needs Mm were not met,135

i.e. if am3/4 −
∑

j I(m,mj, dj) < bm.136

Spatially explicit interactions among individuals were modelled with a circular137

zone of influence (ZOI) where A represents the potential two-dimensional space138

within which a plant acquires resources in the absence of competition. Resource139

competition between an individual i and its neighbour j is defined as occurring140

when Ai overlaps with Aj. Within the area of overlap, A(I), resources are dis-141

tributed among the two individuals, but not necessarily equally. A larger indi-142

vidual (greater m) will be a stronger competitor, for example by over-topping in143

light competition, but also potentially through directing greater investment into144

below-ground resource capture [e.g. 30]. To incorporate asymmetric competition145

we define fm(m,mj) as being the proportion of resources E that an individual of146

size m obtains from the area within which it interacts with another individual of147

size mj. Assuming homogeneous resource intake within A, then E is proportional148

to A(o) + fm(m,mj)A
(I), where A(o) is the area within which no interaction occurs149

(A− A(I)).150
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Since in the absence of competition E = am3/4, competition will reduce E as151

follows:152

E = am3/4 − (1− fm(m,mj))A
(I) (3)

and153

I(m,mj, dj) = (1− fm(mj))A
(I)
j (4)

The explicit functional form for asymmetric competition is fm(m,mj) = mp

mp+mp
j
.154

When p = 0 the resources in the zone of overlap are divided equally, irrespective155

of each individual’s size. If p = 1 then each individual receives resources in pro-156

portion to its size, and if p > 1 then larger individuals gain a disproportionate157

benefit given their size. This differs from a previous formulation [31], though their158

terminology of competitive interactions can be matched to this work as absolute159

symmetry (p = 0), relative symmetry (p = 1) and true asymmetry (p > 1). The160

shape of the competition kernel is identical in all cases.161

This mathematical framework was used to create a spatially-explicit simulation162

model in which the growth and interactions among large numbers of individuals163

could be assessed simultaneously.164

Model fitting165

To obtain realistic parameters for the simulation model we utilised data from166

monospecific Fuscospora cliffortioides forests on the eastern slopes of the Southern167

Alps, New Zealand. F. cliffortioides is a light-demanding species which recruits as168

cohorts in large canopy gaps, and has a lifespan that seldom exceeds 200 years. The169
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data consisted of records from 20 330 trees situated in 250 permanently marked170

plots that randomly sample 9 000 ha of forests. Each plot was 20×20 m in size. In171

the austral summer of 1974–75 all stems >3 cm diameter at breast height (dbh)172

were tagged and dbh recorded. The plots were recensused during the austral173

summers of 1983–84 and 1993–94. Only stems present in more than one census174

were included. Previous work on this system has confirmed a dominant role for175

light competition in forest dynamics [9, 18].176

We tested the tree size distribution from the first survey of each plot for multi-177

modality by fitting a finite mixture model of one, two and three normal distribu-178

tions (see Appendix 1). We employed an expectation-maximisation (EM) algorith179

[32] within the R package FlexMix 2.3-4 [33] and utilised the Bayesian Informa-180

tion Criterion (BIC) to decide whether each size distribution was unimodally or181

multimodally distributed.182

In order to fit the simulation model to the data we estimated the mass m of the183

trees by allometric relation dbh = Cdbhm
3/8 [26, 34], where Cdbh was taken as a free184

parameter. The area A of the circle representing the potential space for resource185

acquisition was given by cA = am3/4 where c is a proportionality constant. A186

linear relation between dbh and radius of the zone of influence was chosen, and187

a high degree of asymmetric competition (p = 10). The latter improved overall188

fit of the models, indicating a role for asymmetric competition in driving stand189

dynamics.190

For each of 250 plots we began the simulation model with the observed stem191

sizes from 1974 attached to points randomly distributed in space. The simulation192

was run for 19 model years, developed in time increments δt which nominally193

correspond to 10 weeks (for simplicity there is no seasonality of growth). An194
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individual’s growth is given by:195

δmi =

[
am

3/4
i − bmi −

∑
j

mp
j

mp
i +mp

j

cA
(I)
j

]
δt (5)

In each Monte Carlo iteration individuals mi were selected at random and their196

size updated. A search algorithm was employed to find values of a and b which gave197

the best fit to the observed individual growth rates with Pearson’s χ2, averaged198

across the ensemble of simulations. Note that the model was fit to the growth199

rates of individual stems based on repeated measurements, rather than stand-level200

properties such as size distributions.201

Having obtained suitable values for a and b we performed simulations to com-202

pare the size distributions as predicted by the model (assuming initially random203

stem positions) with the empirical distributions observed in the data set. These204

were initiated using size distributions from stands in the F. cliffortioides dataset205

in which the mean stem diameter was small (d̄ < 15 cm), then run until the mean206

reached a medium (15 cm ≤ d̄ < 22 cm) or large (d̄ ≥ 22 cm) stem size. Estimates207

of size-dependent mortality rate were also obtained and compared with empirical208

outputs as in [9]. This provides an independent evaluation of model performance209

as mortality rates were not used to parameterise the model.210

Exploring multimodality in size structure211

The simulator with fitted parameters as described above was used to explore the212

factors which cause multimodal size distributions to form. We tracked the devel-213

opment of size structures in simulated stands with differing initial spatial patterns214

and symmetry of competition. In these simulations all individuals were of identical215
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initial size.216

First 2100 spatial patterns were generated, each containing a distribution of217

points with x and y co-ordinates in a virtual plot of 20×20 m. Equal numbers218

patterns were clustered, random and dispersed. Random patterns were produced219

using a uniform Poisson process with intensity λ = 0.05 points m−2. Clustered220

patterns were created using the Thomas process. This generated a uniform Poisson221

point process of cluster centres with intensity λ = 0.005. Each parent point was222

then replaced by a random cluster of points, the number of points per cluster being223

Poisson-distributed with a mean of 10, and their positions as isotropic Gaussian224

displacements within σ = 1 from the cluster centre. Dispersed patterns were225

produced using the Matern Model II inhibition process. First a uniform Poisson226

point process of initial points was generated with intensity λ = 0.06. Each initial227

point was randomly assigned a number uniformly distributed in [0,1] representing228

an arrival time. The pattern was then thinned by deletion of any point which229

lay within a radius of 1.5 units of another point with an earlier arrival time.230

All patterns were generated in R using the spatstat package [35]. Each pattern231

contained roughly 500 points (clustered N = 501 ± 2.7, random N = 501 ± 0.8,232

dispersed N = 488 ± 0.7). The slightly lower number of points in the dispersed233

pattern reflects the inherent difficulties in generating a dense pattern with a highly-234

dispersed structure and has no qualitative effect on later analyses. Although the235

density within starting patterns was approximately a quarter of that observed in236

the empirical data, initial density has a limited effect on final outcomes since its237

main effect is to reduce the time until points begin to interact [36], and lower point238

densities increased computational speed, allowing for greater replication.239

A number of further patterns were generated to explore the influence of specific240
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parameters. First, a regular square grid was used with a fixed distance of 1.5 or241

3 m between individuals. Next, groups of individuals were created in which all242

individuals within groups were 3 m apart, but with sufficient distance among243

groups that no cross-group interactions could take place. Groups contained either244

two individuals (pairs), three individuals in a triangular arrangement (triads) or245

four individuals in a square arrangement (tetrads). The total starting population246

in each pattern was approximately 7500 individuals.247

We ran simulations of the spatially-explicit individual-based model, varying248

the degree of asymmetric competition p. The points generated above became249

individual trees represented as circles growing in two-dimensional space. Each250

individual was characterised by its mass m and co-ordinates. In order to model251

mortality, an individual was removed from the simulation if carbon losses exceeded252

gains, that is if [am
3/4
i − bmi −

∑
j

mp
j

mp
i+mp

j
A

(I)
j ] < 0.253

The predicted size distribution and mortality rate of clumped, random and254

dispersed starting patterns were obtained from ensemble averages of 700 simula-255

tions corresponding to the point processes generated above. m was a continuous256

variable but in order to derive the size distribution, growth and death rates we cal-257

culated size frequencies based on 10 kg biomass bins. Since the death rate changes258

through time due to alterations in the size structure of the community, we present259

the average death rate for each size class across all time steps in simulations, which260

run for 460 model years (at which point only a few very large stems remain). This261

allows sufficient resolution for figures to be presented as effectively continuous re-262

sponses rather than histograms, and is equivalent to a landscape-scale aggregation263

of size-dependent mortality data across a series of stands of differing ages.264
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Results265

Analysis of the New Zealand forest plot dataset revealed multimodal distributions266

in 179 plots in 1974, 163 plots in 1984 and 152 plots in 1993 from of a total of 250267

plots in each survey. This represents 66% of plots, showing that multimodality is268

more common than unimodality within these forests (see Appendix 2).269

The simulation model was fit to the observed individual growth rates in the270

F. cliffortioides dataset and provided a robust representation of the empirically-271

measured patterns. The fitted parameters (a, b and Cdbh) are shown in Appendix272

1. The effectiveness of the model was assessed through its ability to capture size-273

dependent mortality rates, which were an emergent property of the system and274

not part of the fitting process. Size distributions thus obtained were qualitatively275

similar to those observed in the empirical dataset [9]; see Appendix 3.276

Subsequent simulation modelling used the parameters derived from the F. clif-277

fortioides dataset (a, b, Cdbh) and created simulated forests to investigate the278

potential origins of multimodal patterns. Using stochastically-generated starting279

patterns, major differences were evident in the patterns of growth and survival280

depending on the degree of competitive asymmetry p and the initial spatial con-281

figuration (Fig. 1).282

With completely symmetric competition among individuals (p = 0), average283

tree growth in clustered patterns was greater than in either random or dispersed284

patterns (Fig. 1a). This unexpected result can be attributed to the high rate of285

density-dependent mortality in very early time steps (Fig. 1d). Initial mortality in286

random patterns reduced the population to be comparable with dispersed patterns,287

compensating for the slight initial differences in abundance. Clustered populations288
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remained larger in average stem size (Fig. 1a) as the result of a smaller final289

population size (Fig. 1d), an effect which developed rapidly and was maintained290

beyond the plausible 200-year lifespan of F. cliffortioides.291

In the absence of asymmetric competition (p = 0), starting patterns had a292

limited effect on final size distributions, with only minor increases in skewness293

in clustered populations at advanced stages of development (Appendix 4). In all294

cases size distributions remained unimodal. It is therefore apparent that varia-295

tion in initial spatial patterns is not in itself sufficient to generate multimodality296

in size distributions, at least not unless the average distance among individuals297

exceeds their range of interaction, which is highly unlikely in the context of plant298

populations.299

The introduction of weak asymmetry (p = 1) tended to increase the mean size300

of individuals while causing reductions in population size (Fig. 1b,e) and dimin-301

ishing the differences among initial patterns, such that with strong asymmetry302

(p = 10) the differences in final size between starting patterns were negligible303

(Fig. 1c). Strong asymmetry also caused population sizes to converge within the304

likely lifespan of the trees, irrespective of starting conditions, and at a lower fi-305

nal level (Fig. 1f). Reduced differences among initial patterns with increasing306

asymmetry arose because fewer small trees survived around the largest tree in the307

vicinity, which caused patterns to converge on a state with dispersed large indi-308

viduals and smaller individuals in the interstices. More left-skewed distributions309

also emerged as a consequence of the low tolerance of individuals to depletion310

of resources (individuals failing to obtain sufficient resources for their metabolic311

needs died immediately). Thus the small individuals die soon after their resource312

acquisition area is covered by the interaction range of a larger individual. Such313
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left skew would be reduced for species capable of surviving long periods of time314

with low resources either through tolerance or energy reserves.315

Increasing competitive asymmetries caused size distributions to exhibit slight316

multimodality with a lower frequency of individuals in the smaller size class at 150317

years (Appendix 5). Given entirely random starting patterns, more pronounced318

bimodality emerged as the degree of asymmetric competition increased. Further-319

more, the model predicted a U-shaped size-dependent mortality rate, qualitatively320

consistent with a pattern in the empirical data (Appendix 6; compare Fig. 5 in321

[9]). This trend intensified with increasing asymmetric competition, and was ab-322

sent when resource division was symmetric. It occurred because in large trees323

the majority of resources are required for maintenance, and therefore even a rel-324

atively small amount of competition ultimately increases their mortality rate. In325

the absence of asymmetric competition the death rate of large trees approached326

zero.327

Greater insights into the causes of multimodality are revealed through the use328

of designed spatial patterns in which the timing of interactions within model devel-329

opment can be precisely controlled. These illustrate that the separation between330

modes is determined by the distance among competing individuals under asym-331

metric competition (Fig. 2 and Appendix 7). The size structure can therefore332

provide an indication of the dominant distance over which individuals are compet-333

ing, though separation of modes will be less clear when a strict grid is absent. Note334

that the position of the right-hand mode remains identical, and it is only the mode335

of the subordinate individuals which shifts to a smaller size class. Highly-dispersed336

patterns give rise to more complex size distributions through their development337

when asymmetric competition is present. In the most extreme case, when initial338
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patterns are gridded, each individual interacts with a series of neighbours as its339

size increases, leading to a complex multimodal pattern, at least until continued340

mortality removes smaller size classes (Fig. 3). Note that the modes are more341

clearly distinguished than is the case for random starting patterns where distances342

among individuals vary (compare Fig. 8c).343

The patterns generated by small groups of interacting individuals at equal dis-344

tances apart with asymmetric competition lead to size distributions with a number345

of modes equal to the number of individuals within each group. For patterns de-346

rived from pairs of individuals, the size distribution is bimodal, and in similar347

fashion triads and tetrads produce size distributions with three and four modes348

respectively (Fig. 4). Each mode corresponds to the discrete ranking of individuals349

within groups. This indicates that in gridded populations, as might be observed350

in plantations or designed experiments, the number of modes is determined by the351

effective number of competitors.352

Discussion353

Multimodality in cohort size distributions is the outcome, rather than the cause,354

of asymmetric competition among individuals of varying size. Regardless of ini-355

tial small-scale starting patterns, size distributions remain unimodal in the case356

of symmetric competition among individuals. Only when larger individuals are357

able to acquire a greater proportion of resources from shared space does bimodal-358

ity begin to emerge. Spatial patterns of established individuals can modulate359

these interactions, with complex multimodal distributions generated when indi-360

viduals are either regularly or highly dispersed in space. The number of modes361
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corresponds to the number of effective competitors and their separation is a con-362

sequence of average distances among individuals. Note that our simulations do363

not incorporate continuous recruitment; this is a reasonable assumption for sys-364

tems such as F. cliffortioides forests, where large-scale disturbances are followed365

by stand replacement.366

Asymmetric competition will lead to multimodal distributions at some point367

during stand development. We extend upon previous studies [e.g. 37] by provid-368

ing a general framework for predicting and interpreting complex size distributions369

in spatially-structured and even-aged populations. Under light competition the370

modes will correspond to discrete and well-defined canopy layers. In [13] a se-371

ries of controlled experiments were conducted to investigate size distributions in372

populations of annual plants, finding in many cases that distributions with two or373

three modes were observed. Our results allow for a fuller interpretation of these374

earlier findings, as we have shown that the number of modes reflects the number375

of effective competitors, placing a limit on the complexity of size distributions.376

As demonstrated in Figs. 2 and 4, the larger mode remains in the same position377

regardless of the size at which competition begins. This highlights that those in-378

dividuals in larger size classes are almost unaffected by competition during stand379

development.380

Even when all individuals in a cohort begin with identical size, small fluctua-381

tions in the acquisition of shared resources lead to a multimodal size distribution,382

regardless of whether the initial pattern was random, dispersed or clustered. The383

size distribution is not affected by differences in the initial spatial structure at small384

scales due to the death of close neighbours early in stand development. A similar385

result was found by [36], who argue that the importance of recruitment patterns in386
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generating asymmetries in competition may have been over-stated. Likewise initial387

density will have a limited effect on final size distributions as its main influence is388

on the time at which individuals begin to interact [36]. Therefore, while local in-389

teractions undoubtedly do cause competitive asymmetries [e.g. 17], these are more390

relevant in determining the pattern of mortality during self-thinning rather than391

final size distributions, so long as the distances over which competition influences392

growth are larger than the characteristic scales at which initial spatial structuring393

occurs. In dense aggregations of recruiting plants this is likely to be the case.394

The model implies only a single resource for which individuals compete. It is395

typically assumed that above-ground competition for light is asymmetric, whereas396

below-ground resources are competed for symmetrically [38], though the latter397

assumption may not always be true [e.g. 39, 40]. More complex zone-of-influence398

models can take into account multiple resources and adaptive allometric changes on399

the part of plants in response to resource conditions [e.g. 41, 42]. Indeed, plasticity400

can diminish the impact of asymmetric competition [41, 43]. Although below-401

ground interactions are challenging to measure directly, there is good evidence402

that above- and below-ground biomass scale isometrically [44] which justifies the403

use of above-ground biomass to infer potential root competition. Previous work404

using the same data has identified a dominant role for light competition among405

smaller stems, with nutrient competition important at all stem sizes [18].406

Forest mensuration tends to overlook the shape of size distributions in favour407

of summary statistics [e.g. mean size, coefficient of variation, maximum size; 45]408

and may therefore miss out on valuable contextual information. While the utility409

of size distributions as a predictive tool for modelling dynamics has been fre-410

quently overstated [see 46], they can nonetheless remain a valuable indicator of411
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past dynamics. One outcome of bimodality arising from asymmetric competition412

is that large and small individuals have differing spatial patterns, with the larger413

dispersed in space and the smaller confined to the interstices generated by the414

dominant competitors [47]. This can be used as a diagnostic tool as it allows this415

mechanism to be distinguished from abiotic heterogeneity, leading to clustering416

of similar sizes, or independent sequential recruitment, leading to a lack of co-417

associations between size classes [12]. Likewise in mixed-species stands succession418

can cause a multimodal pattern to emerge through aggregation of several unimodal419

cohorts, persisting throughout stand development [10]. The interplay between size420

distributions, plant traits and disturbance can generate complex emergent pat-421

terns in forest dynamics at the landscape scale [48]. Bimodality generated by size422

competition among individuals is a distinct phenomenon from the bimodality in423

inherited size across species which is often observed in mixed-species communities424

[e.g. 49]. Where size histograms combine individuals from multiple species, the425

causes of bimodality are likely to include long-term evolutionary dynamics in ad-426

dition to direct competition among individuals. Contextual information on spatial427

patterns, disturbance regimes and community composition are therefore essential428

to interpreting size distributions in natural systems.429

Our models are based upon parameters obtained from a long-term dataset and430

can therefore be immediately transferred to a predictive framework. While the431

exact terms are most suited to the Fuscospora cliffortioides forests which form432

the basis of this work, it is likely that they will be applicable to any monospecific433

plant population. Bimodal size distributions might be overlooked where aggregate434

curves are drawn as composites of a large number of plots, which will tend to435

average out differences, or where appropriate statistical tests are not employed.436
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We find that 66% of plot size distributions in our data are bimodal. It is likely437

that these do not all represent single cohorts; for example, a severe storm in 1972438

opened the canopy in some plots and allowed a recruitment pulse [24, 50]. Irre-439

spective of this, our growth model is able to capture subsequent stand development440

regardless of the origin of the bimodality (see Appendix 3). Our results also show441

that multimodality can act as an indicator of asymmetric competition. Thomas442

& Weiner [31] present evidence that the degree of asymmetry in natural plant443

populations is strong, with larger individuals receiving a disproportionate share of444

the resources for which they compete (p� 1). The phenomenon of multimodality445

should therefore be widespread.446

In conclusion, and in contrast with a previous review of bimodality in cohort447

size distributions [12], we contend that asymmetric competition is the leading can-448

didate for explaining multimodal size distributions, and is its cause rather than the449

outcome. Previous simulation results suggesting that the parameter space within450

which multimodality occurs is limited were based on stand-level models. Through451

the use of individual-based models it can be demonstrated that multimodality is452

an expected outcome for any system in which larger individuals are able to control453

access to resources, and where individuals compete in space. The strength of these454

asymmetries determines the degree to which multimodality is exhibited, while the455

number and separation of modes are determined by the number of effectively-456

competing individuals and the distances among them. While multimodality may457

be a transient phase within the development of our models, many forest stands458

exhibit non-equilibrial conditions, and indeed most natural plant populations are459

prevented by intermittent disturbance from advancing beyond this stage [24, 50].460

Consistently unimodal size distributions should be seen as the exception rather461
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than the rule.462
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Figure captions622

Figure 1. Cohort-level characteristics of stands with either random, clustered or623

dispersed initial starting patterns over t years (simulation time). (a–c) Mean tree624

size in kg with increasing levels of asymmetric competition p (0, 1, 10), note that625

(a) has a reduced y-axis length; (d–f) mean number of surviving individuals N per626

20×20 m plot with competition varying from symmetric (p = 0) to weakly (p = 1)627

and strongly asymmetric (p = 10). Each line is derived from an ensemble average628

of 700 simulations.629

630

Figure 2. Separation between modes with varying distance of competing neigh-631

bours and strong asymmetric competition (p = 10). Size distributions of stands632

composed by pairs of equidistant individuals after 200 years of development. Solid633

line: individuals spaced at 1.5 m, dashed line: individuals spaced at 3 m. Each634

line is derived from an ensemble average of 700 simulations.635

636

Figure 3. Emergent size distribution through stand development given an initially637

gridded starting pattern. Individuals separated by 1.5 m from their neighbors and638

with strong asymmetric competition (p = 10). Panels show distribution at 150,639

200, 230 and 250 years. Each plot is derived from an ensemble average of 700640

Monte Carlo simulations.641

642

Figure 4. Size distributions of stands composed of groups of two, three and four643

equidistant competing individuals (pairs, triads and tetrads respectively) with 3644

m of separation among individuals in each group. Asymmetric competition set645
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at p = 10. Each line is derived from an ensemble average of 700 simulations and646

shows the distribution at 250 years.647
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Figure 1: Cohort-level characteristics of stands with either random, clustered or
dispersed initial starting patterns over t years (simulation time). (a–c) Mean tree
size in kg with increasing levels of asymmetric competition p (0, 1, 10), note that
(a) has a reduced y-axis length; (d–f) mean number of surviving individuals N per
20×20 m plot with competition varying from symmetric (p = 0) to weakly (p = 1)
and strongly asymmetric (p = 10). Each line is derived from an ensemble average
of 700 simulations.
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Figure 2: Separation between modes with varying distance of competing neigh-
bours and strong asymmetric competition (p = 10). Size distributions of stands
composed by pairs of equidistant individuals after 200 years of development. Solid
line: individuals spaced at 1.5 m, dashed line: individuals spaced at 3 m. Each
line is derived from an ensemble average of 700 simulations.
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Figure 3: Emergent size distribution through stand development given an initially
gridded starting pattern. Individuals separated by 1.5 m from their neighbors and
with strong asymmetric competition (p = 10). Panels show distribution at 150,
200, 230 and 250 years. Each plot is derived from an ensemble average of 700
Monte Carlo simulations.
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Figure 4: Size distributions of stands composed of groups of two, three and four
equidistant competing individuals (pairs, triads and tetrads respectively) with 3
m of separation among individuals in each group. Asymmetric competition set
at p = 10. Each line is derived from an ensemble average of 700 simulations and
shows the distribution at 250 years.
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Appendix 1648

Table 1: Model terms as used in the text, separated between fitted parameters
obtained from field data and free variables at the individual and stand level.

Symbol Value Units Definition
Fitted parame-
ters
a 2.5× 10−3 10×kg−3/4year−1 Conversion factor between

mfrac−3/4 and E
b 2.5× 10−4 10×kg−1 Resource cost for maintenance

per unit biomass
Cdbh 9.4 cm/10×kg3/8 Allometric relation between

biomass and dbh
Individual-level
parameters
m variable 10×kg Biomass of an individual
dj variable m Distance of an individual i to its

neighbour j
AI

j m2 Area of interaction between an in-
dividual i and its neighbour j

Stand-level pa-
rameters
p fixed dimensionless Degree of competitive asymme-

try. p = 0 corresponds to sym-
metric competition while p > 0
indicates asymmetric competition

E equation (3) 10×kg year−1 Resource intake rate of an indi-
vidual

I(m,mj, dj) equation (4) Resource year−1 Reduction of resource intake rate
due to competition

fm(m,mj)
mp

mp+mp
j

dimensionless Fraction of resources that an indi-
vidual of biomass m obtains from
the area of interaction with an in-
dividual of biomass m′
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Appendix 2649

Figure 5: Frequency of Fuscospora cliffortioides plots in New Zealand exhibiting
uni- or multimodality in size distribution as determined by finite mixture models
testing for the presence of one, two or three modes. Data from initial 1974–1975
surveys.
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Appendix 3650

Figure 6: Comparative figure to match Fig. 3 in Coomes & Allen 2007. Histograms
show distributions of diameter at breast height (dbh; cm) of stands in which mean
stem sizes were of medium (15–22 cm dbh; a) and large mean size (>20 cm dbh;
b) in 1974. Simulations began with trees in random positions following a size
distribution taken from the 117 stands with small mean stem size (<15 cm) in
1974. Dashed lines indicate patterns in simulated stands after 20 or 70 years of
model time respectively. This is the ensemble average of 117×4 = 468 simulations.
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Appendix 4651

Figure 7: Mortality rate as a function of tree size. Solid line for symmetric compe-
tition, dashed and dotted lines correspond to increasing asymmetric competition.
Derived from an ensemble average of 700 simulations, each of which is run for
a nominal 460 years, and showing the cumulative function over the whole time
period.
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Appendix 5652

Figure 8: Size-frequency histograms for simulated stands. All plots represent 150
years of stand development with increasing levels of asymmetric competition p (0,
1, 10) and random initial pattern. Each plot is derived from an ensemble average
of 700 simulations.
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Appendix 6653

Figure 9: Size distributions of populations with symmetric competition among
individuals (p = 0) but variation in initial pattern (random, dispersed, clustered).
Panels show distribution at 150 and 200 years. Each plot is derived from an
ensemble average of 700 simulations.
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Appendix 7654

Figure 10: Effect of increasing distance between paired individuals within simula-
tions (as Fig. 2) on separation between modes in the emergent size distribution.
Note that increasing distance reduces the separation of modes by increasing the
model time required for two individuals to begin competing for resources.
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