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Abstract

We investigate &ersion of the classic Colonel Blotto gamewhich individual battldields mayhave
different valuesTwo players allocate a fixetiscretebudget across battlefield8ach battlefield is
won by the player who allocates the most to that battlefldld player who wins the battlefields with
highest total valueeceives a constant winner payoff, while thier playerecaves a constant loser
payoff. We focus onapex gamesn whichthere is one large arstverakmall battlefieldsA player
wins if he wins the large and any one small battlefield, or all the saléfields.Foreach of the
games we studyye compute an equilibriumnd weshow that certain properties of equilibrium play
are the same in any equilibrium. In particutae expected share tife budget allocated tthe large
battlefieldexceeds itvalue relative tahe total value of all battlefieldandwith a high probability
(exceeding 90% in our treatmentssourcegrespread over moreattlefields than are needed to win
the gameln a laboratoryexperiment, w findthatstrategies that spréaesources widelgire played
frequently consistent with equilibrium predictions. In the treatment where the asymmetry between
battlefields is strongest, we also find that ldrge battlefieldeceives on averagrore than a
proportioral share of resoues.In a control treatment, all battlefields have the same value and our
findings are consistent with previous experimental findings on Colonel Blotto games.
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1. INTRODUCTION
We investigate theoretically and experimentalimatiple-battlefield conflict in which
battlefieldsmay have different valuess in the classic Colonel Blotto game, two players
compete to win battlefields by allocatiagixed amount of resources acrtissm A
battlefield is won by the player who spends the most on it, and the winner of the game is the
player winning the battlefields with highest total valireterms of the classification in
Kovenock and Roberson (2Bjlwe study a multiple battlefield conflict with auctiomeest
success function (CSH)udgetcongrained uset-or-loseit costs, and a weighted majority
objective since for the overall win a player needs to win a majority of battlefields, weighted
by their values.
It is perhaps obvious thatplayer should favanore important battlefieklrelative to
less important one®ut by howmuch? If a large battlefield worthtwice as much as a
small battlefield, should it command twice as many resourcesildsaplayeiconcentrate
the resources on tminimal set of battlefields necessary foe overallwin or should he
spread resources over all battlefields®l do human subjects behave in the way predicted by
equilibrium?To address these questions, welgtBlotto games with asymmetric battlefields
using apex games to characterize the asymmEtig.class of games ke simplestlass of
majoritarian contests with asymmetric battlefields without(Seg Isbelll959) In this class
of games, there isne large and several small battlefields, and the contest can be won by
winning the large and any one of the small battlefields, or by winning all small battlefields.
Little is known about thislass of Blottogames, either theoretically or empirically.
Theoretically,if players are symmetric each player has the same equilibrium probability of
winning the contest. Further, except for trivial cases (e.g. where the value of one battlefield is
greater than the combined value of all other battlefiedg)equlibrium of the game must
involve mixed strategiess in the classic Colonel Blotto ganBzyond this we know of only
limited results due to Young (1978&Je interprets this contest as a game between lobbyists
with opposing interests, competing to brilzgars that may diér in the number of votes they
control. The lobbyis@aimis to win a majority of votes. Youngpnsidergwo cases witlone
large and several smalbters, such that a lobbyisins if hegets the support ahe large and
any oneof thesmallvoters or of all the smallvoters both of his games are particular

instances of apex games. Hportsthe equilibriumexpectedexpenditurs, which are
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disproportionatelygkewed towards thlargevoter, butis silent on other properties of
equilibrium behavior*

For each of our treatments, wse numerical methods ¢ompute an equilibrium
under the restriction that thenall battlefields are treated symmetricallys well as
predictingthat the large battlefield receives on average more tharpantional share of the
resources athe players, thigquilibrium alsgpredicts thatvith a very high probability
players spread their budget over mbagtlefieldsthan are needed to win the cont&ge also
show that these features must hold in any éxjwiim of the game, whether it treats small
battlefields symmetrically or ngseeproposition 2n section 3.

Our experimental treatmenare based on tlygameddiscussed by Youndn the
experiment,wo subjects compete ftwattlefieldsand receive poits forbattlefieldswon. A
battlefieldis won by the player spendirige most on it, and somattlefieldsare worth more
points than others. The winner of the game is the subject obtamngpst pointsAlthough
this is a simple game to describesiniot clear whether subject behavior will conform el
theoretical predictions. On the one hand it is extremely unlikely that behavior will match
equilibriumprecisely: identifying equilibrium is computationally challenging anesumably
beyond the ality of experimental subjectsndeed, we useumerical methods to pin down
anequilibrium). On the other hanaven simpler versions of Colonel Blotto are notoriously
difficult to solve, and yet, as we discuss in the next section, experimignthesehave
found behavior to be qualitatively in linath key features of equilibrium

Equilibrium mixed strateigs have a complex structuedplay in the experiment
does not match in detail.In all treatments & can identify strategies that, if pittedaaust
our s ubj e ¢wosldwinamore afteneghgam nBtgith more battlefields the game is
more complicatedbothbecause there are more possible strategies, and because some simple
strategies are more exploitaliethe sense that it is possiblediotain a higher expected

payoff against those strategiéevertheless, the degree of exploitability of actual play is

! Youngdescribeshe lobbying game in which lobbyists have infiniteliyisible budgets. He then states that
filnstead of attemptingtoo mput e [t he expected all ocat explicitybyf t he | ol
integration,a useful approach is to approximate the continuous strategy spaces by a finite gridaAwefto

do this is by allocating a large but finite numiesf indivisible units to each lobbyist that may betdbuted

among the voters. This leads toamiperson, zergum matrix gam&hoseequilibriumsolutions were used to
approximate the equliiums ol uti on to the infinite | obbying game. 0
details of the derivations, the resulting values.



roughly the same across treatments, indicating that even though the game with a larger
number of battlefields is more complicated, te@dwvior of subjects is as close to
equilibrium, at least by this measure.

Even though play does not match the efuilim exactly, we find evidencéor some
of thequalitative features aquilibriumpredictions Strategies that spread resources over
morebattlefields than is necessary to win the coraestplayed often and their frequency
increases over time in all treatmentsthe game with more battlefields where the asymmetry
between small and large battlefieldsriore pronounced, the largetthafield receives on
average more than a proportional share otdked resouces.

In the next section weeview the related literature on Colonel Blotto games. Section 3
describs our game and its theoretical properti®sction4 describes our experimentsign
and procedures. Results are presented itidbegand Sectioré concludes.

2. RELATED LITERATURE
The Colonel Blotto gameas introducedh Borel (1921), where he considensde identical
battlefields, an auctiooontest success functidoudgetconstraired useit-or-loseit costs and
a majoritarian objectiveEquilibria for the game were first identified in Borel and Ville
(1938).Lat er studies introduced tadnadditiveabjective Col on e
(i.e. players maximizehetotal valueof battlefieldswon). For this latter formulation of the
game Roberson (2006) shows thalhen all battlefields are identical p | angrginmalé s
distribution ofherexpenditure om battlefieldmust be uniform in any equilibriuniart
(2008) extendthis analysis to the case of a discrete buddjeb using the aditive objective
formulationwith symmetric budget$sross and Wagner (1956pnsiderthe game with three
asymmetridoattlefields with arbitrary valugandThomas 2013) extends th@nalyss to an
arbitrary number ohsymmetridoattlefields Thomasshows that unifornrmarginals, where
the mearexpenditure om battlefield is proportional to its valuae a sufficient condition for
equilibrium It is not known if this condition is also necagsar whether it is always
possible to construct multivariate distributions with this property.

Young (1978kxtended the original majoritarian objective model of Borel (1921) to

2 There are also results on the additive objective asymmetric budget§&ross and Wagner (1950) solve the
case otwo battlefields with arbitrary valueRobersor{2006) characterizes the equilibrium for an arbitrary
number of symmetric battlefields.
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the case of asymmetric battlefieldte studiesvote-buying gamein which players with
opposite interests allocatteeir budges across voteré 6 b a t t .IYeuhgcansidersddvyo
particular apex games, ardlved then assuming a finitely divisible budget (the size of
which is not stated) and reported the expected amountai@tbto the large battlefield (but
not the equilibrium strategieshhese are thevo games that we study theoretically and
experimentally in this paper.

A small number of studies have recently examwetantsof the Colonel Blotto
gameexperimentally’ Avrahami and Kareev (2008)cus on contests between players with
differing strengths. In their contegtse twoplayershave diffeentbudgets, antheyfind that
subject behavior is sensitive to the relative budgets in the way predicted by equiliinzym.
c o n c | thedesults irdicate that'ive players can behave, intuitively, in a way that
approximates the sophisticated gaitmé e o r e t i €howdburyettal. (8C8) alsb study
a gamebetween asymmetric playe@ndcompare the auction CSF wighlottery CSF. They
find that the probabilities of winning for players 1 and 2 are as predigteduilibrium, and
the bidding strategies differ across treatments in the direction preditiegnote some
interesting deviationBom equilibrium, but oveall cond u dée it tok only one hour for
subjects who were unfamiliar with this game to exhibit behavior consistent with
e qui | i“ln bothwfrth@se studies baftelds are symmetric and playdrave an additive
objective In contrast, our experimestudies a game with a majoritarian objective and
asymmetric battlefields.

Mago and Sheremeta (2012) study a setting svithajoritaria objective and an
auction CSF, buwith linear costs. Thus, in their experiment subjects decide how much of
theirbudget to allocate to the contest, as well as how to allocate resources across battlefields.
They find thatsubjects make higher aggregate bids than predittedis a common finding

in contest experiments, but owéich is not possible in our fixebudget setting®

% Dechenaux et al. (2@) survey the experimental literature on contests more generally.
* Arad and Rubinstein (2012)so study a game with an auction CSF and budgestraineeliseit-or-loseit
costsusingaroundo bi n t ournament in which each subjectds allc
observe significant deviations from equilibrium and interpueb j echoices @s reflecting iterated reasoning in
several dimensions. Note howeubat their subjects play a oisbot game, with no opportunity for learning.
® Another related paper KortalaVallve and LlorenteSaguer (2010)Theyconsider a modifidéon of the
Colonel Blotto game with an additive objective in which the two players have cardinal valuations of the
battlefields, and these valuations are private information. Their main focushe@fficiency of the outcome,
an issue that does nots®iin our setting.
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There are two recent papers with asymmetric battlefaatdisbudgetonstrained use
it-or-loseit costs but that differ from ours inther dimensionsAvrahami et al. (204) study
a multiplebattlefield contest with asymmetric battlefieldslam auction CSF, bwtith an
additive objectiveThere are eight battlefields with different values, and players may also
differ in the amount of resources they command. Avrahami et a4 20d that average
winsreflectt he pl ay er s 6and tleat tlketeisa eorredation leetwgen the allocation
to a battlefield and its valuBuffy and Matros (2016studya multiplebattlefield contest
settingwith asymmetric battlefields and a majoritarian objectiowe,where the outconfer
each individuabattlefield is determined using a lottery rather than an auction CSF. An
important implication of this assumption is that, unlike in our setting, their game has a pure
strategy equilibrium rather than a mixstlategy equilibrium. Interestingly, in thettiegs
considered by Young (1978), the equilibrium of the game with a lottery CSF also predicts
that the large voter receives a share of the budget that exceeds its proportion of the votes.

Duffy and Matros (2016find that treatment differences conformetguilibrium predictions.

3. AN ASYMMETRIC BLOTTO GAME
The game we study &sversion of the classic Colonel Blotto game introduced by Borel
(1921) The main difference from the original game is that we consider the case in which

battlefields do not all hae the same valuén our gameG, two playersA andB,

simultaneously allocate identical discrete endowmétitsZ,, across a seN ={1,2 ,n} of
battlefields. Each battlefielichas an associated value> 0, which is the same for both

players.A purestrategy for playeris an allocation of thendowment across the

battlefields formally, it isa vector of nonnegative integes'), , with § x' =E,j=A, B.

ilN
Denote the set gdurestrategiesaX . AsinBor el 6 s or i ghothmll ayemrsnaul at i
entire endowments must be spent on the battlefields. Each battlefield is won by one of the
players according to the auction contest succesgitin. Battlefield is won by playeA if

x* > x?, by playeBif x* <x?, and is randomly allocated with equal probability
if x* =x°. In the event of ties on multiple battlefields, randomization is realized

independently on each.

The winner of the game is the player who wins battlefields with the greatest total
6



value. LetN; denote the set of battlefields won by playe?layerA wins the game if

av > v, and playeB winsthe game if§ v. < § v, . In the cases we considéng
il Ny il Ng il Ny il Ng

battlefield values are such that, for any sul@@ét N of battlefields,j v, & V., so that

i G ii N\G
there is always alear winner Assuming that the utility of a wiexceeds that of a loghe
payoff from winning can be normalized to 1 and the payoff from losing can be normalized to
0. The binary outcome structure entails that equilibrium is independent of risk attitudes. Let

u(x, y) denote the probality that playerA wins the game if playek chooses strategy and
playerB chooses strategy .

Since the game is finite, a Nash equilibrium always exists, acalise the game is
symmetric across players, egahyer wins with probability on&alf in anyequilibrium?®
Moreover, except in trivial cases, the only equilibria of the game are in mixed strategies.
However, beyond this little is known about equilibridiin.this paper, we specialize to the
case of apegames, and consider the two games previously discussedungY1978). In
one of his games, which we will call APEX4, there are four battlefields with valagg, 1,

1, 1), while in the other, which we will call APEXS, there are five battlefields vathesv =
(3,1,1, 1, 1). Young reported the expected amounts allocated to thbdétigkeld as
exactly onehalf in APEX4, and approximately 56% in APEX5. However, Young does not
report equilibrium strategies for these games, which is the probledmi¢b we now turn.

Calculating equilibria for these games is a daunting fEs&.size of the strategy

® Constanisum games have a welefined value, so all equilibria of a constanm game yield the same
payoffs to the players. Symmetric games always have at least one equilibrium that is symmetric, and a
symmetric equilibrium in this@me necessarily results in each player winning with probabilityhaife
"One thing we know is that results for the additive objective gaitirea continuously divisible budgédb not
carry over to majoritarian objective gaméskev = (2, 1, 1, 1) anduppose the budggt= 5is continuously
divisible. Consider any strategy such that the amount allocated to the first battlefield is uniformly distributed
between 0 and 4, and the amount allocated to each of the other battlefields is uniformly didgigtwéeh O
and 2. $ich a strategy constitutes an equilibrium in the adddhjectivecase (Thomas 2013f-or an example
of such a strateggrawU  f r umiformalistribuion on the interval(, 1] and place 4 4 Wnits on the large
battlefield and assigh U ,andf/+ td)the small battlefields where each of the 6 permutations of assignments
to small battlefields is equally likely. Note thaettotal placed on all battlefields ig 40+ 2 & U+ 1 +0=5
and the marginal distribution on each battlefield is unifpiFor the majoritarian objective cageysuch
strategycan be bettered by a strategy that puts 3 on the first battlefield@mth2 second. This alternative
strategy wins the second battlefield with probability 1, and the first battlefield with probability 3/4, hence it wins
with probability 3/4 overallAnalogously, fov= (3, 1, 1, 1, 1) an#& = 7, any strategy such that thkkocation is
uniform on [0, 6] for the first battlefield and on [0, 2] for each of the others can be beaten with a probability of
at least 5/6, since placing 5 on the first battlefield and 2 on the second would beat it with probability 5/6.
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space of the game increases rapidly in both the budget and the number of battlefields. For an

endowmentE =120, corresponding to the mameteization we use iur experiments, there

are|X| =302621 pure strategies in APEX4, af¥|=9,381251 in APEX5. The analysis can

be simplified substantially by using the fact that small battlefields are strategiqaliyalent,
in the sense that they can be relabeled arbitrarily without changinggihstrategic
characteristicef the game. There afel =6 such labelings for APEX4, anill =24 for
APEXS5. We say that two pure strategiesind y arepermutationsand writex ~vy if there
exists a permutatiomz N - N with 77{1) =1, such thaty,, =x forall il N. For
example, in APEX4 withmendowment o =120, (80,40,0,0) ~ (80,0,40,0) ~ (80,0,0,40).
The relation ~ induces a partition of thet X of pure strategiesf the game. LeP denote
the partition induced by,where P(x) denotes the element of the partition to which strategy
x belongs.
There are many interesting qualitative features of a mixed strategyXovetich
depend only on the distribution of play ovke elements oP . For example, we will be
interested in expected allocations to the large battlefield, and in the probability with which
pl ayers use Aminimal winning strategieso (i
a set of battlefields which are just enough to win the game if the player wins all those battles).
This information can be recovered from knowledge of the distribution Bver
Consider the set of mixed strategiegX) in gameG (pure strategies are included in
this set as degenerate mixed strategies). We denote a generic mixed strategy pfigayer

an element oD(X)) by p’, with p! (x) denoting the probability that the pure strategis
played inp’. We usep = (p”,p®) to denote a generic strategy profiée say a mixed
strategyp’ in D(X) is objectsymmetridf, for all pure strategiex and y such thak ~v,

p'(X) =p’(y). Such a strategy treats objects (battlefields) that have the same value

symmetrically in terms of allocation dfe endowment.

For each strategxi X , we can construct a mixed strategyDX) that randomizes

uniformly between all the permutations xf(i.e., the elements dP(x)) as § mo 2 A
7 P(x)

mixed strategy constructed in this way is a particular typdmfictsymmetricstrategy which
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puts the entire weight on one element of the partition. We define an auxiliary@aimne
which the pure strategget % corresponds to the setstfategiesonstructed above and

consequently to the partitioR .2 The payoffsrom a strategy combination i& will be the
payoffs from the corresponding cbmation of objecsymmetric strategies in the gare
The practical effect of this construct is that analyzing the auxiliary game is equivalent to

analyzing the original game restricted to objgginmetric strategies.

Formally, thee is a ongo-one mapping that assigns to each pure strategin Y

an elementp(¥ of the partitionP . We define the probability that playamwins gameE if
playerA plays strategyk and playeiB plays strategyf as

WEB= A & pEmpmuy):
X p( vl p(¥
Intuitively, each strategy in € corresponds to ufarm randomization over members of the
elementp(¥ of the partitionP in G.

The benefit of considering the objestmmetric restriction encoded in auxiliary game

& is tha the auxiliary game has a much smaller set of pure strategie#ﬂ/#ﬂﬂ =52311

for APEX4 and‘)ﬁ =|P| = 430256 for APEX5. Our first resultis that for the problem of

computing one equilibrium o6, it suffices tocompute an equilibrium of. An equilibrium

of & corresponds to an equilibrium & in which objectsymmetric strategies are played. In

the latter equilibrium, the probability of each pastitelementp(¥ is divided equally
between all the strategies in this partition element.

Proposition 1.Let (&, /&) be a equilibriumin mixed strategiem &. Thenthee
o (8

is a corresponding equidrium (p*,p®) in G, in whichp’(x) =

wherep($ = P(x), for j = A, B andfor all strategiesx in X .
Proof. The proof is by contradictiorsuppos (&', £) is an equilibrium 6 & but

(p”,p®) inthe statement of the proposition is not an equilibrafr®. Thenfor at least one

8 Note that X does not comspond to the set of all objegsgymmetric strategies ifs; this set would correspond

to D()E).
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player, say playeA, there isa strategyy in X which gives strictly higher payoff to that

player.Becausep® is objectsymmetricby constructionany strategy ~ ymust also ba
strictly better response to®. Then all elements oP(y) are strictly better responses for

in G, and so it follows that the strategywith p(¥5 = P(y) is a strictly better response far

in &, which contradicts the original assumptigh.

Note that the converse statement, i.e., that an equilibrium in edyjechetric
strategies ofG corresponds to an equilibrium ﬁ, is also true. This is because metD()E)
corresponds to the set of all obysgimmetric strategies iD(X), and thus a subset &f( X).

An immediate consequence of proposition 1 is thag kfas a unique edibrium,
then this equilibrium must be objegsgmmetric; it must also be playsymmetric (i.e., both
players use the same mixed strategy) si@de a symmetric game. Howeveg, need not
have a unique equilibrm, and therefore there may be equilibrig@itvhere the strategies
cannot be obtained by computing an equilibriunéofﬁs abové.

We will show that for any equilibrium o& there is an eqlibrium of € (which
corresponds to an objesymmetric equilibrium ofG by proposition ) that preserves the
distribution of play overP . We first introduce some notation. For any mixedtstngp ' of

playerj in G, we denote the induced probability distribution oeas ij , Where

Qpi (P(x)) = A p'(2). Since each pure strategyglcorresponds to an elementBf, a
2 P(x)

mixed strategyle induces the probability distributio® ., over P as Q. (P(x)) =& (5,
where p(¥ = P(x) . For a stratgy profile p = (p*,p®) in G, we take the average of the
distributions of the two player€Q, (P(x)) :1/2@pA(P(x)) +1/2(?DpB (P(X)), as the induced
probability distribution overP . Similarly, the distribution oveP induced by strategy profile
F= (& ) in Eis Qx(P(X)) =1/ 2@, (P(x)) +1/ 2@, (P(x)) . Now we prove the result.

° For example, in the game APEX3 (a degenerate apex game whéte 1, 1)) with arendowmen€t = 5
analyzed in thappendix of thevorking paper Montero et al. (2013), consider both players randomizing equally
between the three pure strategies (3,2,0), (0,3,2), and (2,0,3). This strategy combination is an equilibrium of the
game but is ot objectsymmetric, since there are three other permutations, namely (3,0,2), (0,2,3) and (2,3,0),
that are not being used. This equilibrium is in fact part of a continuum of equilibria which place probability 1 on
the permutations of (3,2,0), and the éitium set does include the objesgmmetric case where all six
permutations are given equal probability.

10



Proposition 2. Let (p*,p®) be an equilibrium mixed strategy profile @&, and
consider theassociated probability distributioof playoverthe partition P of X . Then
there exists an equilibriurge®, &) of the auxiliary gam£ that induceghe same

probability distribution of play oveP .

Proof. Consider allM permutations of the small battlefieldadconstruct a set of

renaming of the small battlefieldSach mixed strategyrofile in this setis an equilibriumin
G andinduces the same probability distribution o\er Because the set of Nasquilibria

of a twoperson constargum game is convex, the convex combination of tidsequilibria

a leﬁ A PE) must also be an equilibrium G. This latter equilibrium is ypconstruction

objectsymmetric and hence corresponds to an equilibr{g, &) of &. For each playe
the strategy®® in this equilibrium induces the same distribution ofeas the strategp’
in the original equilibrium(p”*,p®), thus the equilibrium induces the sameritisition over

P as the original equilibrium/

As a final step to reduce computational complexity, we compute only player

symmetric equilibria inE. I the gameg has a unique playesymmetric equilibrium, the

analysis comes at no cost in terms of the ithistion of play overP .
Proposition 3. Supposet= (&, £ ) with & =& is the unique playesymmetric
equilibrium of €. Any equilibrium(pA,pB) of G induces the same probability distribution

over P astt.

Proof. Suppose there are two equilibria @fwith different distributions oveP . By
proposition 2, each ohe two distributions can be realized by an equilibriurgin
Therefore, there are two equilibria &. If these two equilibria are playsymmetric this
would be a contradiction, hence at least one of them(&3yE*), has £, £ Itis a
property of zeresum games thdt, £) and (£, £) are also equilibria o,
contradicting the assumption thBthas aunique playessymmetric equilibriumy

In the case of5 having multiple playesymmetric equilibria, we can formalize a
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bound on how inaccurate our characterization is of the properties of distributions over the
partition P arising from equilibrium play irG. We say that a seE of mixed strategy

profiles in & is bounded bye if the maximum difference in probabilities that dawp

strategy profiles in the set assign to any pure strategy is lesgthamn
Max, ; ¢ MaX, )E‘llzCﬁE“(E +/EB(5)- 1/2C'6E“(5 + EB(EX ¢ e. We say that a sep of
probability distributions oveP is bounded bye if max, o, Max, |Q, () - Q, (P)| ¢ e.
Let P denote the set of equilibria @ and IEps denote the set of playsymmetric
equilibria in E.

Proposition 4. If the set of [ayer-symmetric equilibriaf & is bounded by >0,

then the set of equilibrium probability distributions overin G is also bounded by.

Proof. Consider any two equilibrigo”®,p®) and (7 #, r ®) of the gameG with
probability distributionsQ, :1/2@pA +1/2C'b)p8 andQ, =1/2@ , +1/2@® , over P. By
proposition 2, there exisuilibria (& ,£) and (£, £) with probability distributions
Q:=Q, and Q:=Q, . Since the gam& is zerosum, (&, &), (&, &) and

(B, B, (£, B are also equilibriaf €. They are [ayersymmetric.and by the reasoning

in the proof of proposition 2, they indudsstributionsQ,.,Q . andQ,,,Q, . over P. Since
each ¥ maps to exactly one partition element of P, the bound on thset F'::-ps of

playersymmaeric equilibria of € implies MaXy g & MaX, P‘Q;E( p) - Qg p)‘ ¢ e. Therefore

maxpi P

QpA(p) - Q,A(p)‘ ¢ e and max PQpB(p) - QrB(p)‘ ¢ e. Consider

1/2c‘6QpA(p)+QpB(p))- 1/2¢ﬁQ,A(p)+Q,B(p)J =

max,; »|Q, () - Q, ()| = max ,

1/20nax;

1/2dmax,; ,

from the bounds on the sﬁps. Thus max, o1, MaXs|Q,(P)- Q, ()| ¢ e, whereQ; is

Qu(P)- Qu(P) +Q,e(P)- Qo (P)| O

Q,:(p)- Q,B(IO)U‘D e, whee the last step follows

Q1 (P) - Qu(p) +maxy

the set of probabiy distributionsover P inducedby equilibriain G (playersymmetric or
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not, inobjectsymmetricstrategie®r not) which means that this sistalso bounded by y
Appendix A gives technical details of our computational approach, which we

implemented with the support of tiambit package (McKelvey et &013).For the

endowmentE =120, for APEX4 we compute an edjbrium in which only1,479out of

52,311strategies i€ are played (and therefore only that matgments ofP have a
positive probability in the induced distributignyhile for APEX5 the computed equilibrium
involves randomization over &&lements out 030,256 The fact that equilibrium supports
are small makes the computation of equilibrium substantially more feasible.

We haveanalyze& numerically the equilibria of games APEX4 and APEXS5 with
endowments varying up to 120. Because wefloatingpoint arithmetic in computing
equilibria, the possibility of roundff error means we cannot conclusively show uniqueness.
However, for larger values of the endowmehég range of strategy probabilities and other
properties of behavior whicheconsistent with equilibriuns small For most values of the
endowment, we are able to bound these ranges to be at rffpsitich, in light of
proposition4, means we can conclutietthe equilibrium predictions we assert below are
for all practical pirposes pinned dowhkVe conjecture th&br many values of the
endowmentthe uncertainty is indeadunding error and the equilibriuim objectsymmetric
strategiess unique which would yielda unique equilibrium distribution oved? in G. We
show below the properties of equilibria in the game Vit 120; our computations indicate
these predictions are not especially sensitive to the size of the endowment.

Although only a small fraction of th@ossible strategies appear in equilibrium,
nevertheless the equilibria are sufficiently complex that it is not plausible that participants
would follow them exactly. Instead, we next report aggregated statistics about equilibrium
behavior based on the edibrium distributions overP , which we will use as the foundation
for the analysis of the data from our experiments.

We begin by calculatinthe expected proportion of resources allocated ttatige
battlefield For APEX4, theredicted allocation to the lardettlefield is50% (to 2 d.p,)as
claimed by Young (1978). However, for APEX5, we compute an equilibrium prediction of
58%, greater than the 56% claimed by Young. In each case the large battlefield receives a

share of resoges exceeding itgalue as g@roportion of the total valyend this is true of any

13



equilibrium of the game

Equilibrium Prediction 1. The large battlefield receiveen averagea super
proportional share of resources.

We next turn to distributional predions on allocations to the large and small
battlefields generated by equilibrium strategies. Figuesplays the equilibrium
distributions of allocations in both APEX4 and APEXS5 for a budgdE 6f120. We note
that the marginal cumulae distribution function on the large battlefield is convex, and that
on the small battlefields is concave. This implies thathe large battlefield the marginal
probability mass function is increasing dadye allocationson its supporare mordikely
thansmalkrones, wherea®r the small battlefieldthe marginal probability mass function is
decreasing ansmalkr allocationson the supporare mordikely than large ones. For both
games, the maximum allocation to the large battlefield idlgttess than the entire
endowment; in APEX4 the maximum allocation is about 90% of the endowment, whereas in
APEXS5 it is about 95%.

Fig. 1 CDFs of equilibriunmarginaldistributions forE = 120
Left panel: APEX4. Right panel: APEX
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Equilibrium Prediction 2. For the large battlefieldhe relative frequency of an
allocation is increasing in the allocation (up to an upper boutit) opposite is true for a
small battlefield.

Because of the majoritarian objective of the game, the marginal distributidaagen
and small battlefields alone are not enough to characterize optimal play; the correlation

structure among the components of the allocation is also important. One way to describe the
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equilibrium distribution is to ask, conditional on a given allocatmthe large battlefield,
how the remaining resourcasedistributed over the small ondsgure2 plots, for APEX4
with an endowment of 120, the support of the joint distribution over small battlefields,
conditional on four selected levai§allocation to the large one (the equilibrium probability

of each of the four selected levels is reporteparenthesgs

Fig. 2 Equilibrium canditional distributions over small battlefields APEX4
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The triangles iffigure 2 are to be interpreted as follows. e specified value o%,,
the corresponding triangle shows and x, as proportions of the remaind&20- x;; the

value of x, can be read as the residutthe size of the dots is proportional to their

probability massln equilibrium, when allocating zero or small amounts to ldrge

battlefield, resources are allocated roughly equally across the small ones. As the allocation to
thelargebattlefield growstwo of the remaining three battlefields are favored. The same
qualitative pattern is also found in the equilibrium of APEXS5, although the extra dimension

in the allocation does not lend itself as easily to visualization in plots.
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We candistill some infemation about joint distributions of allocations over
battlefields in an intuitive and economically interesting way by considering what proportion
of battlefields receive nonzero allocations. On the one hand, in apex games there are two
types of sets of ltkefields that are minimally necessary for winning: one can wirattge
battlefield and any one small battlefield, or one can win all the small battlefields. However,
targeting resources only to such sets is risky, in that losing any single batttafielésult in
a loss overall. For this reason, strategies that allocate resources to larger sets could be useful.

We say that a (pure) strategy has a target valleibit allocates nonzero resources
to battlefields with a total vak k. Therefore, in APEX4, targeting a minimal winning set of
battlefields means using a strategy with a target valde=08; in APEX5, the minimal
winning set of battlefields has a target vatliek = 4. We call any strategy with a target
valuestrictly above those valueshedgingstrategy For any givermixed strategy, we can
compute theroportion of play of pure strategiesth a particular target value

In APEX4, the equilibrium probabilityfstrategies targeting a minimal set of
battlefields (i.e., strategies with= 3) is just 6% (1% target the three small battlefields and
5% target the large and one small battlefidid)equilibrium it is more likely that a hedging
straegy is used: the probability ofsératey targeting the large battlefield and two small (i.e.,
strategies withk = 4) is 18%, and that of targeting all battlefieldk €5) is 76% For
APEXS5, the values ari®&%o for a mnimal winning set of battlefieldg.e. k =4) (1% target
the four small battlefields and 7% target the large and one small battlet®&ddjor the
large battlefield and two small battlefiells =5), and 64%or all battlefields k =7)
(strategies withk =6 are never played in equilibriumlhe qualitative relationship betwee
these probabilities is robust tive value of the endowment.

Equilibrium Prediction 3. Strategies targeng all battlefields have the highest
probability, followed by those targeting the large battlefield and two small battlefields,
followed by those targeting only a minimal winning set of battlefields.

In the next section we describe an experimental désigee if the behavior of human

subjects reflects the observations about equilibrium play.

4. EXPERIMENTAL DESIGN AND PROCEDURES

The experimentvas conductedt the University of Nottinghamwith 148 subjects recruited
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from a universitywide pool of undengduate studentssing ORSEE (Greiner 2004he
experiment consisted of nine computerized sessions, with no subject participating in more
than one session. The experimemasprogrammed inAree (Fischbach&2007).
All sessions used an identical protaddpon arrival, subjects were given a written set
of instructions that the experimenter readud’® Subjects weréhenrandomlypairedand
played a sequence of 45 rounds of a game against the same oppuobptts were not told
who of the other peopl@ithe room \as paired with them, but they knew that they were
playing the same subject throughdbitibjects wer@ot allowed to communicate with one
another throughout the sessiétmeach round a subject won either £0.50 or nothing atitea
end of the sssion subjects were paid their accumulated earnings from all 45 rounds.
In each roundubjects wergiven a budget of20tokensand used these to bid for
battlefields each of which waworth a given number of pointS A subject could only
submit bids tht added up to 120, and had 90 seconds to submit th& Bidsibject vona
battlefieldif he outbid his opponent on thaattlefield(or, in the case of a tid,he won a
random computer drgwThe subject that @nthe most points in a given rouedrned050.
At the end of each round subjects were imfed of how much thegnd their opponeritid
for eachbattlefield who won eaclbattlefield and how much they earned
We conductedhree teatmentsAPEX4 and APEX5 us¥ o u n g 6 sapdx fjan@s8 )
with four and five battlefields respectivellyor thesdreatmentdbattlefields and values were
|l i sted on subjectsd computer scredgerns with th
comparison, we also ran a treatment usigameg APEX3) with three symmetric
battlefields'* APEX3 can be viewed as a degenerate apex game in which any of the
battlefields can arbitrarily be designated as large, and the other two asosinak, will refer
to thebattlefieldlisted firstonscreeras t he fl ar g e febeace hetweeh bids| d 0 . 1
on the Al argedo and fAsmall 6 battlefields in A

order effectFor each treatmentenconductedhree sessionsith between 14 and 20 subjects

19 nstructions for one of the treatments can be found in Appendix B.
“"I'n the instructions and on scrgen et didt het wueket he
121t asubject timed out, the computer made a default decision allocating zero tokenshattlafiald Across
all sessions only 28 out of 6,660 allocation decisions resulted in a timeout.
13 The APEX3 game is isomphic to the Colonel Blotto game with additive objective studied in Hart (2008).
For this game equilibrium marginal distributions are approximately uniform, with different weights placed on
oddand even allocations (see Haf08).
17



in a sessiorEach session took approximately hdurs and subjects earned on average

£11.25 (about $17 at the time of the experiméraple 1summarzes the experimental

design*
Table 1 Experimental treatments
Proportional Equilibrium
value of share of Number of Number of
Treatment Values ofbattlefields large expenditure airs subiects
battlefeld onlarge P )
(Vi/Sv) battlefield

APEXS3 v=(1,1,1) 0.33 0.33 23 46
APEX4 v=(2,1,1,1) 0.40 0.50 26 52
APEX5 v=(3,141,1,1) 0.43 0.58 25 50

Note that,n contrast to the #oretical analysis of a orshot game discussed in the
previous section, in our experiment subjects play a repeated ghrsenotivats several
remarksFirst, because the game is constant sum, any equilibrium of the repeated game
involves playing an eglibbrium of the stage game in each period. Secemdn though
subjects play repeatedly, since a subject either wins £0.50 or nothing in each round,
equilibrium strategies are independent of risk preferences (Woodk&hachaf001).

Third, use of a repdad play design requireschoice of how subjects will be matched across
plays: most experiments use either a random matching protocol in which subjects are
randomly rematched from round to round or a fixed matching protocol where subjects are
kept in thesame pairs. An advantage of the fixzair protocol is that it gives subjects a
greater incentive to be urgglictable (Chowdhury et #2013).Keepingsubjects in the same
pairssimplifies the structure of possible dependencies between decisiqasticular, this

allows us to treat each pair as an independesgrvation

5.RESULTS
We organize our results to examine the thmeslictionsabout the equilibria presented in
section 3. We then turn tofarther analysis obehavioral patterns in trdataand try to

explain possible reasons foeviations from these predictions.

14 At an early stage of our research we also ran some sessions with a budget of 5 indivisible units. This
permitted identification of equilibrium benchmarks without resorting to numerical metBeddviontero et al.
(2013) for details
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5.1 Superproportionality

Ouir first theoreticapredictionwas thaplayers spend a disproportionate amount of their
budgets on the | ar ge b a tottibnaltoivaueskthey wotld piaceb j e c t
40% and 43% of their budgets on the large battlefield in APEX4 and APEXS5 respectively,

while in equilibrium expected bids are 50% and 58% of budgets. F3girews the share of

expenditure on the large battlefield retatto its proportional sharéx1/120)- (vll av, )

aggregated over all rounds and subjetke theoretical prediction is that this measure is 1
for APEX3 (where the battlefields are symmetric) and increases with the number of
battlefields Figure 3 sows thathe large battlefieldeceives more than a proportional share
of the budget in all treatmentsor APEX3the battlefields are symmetrand sahe small
deviation from proportionality suggests a positional order effect, i.e. the effect of #vengrd
of thebattlefieldsin the onscreen presentatioe also examined the data from the last 15
rounds separately anthdl that this deviation from proportionality disappears with
experiencelFor APEX4 the allocation ratio is close to that observeiREX3. Allocations

are clearly supeproportional in APEXS5, although even in this case they are well below the

equilibrium prediction.

Fig. 3 Share of budget allocated to large battlefield relative to proportional share
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Formal statistical tests are prasasd intable 2 which shows the share of the budget
allocated tdhe large battlefielth each treatment andyalues for tests against
proportionality. We use tweided sigarank tests treating each pair as an independent

observation?®

15 This is equivalentat a test against equilibrium for APEX3. For tests against equilibrium in APEX4 and
APEXS5 all pvalues are less than 0.0005.
19



Table 2 Budget share allocated to the large battlefield

Treatment Proportional  Equilibrium  Number All rounds Last 15 rounds
Share (%) Share (%) of pairs Share (%) p-value* Share (%) p-value*
APEXS 33 33 23 35 0.0177 34 0.7380
APEX4 40 50 26 42 0.3037 42 0.3740
APEX5 43 58 25 49 0.0001 47 0.0094

* p-values based on twsided sigarank testhat mean allocation targe battlefields proportional to value

Observation 1.We find significant evidence of supgmoportionality in APEXS, but
not in APEX4In both games thaverageallocation levels to the large battlefield are below

equilibrium predictions.

5.2 Predicted and observeddistributions

Next we | ook i n mor e dbkowteylrela@dequdibribm ect s6 st r
predictions Figure4 displays the empirical distribution of atlations for the APEX3 game

aggregated over all subjects and roudgiilibrium strategies imply thahe marginal

distribution of tokens on eadjattlefieldis approximately unifornon {0,2 ,84, represented

by the horizontal probability density line in the figulre contrast, there is a pronounces bi
modality in subject choices, with subjects tending to pégitervery small amounter about
half their budgebn abattlefieldtoo often.This is similar to what is observed in previous
experiments with Colonel Blotto or related games fsaahami and Kareev 2009;
Chowdhury et al. 2013vlago and Sheremeta 2012). Figdralso shows that the
distributions of bids arsimilar across thbattlefields although subjects allocated slightly
more tothe first battlefield than the second, alightly more to the second than the thifd

Fig. 4 Observed relative frequencies of biis each battlefielth APEX3 and the equilibrium
prediction (horizordl line in each panel)
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16 Again, this echoes previous experimental findings. Chowdhury et al. (2013) also observe mild positional
order effects (see themlle 3 and figure 3).
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Next we tirn to the treatmentsith asymmetric battlefield$-igure5 displays the
equilibriummarginal distribution obids for the large battlefield and the equilibrium
marginal distribution of bids tany oneof the small battlgelds for the APEX4 treatment
The figure also shows the distributions actually observed in the experaggnegated over
all subjects and roundahere br themarginaldistributionon a small battlefieldve pool the

data fromall the small battlefielsl.

Fig. 5 Equilibrium probabilities(left panels) and observed relative frequencies of bids on large and
small battlefieldsn APEX4
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Again, the observed distributions arenbodal, and are markedly different from the
theoretical distributions. Relag to equilibrium, subjects too often place either very low
amounts or around twihirds of their budget on the large battlefield. Analogously, a small
battlefield is often allocated an amount close to 0 or an amount close-tioirohef the
budget.

The wivariate marginal distributions do not characterize the equilibrium in APEX4
and APEXS5 In order b provide a better idea of what the multidimensional distributions look
like in APEX4, figure 6 displays panel of distributions over small battlefields fmme
commonly used values of the allocation to the large battldfieddfrequencies dhese

valuesare also reported in the figure). For comparison we also intheédeorresponding
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panels for the equilibrium distributian the top row othefigure. The triangles in figure 6
are to be interpreted in the same way as those in figure 2. The size of the dots is proportional

to their probability mass (in the top row) or to thfeaquency (in the bottom row).

Fig. 6 Conditional distributions on small bagfleldsin APEX4
Top row: predicted. Bottom row: observed
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If no resources are allocated to the large battlefield, the equilibrium prediction is that
the distribution of resources to the remaining three battlefields is not too unequal. The data
reproduceshis qualitative feature but in a more extreme manner: most of the mass is at the
center of the triangle, corresponding to allocation (0,40,40,40)xFoe#0, all small
battlefields receive a positive allocation of resources in equitigrbut the distribution of
resources between the battlefields is relatively unequal. The corresponding conditional
distribution in the data is quite different, with notable concentrations of the data at
(40,0,40,40), (40,40,0,40) and especially (40,404 Einally, for x, =80, the prediction is
that minimal winning strategies (and strategies that are close to minimal winning strategies)
are frequent, and the data replicate this prediction in a more extreme manner: most of the
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mass is athe corners, corresponding to the three minimal winning sets of the large battlefield
and one small battlefield.

Figure7 compares the equilibrium predictions with the marginal distributions actually
observed in th&APEXS5 treatmentSimilarly to APEX4, theobserved distribution for the
large battlefield is bmodal Again there is a concentrationrégligible bidsanda second
concentration of higher bids. For this treatment the second mode is around three quarters of
the budget. Analogously, the distrimrt on a small battlefield is snodal with one mode
close to 0 and another around anperter of the budgetVe omit depictions of conditional
distributions in APEX5 due to the higher dimensionality, but the qualitative features of the

distributions arette same, both for the theoretical and empirical distributions, as in APEX4.

Fig. 7 Equilibrium probabilities(left panels) and observed relative frequencies of bids on large and
small battlefieldsn APEX5
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Observation 2.For all treatments we aervebi-modal bidding patterns, in contrast
with theshape in equilibriunprediction 2

5.3 Minimal winning and h edging strategies
Note thatin order to win a round a subjemtly needs tavin battlefieldswith a combined

value exceeding that d¢ifie battlefields won byhis opponent. Subjects may find it natural to
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concentrate resources on a sebattlefieldsthat is just large enough to win and give up on
the rest; ve refer tosuchstrategesasminimal winning Any strategy that allocates a positive
value toa larger set dbattlefieldsis referred to as laedgingstrategy.

Hedging strategies can be opti mal because
strategy. For example, consider APEX3 and suppose one player randomizes equally between
bidding (60,60,0)(60,0,60) and (0,60,60). A best response to this is (61,58,1) which wins
with probability 2/3.In APEX3, mnimal winning strategies have an equilibrium probability
of around7%"’, but theyare observed much more oftéran predicteq42%of submited
straegies are minimal winning?®

In APEX4 and APEXJhere are two types of minimal winning strate@yetargets
all the smalbattlefields giving up on the large battlefie(@.g.the stratey (0,40,40,40 in
APEX4). The otherype of minimal winning stratgy targés the large and one small
battlefield, giving up on the other small battlefie{dsy. the strategy (80,40,0j06 APEX4).
Forbothtreatments the support of the equilibrium inclugdesimal winning strategies, but
according to equilibrium they shld be rarely played less than 10% of the time. Instead,
more than 90% of the time a player should aigedging strategyladng a positive amount
on the large and at least two small battlefiefigain, we observe that minimal winning
strategies arplayed much more often than is predicted by equilibrium. Minimal winning
strategies tat place zero on the large battlefiele predicted to be used less than 1% of the
time in either treatment, but are used 13% of the time in APEX4 and 11% of the time in
APEX5. Minimal winning strategies that target the large and one small battlefield are
predicted to be used 5% of the time in APEX4 and 7% of the time in APEXS5, but are actually
used about 19% of the time in APEX4 and 20% of the time in APEXS5.

Figure8 presents the evolution of the proportion of hedging and minimal winning
strategis overtime For APEX4 and APEX5 AMWLO denotes

" Hart (2008, p.454, Case 2.1) provides an equilibrium strategy for this game with the additive objective; due to
the equivalence of the additive and majoritarian objectives in this case, the strategy is also an equilibrium in our
sdting. The strategy involves uniform marginals on even numbers only; in our case on {0,2,4,...,80}. The
probability of a minimal winning strateggthen3 / 4 1 & 7 %, shattlefiedds receicebwitbo f t h e
probability 1/41and the strategy never puts 0 on more than one battlefididr approximately uniform
marginal distributions woultlave a smaller probability @flocating O to a battlefield.
18 A similar result is obtained by Mago and Sheremeta (2012) in a majoritarian contest with linear costs. In their
experiment 35% of the time subjects bid only on two out of three objects, whereas in equilibrium they should
make positive bids on all three.
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that focus on the | arge and one smal/l

strategies thabicus on the small battlefields all three treatments the proport of hedging

strategies observed increases over tifimels, there is some evidence that subjects learn from

experience to switch from using minimal winni

ng to using hedging strategies.

Fig. 8 Proportions of minimal winning and hedging strategiesr time
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For APEXS3 there is only one type of hedging strategy (namely a positive allocation to
all battlefields), whereas for APEX4 and APEX5 there are strategies with different degrees of
hedying. Recall the classification of strategies according to their target kailoeoduced in

section 3Strategies that allocate a positive value to all battlefigldsk =5 in APEX4 and
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k =7 in APEX5)should be the most commanequilibrium followed by strategies that

allocate a positive value to the large and two small battlefiddads4 in APEX4 andk =5
in APEX5), followed by minimal winning strategi€ k = 3 for APEX4 andk =4 for

Fig. 9 Proportions of strategies by target vativer time
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In both panel®f figure 9 the solid line represents the probabilityatibcating a

positive amount to all battlields, while thedashedine shows the probability dargeting a

minimal winning set of battlefield©Over the cou

targetingall battlefields increases and approaches its equilibrium va&# {or APEX4 and
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64% fa APEX5). Minimal winning strategies become less frequent over time but stabilize
as the second most popular type. Hedging strategies that do not target all battlefields do not
become more frequent; if anything their proportion diminishes.

Observation 3.Strategies that target all battlefields become more frequent over time
and their proportion reaches a value close to the equilibrium prediction in APEX4 and
APEXS5. Other types of heidg strategesare played less often than predicted in APEX4 and
APEXS5 In all treatments, mimal winning strategies remain more popular than equilibrium

predicts.

5.4 Determinants of the allocation to the large battlefield
In this sectiorwe analyze individual allocations to the latggtlefieldusing multivariate
analysis Following Chowdhury et al. (2013),erestimatea separate regression for each
treatmentaking the form

AllocA, = b, + b AllocA ., + b,0ppAllochy, o, + by(AllocA, ;)3 WInA, ;)

+b,Ut)+§ b, D, +u +e,,

55s

whereAllocA; refers to the proportion of the budgdibcated by subjedtto the large
battlefieldin roundt, AllocAti1) is thesamevariablelagged OppAllocAyi 1 is the
corresponding lagged variable for the opponent of subjantwinA; 1) indicates whetheir
wonthe large battlefieldh the previous roundlhe regessions also includsession
dummies a reciprocal time trenand individual random effectg/e exclud any
observations in which a subject timed out either in the current round or in the previous one,
and in which the subj erevwodssourd gopsermagonstin whichme d o u
the opponent timed out in the current round are not affeciall)e 3reports thecoefficients
and robust standard errdrem therandom effectsegressionsSession dummieare
insignificant and are not reported.
Chowdhury et al. (2013) find that when subjects play against randomly changing
opponents, their strategies are serially correlated. Specifically, they find that the lagged
all ocation variables and the int eallacatbn on var
to a battlefield (the significance of the | a

They also find that the serial correlation is considerably reduced and thexhetfect
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disappears when subjects play repeatedly against theoggooeent. Consistent with this

latter finding, in our treatments (which all use fixed partner matching) we find very little

evidence of serial correlation and no evidence of dbhotx ef f ect . The oppone
allocation is marginally significant oniy one of the treatments. We do find a significant

positive coefficient on the trend varialdl4, indicating decreasing allocationstte large
battlefieldacross roundshis significant coefficient is essentially picking up effectthat

takes place\eer the early rounds. If we restrict the regression to the last 15 rounds, we find

that the trend variable is not significant anymore (whereas the significance of other variables

remains broadly unchange®).

Table 3 Determinants oéllocation to large battlefield

Treatments APEX3 APEX4 APEX5
Dependent variabléAllocAy
AllocA -0.037 -0.007 0.014
*D (0.038) (0.048) (0.044)
-0.045* 0.034 -0.043
OppAllocA.s) (0.027) (0.032) (0.035)
. -0.005 0.014 0.009
AllocAy * WinAy (0.030) (0.041) (0.035)
1t 0.115** 0.207*** 0.232%**
(0.050) (0.061) (0.083)
Constant 0.374*** 0.377** 0.486***
(0.016) (0.03) (0.032
# Observations 2,024 2,262 2,143
# Subjects 46 52 50

*significant at 10%, **significant at 5%**significant at 1%.
Observation4. Ther e i s no evidence of seri al cor

5.5 Determinants of success
For all treatments the game is a symmetric constam gamend so in equilibrium each
playerwins with probability 1/2 in any pia This means that a player expects to win 22.5 out

of the 45 games. In fact, some do considerably better than this. For example, in one of the

¥9We also examined the effect of replacing the regrelarith t. The results are essentially the same: a
regression using all the data indicates a significant decrease in the amount allottegddrge battlefieldver
time, but the trend variable issignificant when we restrict the regression to the last 15 rounds.
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pairs one subject won 11 rounds and the other won 34 rounds, so that the difference in wins
was 23. Figurd 0 shows the observed frequencies of each possible value of the difference in

wins. For comparison the theoretical distribution is also shown.

Fig. 10 Theoretical and observed distributions of differencesinmsw
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The figure shows that fewer than expectedsphave a small difference in wins and
more than expected have a large difference in wins. Theoretically, the expected difference in
wins is 5.38, while in the data the average difference in wins is 6.84. This difference is
significant (Chisquare tesip =0.028). The obvious interpretation is that some subjects are
better than others at playing the game.

To uncover the determinants of success in our experiment we run a probit regression
of the following form:

PriWin, =1 = F (b, + b,AllocA, + b,(AllocA,)* + bMADTemp + b,(MADTemp)?
+ HMADACE, + b,(MADACE)* + b, MWL, + BLMWS +Uu, +¢&,).
Here F is the c.d.f. of the standard normal distribution, and the dependent vakiahlis a
binary variable that takes value 1 if subjeaton in roundt and O otherwiseAllocA; refers to
the proportion of the budget allocated by subjécthe large battlefielth roundt.

MADTemp measures the variability of a sadbject 6:¢

MADTemp = 2—10 a | Vi - Yiwo |, wherey; is the allocation of subjecto battlefieldj at

timet andnis the number obattlefieldsin the treatmentf a subject makes the same choice

as in the previous rounMADTemp= 0, while the maximum possible value is 1 if all tokens
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are paced on a battlefield thagceived zero in the previous roundADAcK; measures the

variability of the allocation acrodmttlefieldsin a given round and is defined as
n . . .

— .- 120/ n|. This variablealsoranges from O to 1. It takes a

240n- 1) ,6}1' Vi I g

minimum value of 0 when the budget is sphjually across battlefields and the scaling term

MADACr, =

ensures that it takes a maximum value of 1 (when the budget is allocated to a single
battlefield).To allow for nonmonotonic effects of these variables we also include their
squared terms in the regressidvie also include indicator variables for using minimal

winning strategies. In APEX8IW, =1 if subjecti places positive amounts on just two of the

three battlefields in round(and zero otherwise). In the other treatmevdshave an indator

variable for each type ehinimal winning strategyMWL, =1 if positive amounts are placed
on the large and just one other battlefield &MWS =1 if nothing is placed on the large

battlefield and positive amounts quaced on all small battlefields. The regression includes
subject level random effects. Results are report¢abile 4

Consistent with Chowdhury et al. (2013) we find tNeADTempis highly significant,
hence variability of the allocation over time iseoof the main determinants of success. Note
that in APEXS5 the squared term is significantly negative indicating a concave relation
between this measure of variability over time and the probability of winning. However, in
this case the implied maximum isvenMADTempis around 0.9 and over 95% of the
observations are below this, so the data are predominantly spread over the increasing range.
Thus, in all treatments subjects with more variable allocations across rounds (according to
this metric) win more oén.

Other variables do not have a consistently significant effect on the probability of
winning. Recall that, relative to equilibrium, subjects tend to play minimal winning strategies
too often in all treatments. Thus it is perhaps unsurprising that, tieeactual distribution
of play in APEX3, subjects who used minimal winning strategies more often were less likely
to win. However, in the other treatments there is no significant relationship between the use
of minimal winning strategies and the chaneesuccess. Similarly, relative to equilibrium,
subjects place too little on the large battlefield in APEX4 and APEX5 and so one might
expect that a subject placing more on the large battlefield would be more likely to win.
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However, there is no significaeffect in APEX5 and in APEX4 there is, if anything, a

tendency for those allocating more to the large battlefield to’fose.

Table 4 Determinants of winning

Treatments APEX3 APEX4 APEX5
Dependent
variable:Winy
AllocA -0.423 -0.236* 0.434 -0.133 -0.296 -0.014
: (0.503) (0.123)  (0.448) (0.110) (0.543)  (0.107)
2 0.299 -1.155* 0.427
(AllocAy) (0.806) (0.630) (0.773)
MADTem 1.103* 0457+  1.182%*  (0.583%*  1045%%  (.968H
R (0.477) (0.136)  (0.424) (0.115) (0.456)  (0.107)
) -1.108 -0.747 -1.083*
(MADTemp) (0.743) (0.478) (0.492)
1.543% 0.281 11.701%
MADACT: (0.755) (0.615) (0.809)
" -1.488 0.491 1.498
(MADACr) (0.957) (0.743) (0.986)
0.130%  -0.104*
MWV (0.066)  (0.060)
MWL 0.056 0.140* 0.089 0.086
! (0.080) (0.074) (0.088)  (0.079)
MWS -0.060 -0.132 -0.025 -0.037
(0.106) (0.094) (0.120)  (0.108)
Constant -0.436** 0.039  -0.494%** 0207+  -0.186  -0.425%
(0.201) (0.079)  (0.150) (0.076) (0.165)  (0.084)
# Observations 2,024 2,254 2,124

# Subects 46 52 50

* significant at 10%, ** significant at 5%, *** significant at 1%.

Note thatseveral of the right hand side variables are highly correlated. In particular
the variable\llocAandMADAcr are highly correlated in APEX4r(=0.79) and APEX5
(r =0.93), as are the linear and squared terms in the quadratic specificatior®93 in all

cases). For this reason we also report results from rutimngggression but dropping

2 The implied maximum of the concave relation betwa#ocA and the probability of winning is when 20% of
the budget is allocated tbe large battlefieldand twethirds of the observains allocate more thahis to the
large battlefield.
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MADAa andthenonlinearterms. The story is essentially the saMADTempis still highly
significant in all treatments. Subjects who use minimal winning strategies less often are more
likely to win in APEX3, but in the other treatments there is either no significant effext, or,
the case oMWL in APEX4 the effect goes in the opposite direction. In APEX3, consistent
with subjects slightly overplayintpe large battlefielth early rounds, there is a significant
advantage to reducing the amowatibcated tahe large battlefieldHowever, in the other
treatments where the amount placedranlarge battlefielés substantially lower than the
equilibrium predictionhere is no significant relatidmetweenAllocA and the probability of
success. These results for APEX4 and APEXS5 siaply reflect that given the owif-
equilibrium behavior of subjects, strategies that are closer to equilibrium in terms of these
specific metrics do not necessarily do better than strategies that are further away. In section
5.7we look more closely athich strategies perform best against the empirical distribution.
Observation 5. On average, subjects whose allocations to the battlefields exhibit high

variability over time are more likely to win

5.6 Iterative reasoning: popular strategies and unit digs
Standardk-level reasoningsee Stahl and Wilsol995)is impracticable in our setuput as
in Arad and Rubinstein (2012) it is possible to interpret some of the patterns observed as
consistent witha form ofiterativereasoningTwo caveats are in der: first, we are pooling
data over 45 rounds, and iterative reasoning may be more natural for games that are played
for the first time; second, the complicated structure of the game does not allow fetoa one
one identification between strategies anckls of reasoning: the same strategy may be a very
naive choice or a best response found after several levels of iteration.

We consider all permutations of a particular pure strategy as one strategy type. For
example, 8610-0-0 denaes the set of stratezs {(80,40,0,0), (80,0,40,0), (80,340)}. This
is similar to the concept of objesymmetric strategies, except that there is no presumption
that different permutations have the same frequency. The following tables show the most
popular strategy types gmach treatment, pooling across all subjects and rounds.

In APEXS, the simple strategy 4®-40 can be seen as a natural starting point,
analogous to level 0. It can be beaten by many others, the most salient being strategy type 60

60-0, which was also theost popular strategy type in round 1, played 15 out of 46 times.

31



Strategy type 658-1 appears to be specifically designed to be played against strategy type
60-60-0, and wins with probability 2/3 against it.

Table 5 Popular streegy types in APEX3

Rank Strategy type Frequency (n = 2070) Average response time (sec.)
1 60-60-0 0.2599 8.59
2 70500 0.0729 9.77
3 61-58-1 0.0652 12.72
4 70-40-10 0.0478 13.09
5 80-40-0 0.0425 10.78
(8) 40-40-40 0.0227 7.66

Noticethat 4040-40,60-60-0 and 7650-0 have shorter response times than other
strategies such as&B-1 and 7640-10. This is consistent with these strategies being
associated with lower levels of reasoning, and in particular wi0440 being the
instinctive choice.

Interpretation of the popular choices as evidencing iterated reasoning is more difficult
in APEX4. The equal allocation 380-30-30 is a less obvious starting polrdre but it has
the shortest response time in table 6.

Table 6 Popula strategy types in APEX4

Rank Strategy type Frequency (n = 2340) Average response time (sec.)
1 0-40-40-40 0.0645 10.90
2 80-40-0-0 0.0363 15.94
3 70-50-0-0 0.0325 13.51
4 60-60-0-0 0.0235 15.22
5 90-30-0-0 0.0192 13.96
(6) 30-30-30-30 0.0154 9.83

The next step would be to concentrate forces on a minimal winning set and-beat 30
30-30-30. Strategy @10-40-40 can be seen as one of the simplest best responses to this
strategy, and it is the most popular strategy overall and also in round 1 (6 ouinoésR
The next three most popular strategy types are also minimal winning strategies that best
respond to 3€80-30-30.
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A possiblefurtherstep is that, if the other player is likely to focus on a minimal
winning set of battlefields, a player may bétéeoff by putting some tokens on all
battlefields For example, strategy 141711 (the 11" most popular strategy type in our data)
is a best response agaisstmepopular strategy types like &D-0-0, 83-40-0-0 and 6660-0-
0 (though it of course losegainst seemingly more naive strategies |#&30-40 and 30
30-30-30). Hedgingstrategies that do not distribute tokens equzdly be interpreted as the
result of at least two steps of reasoning, since they appear to be designed to be played against

minimal winning strategies.

Table 7 Popular strategy types in APEX5

Rank Strategy type Frequency (n = 2250) Average response time (sec.)
1 0-30-30-30-30 0.0484 17.26
2 80-40-0-0-0 0.0316 17.55
3 90-30-0-0-0 0.0293 22.56
4 1-30-30-30-29 0.0236 18.98
5 85-35-0-0-0 0.0182 16.39
(6) 100-5-5-5-5 0.0178 10.05
(16) 24-24-24-24-24 0.0071 13.06

In APEX5, analogously to the previous case224£4-24-24 has one of the shortest
response times and can be taken as the starting pdiet. @ipular strategy types like30-
30-30-30 and 8040-0-0-0 are best replies to this strategy that divide the budget across a
minimal winning set of battlefields. A further possible step of reasoning is to spread the
budget over the entire set of batidds. Strategy type 108-5-5-5 is a best reply against
some popular minimal winning strategies in table 7 (all exc&i+80-30-30).

Another indication of iterative reasoning is the evolutionrof digits over time
Many of the observed strategies diseund numbers (unit digit 0), but the frequency of unit
digit O decreases over time. The next figures show the proportion of unit digits 0, 1 and 2
over time.Figure 11 refers to treatment APEX3 pooling all battlefields togefigure12
pools treatmets APEX4 and APEXS5 together (the figures for each of the treatments are very
similar) but separates the large and stpattlefields The proportion of unit digit O decreases

over time in all treatments, but this is more pronounced in APEX4 and APEXS5.
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Fig. 11 Proportion of unit digits over time in APEX3
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Fig. 12 Proportion of unit digits over time across APEX4 and APEX5
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Observation 6. Popular strategy types are consistent with one or two steps of
iterative reasoning. The evolution of the frequencynif digits is consistent with an

increasing level of sophistication over time.

5.7 A measure of deviation from equilibrium: Exploitability

To measure how far observed play is from equilibrivetake advantage e fact that
equilibriummixedstratege s r estri ct an opponen-haftAnypr obabi
mixed strategy thatan be beaten with probability exceeding-biaéf cannot be an

equilibrium strategylintuitively, the greater the expected payoff one can obtain against
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mixed strategythe further tlat strategy igrom equilibrium play.Thus, tomeasure thextent
to which a strategy deviates from equilibriuve take the expected payoff from the best
response tthis strategy

Table 8displaysthis measure of exploitabilitipr somesdected strategiedVe
considertwo specificboenchmark for comparisondenotedi u n i famrdmdi mi ni mal
w i n n.iTmegasticularuniform strategiesve considearemixed strateggsthat inducea
marginal distribution of tokens on each battlefigfldt approkmates a uniform distribution
with the expected allocation to a battlefield being proportional to its valudtiother
words, they approximate strategies that are equilibria in the game with an additive objective
and a continuoustdivisible budgetFor APEX3,we usehestrategy providedyHart (2008,
p. 454, Case 2)1discussed in foobtel7, the strategy ialso an equilibrium stratedgy our
caseand thus its exploitability is exactly 0.5. For APEX4, we tlieeobjectsymmetric
versionof (964U, 20,, Owvherdet ) is uniformly distr.i
[0,24]. ForAPEXS5, we usehe objectsymmetric versionofil036 U, 20, 20, U0,
is uniformly distributed over the integer values in [0,TTfjese strategies are pamnized by
a si ngl ewhicamakes thdmeelatively simple. Their exploitabilityifsikar to what
we know to be sower bound on thexploitability of a uniform strategy in the continuously
divisible budget casé" The particular minimal winningtsategy we considenodek naive
behavior it allocates the budget to a minimal winning set of battlefields and, within this set,
each battlefield receives an allocation proportional to its valoieAPEX3 tke minimal
winning strategyandomizes equallydtween (6(0,0), (600,60) and (0,6@0); for APEX4
it randomizes equally betwe¢80,40,0,0), (80,0,40,0), (80,0,0,40), and (0,40,40,40); for
APEXS5 it randomizes equally between (90,30,0,0,0), (90,0,30,0,0), (90,0,0,30,0),
(90,0,0,0,30), and (0,30,30,30). In the remaining columnse report the exploitabilitgf
(and below it the best resportsia mixed strateggefined over allocations used in the
experiment, wherthe probability ofeach allocation isqual toits empiricalrelative

frequency.

L Footnote7 provides, for the continuous cassirategies that achieve winning probabiBiy for APEX4 and
5/6 for APEX5 againsanystrategy with uniform marginals aheapproprate intervals. &r each strategy with
uniform marginals there may exist strategies that acld@egea higher winning probabilityd/4 for APEX4 and
5/6 for APEX5 arghuslower bourds on the exploitability oftrategiewith uniform marginalsn the
continuous casé®ue to the discreness of the budgetxploitability values foour gamegan be below trse
bounds
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Table 8 Exploitability of strategies

Uniform Minimal Rounds Rounds Rounds All Rounds
Winning 1-15 16-30 31-45
0.5 0.667 0.681 0.670 0.664 0.664
APEX3 2-56-62 71-6-43 7-71-42 8-71-41
0.733 0.750 0.707 0.696 0.673 0.674
APEX4 6-42-41-31 76-1-1-42 71-2-2-45 71-2-2-45
APEX5 0.814 0.800 0.682 0.648 0.677 0.655

5-31-31-32-21 21-41-11-11-36 2537-11-36-11 11-21-21-35-32

Note that as the number of battlefields increases the game gets morexcoxith
more battlefields ot only are thee more strategiedutsuboptimal strategies are more
exploitable While the minimal winning strategy can be beaten-tinads of the time in
APEXS3, it can be beatefb% of the time in APEX4 an80% of the time in APEX5The
uniform strategy, which is agquilibrium strategy in APEXZan be beatern3% of the time
in APEX4, and does even worse than the minimal winning strategy in AP&EMN&re it can
be beaten B% of the time

Turning to the data from the experiment, for any treatment we can find stsaitegfie
beat the empirical distribution more than 60% of the time. In all cases the best responses to
the empirical distribution hedge by placing at least a small amount on all battlefields, beating
the modes in the data at zeldeed, more generalthe best responses score highly by
beating modes in the datdote also that although subjects in APEX4 and APEXS5 place too
little on the large battlefield, relative to equilibrium, the best response to the empirical
distribution sometimes involegplacing a mall amount on the large battlefield. This is
consistent with oupreviousfinding that subjects speimdy less orthe large battlefield
sometimes win more oftefhis also underscores how challenging the sppeportionality
hypothesis is in these gaméit only is it difficult to identify equilibrium strategies, but if
the data is oubf-equilibrium sophisticated subjects might exploit this by choosing
allocations that are even further from equilibrium.

Notably,we find no clear pattern in the degreeegploitability of our subjects across
treatmentsSubjects are less exploitable with experience in APEX3 &), butnot in
APEXS5. Overall, ve find that for all treatments the empirical distribution can be beate
around twethirds of the timewith verylittle variation across treatmeniBhus, although
simple strategies are more exploitable in more complex games, subject behavior is no more
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exploitable in APEX5 tham APEXS3.
Observation 7. Naive strategies are more exploitable in APEX5 than in APBEX4 t

in APEXS3, but the exploitability of actual play does not change much across treatments.

6. CONCLUDING REMARKS
Our extension of classic Colonel Blotto gamesllmmafor asymmetries in the values of
battlefields captures an important featferealworld conflicts, where not all battles carry
equal valueEven restricting attention to the simplest asymmetries, using apex games,
analytic theoretical solutions are unavailable. By studying a game that restricts strategies to
be objectsymmetricand using omerical methods, we are able to identify equilibrium
predictions for these games and derive some interesting qualitative properties. Moreover, we
show that these properties are shared by any equilibrium in the original, unrestricted, game
Nevertheless, hether these theoretical features are evident in the play of human
subjects remains an important questiba.Walkerand Wooder$2001) have remarked in the
context of other games with mixed strategy equilibria, games requiring unpredictable play are
ofteneasy to play, but difficult to play well. The Colonel Blotto game provides a good
example. Although it is easy to describe to subjects, and subjects have no trouble
understanding the rulesophisticated play is very demanding. For our simplest treatment
(APEX3), corresponding to the classic Colonel Blotto gaitris,perhaps obvious that a
sophisticated player should not favor one battlefield, as such favoritism can be exploited by
an opponent. It is perhaps equally obvious that imtbee complexersian with asymmetric
battlefields a player should favor the more important battlefielditBunot clear byhow
muchit should be favoredlheanswer crucially depends on how battlefield values contribute
to final victory or defeat-or the case we consigen whichthe player who captures
battlefields with the greatest total value wins, equilibri@guiresplayersto allocate super
proportional amounts to the large battlefieMe would argue that the precise amount to be
placed (in expectation) on thare battlefield, and the precise equilibrium strategiesfar
from obvious.Indeed, we obtain equilibrium predictions using numerical mettialsare
beyond the cognitive capabilities of our subjects.
Perhaps usurprisingly, behavior in our experimeagviates from theeequilibrium

predictiors. We observe bimodal distributions, where subjects choose either to spend very
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little or a substantial proportion of their budget on a battlefield, with too little weight placed
on intermediate allocation$hisis also observed in related Colonel Blotto experimais.
also observe thaubjects too often submit allocations that concentrate their resources on a
minimal winning set of battlefields, placing zeroather battlefields, whereagjuilibrium
behaviorrequires hedginghore than 90% of the tim€&inally, in games withrasymmetric
battlefields subjects spend too little on the large battlefield. An implication of these
deviations is that it is possible to find strategies that beat the empirical distribfition
allocatons more than 60% of the time.

On the other handh spite of these deviations from equilibrium, we find evidence of
strategic sophisticatiodnalysis of popular strategy types reveals patterns consistent with
several steps of iterated reasanand the depth of this reasoning appears to increase over
time. Furthermorewhile simple strategies are more exploitable in games with more
battlefields, we find that the exploitability of our subjects is quite similar across treatments.
Our experimengtlsofinds support for some of the qualitatifeatures okequilibrium
predictions Although our subjects play hedging strategiaky arounds0% of the time, this
proportionincreases over the course of the sesSanilarly, in games with asymmetric
batlefields, subjects place less on the large battlefield than predicted, but in APEX5, where
the asymmetry between battlefields is more pronounced, they place a more than proportional

amount on the large battlefield.
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APPENDIX A: COMPUTATIONAL TECHNIQUES
The games ABX4 and AHEX5, and the corresponding auxiliary games restricting to ebject
symmetric strategiesye tweplayer, constarsum, symmetric games. As tvpbayer,
constarisumgames, a minimax strategy, and therefore a Nash equilibrium, can be asitte
the solution to a linegsrogram(Dantzig 1951)In practice, it is possible to solve linear
programs of substantial size. Moreover, because the set of mixed strategy Nash equilibria for
two-player constarsum games is convex, once an equilibriumiyeen found it is
straightforward to explore the whole set of equilibria, and to place tight bounds on the size of
this se. In particular, it is in principle possible to verify uniqueness, if one uses exact rational
arithmetic. However, doing so is inféale in our games with large endowments. We instead
use floatingpoint arithmetic for our calculations. For many values of the endowment, we
bound all strategy probabilities to within"dGvhich suggests the objesgmmetic

equilibrium is in fact unique

Improvingcomputationakfficiency
Turning specifically to the games studied in this paper, with a buddetdf20 tokens, the
strategy spaced these games are quite large. Everriastg attention to objeesymmetric
strategies, ABX4 has 52311, and AEX5 has 4356 strategiesHowever, preliminary
explorations with smaller budgded us to conjecture that equilibria in these games would
have small suppatWe therefore used an iteratieethod to identify the set efquilibrium
strategies.

Consider the game with a budgetBftokens. LetX be the set of pure strategy

token allocationsWe construct an increasing sequence of suppds, X, 1 ...I X, such

that X, is the support of aaquilibrium of the game. Pick some initial guess at the support of
the equilibrium, and call itX, I X . (Thecorrectness of the construction does not depend on
the value of the initial guesX,,; for this approach twork efficiently, it should be small in

size.)
At each ster of the algorithm, we consider the restrictiortlué gamen which

players can choose ordyrategies inX, . This induces a Wedefined tweplayer constant
sum game, which can be solved for seegailibrium p, ; insofar agX, | < €X|, solving the
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restricted game should be much faster than solvintuthgame. Then, givem, , we
consider all the strategies which were deleted from the restricted gai, , and order
them in decreasing order by their payoff relative to the candidate equililriuththereare
no strategies which attampayoff greater than the equilibrium payoff of dref, then the
algorithmterminates, ang, is an equilibrium of thgame with strategy seX . If not, then
we constructX,,, by adding thedp h strategies fromX \ X, to those inX, , and iterating.

The number of strategigs added at every step is arbitrary; we obtained sufficiently
good performanceith h =25. The tradeoff is that ih is too small, then the algorithm will
require many iterations, arnlderefore many calls to the linear program solver, to find the
equilibrium, while if h is too large e algorithmwill consider many strategies which are not
in the equilibriumsupport slowing down individual runs of the linearogramming solver.
In any event, the correctness of the approach does not depend on the scheme used for

adding strategie®ecause X, ,, is always a strict superset of, , and because all the

supports are bounded above (in the semset inclusion) by the strategy skt, this iterative

process is guaranteed to termenat a finitenumber of steps.
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APPENDIX B: INSTRUCTIONS
General rules

Welcome! This session is part of an experiment in the economics of decision making. If you
follow the instructions carefully and make good decisions, you can earn a considerable
amountof money.

In this session you will be competing with one other person, randomly selected from the
people in this room, over the course of fefitye rounds. Throughout the session your
competitor will be the same but you will not learn whom of the paaogleis room you are
competing with. The amount of money you earn will depend on your decisions and your
competitordés decisions.

It is important that you do not talk to any of the other people in the room until the session is
over. If you have any questismaise your hand and a monitor will come to your desk to
answer it.

Description of a round

Each of the fortyfive rounds is identical. At the beginning of each round your computer
screen will look like the one below.

You have 120 tokens. You must ukese to bid on 4 objects labelled A, B, C and D. You get
points for winning objects object A is worth 2 points and the other objects are worth 1 point
each. For each object you can bid any whole number of tokens (including zero), but the total
bid for dl objects must add up to 120 tokens. You bid by entering numbers in the boxes, and
then clicking on the ASubmitodo button. | f
computer will indicate by how many tokens the bid needs to be corrécyed.do not
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