
 1 

Early life programming of health and disease: the long-term consequences of obesity in 1 

pregnancy: a narrative review 2 

 3 

Simon C Langley-Evans 4 

School of Biosciences 5 

University of Nottingham 6 

Sutton Bonington Campus 7 

Loughborough 8 

LE12 5RD 9 

 10 

Abstract  11 

The prevalence of overweight and obesity is rising in all parts of the world and among young 12 

women it presents a very clear danger during pregnancy. Women who are overweight or 13 

who gain excessive weight during pregnancy are at greater risk of complications in 14 

pregnancy and labour, and are more likely to lose their child to stillbirth, or themselves die 15 

during pregnancy. This narrative review considers the evidence that in addition to increasing 16 

risk of poor pregnancy outcomes, obesity has the capacity to programme fetuses to be at 17 

greater risk of cardiometabolic disorders later in life. An extensive body of evidence from 18 

prospective and retrospective cohorts, and record linkage studies demonstrates 19 

associations of maternal obesity and/or gestational diabetes with cardiovascular disease, 20 

type-1 and type-2 diabetes.  Studies in animals suggest that these associations are 21 
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underpinned by adaptations that occur in fetal life, which remodel the structures of major 22 

organs including the brain, kidney and pancreas.  23 

 24 

As exposure to maternal obesity during fetal development also programmes a greater risk 25 

of obesity in later life, there is a risk of a transgenerational cycle of obesity and related 26 

disorders becoming established. Without significant investment in strategies to break such a 27 

cycle, the public health implications of the current rise in maternal obesity could last for a 28 

century or more. Maintaining healthy weight prior to and during pregnancy, and following 29 

guidance on breast feeding and complementary feeding may reduce the risk of poor health 30 

for infants exposed to obesity during fetal life. 31 

 32 

The long-term consequences of obesity in pregnancy 33 

 34 

The determinants of health and disease  35 

The last 30-40 years have seen a profound change in our understanding of relationships 36 

between lifestyle and chronic disease. Recognition that lifestyle factors could modulate risk 37 

of non-communicable disease arose from the seminal works by Doll and Peto on tobacco 38 

smoking and cancer1 and the elucidation of relationships between dietary fat, cholesterol 39 

concentrations and the contribution of LDL cholesterol to atherosclerosis2,3. Following on 40 

from this recognition came the now well-established view that risk is heavily determined by 41 

the interaction of lifestyle factors and the genotype. The phrase, “genes load the gun but 42 

the environment pulls the trigger”, is widely quoted4, after having been coined by Judith 43 
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Stern, a nutritionist from the University of California. The research that will be described in 44 

this review adds another layer to our understanding of the lifestyle-disease relationship and, 45 

as will be discussed, it is perhaps more accurate to say that genes load the gun, early life 46 

factors take aim and the environment pulls the trigger. 47 

 48 

Figure 1 shows how different elements of broad human biology establish risk of disease at 49 

any stage of life. The contribution of genetics is strongest in the earlier years and a high 50 

proportion of non-communicable disease in infants and children will have a strong genetic 51 

component. The influence of lifestyle (smoking, diet, alcohol, socioeconomic status, 52 

occupational exposures and behaviours) gets stronger as we age, but will always be 53 

modified by the underlying genotype. However, the phenotype also plays a critical role. 54 

Whereas ‘genotype’ describes the information encoded by DNA, ‘phenotype’ refers to the 55 

traits the individual has when the genotype is expressed. The translation of the genotype to 56 

phenotype will be modified by epigenetic factors (tags on DNA and histone proteins which 57 

modulate gene expression in response to a range of factors, including the environment), 58 

and the environment encountered during fetal and infant development. It is helpful to 59 

regard health and disease status at any stage of life as being the product of cumulative 60 

gene-environment interactions at all previous stages of life5. The outcomes of such 61 

interactions at one stage of life will establish the phenotypic traits which determine how 62 

future interactions progress. This could be regarded as a lifecourse approach to 63 

understanding disease, or to stretch Stern’s gun analogy further, we might say that the 64 
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aiming of the weapon prior to the environmental trigger that causes detriment, becomes 65 

more focused with aging. 66 

 67 

As early development, particularly during the phase of life when organogenesis irreversibly 68 

establishes tissue structures, is a contributing factor to disease risk many decades later, 69 

exploring the relationship between maternal nutritional status in pregnancy and infant 70 

development is of great interest. Whilst there is an extensive body of evidence considering 71 

how maternal undernutrition can ‘programme’ later disease6, the major nutritional concern 72 

in contemporary society relates to overweight and obesity. Figure 2 shows recent trends in 73 

overweight and obesity for adult women and infants aged 2-4 years. The marked rise in 74 

prevalence in both groups is striking, and the impact of widespread overweight among 75 

women of childbearing age upon the health of future generations is yet to be fully 76 

evaluated.  The aim of this review is to discuss the evidence that links early life events to 77 

disease in later life and consider observations that indicate that maternal obesity is a key 78 

driver of non-communicable disease in the next generation. In the review the focus will be 79 

primarily on epidemiological associations between early life and later disease, but findings 80 

from experimental animal studies will be described as a means of illustrating the 81 

mechanisms the likely mechanistic links. 82 

 83 

 84 

Maternal obesity and pregnancy outcomes  85 



 5 

The risks associated with obesity in pregnancy manifest during the pregnancy itself, 86 

although this review will focus on the later impacts on the health of individuals who 87 

experienced maternal obesity during fetal development. Maternal weight status is an 88 

important determinant of pregnancy outcomes for both mothers and babies, and also of 89 

obstetric complications8. Overweight, obesity and excessive gestational weight gain are all 90 

risk factors for poor outcomes. Optimal gestational weight gain is dependent on weight 91 

status going into pregnancy. Whilst women of ideal weight pre-pregnancy may gain up to 16 92 

kg across pregnancy, for those who are obese, a gain over 9kg would be considered 93 

excessive9. 94 

 95 

Obesity and excessive weight gain increase the risk of miscarriage10 and stillbirth11. Obesity 96 

also increases risk of maternal death by up to 2-fold, relative to ideal weight women, 97 

depending on the severity of the obesity12. Overweight, obesity and excessive weight gain 98 

increase risk of all obstetric complications ranging from relatively minor gastrointestinal 99 

disturbances13 through to the more severe hypertensive disorders14 and gestational 100 

diabetes15 (GDM). It is estimated that obesity increases the risk of pre-eclampsia by between 101 

2- and 2.5-fold16 and as the clinical response to this condition is to deliver the baby early, 102 

obesity becomes a key risk factor for preterm delivery. The association between obesity and 103 

gestational diabetes increases risk of macrosomia and injury to infants during delivery17. 104 

Obesity and excessive gestational weight gain also increase the risk of complications in 105 

labour. Spontaneous initiation of sustained labour is impaired, making induction more 106 

common in women with a BMI >30kg/m2 18. Interventions, including instrumented delivery 107 
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and caesarean section are more frequent in pregnancies complicated by maternal 108 

obesity19,20. 109 

 110 

The early life origins of health and disease  111 

The starting point for this review was the idea that lifelong risk of non-communicable 112 

disease is a product of interactions between genetic and epigenetic factors with the 113 

environment at all stages of life. Disease risk at any given point in life is partly determined by 114 

prior (epi)genetic-environment interactions. The impact of such interactions during fetal 115 

development is particularly significant and exposures to adverse environments during this 116 

phase of life are said to programme later disease risk. In this context ‘programming’ refers 117 

to permanent, irreversible adaptations to the environment, which compromise capacity to 118 

maintain normal metabolic and physiological function with ageing6. 119 

 120 

The embryos of all animal species begin development with the potential to develop and 121 

grow at a rate and to a form, that is determined by the genotype inherited from both 122 

parents. The expression of that genetic potential will lead to an achieved phenotype (Figure 123 

3), which includes all aspects of anatomy, physiology, metabolism and endocrine functions, 124 

and hence the balance between health and disease. The early life programming concept is 125 

based on the contribution of modifying factors which alter the expression of the genotype 126 

and hence the achieved phenotype. Modifying influences on development will change the 127 

achieved phenotype at the level of individual organs, systems, tissues and even specific cell 128 

types by altering rates of cell division and differentiation. These changes will determine the 129 
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number of cells and types of cells within a tissue and hence it’s resilience and homeostatic 130 

responses to physiological and metabolic challenges from the environment (dietary surplus 131 

or deficit, infection, trauma)6. Ultimately the establishment of the phenotype from the 132 

genotype is never complete and it continues to change throughout life, but tissues are at 133 

their most plastic during the phases of organogenesis and maturation which, in humans, 134 

occur before birth. In this way exposure to environmental factors establishes the functional 135 

lifespan of each organ, meaning the length of time over which it can maintain normal 136 

function and the capacity to withstand further adverse conditions. Beyond this functional 137 

lifespan each tissue will decline in function and disease will develop. 138 

 139 

The range of factors known to have a programming effect on the developing fetus is known 140 

to be broad (Figure 3). Inevitably most factors are maternally derived as the intrauterine 141 

environment is where the fetal genotype encounters stimuli from the outside world, but 142 

there is an emerging body of evidence that suggests paternal factors carried by semen may 143 

also have programming potential. Most attention has focused on the influence of maternal 144 

nutritional status, and in particular undernutrition. The way in which that is signalled to the 145 

embryo and fetus is complex and nutritional status is, in itself, a product of both maternal 146 

intakes, nutrient demands and stores. 147 

 148 

The first compelling evidence that early life events could programme disease in adulthood 149 

was derived from ecological and retrospective cohort studies. Comparing the geographical 150 

distributions of place of birth and cause of death among more than 2 million individuals who 151 
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died in England and Wales suggested a strong influence of the former upon risk of coronary 152 

heart disease in the 1970s21. Similarly, the distribution of death from coronary heart disease 153 

mapped closed onto the distribution of infant death in the 1920s22. This suggested that 154 

deprivation in early life was related to subsequent disease and cause of death and that this 155 

relationship persisted even when people moved to more affluent parts of the country. 156 

Further studies found strong associations between anthropometry at birth and risk of 157 

disease in adult life. Across cohorts in many countries, including the UK, Sweden, USA and 158 

India, it was noted that lower weight at birth (but still within the normal range) was 159 

associated with higher risk of blood pressure in adulthood, type 2 diabetes, insulin resistance 160 

and death from coronary heart disease23-28. These observations were particularly robust for 161 

type 2 diabetes and meta-analysis suggested a 25% greater risk of adult diabetes with every 162 

1kg lower weight at birth29. 163 

 164 

Other indices of infant anthropometry at birth were also found to be associated with risk of 165 

ill-health in childhood and adult life. A larger head circumference, for example, was 166 

associated with greater risk of atopic wheezing in primary school age children30. Thinness at 167 

birth, measured as the ponderal index (weight/length3) was found to associate with risk of 168 

type 2 diabetes as an adult31, and a smaller abdominal circumference was associated with 169 

cardiovascular disease32. Collectively these observations led to the theory that factors which 170 

constitute an adverse environment for fetal development, result in irreversible changes to 171 

how organs and tissues develop, effectively programming their lifelong function and risk of 172 

non-communicable disease for the exposed individual. The extremes of anthropometric 173 
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indices at birth are the immediate indicator that the maternal environment has constrained 174 

genetic potential for growth. In keeping with the idea that risk of disease at any stage of life 175 

is the product of cumulative exposures to adverse factors at earlier stages, more complex 176 

analyses of retrospective cohorts showed interactions between fetal and adult factors. Risk 177 

of insulin resistance in 50-year-old men and women was greatest in those who were born 178 

thin (low ponderal index) but had higher body mass index as adults33. Finnish women born in 179 

the 1920s and 30s were more likely to develop coronary heart disease if they were of low 180 

birthweight and gained weight more rapidly up to the age of 9 years34. Similarly, the 181 

interaction of early life factors with the genotype is evident from observational data. 182 

Associations between common single nucleotide polymorphisms (gene variants) and 183 

disease were only manifested in individuals of lower birthweight in a cohort of Finnish 184 

adults35,36.  185 

 186 

The originators of the programming hypothesis postulated that the principle driver of early 187 

life programming was maternal undernutrition, as evidence suggested that birth 188 

anthropometry was determined by maternal nutritional status and because at the time the 189 

participants in the retrospective cohorts were conceived and born (early 20th Century), 190 

undernutrition was considerably more common than overnutrition, overweight and obesity. 191 

Reinforcement of the nutritional programming hypothesis came from follow-up studies of 192 

individuals conceived or born during the Dutch Famine of 1944-1945. At the end of World 193 

War Two, Nazi blockade of food supplies to western Holland resulted in 6 months of famine 194 

conditions. Adults who were conceived at this time were more likely to develop obesity, 195 
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type 2 diabetes and coronary heart disease than those born just before or just after the 196 

famine37,38. Undernutrition at different stages of fetal development had differential effects 197 

on disease in adult life. Exposure to famine in early gestation was associated with greater 198 

risk of coronary heart disease, schizophrenia and depression, whilst exposure at any stage of 199 

gestation was associated with type-2 diabetes37. Similarly fetal exposure to the Great 200 

Chinese Famine of the 1950s was associated with greater risk of ischemic heart disease and 201 

stroke, non-alcoholic fatty liver disease and type 2 diabetes39-41 but not left atrial 202 

enlargement42. 203 

 204 

There are different ways of viewing the relationship between anthropometry at birth and 205 

disease in adult life. Nobody would view being born small as being a direct cause of non-206 

communicable disease. Lower weight or thinness at birth are merely indicators of risk. There 207 

are three main schools of thought about what the observed relationship means. The 208 

simplest view is that the association represents a trade-off in fetal life. Adverse conditions in 209 

pregnancy due to undernutrition or other maternal stressors either result in death of the 210 

embryo or fetus, or the conceptus survives through adaptations of tissue structures6. These 211 

adaptations become permanent as they occur during organogenesis, and are subsequently 212 

disadvantageous to the adult (Figure 4). Others have considered the persistence of what 213 

appears to be maladaptation through evolution and have proposed that the when the fetus 214 

adapts to the prevailing environment encountered by it’s mother it develops characteristics 215 

which prepare it for the continuation of that environment after birth. Disease risk will only 216 

develop if conditions improve 43,44. For example, conditions of undernutrition would be 217 
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better responded to if an individual were programmed in fetal life to be more energetically 218 

efficient. However, if in future the individual lives in an environment where nutrition is 219 

plentiful, then they would be more likely to become obese. The third viewpoint is that the 220 

birth anthropometry-later disease association is an indication that there are genetic variants 221 

that mediate both fetal growth restriction and non-communicable disease45. For example, 222 

Warrington and colleagues46 reported on genome wide association analysis of maternal and 223 

offspring genotypes, birthweight and cardiometabolic disease in a population of more than 224 

200,000 individuals. The analysis found 190 independent association signals indicating that 225 

the fetal genotype determined both birthweight and adult blood pressure. This would 226 

discount any involvement of maternal nutritional status or other putative programming 227 

factors. 228 

 229 

The fetal programming hypothesis is also open to criticism because so much of the 230 

supporting evidence is dependent upon retrospective analysis of data gathered for other 231 

purposes. Studies which attempt to link indicators of the fetal environment with outcomes 232 

that manifest more than five decades later are inevitably vulnerable to confounding factors 233 

which cannot be fully controlled for in statistical analysis6,50. In most studies except those 234 

which have involved follow up of the wartime and other famines, there is no direct measure 235 

of maternal nutritional status and much is inferred from birth anthropometry as an 236 

imperfect proxy of undernutrition. A number of prospective cohort studies47-49 have been 237 

established to investigate the maternal nutrition relationship with offspring health, but all of 238 
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these are still many decades away from yielding useful observations that can adequately 239 

confirm or refute the hypothesis.  240 

 241 

Given the counter-arguments to the nutritional programming hypothesis it has been 242 

important to assess the biological plausibility of the concept using experimental animal 243 

models. These have been able to demonstrate direct programming responses to 244 

manipulation of maternal diet, in the absence of genetic variation. Tests of the maternal 245 

diet-disease relationship have shown that the concept holds true, with a high degree of 246 

confidence. Programming through maternal undernutrition has been shown in a wide range 247 

of mammalian species including pigs, sheep, guinea pigs, mice and rats50. In genetically in-248 

bred rodents restriction of maternal food intake, induction of iron deficiency and feeding a 249 

low protein diet in pregnancy impair fetal growth, disrupt placentation, lead to defects of 250 

glucose homeostasis, increase blood pressure and impair renal function in adult offspring, 251 

whose lifespans are reduced51. Studies of non-human primates also demonstrate that 252 

maternal undernutrition in pregnancy adversely programmes physiological and metabolic 253 

function in the exposed offspring52. Critically, the animal studies have shown that maternal 254 

undernutrition can programme later disease without any effect on birthweight. This 255 

undermines the argument that epidemiological evidence of programming explained by 256 

genetic variants that influence both fetal growth and long-term cardiometabolic functions45. 257 

 258 

As in humans,  the adverse effects of maternal undernutrition upon offspring tend to 259 

develop with aging. For example, rats exposed to low protein diets during fetal life can 260 
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maintain normal renal function until they are 9 months old (about 40% of lifespan) but 261 

thereafter function declines more rapidly than in control rats and many males subject to 262 

maternal protein restriction die due to renal failure53.54. The same animals exhibit enhanced 263 

homeostatic responses to glucose loads as young adults but at 18 months old are insulin 264 

resistant, whilst control animals rarely show this impairment55.56. Consistent with the 265 

lifecourse view of health and disease, responses to nutritional challenges in adult life are 266 

modified by the fetal nutritional experience. Rats whose mothers were severely food 267 

restricted in pregnancy have an exaggerated response to a hypercaloric diet as adults, 268 

becoming more obese and metabolically impaired than offspring of mothers who were fed 269 

their normal diet57. Genetically modified mice with a diet-dependent pre-disposition to 270 

coronary heart disease had a greater atherogenic response to a high cholesterol diet if 271 

exposed to maternal protein restriction in utero58. 272 

 273 

Maternal obesity and the programming of disease  274 

In investigating the associations between maternal undernutrition and programming of 275 

disease, experimental animal studies proved to be a useful follow up to the epidemiological 276 

observations, critically demonstrating the biological plausibility of the programming 277 

hypothesis and generating data relating to possible programming mechanisms. When 278 

considering possible links between exposure to maternal obesity and disease in adult life, 279 

the animal studies came largely before any amassing of compelling epidemiological 280 

evidence.  281 

 282 
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Obesity can be difficult to induce in experimental animal species as rodents, in particular, are 283 

better able than humans to regulate their energy balance59. Rats and mice are the species of 284 

choice for experimental models, and many studies rely on feeding diets high in fat and sugar 285 

to increase adiposity. Studies of this nature have shown that obesity in pregnancy can 286 

programme glucose intolerance, dyslipidaemia and elevated blood pressure in offspring60. 287 

However, these experiments may be confounded by the fact that the offspring are exposed 288 

directly to these diets in addition to the maternal adiposity during fetal development and 289 

the suckling period. To modify the maternal diets to increase fat and sugar content 290 

inevitably reduces intake of protein and micronutrients and this is known to have a 291 

programming impact in itself50. It is important to appreciate that these diets are provided to 292 

animals as a homogenous, pelleted foodstuff and ingesting high quantities of sucrose or 293 

specific fatty acids may be directly responsible for programming effects through their 294 

bioactivity, rather than the interpretation that the effects are due to maternal obesity59. 295 

An alternative approach has been to induce obesity using cafeteria feeding. This involves 296 

rats being offered a constantly changing array of highly palatable human foods in addition to 297 

their baseline (low energy) rodent feed59, 61-64. Once obesity is established the rats can be 298 

transferred to their lower energy food, or maintained on the cafeteria diet for pregnancy, 299 

and offspring can be kept with their mothers or cross-fostered to mothers with a different 300 

dietary or weight status. In this way the effects of obesity during pregnancy and lactation 301 

can be studied independently of direct dietary effects. This approach has shown that 302 

maternal obesity can programme brain development and behaviour, adiposity and glucose 303 

homeostasis in offspring63-66. Rats exposed to cafeteria diet in utero have an enhanced 304 
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preference for high sugar and high fat foods when they are adults. In non-human primates 305 

maternal obesity has similar effects to what is observed in rodents. In young Japanese 306 

macaques the offspring of obese mothers fed a Western style diet exhibited impaired insulin 307 

sensitivity in muscle even before they were weaned67. Hypersecretion of insulin by 308 

pancreatic islets of young macaques exposed to this Western diet in utero suggests that 309 

there is a programmed dysfunction of glucose metabolism which will deteriorate with 310 

ageing68. 311 

 312 

In humans it is well recognised that there is a strong genetic component to obesity. 313 

Individuals with one or two obese parents are more likely to be obese themselves and the 314 

heritability of an obese phenotype has been estimated to be as high as 70%. Whitaker et al.,69  315 

reported that the risk of obesity with one obese parent was doubled, but interestingly the 316 

relationship was stronger where it was the mother who was obese. Such observations do 317 

not only reflect genetic influences, as children will generally share their environment with 318 

their parents and hence experience the same dietary and behavioural drivers of excessive 319 

fat deposition. Exploration of a possible programming basis for this was initially stuck on the 320 

idea that low birthweight was a driver of later disease, as discussed earlier in this review. 321 

Studies showed that birth anthropometry was predictive of later obesity. A longitudinal 322 

follow up of the 1956 UK Birth Cohort found a J-shaped relationship between birthweight 323 

and BMI in 33-year-old men and this appeared to be heavily driven by maternal but not 324 

paternal weight70.  A Finnish study found that risk of abdominal obesity was greater in young 325 

adults who had been born small-for-gestational age71. Generally the evidence supported the 326 
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view that obesity in adolescence and adulthood was predicted either by low birth weight or 327 

being a large baby at birth72. These observations of indirect relationships between early life 328 

exposures, with birthweight as a proxy are however, somewhat obsolete given there are 329 

more recent reports of direct associations between maternal BMI and adverse health 330 

indicators and outcomes in offspring.  331 

 332 

The Growing Up Today study has followed up approximately 15000 children of women who 333 

participated in the well-characterised US Nurses Health Study73. When followed up in 334 

adolescence those who had been exposed to GDM during fetal development were more 335 

likely to be overweight. The analysis indicated an independent influence of maternal BMI in 336 

this relationship73. If mothers maintained a healthy weight before pregnancy and engaged in 337 

a healthy dietary pattern, 150 minutes or more of moderate/vigorous exercise and avoided 338 

smoking, then their children were less likely to be obese between 9 and 14 years74. Maternal 339 

BMI between 18.5 and 24.9 kg/m2 was associated with a lower risk of childhood obesity (OR 340 

0.44, 95%CI 0.39-0.50 relative to higher BMI range) and maternal BMI was the strongest 341 

predictor of childhood weight outcomes. Other studies have similarly indicated that 342 

adiposity is greater in children whose mothers were living with obesity75-77. A follow up of 343 

Thai 19-22 year olds found a 25% greater risk of obesity for every 1 kg/m2 increase in maternal 344 

BMI. The risk of offspring obesity among the children of mothers with BMI in the obese 345 

range was 17-fold higher than in children of mothers of ideal weight78. 346 

 347 
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Of far greater significance are the observations that maternal obesity has a long-term impact 348 

on metabolic function and disease outcomes. Some of these have been derived from record 349 

linkage studies of very large populations. Follow up of 2.23 million Swedish births between 350 

1992 and 2016 found that diagnosis of cardiovascular disease between the ages of 1 and 25 351 

years was more likely in those whose mothers had been obese in pregnancy, than it was in 352 

those whose mothers had been of ideal weight79. The risk was graded so that whilst those 353 

whose mothers had BMI between 30 and 34.9 kg/m2 were 16% more likely to have 354 

cardiovascular disease, this increased to 2.51-fold if maternal BMI was over 40 kg/m2. Tan et 355 

al.,77 found that elevated cardiovascular disease risk factors (raised blood pressure, 356 

dyslipidaemia) were present in 13-year-old children of mothers who were overweight or 357 

obese relative to children of mothers of ideal weight. Follow up of Finnish men and women 358 

born between 1934 and 1944 found that those whose mothers had had a BMI greater than 359 

28 kg/m2 in pregnancy were at greater risk of cardiovascular disease. Men were more prone 360 

to coronary heart disease and women to stroke80. Reynolds et al.,81 showed that among 361 

37709 34-61-year-olds, all cause mortality was greater in those whose mothers had been 362 

obese than in those whose mothers had been of idea weight. Offspring of mothers with 363 

BMI>30kg/m2 were also more likely to have had a hospital admission with cardiovascular 364 

disease (OR 1.29, 95% CI 1.06-1.57). 365 

 366 

Exposure to maternal obesity is associated with metabolic dysfunction. Boney and 367 

colleagues82 reported that 11-year-old children were at increased risk of developing the 368 

metabolic syndrome if born to mothers living with obesity. Similarly elevated risk of insulin 369 
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resistance was observable in young men and, to a lesser extent, women if their mothers 370 

were obese76, whilst Bucci et al.,83 reported muscular insulin sensitivity was impaired in frail 371 

elderly men (average age 72 years) whose mothers had been obese. Follow up of men and 372 

women born in Helsinki in the 1930s and 40s demonstrated that women whose mothers 373 

were of higher BMI were at greater risk of developing type-2 diabetes as adults80. In the 374 

same way, record linkage of 118201 Aberdeen births (1950-2011) to the Scottish diabetes 375 

register revealed that offspring of overweight (OR 1.39, 95%CI 1.06-1.83) and obese (OR 3.8, 376 

95%CI 2.33-5.06) mothers were at markedly elevated risk of type-2 diabetes84. There is also 377 

evidence that maternal obesity increases the risk of type-1 diabetes as among more than 1.26 378 

million Swedish children born between 1992 and 2004, obesity in pregnancy predicted a 379 

type-1 diabetes diagnosis (OR 1.33, 95%CI 1.2-1.48)85.  Similarly, analysis of data relating to the 380 

births of children who were subsequently hospitalised with type-1 diabetes found that 381 

maternal BMI>30 kg/m2 was a significant risk factor (IR 1.29 95%CI 1.01-1.64)86.  To some 382 

extent this relationship could be explained by the association of maternal obesity with 383 

higher birthweight as there is an association between higher weight at birth and type-1 384 

diabetes87. Alternatively it may be that maternal obesity is a driver of autoimmune damage 385 

to the infant pancreas. Analysis of blood markers of islet autoimmunity in neonates found 386 

that maternal obesity and gestational weight gain over 15 kg were associated with an 387 

autoimmune profile88, although other studies have not confirmed this observation89. Other 388 

studies suggest that maternal obesity may programme renal development and function90 389 

and asthma91.  390 

 391 
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A number of studies are suggestive of programming effects of maternal obesity and/or 392 

obesogenic diets on appetite and food preferences in humans. A preference for a higher 393 

carbohydrate intake was observed in adult men, whose mothers were obese in pregnancy92. 394 

Follow-ups of the Avon Longitudinal Study of Parents and Children found that at age 10 395 

years, dietary choices were strongly related to those of mothers pre-pregnancy. There was 396 

no evidence of any paternal influence on children’s food choice, and the relationship 397 

between childhood feeding and mother’s postnatal behaviours was less marked. This 398 

supports the idea that appetite regulation is programmed in utero93. In the same cohort, 399 

unhealthy maternal behaviours including consumption of ‘junk’ food in pregnancy was 400 

associated with fat mass in 15-year-old children, again with no paternal influence94. Wardle 401 

and colleagues95 found that among lean children with overweight or obese parents, there 402 

was a higher preference for fatty foods in taste tests and an ‘overeating eating style. Whilst 403 

the study did not split the cohort dependent on whether the mothers or fathers were obese, 404 

the average BMI of the mothers in the study was 36 kg/m2, whilst it was only 29 kg/m2 for 405 

the fathers. The data add to the view that maternal obesity determines offspring feeding 406 

behaviour in humans, as it does in experimental animals66,96,97.  407 

 408 

 409 

Mechanistic perspectives on programming by obesity  410 

Many putative mechanisms have been suggested to explain how maternal nutritional status 411 

during pregnancy can programme disease risk in the exposed offspring. For any 412 

programming to take place there needs to be some signal, or signals, of the maternal 413 
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environment to the fetus. This signal then has to be recognized and elicit a response. There 414 

is a lot of debate about the process of recognition to initiate the response, with many 415 

researchers suggesting that maternal nutritional status elicits changes to the fetal 416 

epigenome and thereby sets in train long-term physiological adaptations, but the evidence 417 

for this is, as yet, not wholly convincing. The nature of the response to the maternal 418 

environment is somewhat easier to determine and one of the simplest mechanisms that can 419 

explain how variation in maternal nutritional status (including obesity) brings about changes 420 

in fetal anatomy and physiology involves the process of tissue remodelling. This rests on the 421 

idea that changes to the numbers of cells or the type of cells present within a tissue will 422 

reshape the morphology of that tissue and could have profound effects upon organ 423 

function6. 424 

 425 

All organs and tissues are derived from small populations of embryonic progenitor cell lines, 426 

which go through waves of rapid cell proliferation and differentiation to achieve their 427 

development before parturition. An adverse maternal environment during these critical 428 

periods can effectively prevent formation of an optimal number of specialized structures- 429 

remodelling the genetically determined pattern- and limit the functional capacity of the 430 

mature organ. There is extensive evidence from animal studies of maternal undernutrition 431 

which demonstrates remodelling takes place in response to adverse conditions in a range of 432 

organs, including the kidneys, brain and pancreas98-100 This remodelling appears to underpin 433 

fetal programming of renal disease, appetite regulation and impaired metabolic regulation. 434 

Whilst harder to demonstrate in humans, there is evidence of associations between low 435 



 21 

birthweight and renal structure101-103.  The evidence base for tissue remodelling in response 436 

to maternal obesity is more limited but in rodents there is evidence that offspring of obese 437 

mothers fed a cafeteria diet prior to pregnancy also have altered renal structure (lower 438 

nephron number, Akyol and Langley-Evans, unpublished data). Interestingly, ultrasound 439 

examination of the kidneys of infants who mothers were obese indigenous Australians, 440 

indicated that they had lower kidney volume, consistent with having been remodelled90. 441 

 442 

Modifying the numbers and types of cells present within a tissue will have a range of 443 

consequences and the knock-on effects on metabolic and physiological regulation will 444 

establish a predisposition for non-communicable disease. This will not manifest as disease in 445 

childhood, instead being revealed when the individual undergoes metabolic or physiological 446 

challenge, or as tissue functions naturally deteriorate with age. Alterations to the profile of 447 

cell types present within a tissue may also modify the capacity of a tissue to produce or 448 

respond to hormones, alter gene expression or interfere with cell signaling pathways. Some 449 

of these changes may have very localized effects, simply impacting upon the function of a 450 

particular tissue, but others could disrupt regulation throughout the body. The 451 

epidemiological evidence that points to an association between maternal obesity and later 452 

disease in humans is well matched with the evidence from animal studies, and both point to 453 

disruption of metabolic regulation at the whole-body level. As shown in Figure 5, this may 454 

result from remodeling of multiple tissues. Remodeling of adipose tissue so that there are 455 

fewer cells may underpin the observed propensity for offspring of women with high BMI to 456 

become obese as adipose tissue dysfunction impacts both the storage capacity of the tissue 457 
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and regulation of metabolism by adipokines. Insulin resistance and the reported type-1 and 458 

type-2 diabetes in individuals exposed to obesity in fetal life could be explained by 459 

pancreatic remodeling and programming of liver structure could contribute to a number of 460 

metabolic anomalies including the dyslipidaemia reported by Tan et al.,77. Remodeling of the 461 

hypothalamus has been reported as an outcome of maternal protein restriction in rats. If the 462 

tissue were also sensitive to maternal obesity, then the impact on whole-body homeostasis 463 

could be profound. Evidence from rodent studies suggests maternal obesity during lactation 464 

does have an impact on hippocampal and hypothalamic neurotransmitter production, with 465 

consequent effects on behaviour and feeding65.66.104. The observations that men who had 466 

obese mothers have a greater preference for carbohydrates92 and that children’s food 467 

preferences follow their mother’s pre-pregnancy behaviours but not their father’s93, may 468 

indicate that the same mechanisms could operate in humans.  469 

 470 

Tissue remodelling provides a route through which the adverse developmental environment 471 

of maternal obesity can programme offspring health, but does not explain how the fetal 472 

tissues receive signals of that environment. Whatever the programming stimulus or insult is, 473 

there is little doubt that it is mediated via the placenta. As shown in Figure 6, the placenta is 474 

not a passive facilitator of movement of oxygen, substrates and metabolic waste products 475 

between maternal and fetal compartments. It is a metabolically active tissue which 476 

generates substrates for the fetus and is a source of hormones and growth factors. All 477 

signals between mother and fetus are subject to modulation by placental activity. 478 

 479 
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The impact of maternal obesity on placentation is demonstrated by the greater risk of pre-480 

eclampsia105 in obese women. In pre-eclampsia, inflammatory processes and oxidative injury 481 

leads to arterial dysfunction and breakdown of transport capacity106. It seems likely that the 482 

condition is the extreme endpoint of damaging impacts of maternal obesity on placental 483 

integrity and function. This is likely to have adverse programming effects on fetal 484 

development. Histopathological analyses of placentas from obese women show evidence of 485 

inflammatory processes and under-perfusion, even in the absence of pre-eclampsia107. As 486 

early as the first trimester, obesity alters the expression of cell cycle regulatory genes in the 487 

placenta, which may impact on further placental growth and development and the capacity 488 

to maintain function at later stages of pregnancy108. Among the hormones secreted by the 489 

placenta are leptin and adiponectin. These adipokines influence the development of adipose 490 

tissue in the fetus. Leptin also modulates the formation of the homeostatic endocrine axes 491 

in the fetal brain. Measurements of adipokine concentrations in cord blood at birth has 492 

shown elevated concentrations with maternal obesity109. 493 

 494 

In addition to changes in the expression and release of endocrine signals, obesity impacts on 495 

fatty acid metabolism in the placenta. Altered expression of transcription factors and 496 

regulatory genes, including peroxisome proliferator activated receptor gamma coactivator 1 497 

and carnitine palmitoyltransferase 1alpha will impact on both lipid and carbohydrate 498 

metabolism and has been observed alongside elevated LDL-cholesterol and lower HDL-499 

cholesterol concentrations in cord blood of fetuses exposed to maternal obesity110. Similarly, 500 

the observation that expression of genes that regulate placental cholesterol transport is 501 
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related to maternal BMI, suggests that cholesterol handling is disrupted by maternal 502 

obesity111. This may promote atherogenesis in the placental vessels (associated with pre-503 

eclampsia) and disrupt steroid hormone production. Obesity impacts upon fatty acid 504 

transport by the placenta and promotes an inflammatory response112. The capacity of the 505 

placenta to store fatty acids is limited with obesity, resulting in greater mobilisation into the 506 

fetal compartment113. 507 

 508 

Clues to the mechanism of programming by maternal obesity may be gained from studies of 509 

GDM, as the long-term health of offspring exposed to GDM are largely the same as observed 510 

with maternal obesity, although obesity can occur without GDM and vice versa. As early as 2 511 

years of age, GDM offspring exhibit markedly greater risk of obesity114 and this persists into 512 

childhood115-117. Dabelea and colleagues118 followed up sibling pairs where one of the pair had 513 

been exposed to GDM and the other had not. Among people in their early 20’s, those who 514 

had experienced GDM in fetal life had a BMI on average 2.6 kg/m2 greater than unexposed 515 

siblings118. Alongside greater risk of obesity, offspring of GDM-affected pregnancies are at 516 

greater risk of metabolic disorders. Damm et al.,119 reported a 2-fold greater risk of obesity in 517 

adults exposed to GDM in utero, accompanied by an 8-fold greater risk of pre-diabetes and 518 

diabetes than in the background population. The adverse effects of exposure to GDM may 519 

be much broader, with, for example, reports of greater prevalence of psychiatric disorders 520 

in adults whose mothers had the condition in pregnancy120.  521 

 522 
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A simple explanation of how GDM and possibly maternal obesity provide the insult which 523 

programmes long-term consequences for the exposed offspring, is that an excess of energy 524 

substrates reaches the fetal compartment. The conventional wisdom is that this is the cause 525 

of macrosomia in GDM pregnancies, as the fetus is hyperinsulinaemic and the insulin 526 

resistance of the mother drives glucose and lipids across the placenta8. However, this is an 527 

over-simplification as, like obesity, GDM has a broad impact on the placenta which will bring 528 

other factors into play. Widespread morphological changes including hypervascularisation 529 

and an increase in placental size and thickness are proposed to be a compensatory response 530 

to GDM which will preserve placental perfusion121. There is also an increase in placental 531 

inflammation122. Several defects of placental metabolism and function have been reported 532 

with GDM, including a reduction in iron transport123 and changes to lipid metabolism124. With 533 

GDM the placenta accumulates elevated concentrations of saturated fatty acids, with 534 

reduced transport of mono- and polyunsaturated fatty acids to the fetus124. 535 

 536 

Whilst it is clear that the basic mechanisms which drive programming of health and disease 537 

by maternal obesity involve signalling across the placenta and a fetal tissue response at the 538 

level of gene and protein expression, the precise nature of the maternal signal and the fetal 539 

response in humans remain unknown. Identifying the mechanism is a high priority as 540 

without this understanding, any intervention to prevent the long-term consequences of 541 

maternal obesity will remain solely dependent upon health education and behaviour change 542 

strategies. Experience suggests that these have limited efficacy at the population level. 543 

 544 
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Implications for the future  545 

The global obesity crisis will have profound consequences for the health of populations for 546 

decades to come. Obesity in adults is well recognised as a modifiable risk factor for type-2 547 

diabetes, cardiovascular disease and many types of cancer. The evidence presented above 548 

would also suggest that the increasing numbers of individuals exposed to maternal 549 

overweight and obesity are themselves at greater risk of becoming obese and the 550 

associated cardiometabolic disorders. They will, in turn, be exposing their children to obesity 551 

in utero. There is a significant risk that a transgenerational cycle of obesity will be, or has 552 

already been, established (Figure 7). Such a cycle would have consequences for public health 553 

over a century or more unless effective means can be found to break it. Importantly, as 554 

obesity rates increase most rapidly in the populations of the global south, there is a risk of 555 

an explosion of metabolic disease on an unimaginable scale in nations ill-equipped to deal 556 

with it. 557 

 558 

Breaking such a cycle is a public health challenge of colossal complexity. The mode of 559 

intervention must be multifactorial, comprising locally tailored, culturally sensitive 560 

community education, widespread screening for pre-disease and investment in preventive 561 

health services. In short, a global shift in food cultures and living environments is necessary. 562 

Achieving this is unlikely, but as the global focus moves towards sustainability there may be 563 

opportunities to make inroads. The timing of interventions to break the transgenerational 564 

obesity cycle also needs to be considered in a more holistic manner. It is simple to think that 565 

the antenatal period is the key window for intervention. Limiting gestational weight gain 566 
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and promoting a return to pre-pregnancy weight in the post-partum period will have many 567 

benefits. Pregnancy is perceived as a teachable moment when women are more open to 568 

public health messages and willing to make lifestyle changes8, 125, but numerous large-scale 569 

trials show limited efficacy of, and high resistance to pregnancy-focused interventions126, 127. 570 

The most effective approaches to managing weight gain in pregnancy appear to rely on 571 

more personalised interventions that are supported by eHealth packages and health 572 

professionals that have received appropriate training8,128,129. Midwives, in particular, can find 573 

it difficult to engage with women about excess weight gain130,131 but may find it useful to 574 

have an understanding of the transgenerational consequences of antenatal obesity as they 575 

frame their conversations with women.  576 

Recommendations on antenatal weight management are heavily focused on women making 577 

changes to diet and lifestyle before they conceive8. For women with extreme obesity this 578 

might involve bariatric surgery and a number of studies demonstrate that women who 579 

achieve large weight loss through surgery have healthy pregnancies with reduced risk of 580 

complications and good outcomes132-134. There is an emerging literature on the effects this 581 

weight loss may have on the long-term health of babies born after weight loss. Smith and 582 

colleagues compared siblings whose mothers had undergone bariatric surgery, examining 583 

health indices in those born before and after the surgery135. Individuals born after weight 584 

loss surgery were born with lower birthweight and were markedly less likely to be obese 585 

than their siblings born before the surgery. There was also evidence of better insulin 586 

sensitivity, lower concentrations of inflammatory markers and adipokine concentrations 587 

that were more consistent with metabolic health135. However, the study only considered 49 588 
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sibling pairs and the ages of the subjects varied widely (2.6 to 26 years of age). The 589 

systematic review of Dunford and Sangster concluded that pre-pregnancy weight loss 590 

results in lower body fatness and improved insulin sensitivity in children born after weight 591 

loss compared to before, and suggested that changes to DNA methylation may play a role in 592 

this136. A study of 31 sibling pairs noted differential DNA methylation of genes associated 593 

with insulin receptor signalling and type-2 diabetes risk137. However, as the study was small 594 

and the significance of methylation differences in whole blood samples is debatable, 595 

inferring a mechanism of programming from this is premature. It is hopeful, however, that 596 

action to address weight problems before pregnancy can prevent maternal programming of 597 

adverse health in the developing fetus. A number of trials are now underway to address the 598 

impact of major weight loss on long-term health and wellbeing138,139. 599 

 600 

Just as health at any stage of life is dependent upon the outcomes of gene-environment 601 

interactions at all preceding life stages, there are also opportunities to intervene and break 602 

the programmed trajectory during childhood. The literature that explores the tracking of 603 

obesity from childhood to adulthood indicates that the obese child is not predestined to 604 

become an obese adult, although obesity in adolescence does appear to track strongly to 605 

the adult years140, 141. This highlights that the childhood years are a key time to address 606 

overweight and obesity that may have been programmed in utero. Importantly the evidence 607 

shows that early intervention to reverse excessive weight in childhood removes any residual 608 

metabolic risk, so the obese child who becomes a lean adult is at no cardiometabolic 609 

disadvantage140, 141. 610 
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 611 

Choices about infant feeding methods may represent the first point in the postnatal period 612 

when the impact of being an obese mother may be ameliorated. Systematic reviews and 613 

meta-analyses indicate that breastfeeding reduces the risk of childhood and adult obesity, 614 

with exclusive breastfeeding and breastfeeding for a longer period (up to 12 months) having 615 

greater benefits142. Horta and colleagues143 showed that breastfeeding was protective 616 

against overweight and obesity in both childhood (OR 0.74, 95%CI 0.68-0.79) and in adults 617 

(OR 0.88 95%CI 0.82-0.94). The greater risk of overweight seen in formula fed infants could 618 

result from the higher protein content of formula milks144, but it is also clear that 619 

breastfeeding brings advantages beyond just the milk composition. Demand-led feeding, for 620 

example, will be associated with normal development of satiety pathways and appetite 621 

regulation, and milk contains a range of non-nutrient components. These include the 622 

appetite regulatory hormones leptin, adiponectin, resistin and ghrelin145, which may play a 623 

key role in establishment of appetite control in the infant hypothalamus146. 624 

 625 

Whilst breastfeeding may represent a means of compensating against exposure to obesity 626 

in utero, little is known about how obesity changes the composition (nutrient and hormone) 627 

of human milk and whether breastfeeding by an obese mother carries the same advantages 628 

as reported for the full breastfeeding population. Studies in rodents have identified that 629 

cafeteria feeding during lactation can programme offspring feeding and other behaviours, 630 

suggesting that milk may carry adverse programming signals65,66,104. However the 631 

immaturity of rat pups at birth makes them very different to human infants, so the same 632 
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milk-related cues may not apply in the development of the human infant brain. Human milk 633 

is believed to be a highly dynamic food, with its composition changing according to stage of 634 

development, in response to diet, time of day and even varying between breasts in the same 635 

woman. However, much of the literature on milk composition is old and features poorly 636 

designed, small studies and little is known about how milk composition varies in response to 637 

acute changes in diet and what impact maternal adiposity may have. Leghi et al.,147 reported 638 

that concentrations of macronutrients in milk showed little variation over a 3 week period. 639 

Ward et al.,148 found considerable diurnal variation in composition. Acutely increasing 640 

maternal fat consumption did not impact on macronutrients in milk over a 12-hour period, 641 

whilst in contrast an increase in sugar intake resulted in a rapid increase in milk 642 

triglycerides148. A lot more research is required to understand what sort of diet may be 643 

optimal for the production of an anti-obesogenic milk profile by women and how this may 644 

vary between women of ideal weight and those who are overweight. 645 

 646 

The introduction of complementary foods (weaning) is another point in time where 647 

decisions may have long-term benefits for further health. Timing of weaning is believed to 648 

play an important role and, as described above, maintaining breastfeeding throughout the 649 

process prolongs exposure to human milk and the associated beneficial factors. There is 650 

evidence that very early introduction of solids (before 4 months) or delaying to beyond 6 651 

months may increase risk of childhood overweight149. The inclusion of foods rich in protein 652 

appears advantageous in terms of infant growth and body composition, but if used in 653 

complementary feeding  between 2 and 12 months, the risk of overweight in childhood is 654 
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increased150. There is a literature that considers feeding style during weaning, with some 655 

researchers advocating that a baby-led weaning approach, rather than a parent-led spoon-656 

feeding approach, reduces risk of later obesity by allowing the infant to self-regulate intake 657 

and programme the development of satiety centres in the hypothalamus, which are not 658 

mature at birth. However, there is no significant evidence that there is a robust effect, and 659 

baby-led weaned infants may in fact self-select a diet that is high in sugars151-153. 660 

 661 

To effectively meet the challenge of a transgenerational cycle of obesity and metabolic 662 

disorders, a multifaceted approach will be necessary. This needs to target infants and 663 

children to promote healthy eating and lifestyles; adolescents to reinforce those messages 664 

before they become reproductively active; pregnant women to optimise nutrition, control 665 

weight gain and prevent GDM and; the post-partum period to promote a return to pre-666 

pregnancy weight and facilitate long-term breastfeeding154. The emergence of evidence that 667 

paternal factors can also programme cardiometabolic health in offspring via semen-related 668 

factors, means that boys as well as girls need to be the focus of optimal health behaviours 669 

for parenting155,156. The global increase in obesity among children and adults is a public 670 

health concern with the potential to have consequences over many generations. The 671 

growing understanding that excessive adiposity in pregnancy can threaten both the 672 

immediate and long-term health outcomes for the developing fetus should act as a stimulus 673 

for action across the world. Improving the nutrition and understanding of young people in 674 

order to optimise their reproductive fitness will be a considerable challenge in the face of 675 

other societal and population health issues, but should be regarded as a high priority. 676 
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Figure legends 1204 

Figure 1 The underlying determinants of health and disease are complex and vary across the 1205 

lifespan.  1206 

At all stages of life health status is a product of gene-environment interactions. In early life 1207 

genetics plays a more important than in later life. Risk of disease at all stages of life is a 1208 

product of the outcomes of gene-environment interactions at earlier stages. 1209 

 1210 
Figure 2 The rising prevalence of obesity  1211 

A. Overweight and obesity among adult women in selected countries. 1212 
B. Overweight and obesity among children aged 2-4 years in selected countries. 1213 

Data from7. 1214 
Aus- Australia, Can-Canada, Chn-China, Fra-France, Ger-Germany, Gre-Greece, UK-United 1215 
Kingdom, USA-United States of America. 1216 
 1217 
 1218 

Figure 3 Maternal and paternal factors modify genetically determined developmental potential 1219 

to determine the fetal genotype at birth. 1220 

 1221 

Figure 4 Programming of disease in later life can be driven by both maternal under- and 1222 

overnutrition. 1223 

 1224 

Figure 5 Remodelling of the structures of specific tissues in fetal life may explain how maternal 1225 

obesity programmes offspring adiposity and metabolic function. 1226 

 1227 

Figure 6 The placenta must mediate the signal of maternal nutritional status to the fetus. 1228 

 1229 
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Figure 7 A transgenerational cycle of obesity and related disorders. 1230 

  1231 
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Figure 5  1247 
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