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Abstract

Anthropogenic environments such as those created by intensive farming of livestock, have

been proposed to provide ideal selection pressure for the emergence of antimicrobial-resis-

tant Escherichia coli bacteria and antimicrobial resistance genes (ARGs) and spread to

humans. Here, we performed a longitudinal study in a large-scale commercial poultry farm

in China, collecting E. coli isolates from both farm and slaughterhouse; targeting animals,

carcasses, workers and their households and environment. By using whole-genome phylo-

genetic analysis and network analysis based on single nucleotide polymorphisms (SNPs),

we found highly interrelated non-pathogenic and pathogenic E. coli strains with phylogenetic

intermixing, and a high prevalence of shared multidrug resistance profiles amongst live-

stock, human and environment. Through an original data processing pipeline which bcom-

bines omics, machine learning, gene sharing network and mobile genetic elements

analysis, we investigated the resistance to 26 different antimicrobials and identified 361

genes associated to antimicrobial resistance (AMR) phenotypes; 58 of these were known

AMR-associated genes and 35 were associated to multidrug resistance. We uncovered an

extensive network of genes, correlated to AMR phenotypes, shared among livestock,

humans, farm and slaughterhouse environments. We also found several human, livestock

and environmental isolates sharing closely related mobile genetic elements carrying ARGs

across host species and environments. In a scenario where no consensus exists on how

antibiotic use in the livestock may affect antibiotic resistance in the human population, our

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010018 March 25, 2022 1 / 38

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Peng Z, Maciel-Guerra A, Baker M, Zhang

X, Hu Y, Wang W, et al. (2022) Whole-genome

sequencing and gene sharing network analysis

powered by machine learning identifies antibiotic

resistance sharing between animals, humans and

environment in livestock farming. PLoS Comput

Biol 18(3): e1010018. https://doi.org/10.1371/

journal.pcbi.1010018

Editor: Danesh Moradigaravand, University of

Birmingham Institute of Cancer and Genomic

Sciences, UNITED KINGDOM

Received: November 19, 2021

Accepted: March 14, 2022

Published: March 25, 2022

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pcbi.1010018

Copyright: © 2022 Peng et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

https://orcid.org/0000-0003-1396-9438
https://orcid.org/0000-0002-8926-7689
https://orcid.org/0000-0002-2032-5908
https://orcid.org/0000-0001-7884-5589
https://orcid.org/0000-0003-1449-9933
https://orcid.org/0000-0002-2492-8079
https://orcid.org/0000-0002-1920-5036
https://orcid.org/0000-0001-5530-1343
https://orcid.org/0000-0002-1546-2211
https://orcid.org/0000-0001-7733-906X
https://doi.org/10.1371/journal.pcbi.1010018
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010018&domain=pdf&date_stamp=2022-04-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010018&domain=pdf&date_stamp=2022-04-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010018&domain=pdf&date_stamp=2022-04-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010018&domain=pdf&date_stamp=2022-04-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010018&domain=pdf&date_stamp=2022-04-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010018&domain=pdf&date_stamp=2022-04-06
https://doi.org/10.1371/journal.pcbi.1010018
https://doi.org/10.1371/journal.pcbi.1010018
https://doi.org/10.1371/journal.pcbi.1010018
http://creativecommons.org/licenses/by/4.0/


findings provide novel insights into the broader epidemiology of antimicrobial resistance in

livestock farming. Moreover, our original data analysis method has the potential to uncover

AMR transmission pathways when applied to the study of other pathogens active in other

anthropogenic environments characterised by complex interconnections between host

species.

Author summary

Livestock have been suggested as an important source of antimicrobial-resistant (AMR)

Escherichia coli, capable of infecting humans and carrying resistance to drugs used in

human medicine. China has a large intensive livestock farming industry, poultry being the

second most important source of meat in the country, and is the largest user of antibiotics

for food production in the world. Here we studied antimicrobial resistance gene overlap

between E. coli isolates collected from humans, livestock and their shared environments

in a large-scale Chinese poultry farm and associated slaughterhouse. By using a computa-

tional approach that integrates machine learning, whole-genome sequencing, gene shar-

ing network and mobile genetic elements analysis we characterized the E. coli community

structure, antimicrobial resistance phenotypes and the genetic relatedness of non-patho-

genic and pathogenic E. coli strains. We uncovered the network of genes, associated with

AMR, shared across host species (animals and workers) and environments (farm and

slaughterhouse). Our approach opens up new avenues for the development of a fast,

affordable and effective computational solutions that provide novel insights into the

broader epidemiology of antimicrobial resistance in livestock farming.

Introduction

A recent study showed that some environments can promote the enrichment of antimicrobial

resistance genes (ARGs) and exchange between environmental microbiota, human commen-

sals, and pathogens [1]. One such environment is poultry production farms, which have been

shown to act as reservoirs of antimicrobial resistance (AMR), with multidrug resistance found

in bacteria, especially Escherichia coli, from both healthy and diseased poultry [2–6]. This is

particularly true for China, where intensive farming practices have the potential to act as

source of emerging resistance because of the large quantity of antimicrobials used for both live-

stock health and growth promotion purposes, creating a selective pressure for resistant bacte-

ria to emerge, enrich and spread [7–9].

Evidence has been given, documenting the spread of ARGs and their bacterial hosts, espe-

cially E. coli, between chickens and humans in poultry farming [2,10]. The importance of poul-

try as a source of antimicrobial genes in humans has been demonstrated by studies finding

that the Chinese, European and American human microbiome and ARG profiles share more

genes with chickens compared to the gut of pigs or cattle [11].

Characterizing the bacterial community structure and AMR gene exchange with E. coli in

poultry is of interest for several reasons. First, there is suggestive evidence that animals may

serve as reservoirs for E. coli found in humans [12,13]. Second, in addition to being an impor-

tant commensal of human and mammalian intestinal microflora, the species E. coli contains

many pathotypes that are also highly pathogenic and potentially fatal to humans, with some

strains having a minimum infective dose as low as just ten cells [14]. Third, E. coli are
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widespread in different habitats and almost ubiquitous in the avian and mammalian gut

microbiota, and, as a result of their transmissible plasmids, able to acquire antimicrobial resis-

tance. Evidence has shown that the spread of resistant bacteria, including E. coli, and their

AMR repertoire takes place by direct contact and interaction between humans and the micro-

biota of the surrounding environment [15]. This dissemination is facilitated by horizontal

gene transfer (HGT) mediated by mobile genetic elements (MGEs) transferred between multi-

ple pathogen hosts [1,10,16] and phylogenetically closely related bacteria including commen-

sals such as E. coli [11].

It is estimated that more than one billion people work in the agriculture sector worldwide,

with poultry being the second most widely produced and eaten source of meat in the world.

Therefore, AMR originating from environmental reservoirs and farm animals represents a

high risk for man as it may be exchanged with human pathogens and commensals. Under-

standing if antimicrobial-resistant pathogens causing human disease and/or their resistance

genes are commonly acquired from livestock, and how and to what extent AMR transfer

occurs in these settings will improve our ability to track and assess the risk of emergence of

zoonotic infections with the associated risks of reduced tractability by chemotherapy.

Several recent studies have undertaken to characterise the genome of E. coli isolates in rela-

tion to AMR in poultry farms [17–19]. In addition, several papers have used machine learning

to predict AMR phenotypes from both E. coli isolates [20–26] and other bacteria [27–30]. To

our knowledge this is the first One Health comprehensive analysis and prediction of E. coli
genome features related to AMR phenotypes, within an intensive poultry farm and connected

slaughterhouse.

The aims of this study were to: (i) characterize the E. coli community structure, antimicro-

bial resistance phenotypes and the genetic relatedness of non-pathogenic and pathogenic E.

coli strains in a large-scale commercial poultry farm in China; (ii) unravel the network of

genes, associated with AMR, shared across host species (animals and workers) and environ-

ments (farm and slaughterhouse); (iii) identify genes that cross habitat boundaries via their

association with mobile genetic elements. More generally, the study aimed to develop an origi-

nal data analysis pipeline, combining omics, machine learning, gene sharing network and

mobile genetic elements analysis, useful to uncover genetic signatures of resistance to antimi-

crobials and map potential transmission pathways amongst host species and interconnected

environments.

Results

Poultry farm and slaughterhouse environments contain a diverse array of

both non-pathogenic and pathogenic multidrug resistant E. coli with

phylogenetic intermixing among livestock, humans, meat and environment

We collected and sequenced a total of 154 E. coli isolates from two sites, a commercial poultry

farm in Shandong province, China, and the contracted slaughterhouse in the same province.

Isolates were collected from three hosts: chickens (n = 82; faecal, cloacal, caecal and carcass),

humans (n = 58; faecal, hand and nasal) and environment (n = 14; soil, water, feed) (Fig 1A

and S1 Table). Samples were taken over a two independent 6-weeks broiler production cycles

(first cycle denoted by t, second cycle denoted by l), with samples taken at three time points:

t1/l1 –mid-cycle (3 weeks old chickens), t2/l2 –fully grown (6-week-old chickens) and t3/l3 –

end-of-life (6 weeks + 1day, chickens after slaughter). In total 114 isolates were taken from the

farm location (67 chicken, 11 environment and 36 human) and 40 isolates were taken from the

slaughterhouse (15 chicken, 3 environment and 22 human). To compare the genetic related-

ness of the cohort, a maximum likelihood phylogenetic tree for the 154 genomes based on the
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core genome (2788 genes, present in� 99% of isolates) was constructed. The tree coupled

with the in silico typing demonstrated high genetic diversity overall with phylogenetic inter-

mixing between isolates from human and livestock (Fig 1B). The cohort spanned six of the

seven common phylogroups (A, B1, C, D, E and F) as well as the more recently identified G

and clade I groups (S1 Table). Phylogroups were not significantly associated with a host (chi-

squared test with p-valueBonferonni < 0.05) or farm/slaughterhouse environment (chi-squared

p-valueBonferonni < 0.05). Multi-locus sequence typing revealed diversity with 52 different

Fig 1. A wide array of non-pathogenic and pathogenic E. coli with phylogenetic intermixing, and high prevalence of shared multidrug

resistances amongst livestock, humans, meat and environment are present in a poultry farm and the contracted slaughterhouse. (A) Overview

of the study design and cohort information. 154 human, animal, meat and environmental samples were collected at each of three time points

(denoted t1-3 and l1-3) over two independent 6-weeks broiler production cycles over one farm as well as the abattoir linked to this farm in China.

The total number and type of isolates cultured and sequenced by host and host body site are shown. (B) Maximum likelihood phylogenetic tree of

the whole cohort based on core genome of the 154 isolates with recombination correction, cultured from the human, animal and environmental

and meat samples collected from the farm and slaughterhouse. Phylogroups (inner ring), sequence types, clonal complex, collection time points,

host type and resistance profile (outer ring) are shown around the outside of tree. EAEC and EPEC isolates indicated by ⁕ and ⁕⁕ respectively. (C)

Numbers of susceptible and resistant isolates, based on antimicrobial susceptibility testing by broth microdilution, for each of a panel of 26

antimicrobials encompassing nine different antimicrobial groups.

https://doi.org/10.1371/journal.pcbi.1010018.g001
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sequence types across the cohort (S1 Table). 60% of the isolates could be further grouped into

clonal complexes with CC155 (n = 17), CC205 (n = 13) and CC206 (n = 11) the most preva-

lent. CC155 [31,32] as well as other less prevalent CCs in our cohort have been previously asso-

ciated with multidrug resistance (CC10 [n = 6] (52), CC469 [n = 6] [33,34], CC648 [n = 4]

[3,34] and CC86 [n = 3] [35,36]. Analysis of pathotypes and serotypes (S1 Table) showed that

the majority of isolates in our cohort were non-pathogenic bacteria, however, 39 isolates

(25.3%) were found to be EAEC strains and 1 was EPEC (Fig 1B). The EAEC isolates were

found in all phylogroups but were significantly associated with phylogroup G (chi-squared p-

valueBonferonni < 0.0001), sequence types ST117 (chi-squared p-valueBonferonni < 0.0001) and

ST542 (chi-squared p-valueBonferonni < 0.015). EAEC isolates were found across all hosts and

sources (Fig 1B), however, farmworker nose swabs were significantly associated with these

pathogens (chi-squared p-valueBonferonni < 0.0198).

All isolates underwent laboratory testing for resistance to a panel of 26 antimicrobials

encompassing 9 classes: beta-lactams, aminoglycosides, chloramphenicol, quinolones, glyco-

peptides, tetracyclines, sulphonamides, polymyxins and trimethoprim. The proportion of

resistance to each antimicrobial ranged from 3% to 89% (Fig 1C, Table 1). Resistance to antibi-

otic of last resort colistin/polymyxin was found in only 5% of isolates (n = 8) sourced from

Table 1. Number of resistant and susceptible isolates included in this study.

Antibiotic Abbreviation Number of Resistant Isolates Number of Susceptible Isolates

Amikacin AMI 9 145

Amoxycillin/Clavulanic acid AMC 26 54

Ampicillin AMP 134 20

Ampicillin/Sulbactam AMS 82 30

Aztreonam AZM 74 68

Cefazolin CFZ 108 27

Cefepime FEP 62 66

Cefotaxime CTX 92 60

Cefoxitin CFX 15 133

Ceftazidime CAZ 30 106

Chloramphenicol CHL 107 41

Ciprofloxacin CIP 93 48

Colistin CT 8 146

Doxycycline DOX 91 20

Gentamicin GEN 51 76

Imipenem IMI 5 144

Kanamycin KAN 89 63

Levofloxacin LEV 96 40

Meropenem MEM 5 146

Minoocycline MIN 16 109

Nalidixic acid NAL 118 36

Polymyxin B PB 6 147

Streptomycin STR 117 37

Sulphafurazole SUL 137 17

Tetracycline TET 130 19

Trimethoprim/Sulfamethoxazole SXT 132 22

No statistical differences were found between the number of resistant isolates in the farm and slaughterhouse (chi-squared p-valueBonferonni < 0.05), either overall or by

antimicrobial. Of the colistin/polymyxin resistant isolates, all were multidrug resistant to at least 7 antimicrobials with the median number of resistances being 19.5.

https://doi.org/10.1371/journal.pcbi.1010018.t001
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chicken, human and environmental hosts. The median number of resistances per isolate was

13 and 96.7% of isolates showed resistance to at least one antimicrobial, with 92.2% having

resistance to at least three. Notably, 12.3% of the cohort were resistant to at least 20 antimicro-

bials, with 23 being the maximum number of resistances for a single isolate indicating

extremely high levels of antimicrobial resistance among the E. coli present in this farming envi-

ronment. The most prevalent resistance profile (n = 47) in the cohort was penicillins, amino-

glycosides, mono-beta-lactams, cephalosporins, chloramphenicol, quinolones, tetracyclines,

sulphonamides and polymyxins. This profile was found present in different ST type clusters in

the tree (ST205, ST155, ST101, ST117, ST206, ST2690) with three of these containing chicken

and human isolates (ST205, ST155, ST206) as well as one containing human and an environ-

mental isolate (ST117), see Fig 1B.

Network analysis based on pairwise single nucleotide polymorphisms

(SNPs) alignment highlights complex pattern of highly related isolates

crossing host boundaries

To assess the relatedness of isolates across our cohort we compared the number of core gene

SNPs per isolate in a pairwise manner. Across the cohort the median SNP difference was

18386 (range 0–52377, IQR 22240). Setting a maximum threshold of 15 SNPs as previously

done in a similar study [37], we assessed the relatedness of the isolates in our cohort (S1 Fig).

The resulting network showed several host-specific clusters of chicken- or human-only sam-

ples. The human-only clusters were non-pathogenic whilst two chicken-only clusters con-

tained pathogenic isolates only, and a further two showed pathogenic and non-pathogenic

isolates intermixed. Interestingly, the network also showed inter-host clusters. Specifically,

three clusters of chicken and human samples (maximum SNP differences of 2, 5 and 8 SNPs;

two non-pathogenic and one mixed); two clusters of human and environmental samples (0

core SNP differences in each cluster; one pathogenic and one non-pathogenic); three clusters

of chicken and environment (maximum SNP differences of 0, 2 and 5, two pathogenic and

one mixed) and finally two clusters with all three hosts intermixed (maximum SNP differences

of 1 SNP per cluster; one mixed and one non-pathogenic). This close genetic relatedness (0 to

8 SNPs) among livestock, human and environmental isolates highlights the potential for trans-

mission of pathogenic and non-pathogenic E. coli bacteria within this environment.

Machine learning identifies with high accuracy known and potentially

novel genetic determinants of resistance to twenty-one different

antimicrobials, discriminating drug-resistant and susceptible strains in the

cohort

To test whether the antibiotic resistant/susceptible phenotypes could be explained by known

AMR-associated genes (including genes that are known to confer antimicrobial resistance

based on their annotations and well-known AMR genes) present in the cohort, the isolates

were scanned for sequence matches to genes in AMR gene databases (CARD [38], ResFinder

[39], ARG Annot [40], NCBI AMRfinder [41]). The Jaccard/Tanimoto coefficient of similarity

between resistance phenotypes for each antibiotic and the known AMR-associated genes was

calculated in a pairwise manner. Values spanned the range -0.13 to 0.53, where 1.0 would indi-

cate a perfect positive association and -1 would indicate a perfect negative association. These

results indicated that no single known AMR-associated gene could be found that explained the

resistance phenotype observed for each antibiotic. The strongest association (0.53) was found

between the gene rmtB and resistance to amikacin, an association that has been observed

before in China [42]. The lack of a simple association between known AMR-associated genes
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and resistance together with the genetic relatedness found in our cohort motivated further

analysis to identify genetic associations with our observed phenotypes.

To this end we applied a machine learning approach to specifically deduce the relationship

between genome content and AMR profiles of each isolate to each one of the antimicrobials.

To avoid any bias in the supervised learning approach we first tested for the presence of clonal-

ity in the population. To do this we calculated the standard association index (IS
A) [43]. The

calculated IS
A value was 0.2497 (p-value < 0.00001) at whole cohort level and 0.1111 (p-

value < 0.00001) as ST type level (one isolate used to represent each of the 52 STs) meaning no

linkage disequilibrium was detected indicating the absence of clonality in the E. coli population

[44].

Ten supervised learning classifiers, logistic regression, linear support vector machine and

radial basis function kernel support vector machine (RBF-SVM), extra tree classifier, random

forest, adaboost, xgboost, naïve bayes, linear discriminant analysis and quadratic discriminant

analysis, were used to predict susceptible and resistant strains for each of the 26 antimicrobials.

All genome sequences were processed to give overlapping 13 base pair k-mer features related

to each sequence. Five antibiotics (amikacin, polymyxin B, polymyxin E, imipenem and mero-

penem) did not have enough samples in one class to allow cross validation and SMOTE and so

were not taken further. To reduce the number of features analysed by the classifiers a two-step

feature selection method was applied: firstly, k-mers with a p-value greater than 0.05 according

to the chi-square test were discarded [45,46] and then those remaining were used as input to

an Extra Tree Classifier. K-mers with a Gini feature importance above the overall mean were

selected [47,48].

To ensure robustness all models were trained and tested in 30 independent runs, with the

performance metrics given as the mean of all runs. To verify which classifier performs better

out of the 10 classifiers studied we applied a Friedman F-test with Nemenyi post hoc test. With

10 classifiers and 21 antibiotics, the Friedman test is distributed according to the F distribution

with 21−1 = 20 and (10−1)×(21−1) = 180 degrees of freedom. The critical value of F(9,180) for

α = 0.0001 is 4.0366. For all the metrics studies (AUC, accuracy, sensitivity, specificity, preci-

sion and Cohen’s Kappa), the FF statistics null hypothesis was rejected with a confidence level

of 99.99%. The null hypothesis states that there are no differences between the average ranks of

each classifier over the 21 antibiotics. After, the Nemenyi post-hoc test was performed, and the

critical difference diagram was set at 3.407 with a confidence level of 99%. According to S2 Fig,

the classifier RBF-SVM had the best rank for the metrics AUC, accuracy, sensitivity, Cohen’s

kappa, second best for precision and third best for specificity. Nonetheless, according to the

Nemenyi test, for precision and specificity, RBF-SVM is statistically equivalent when com-

pared to the best ranked classifier in these two metrics. Therefore, the RBF-SVM classifier was

selected for this study. Twenty-one antimicrobial models achieved high performance scores

(Fig 2 and S2 Table).

Ampicillin, cefazolin, and tetracycline achieved an AUC score higher than 0.99, with 17

antimicrobials achieving an AUC between 0.9 and 0.99. Only streptomycin achieved an AUC

score below 0.9. The antimicrobial with the highest AUC score (0.998 ± 0.002) was cefazolin, it

achieved also an accuracy of 0.977 ± 0.009, sensitivity of 0.982 ± 0.01, specificity of

0.958 ± 0.037 and a Cohen’s Kappa score of 0.929 ± 0.029. Similarly, the precision was also

high with values ranging from 0.706 ± 0.107 to 0.991 ± 0.03 and 11 models having a mean pre-

cision over 0.94.

To verify if the number of samples for each antibiotic model was large enough for the test

set to be representative, we employed a wrapper backward selection (WBS) in terms of the

samples using two different analyses: (i) firstly, we applied the WBS (see S3A Fig), to the origi-

nal pipeline used in this work (i.e. nested cross validation with an RBF-SVM as the classifier
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and a SMOTE approach during the training phase to balance the classes for the training of the

classifier (as used in our ML pipeline), 5 iterations of the nested cross validation were used; (ii)

while, for the second analysis, we first performed a SMOTE approach as a pre-processing step

to oversample the minority class and then applied the WBS method on the oversampled data,

and analysed using 5 iterations of a nested cross validation with a RBF-SVM as the classifier

(S3B Fig). S3A Fig shows that for 4 out of 21 antibiotics (AMP, TET, CFX and MIN) the WBS

finished after a few iterations due to the small number of samples in the minority class. None-

theless, according to the learning curves of the other 17 out of 21 antibiotics on S3A Fig the

training and test datasets are representative for the initial number of samples in each antibiotic;

with a reduced number of samples the majority of the antibiotics have a decrease in the test

Fig 2. Supervised machine learning prediction of antimicrobial resistance signature profiles to 21 antimicrobials in the E. coli cohort. (A) Flow diagram

showing the machine learning pipeline including feature selection (yellow), classification (blue), post-processing (green). (B) Prediction performance results of

the RBF SVM classifier that achieved the best performance amongst the three investigated is shown. Five performance indicators have been used to evaluate the

classification: i) Area under the curve AUC, ii) Accuracy, iii) Sensitivity, iv) Precision, v) Specificity, and vi) Cohen’s Kappa value from 30 training runs for

each antimicrobial. The scores for each performance metric are indicated in the Y axis. Predictive models were generated to classify the resistance vs.

susceptibility profiles of twenty-one different antimicrobials (X axis): amoxycillin/clavulanic acid (AMC), ampicillin (AMP), ampicillin/sulbactam (AMS),

aztreonam (AZM), ceftazidime (CAZ), cefoxitin (CFX), cefazolin (CFZ), chloramphenicol (CHL), ciprofloxacin (CIP), cefotaxime (CTX), doxycycline (DOX),

cefepime (FEP), gentamicin (GEN), kanamycin (KAN), levofloxacin (LEV), minocycline (MIN), nalidixic acid (NAL), streptomycin (STR), trimethoprim/

sulfamethoxazole (SXT), sulfisoxazole (SUL) and tetracycline (TET).

https://doi.org/10.1371/journal.pcbi.1010018.g002
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fold performance, indicating that a reduced number of samples in this case can cause an over-

fitting of the classifier, since the test fold is not representative anymore. The curve of the test

performance for all models is reaching an asymptote indicating that increasing sample sizes

further would be unlikely to significantly improve model performance. Moreover, on S3B Fig,

which creates synthetic data for the minority class during the pre-processing, reveals a similar

result to the first approach in S3A Fig. The shape of the learning curves is kept similar between

the two studies and it confirms for all the antibiotics that an increase in the number of samples

would not have a big impact in the performance when compared to the original number of

samples.

Since our goal was not only to predict resistance with high accuracy, but to also extract key

insights from the data, we asked whether the uncovered genetic features are either true deter-

minants of AMR or possible artefacts of the statistical learning algorithm. Therefore, we

mapped the k-mers back to the sequences of the whole cohort to identify the genes to which

the k-mers from each model were related to. Across all models the k-mers mapped back to

2949 unique genes of which 476 were known AMR-associated genes (held in the CARD [38],

ResFinder [39], mutationDB [49], NCBI AMRFinder [41] or ARG-Annot [40] databases). To

further identify the most significant genes we identified those with the greatest difference

between the percentage of resistant isolates identified as having a k-mer hit to the gene (Pr)

and the percentage of susceptible isolates identified as having a k-mer hit to the gene (Ps).

Genes with a difference |Pr–Ps| in frequency equal or higher than 30% over the whole cohort,

were selected and identified as important to differentiate resistant and susceptible isolates (S3

Table). Altogether, 361 genes were significantly differentiated between resistant and suscepti-

ble isolates. Of these 361 genes, 35 were present in three or more antibiotic classes in the pre-

dictive antibiotic models (S3 Table). These 361 genes were analysed for their distribution and

frequency among the different hosts in both the farm and slaughterhouse environments

(S3 Table).

We discuss the results obtained for three antibiotics representing two important classes—

beta-lactams (penicillins and cephalosporins) and aminoglycosides—selected because of their

clinical relevance in China. Results for the other 18 antibiotics are given in S4 Fig.

The ampicillin/sulbactam (penicillins) model identified 20 genes as significantly separating

resistant and susceptible isolates, and of these 18 were mostly present in the resistant isolates

(S3 Table). These included six known AMR-associated genes (lysU [49], lptD [49], aadA2 [38],

aph(4)-Ia [38], floR [38], blaOXA-10 [38]). The floR gene was present in> 92% of resistant farm

samples but in less than 32% of resistant slaughterhouse samples (chi-square p
value < 0.0001). Of the known AMR-associated genes aadA2, floR and blaOXA-10 had multiple

k-mers associated with each gene (16, 7 and 4 respectively), statistically unlikely to occur in

each gene by chance (binomial test p values< 0.0001) whilst the others has only 1 association

(mean p value = 0.02). Among the 14 genes associated with either a resistant or susceptible

phenotype but that are not known to confer antimicrobial resistance based on their annota-

tions (alx, hcaB, hdfR, hha, nadB, tnpR, traC1, traC2, traV, yciC, iroB, iroN, iucC and fes): four

had functions associated with HGT (tnpR, traC1, traC2 and traV [50,51]); and 4 were virulence

genes involved in siderophore-mediated iron transport (iroB, iroN, iucC and fes [52]).

For cefepime (cephalosporins) resistance/susceptible model (S3 Table) 18 genes (aadA2,

floR, blaCTX-M-55, cai, cusF, ecpD, exuT1, exuT2, finO, aph(4)-Ia, mdtB, nagE, aph(3”)-Ib, papC,

tdh, traI, traQ, traS and yfeZ) were significantly associated with the resistance phenotype and a

further three with the susceptible phenotype (mutL, yehL and yehA). Seven genes (mutL [49],

aadA2 [38], aph(3”)-Ib [38], aph(4)-Ia [38], bla CTX-M-55 [38], floR [38] and mdtB [38]) are

known AMR-associated genes. Interestingly, floR was significantly more present in the resis-

tant chicken isolates, 77%, compared to the resistant human isolates (from farm and
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slaughterhouse), 28%, (chi-square p value < 0.001). For the ESBL resistance gene blaCTX-M-55
however no statistically significant difference was observed and no co-occurrence of these two

resistance genes in the same contig was observed (Jaccard coefficient 0.0). The gene mutL, a

DNA repair gene, which was the only known resistance gene to be more prevalent in resistant

human isolates (67%) compared to chicken isolates (33%), chi-square p value = 0.13. The

known resistance gene bla CTX-M-55 had 17 unique k-mers differentiating the susceptible and

resistance phenotypes predicted to be associated with it, unlikely to arise by chance (binomial

p value< 0.0001), whilst two genes (aph(3”)-Ib and floR) had between 3 and 6 k-mers (bino-

mial p values > 0.0001) and four genes (mutL, ecpD, aadA2, aph(4)-Ia) had only a single k-

mer related to them. A pattern of higher prevalence in chicken isolates was observed in several

of the genes found by the machine learning but not annotated to have AMR function: nagE,

cai, exuT1, tdh and papC (chi-square p values<0.01). One gene was a known virulence-related

pilus gene (ecpD [53]). Not surprisingly, none of these genes were found to significantly co-

occur with each other or the known AMR-associated genes.

The kanamycin (aminoglycosides) resistance/susceptible model (S3 Table) showed that two

genes tetA and rihA were significantly associated with susceptible isolates whilst 26 were asso-

ciated with resistant isolates (aph(3’)-Ia, aph(3”)-lb, aph(4)-Ia, blaCTX-M-55,floRr, blaTEM-1,
blaOXA-10, der, hdfR, mntB1, mntB2, mntB3, dcm, tfaE, traC1, traC2, sopB, traD, ylpA, hcaB,

traQ, cai, cmi, higB-1, dsbC, and repB). Eight of these were known AMR-associated genes, pres-

ent in the CARD database (aph(3’)-Ia, aph(3”)-Ib2, aph(4)-Ia, blaCTX-M-55, floR, blaTEM, blaOXA-
10 and tetA [38]). Of these aph(4)-Ia frequently co-occurred with the aph(3’)-Ib and aph(3”)-Ib
(Jaccard coefficients of 0.51 and 0.20) but no other significant co-occurrence was observed.

The genes were generally present in similar proportions of chicken and human isolates. The

known AMR genes had significantly more unique k-mers associated with them compared to

the genes not known to confer AMR with a mean of 17 compared to a mean of 4 (t-test p
value < 0.01). All the known AMR genes has a statistically significant number of k-mers,

unlikely to occur by chance (binomial p value<0.0001 for all except aph(4)-Ia with p
value < 0.01). In addition, several of these genes, were also unlikely to be spurious hits: der
(p value< 0.0001), hdfR (p value < 0.0001), mntB1 (p value< 0.0001), mntB2 (p value <

0.0001), mntB3 (p value< 0.0001), dcm (p value < 0.0001), tfaE (p value< 0.0001), tetA
(p value< 0.0001), traC1 (p value < 0.0001), traC2 (p value < 0.0001), sopB (p value< 0.0001),

traD (p value< 0.001), ylpA (p value< 0.0001), hcaB (p value < 0.0001)).

In addition to the k-mer mapping to the annotated genes of the cohort, many hits were

found to map to intergenic regions of the DNA sequences. We analysed these hits to identify

any patterns and found that the k-mers mapped to 14 different transcription factor binding

sites (arcA, argR2, crp, fis, fur, ilvY, lexA, lrp, nagC, phoB, purR, rpoH2, rpoN and tus) where

there was greater than 30% difference between hits to resistant and susceptible isolates, S5 Fig.

Of particular interest, the transcription factors rpoH2 and crp were significant in 5 different

antibiotics: ampicillin, ampicillin/clavulanic acid, ampicillin/sulbactam, levofloxacin and sulfi-

soxazole; ciprofloxacin, chloramphenicol, ampicillin/sulbactam, doxycycline and cefoxitin,

respectively. Both these transcription factors are global transcriptional regulators binding reg-

ulating many genes. The well-studied regulator Crp (cyclic-AMP receptor protein) regulates

over 180 different genes, primarily in energy-metabolism pathways [53]. Whilst the alternative

sigma factor RpoH is involved in regulating the cellular response to heat shock, increasing bac-

terial survival at high temperatures [54]. The gene purR, found in 4 antibiotic resistance/sus-

ceptible predictive models (cefepime, aztreonam, cefotaxime and cefoxitin) is involved in the

regulation of genes in the purine metabolic pathway. Importantly, purine metabolism and syn-

thesis pathways have been previously found to be enriched in multidrug resistant bacteria [22].

The transcription factor fur present in the cefotaxime, ampicillin, ampicillin/clavulanic acid
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and doxycycline models, represses genes involved in high affinity iron sequestration important

in virulence [55] and is important in conferring protection from oxidative stress [56]. The

gene tus, involved in the termination of DNA replication, was significant in doxycycline, ampi-

cillin/sulbactam, minocycline and streptomycin. All other transcription factors were signifi-

cant in 3 or fewer models.

Network analysis powered by the machine learning uncovers communities

of similar isolates and reveals ARGs sharing between hosts

To map the reservoirs of possible antibiotic resistance related genes that pose the highest risks

of horizontal gene transmissibility across humans, animals and their environment, we built

gene sharing networks and a hierarchically clustered heatmap (clustermap) for each one of the

21 selected antimicrobials (Figs 3, 4 and S4). The networks were analysed to assess modularity

and betweenness centrality. In gene sharing networks, nodes with higher betweenness central-

ity are potentially more interesting as they are involved in a larger number of associations.

In our dataset, we found an extensive network of genes correlated with AMR phenotypes

shared between E. coli communities of humans, animals, meat and the environment, that was

not seen in the SNP network analysis.

The ampicillin/sulbactam gene sharing network (Fig 3A) showed four different communi-

ties. Communities C0, C2 and C3 contained most resistant isolates (86%) whilst community

C1 contained most of the susceptible isolates (83%), almost all of which were from human

hosts (18/20). The three resistant communities found were clearly separated from the suscepti-

ble community. Samples from resistant community C0 were primarily chicken and environ-

mental samples. Six resistant human isolates (nose and hand samples) were present in C2 and

of these, all except one were identified as pathogenic EPEC or EAEC strains. These were inter-

mixed with chicken isolates that were either pathogenic or non-pathogenic. Only 40% (16/40)

of human isolates were resistant to ampicillin/sulbactam compared to 95.1% (58/61) chicken

isolates, and of the human isolates hand and nose swabs were more often resistant than faecal

isolates (56% compared to 27%). The presence of the genes lysU and lptD and the absence of

the genes floR and hdtR were important in differentiating susceptible from resistant isolates

(Fig 4A). The floR gene is known to be involved in sulphonamide (sulfathiazole) and bicyclo-

mycin resistance [57,58], and was present in all resistant communities. The analysis of the

communities C0 and C2 indicates the co-presence of aadA2 (streptomycin resistance), blaOXA-
10 (beta-lactamase) and aph(4)-Ia (phosphorylates the antibiotic hygromycin B) which are all

known AMR-associated genes, however these are not co-occurring in the same sequence con-

tigs. In communities C0 and C3, among the genes not annotated as conferring AMR we

observed the co-presence of the following virulence genes: iroB, iucC, iroN and iroD, of which

all except iucC frequently co-occur on the same contig. The five nodes with highest between-

ness centrality were found to be three chicken isolate (one caecal, one faeces and one anal

swab) and two human isolates (hand swabs from the farm and slaughterhouse).

The cefepime network (Fig 3B), contains three communities (C2, C3 and C4) where most

of the isolates (humans, chicken, and environment) show resistance to this antibiotic (77%),

and two communities (C0 and C1) where most isolates are susceptible (76%). The two primar-

ily susceptible communities are clustered together, but the resistant communities show greater

separation. Community C4 was populated with mostly pathogenic samples (13/18), indicating

the higher relatedness of these isolates. According to the clustermap analysis (Fig 4B), the

AMR-associated genes (aph(3”)-Ib, floR, mdtB and blaCTX-M-55) are clustered together; with

aph(3”)-Ib and floR presenting mainly in C2 and C3 and blaCTX-M-55 and mdtB present across

communities C2, C3 and C4. Additionally, the resistant and susceptible isolates also differ by
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Fig 3. Networks of AMR-associated genes shared across host species (animals and workers) and environments

(farm and slaughterhouse) for three antibiotics. The AMR-associated gene sharing networks for: (A) ampicillin/

sulbactam, (B) cefepime, and (C) kanamycin are shown. For each network: (i) Panel on the left, indicates the

communities and their respective numbers found using Louvain heuristics. Each community is indicated with a distinct

colour. Each community is a set of nodes or clusters, which are densely and connected with statistical significance and

identically coloured. For each network the node represents a sample and is shown in a distinct colour and shape

depending on the metadata of the sample (e.g., source, AMR profile, location). In all panels the nodes are separated
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the presence of the genes yehL (ATPase) and yehA (fimbrial-like adhesin) genes in susceptible

isolates. For cefepime, the five nodes with highest betweenness centrality were four chicken

samples (one carcass, two faeces and one anal swab) and one environmental (slaughterhouse

water) which indicates that the main hotspot is the chicken samples.

In the kanamycin network (Fig 3C) there are three close communities mostly containing

susceptible isolates (C0, C2 and C3, 78% susceptible) and the other four (C1, C4, C5 and C6)

contained predominantly resistant isolates (91% resistant). Community C6 is formed by only

pathogens. Interestingly, there are two major clusters for this antibiotic, one mainly related to

resistant samples (communities C1, C4 and C6) and the other mainly related to susceptible

samples but also containing resistant community C5. The genes blaCTX-M-55, traC, repB, higB-
1, dcm, aph(4)-Ia, blaTEM-1, dsbC, hcaB and blaOXA-10, are absent in community C5 but present

in the other resistant communities (Fig 4C), with four of them known to confer antimicrobial

resistance (blaCTX-M-55, blaOXA-10, blaTEM-1 and aph(4)-Ia). The other known AMR-associated

genes, aph(3’)-Ia, aph(3”)-Ib and floR were found present in all the resistant communities. We

hypothesise that sharing of AMR-associated genes uncovered by ML is more frequent between

the chicken isolates on the farm, since most human and environmental samples are suscepti-

ble. Further, 24 out of 38 slaughterhouse isolates were susceptible to kanamycin, indicating

that this antibiotic was not significant in the slaughterhouse. For kanamycin, the five nodes

with highest betweenness centrality are from multiple sources (one environmental, two

humans and two chicken).

Out of the 361 genes that were selected with a |Pr-Ps| > 30%, 303 genes (278 unique exclud-

ing allelic variants) were not annotated as antibiotic resistance genes in public AMR databases.

Therefore, to characterize these genes without annotated AMR function GO [59] and KEGG

pathways [60] enrichment analyses were conducted (S4 Table and S6 Fig). The GO terms

showed enrichment in one molecular function encompassing catalytic activity, and thirteen

biological processes: metabolic, cellular, cellular metabolic, organic substance metabolic,

monocarboxylic acid catabolic, organic cyclic compound metabolic, cellular aromatic com-

pound metabolic, antibiotic catabolic, 3-phenylpropionate metabolic, 3-phenylpropionate cat-

abolic, primary metabolic, small molecule metabolic, oxoacid metabolic and cellular response

to chemical stimulus. In addition, four KEGG pathways were enriched: metabolic, microbial

metabolism in diverse environments, phenylalanine metabolism and degradation of aromatic

compounds (S4 Table and S6 Fig).

Identification of the mobile genetic elements associated to the

interconnected resistomes and their E. coli hosts that are naturally

transferred among animal, human and the environment

Although the gene sharing network analysis powered by machine learning found extensive

interconnected resistomes among E. coli communities of humans, animals and environments

within and between the farm and slaughterhouse, it remains unclear whether the uncovered

interconnections are mediated by mobile genetic elements. We analysed the MGE content of

the isolates in our cohort using the mob-suite package [61], then we grouped the isolates by

using hierarchical clustering by replicon type. In total, 153 of the 154 isolates in our cohort

according to the Euclidean distance between the isolates; the central panel shows the AMR phenotype (resistant or

susceptible) as the shape of the node and the source of the samples (human, chicken or environmental) as the colour of

the node. An edge represents the Euclidean distance between two samples, and it is coloured according to the associated

statistical value. The panel on the right indicates the location of the sample (farm or slaughterhouse) as the shape of the

node and the type of sample as the colour of the node.

https://doi.org/10.1371/journal.pcbi.1010018.g003
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Fig 4. Hierarchically clustered heatmaps of the AMR-associated genes across the cohort. Clustered heatmaps showing the genes

associated with the significant k-mers from the machine learning and used to build the networks. The antibiotic models shown are: (A)

ampicillin/sulbactam, (B) cefepime and (C) kanamycin. The columns on the left show the metadata (Class, Location, Source, Type,

Phylogroup, Community number). The presence of the genes (in terms of its related k-mers) is indicated in black, while the absence is

indicated in white). Genes known to confer antimicrobial resistance based on their annotations from public databases are highlighted in

red.

https://doi.org/10.1371/journal.pcbi.1010018.g004
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carried at least one plasmid with 147 of those carrying a mobilizable or conjugative plasmid.

Across the cohort, 17.18% of genes in the pan-genome were located on plasmids, with a range

of 0–14.6% per isolate. Comparing different hosts, the proportion of genes carried on plasmids

in chickens was significantly higher than in human farmworkers (adjusted p-valueBonferroni =

0.00993) and abattoir household members (adjusted p-value Bonferoni = 0.0403) (S7 Fig). The

types of plasmid within the cohort were diverse (Fig 5), and did not show any significant clus-

tering by host, collection time point or source.

Next, we tied the above results with the information obtained with machine learning. Repli-

con types: IncFIA, IncFIB, IncI1/B/O, IncHI1B, IncK, IncR and IncY, previously associated

with multidrug resistance [62] carried between 2.57 and 8.45% of the total 4626 genes associ-

ated with resistant phenotypes identified by the supervised learning analysis (Fig 6A). Replicon

types IncX1 (1.25%) and IncN (1.64%) carried fewer genes, whilst IncI2, IncX4, Col156,

ColpVC and Col(MG828), also reported in literature to carry resistance genes [62], carried

very few (>1%) of the predicted genes from this study (S5 Table).

In addition to considering the AMR-associated genes uncovered by machine learning, we

also annotated the plasmid sequences to assess the gene content of each plasmid replicon.

Many known ARGs were carried on multiple plasmids (e.g. aph(3’)-Ia [n = 6], aph(3”)-Ib
[n = 6],blaCTX-M-55 [n = 5], aadA2 [n = 5], tetR [n = 5]), S6 Table. Notably, IncI2 also carried

resistance gene blaCMX-M-97 and colistin resistance gene mcr-1, an association that have previ-

ously been noted to give a fitness advantage via carriage of this gene [63]. Hierarchical cluster-

ing of the presence/absence of all genes on each replicon type was conducted to assess the

similarity of plasmids from different isolates. We hypothesise that isolates with plasmids clus-

tering with only small differences are indicative of relatively recent transmission of those plas-

mids between isolates through horizontal transfer. Where those plasmids are present in

different host/isolates this would be suggestive of a transmission route for these bacteria.

Although the majority of the plasmids shared predominantly different mobile elements

between livestock and humans, we found 17/58 (29.3%) human isolates sharing closely related

AMR-associated mobile elements with those found in livestock. Most of the clusters contained

different STs which is also indicative of horizontal gene transfer of mobile genetic elements

between lineages [37]. Within the IncFIA group there were several small clusters of isolates,

Fig 6B. One cluster contained 2 human farmworker nose swabs and an environmental animal

feed isolate. Average nucleotide values (ANI) of the WGS of these isolates showed high similar-

ity over>99.995%, compared to a mean ANI value across the cohort of 98.08%. IncFIA is an

important replicon for AMR in this cohort and contained several known resistance genes

namely: aadA2, tetA, tetR, cmlA5, blaTEM, blaCTX-M-97 and floR. Within the IncI1/B/O replicon

group, a chicken carcass sample (non-pathogenic, phylogroup A, ST206) showed high similar-

ity to the hand swab of a household member of an abattoir worker (non-pathogenic, phy-

logroup G, ST174) (ANI value of WGS = 99.995%) and two chicken faeces samples (non-

pathogenic, phylogroups B1 and F, ST101 and ST457 respectively) showed high similarity to a

farmworker hand swab isolate (non-pathogenic, phylogroup F, ST457) (ANI values of WGS:

99.995% and 97.1423%). In IncHI1B chicken faeces isolates (non-pathogenic, phylogroup B1,

ST205) have clustered with a farmworker nose swab isolate (non-pathogenic, phylogroup B1,

ST205) (ANI values of WGS> 99.994%). As with IncFIA, IncHI1B carries many known AMR

genes: cat, blaOXA-1, blaCTX-M-97, aadA2, cmlA5, aph(3”)-Ib, tetA, and tetR. In IncFIB, carrying

known resistance genes tetA, tetR, cmlA5, aph(3”)-Ib, blaTEM, and floR, a chicken carcass plas-

mid (non-pathogenic, phylogroup A, ST206) clustered with a hand swab of a household mem-

ber of an abattoir worker (non-pathogenic, phylogroup A, ST206) (ANI value of

WGS = 99.996%). All the IncR plasmids (6 isolates, all EAEC positive, phylogroup A, ST542)

show high similarity and except for one isolate are all sourced from chicken carcass samples.
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Fig 5. Presence/absence of different plasmid types in the cohort. Heatmap showing the presence (green) and absence (grey) of each predicted

plasmid replicon type per isolate. Phylogenetic tree (replicated from Fig 1B) is at the top of the heatmap with the phylogroup. Sequence types, hosts

and isolate sources are shown below the tree.

https://doi.org/10.1371/journal.pcbi.1010018.g005
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Fig 6. Presence of AMR-associated genes predicted by machine learning in plasmids and hierarchical clustering of isolates based on

similarity of plasmid type (A) Heatmap of presence (pink) or absence (blue) of genetic determinants identified by machine learning located on

different replicon types of plasmid within the cohort. (B) Hierarchical clustering of isolate plasmid sequences from replicon types with high number

of AMR determinants. Clustering was based on gene presence or absence. Green underscores indicate areas of high similarity between isolates from

different hosts, suggestive of transmission between hosts.

https://doi.org/10.1371/journal.pcbi.1010018.g006
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The other isolate was taken from the water at the abattoir, suggesting a possible transmission

route between the chicken carcass and abattoir water system. Other isolates with less signifi-

cant AMR genes but also sharing plasmids with high pairwise ANI values > 99.996% and

showing inter-source clustering, again indicate direct transmission of the bacteria (S7 Fig). We

found no evidence of human-to-human bacterial transmission in the farm environment.

Discussion

Resistance genes are more likely than other genes to cross boundaries of ecological niches and

habitats [64]. Characterizing the sources, reservoirs and networks of potential transmission of

antimicrobial resistance between human, animal, and environment, is key to isolate the major

elements of risk undermining human health, and essential to design efficient and effective

interventions opposing the selective forces promoting the enrichment and spread of antimi-

crobial resistant pathogens.

In this study, we focused on E. coli in intensive poultry farming. We developed a computa-

tional platform that combines pangenome, machine learning, gene sharing network analysis

and the analysis of mobile genetic elements, and applied it to the data collected from a tightly

confined and geographical contextualised longitudinal ecosystem consisting of a poultry farm

and associated slaughterhouse.

The pangenome properties resulting from our analysis reflect the current understanding of

the extent of genetic variability in E. coli, with 8 phylogroups and 52 ST types in line with what

seen in other studies in China [65–67]. However, 25% of the isolates in our cohort were found to

be EAEC. Interestingly, we found these EAEC isolates to be significantly associated with phy-

logroup G and sequence types ST117 and ST542. Notably, ST117 has been established to have a

strong association with avian pathogenic (APEC) E. coli [68–70]. In European studies, ST117 has

been shown to be a poultry-associated strain, capable of causing human disease [71], and has been

associated with multidrug resistance both in Europe and China [72]. Thus, the association of

ST117 with human pathogenic strains in this study could be indicative of zoonotic transmission

of pathogenic E. coli. In particular, the significant association of EAEC isolates with human nose

swabs (6 of 11 nose swab isolates across 5 individuals), suggests a direct infection/colonisation

route for pathogenic strains within the commercial poultry environment. Our isolates showed

similar phylogroups and AMR profiles to a recent very similar cohort (human, broiler and envi-

ronment isolates taken from poultry farm and market) sampled in Nigeria [17]. Whilst some dif-

ferences were observed in ST types, with the predominant ST type from our study, ST205, absent

in the Nigerian study, there was a large overlap in ST types with 10 of the 14 ST types identified in

the Nigerian study also present in ours. As with our study a wide range or resistance genes were

observed including colistin resistance genes,mcr-1, in our study however, a smaller range of fluro-

quinolone resistance genes were found (2 compared to 10 in Nigeria).

The association of human with chicken and environmental pathogenic and non-pathogenic

E. coli strains was further evidenced by the SNP-based network analysis of highly correlated

strains, showing both inter- and intra-host clusters and suggesting a possible transmission of

E. coli between livestock, environment and humans. These results partially contrast with a pre-

vious study conducted in the East of England, where limited sharing of E. coli strains and

AMR genes was found between livestock from multiple farms and human blood stream infec-

tions [37]. However, the differences in findings between this and the previously cited study

[37] may be justified by our analysis encompassing a different geographical area (with different

usage patterns in relation to antimicrobials) [73], and adopting a longitudinal investigation

involving two closely interconnected environments (farm and slaughterhouse) and their entire

ecosystems of workers and animals.
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Of the 361 genes which we found as discriminating the AMR phenotypes with high accu-

racy, 58 were known AMR-associated genes based on their annotations in public databases.

The identification of genes known to confer resistance to the selected resistance phenotypes

indicates the robustness of methods employed, as also stressed by Jaillard [74]. The identifica-

tion of genes that are not known to confer antimicrobial resistance based on their annotations

together with known AMR-associated genes demonstrate the potential of machine learning

for predicting AMR phenotypes and its ability to generate hypotheses that may increase our

understanding of the genetic basis underlying AMR or correlated to AMR in E. coli [75–77]. A

recent study by Ren [25] also looked at prediction of E. coli resistance from human and animal

isolates from two datasets, one they term the Giessen data, 987 whole genome E. coli sequences

they collected as part of their study and a public dataset of 1509 E. coli strains taken from Mor-

adigaravand et al. [26]. Ren tested both of these datasets against four antibiotics (ciprofloxacin,

cefotaxime, ceftazidime and gentamicin) all of which we also tested allowing comparison

between our study and theirs. There were several key differences between our study and theirs:

the Giessen data in Ren are described as human and animal clinical samples with no source

country given and the public data were retrieved from both human clinical and environmental

collections in the UK, Pakistan, Syria, Sweden, the USA, and Belgium. In contrast our data

were from interconnected human, animal and environmental sources on a single Chinese

poultry farm and connected slaughterhouse. Ren used SNPs (called against E. coli K-12 refer-

ence) as input to their classifiers, with no feature selection, whereas we used k-mers and per-

formed a two-step feature selection to reduce sample-feature ratio. Ren then used Logistic

regression, linear SVM, Random Forest and convolutional neural network classifiers to predict

AMR phenotypes. In our study we used 10 classifiers including 3 that Ren used (LR, SVM,

RF). Comparing the four antibiotics models across the two studies, our machine learning mod-

els achieved equal or higher AUC and precision values compared to all four antibiotic models.

The sensitivity of our models was the same or better compared to both the Giessen and public

datasets for all antibiotics except ceftazidime, where our sensitivity was 0.81 compared to

0.74–0.90 in the Ren study. For each of their datasets, Ren took the 10 highest-ranking features

from each antibiotic and associated them with the genes in the genome to identify the cognate

markers of AMR. Excluding known AMR genes, they found 19 genes of interest. Interestingly,

14 out of these 19 genes (nhaA, rlmC, fliI, pepB, prlC, sodA, murB, rluF, yjfF, treR, argI, valS,

fhuF and nadR) were also selected by our machine learning algorithms, and 4 (sodA, rluF, treR
and argI) were found to be in the 361 most discriminating genes. This overlapping of genes

despite the different sample sources and countries (predominantly clinical isolates from

humans and animals of international origin, compared to isolates from healthy animals and

humans from China in our study) gives further evidence of the robustness of the methods we

have used in this study.

Despite the limited number of samples available in our study, when we compared our

machine learning performance metrics to published studies with similar and larger E. coli data-

sets we found comparable AUC, sensitivity, and specificity values[20,21,25,26], indicating that

the methods employed in this study have not been excessively affected by this limitation. Specif-

ically, Hyun [21] used 1588 E. coli genomes from publicly available data to build SVM-based

prediction models using amino acid sequence variants. The genomes used were of human ori-

gin and predominantly from the UK and USA. Hyun tested six antibiotics of which four over-

lapped with those in our study (AMC, CAZ, CIP and GEN). Compared to Hyun across these 4

antibiotics we achieved better AUC values in our study for 3 of 4 models (AMC: 0.83 vs 0.91,

CAZ: 0.95 vs 0.97, GEN: 0.94 vs 0.95 [Hyun vs ours]), with our AUC for CIP slightly worse with

a value of 0.97 compared to 0.98. Our sensitivity (recall) was better than in Hyun for all 4 antibi-

otics. Our models performed slightly worse against Hyun in three antibiotics for accuracy
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(CAZ: 0.97 vs 0.92, CIP: 0.98 vs 0.94, GEN: 0.97 vs 0.90 [Hyun vs ours]) and precision (CAZ:

0.87 vs 0.88, CIP: 0.94 vs 0.96, GEN: 0.86 vs 0.94 [Hyun vs ours]). However, our AMC model

performed better for both precision (0.67 vs 0.80) and accuracy (0.79 vs 0.85).

Similarly, in Moradigaravand [26] 1936 E. coli sequences (of which 1509 were also used in

Ren, 2018) from human clinical and environmental sources were retrieved from collections in

the UK, Pakistan, Syria, Sweden, the USA, and Belgium and used to predict AMR phenotypes

using accessory gene presence-absence, matrix of the population structure, core genome SNPs,

matrix of indels (insertions and deletions) and the year of isolation as features. Four machine

learning classifiers were considered Random Forest, Gradient boosted decision trees, deep

neural networks and logistic regression. Eleven antibiotics models were considered in Moradi-

garavand of which 6 overlapped with those of our study: AMC, AMP, CIP, CTX, CAZ

(denoted CTZ in Moradigaravand) and GEN. Of these 6 antibiotics our dataset had better

accuracy in 3 of 6 models (AMC: 0.81 vs 0.88, AMP: 0.93 vs 0.98, CIP 0.93 vs 0.94, CTX 0.97 vs

0.89, CAZ: 0.95 vs 0.93, and GEN: 0.97 vs 0.90 [Moradigaravand vs ours]). Our study had the

same or better sensitivity (denoted R.RCL in (Moradigaravand et al. 2018)) in 5 of the 6 models

(AMC: 0.64 vs 0.89, AMP: 0.96 vs 0.98, CIP 0.81 vs 0.97, CTX 0.92 vs 0.91, CAZ: 0.80 vs 0.80,

and GEN: 0.81 vs 0.91 [Moradigaravand vs ours]). Comparing specificity our study achieved

same or better specificity (denoted S.RCL in (Moradigaravand et al. 2018)) in 3 of 6 models

(AMC: 0.60 vs 0.88, AMP: 0.96 vs 0.94, CIP 0.87 vs 0.88, CTX 0.93 vs 0.87, CAZ: 0.92 vs 0.96,

and GEN: 0.98 vs 0.89 [Moradigaravand vs ours]).

Another E. coli study with a smaller sample size compared to ours was that of Her and Wu

[20]. Her took 59 public database sequences (51 USA human isolates, 1 Taiwan human isolate,

1 Brazilian penguin isolate and 6 of unknown origin) and built machine learning predictors

using radial SVM, Naïve Bayes, Adaboost, and Random Forest classifiers. Four different fea-

ture sets were used: core + accessory gene clusters, accessory gene clusters, CARD gene clusters

and accessory gene cluster with CARD annotation. Of these the core + accessory gene cluster

feature set is the most comparable with our k-mer features that cover both the core and acces-

sory genome. Her and Wu studied 12 antibiotics of which eight overlapped with those studied

in our work (AMP, AMS, CFZ, CAZ, FEP, GEN, CIP and SXT). Compared to Her and Wu

[20] (looking at the most comparable feature set core + accessory gene clusters) our model

gave the same or better AUC values for all the classifiers used in Her (AMP: 0.75 vs 1.00, AMS:

0.70 vs 0.97, CAZ: 0.84 vs 0.97, CFZ: 0.82 vs 1.00, FEP: 0.85 vs 0.94, GEN: 0.72 vs 0.95, CIP:

0.78 vs 0.97 and SXT 0.66 vs 0.99 [Her vs Ours]). Additionally, we achieved equal or better sen-

sitivity values across 5 of 8 antibiotics compared Her and Wu (AMP: 0.5 vs 0.98, AMS: 0.53 vs

0.99, CAZ: 0.80 vs 0.80, CFZ: 0.86 vs 0.98, FEP: 0.90 vs 0.89, GEN: 1.00 vs 0.91, CIP: 1.00 vs

0.97 and SXT 0.49 vs 0.97 [Her vs Ours]), and better precision also in 5 antibiotics (AMP: 1.00

vs 0.99, AMS: 1.00 vs 0.95, CAZ: 0.81 vs 0.87, CFZ: 0.79 vs 0.99, FEP: 0.82 vs 0.89, GEN: 0.85 vs

0.86, CIP: 0.73 vs 0.94 and SXT 1.00 vs 0.98 [Her vs Ours]).

Interestingly, the gene ontology enrichment analysis indicated the presence of 7 genes

(prpD, mhpA, mhpB, mhpC, mhpF, mhpE, hcaB) involved in the catabolism of aromatic com-

pounds and in particular, phenylpropanoids [78], which suggests the possible involvement of

these genes in antibiotic resistance mechanisms. A total of 73 metabolic and regulatory genes

as well as those involved in phenylpropanoid catabolism were identified including purM and

purl (purine metabolism), argH and argA, (arginine biosynthesis), hisD, hisB and hisI (histi-

dine metabolism), bioF (biotin metabolism), etk, narL and qseF (two component regulatory

systems). Purine and biotin metabolism have both been previously found to be in an enriched

pathway correlated to antibiotic resistance [22].

Our machine learning analysis found a high number of known AMR-associated genes to be

associated with the analysed AMR phenotypes. Among these genes, the bicyclomycin
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resistance gene, bcr, was found to be significant in 11 of the antibiotic resistance models and

identified as occurring in both IncFIA and IncFIB plasmids. This gene is part of the Bcr/CflA

subfamily of multidrug efflux pumps, including the floR gene giving resistance to florfenicol

antibiotics and BLAST search of our isolates against the CARD database [38] identified this

gene as having a greater than 90% identity to the floR gene. This known AMR-associated gene

appears to be widespread and a significant contributor to the AMR phenotypes seen in our

cohort. The floR gene is increasingly prevalent in both animals [79] and humans [80] where it

has been linked to transmission from chickens.

Notably, when we used the Jaccard/Tanimoto coefficient to search for correlation between

resistance phenotypes and the AMR-associated genes, no significant results were obtained.

Significant associations, as shown by the high prediction indicators, could only be obtained by

using a more sophisticated approach such as machine learning. This shows the power of the

learning approach for this type of analyses.

Gene sharing network analysis plays a fundamental role at providing detailed overviews of

how AMR profiles and their associated most frequent sources are clustered for each antimicro-

bial, clearly indicating the elements of similarity and differentiations within and between com-

munities. For example, our gene sharing networks showed that communities were often

formed by drug-susceptible isolates from poultry and drug-resistant isolates of poultry and

humans, highlighting the higher similarity among these three groups when compared to drug-

susceptible E. coli isolates from humans. This result is in agreement with Johnson et al. (2007)

[80], who showed comparable similarity results and suggested that drug-resistant human fae-

cal E. coli isolates likely originate from poultry, whereas drug-resistant E. coli isolates from

poultry likely originate from susceptible precursors in poultry.

In addition to the clustering and differentiation behaviours captured by indicators such as

modularity, gene sharing networks allow also to identify sources acting as most likely bridges

of transmission between host species and/or environments. To this purpose, the betweenness

centrality indicator allows to isolate nodes (sources) with the highest number of connections,

and thus acting as bridges between different communities, possibly underlying an important

role in AMR gene transfer. For example, betweenness centrality indicates that for ampicillin/

sulbactam the chickens are the hotspots for antibiotic resistance, while for the cefepime and

kanamycin, resistance sharing involves multiple sources with no clear prevalence. These results

suggest further investigation to uncover additional, biological supporting evidence.

We recognize that the differentiation of resistant and susceptible isolates seen in the cluster-

maps and networks is of limited value as they were based on the k-mers selected by a chi-

squared test and extra tree classifier, during feature selection for the ML classifiers. Since the

goal of the feature selection approach is to select the k-mers with the greatest separation

between resistant and susceptible samples, the inputs into the cluster maps and networks pre-

dispose them to showing this separation. Nonetheless, the strength of this method is the ability

to separate resistant samples into different communities uncovering possible patterns of anti-

biotic resistance sharing. For example, on Fig 3A, the ampicillin/sulbactam network indicates

that the resistant samples are spread over 3 distinct communities (C0, C3 and C4); with the

clustermaps it is possible to visualise why these communities are different. The majority of the

susceptible samples are present on communities C1 and C2, while the network indicates a sep-

aration between these two communities, the clustermaps indicate that the samples are more

similar and mixed between these two communities indicating the importance of using both

methods together.

When investigating the drivers of the extensive ARG sharing among microbial communi-

ties in humans, animals, and the environment, we found the coexistence in the plasmid IncI2

of colistin resistance gene mcr-1 and gene blaCMX-M-97. The mcr-1 gene has previously been
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noted to give a fitness advantage to the IncI2 plasmid carrying it [63]. Though China is no lon-

ger using colistin as a growth promoter [63,81] the fitness advantage conferred by IncI2 plas-

mids supports potential transmission even in absence of antibiotic selection pressure.

Moreover, our findings showed a percentage of human isolates (29.3%) potentially sharing

closely related AMR-associated mobile elements with those found in livestock. The percentage is

not high, but still higher than what found (5%) in the previous UK study [37] and useful to iden-

tify potential transmission of resistance between hosts via mobile genetic elements. In particular,

we mapped four possible hotspots for transmission of E. coli. In the farm environment, nose

swabs from farmworkers showed similarity to isolates from both environmental and chicken sam-

ples. In the slaughterhouse environment, similar plasmids were present on carcasses, in water,

and on the hand swabs of both the abattoir workers and their household members. The presence

of clusters containing strains from chicken meat and humans is consistent with findings in the

Netherlands [82]. The Netherlands during the years 2007 to 2009, like China, was one of the high-

est users of antimicrobial agents in food-production animals [83,84], resulting in high rates of

drug resistance among these animals. Due to the decrease in the usage of antibiotics from 2010

onwards in the Netherlands, a decrease in E. coli resistance in poultry was also observed [84]. Like-

wise, differences observed between China and the UK study [37] could be caused by the UK being

one of the lowest users of antimicrobial agents in food-production animals [83].

Most of the individual clusters obtained by gene sharing network analysis contained differ-

ent STs, which is indicative of horizontal transfer of mobile genetic elements between lineages,

as seen in previous work [37]. This potential horizontal transfer is supported by an in vitro
study showing transfer of a blaTEM-52 carrying plasmid from an avian E. coli strain to 2 human

E. coli strain [85].

We acknowledge several limitations of our study. First, this study has been confined to a

relatively small number of isolates and single colony picking. Although we covered two collec-

tion cycles, with so many potential features, ideally a larger number of isolates would allow

refinement of the machine learning predictions. Other studies attempted the analysis of anti-

microbial resistance on E. coli with machine learning and larger sample sizes [20,26,27,86].

However, the downside of requiring larger sample sizes is limitations in data availability, often

requiring reliance on public databases and thus compromise on the type of available data and

possible studies. For example, whilst not being able to rely on large amounts of data, we had

the unprecedented possibility to perform a longitudinal study in the tightly controlled environ-

ments provided by using a farm and related slaughterhouse of the same commercial company.

Another potential limitation is that we only used short-read assemblies for the genetic anal-

ysis of plasmid and MGE transmission. Although suitable to identify phylogenetic correlations

and hence potential transmission among stable plasmids, short-read assemblies offer lower

resolution in tracking plasmids being mosaic and recombinant, compared to long-read

sequencing [87–89]. Our approach may have limited the amount of plasmid diversity captured

in this study. Also, our study lacks the wider contextualization possible only by using metage-

nomic approaches.

Our findings support the pressing need to extend surveillance on AMR both within and

beyond clinical settings. In this work we found evidence of transmissible drug resistance in

food-production animals and associated emergence of drug resistance in zoonotic pathogens.

In several cases pathogens such as E. coli are part of the normal, human gut flora, thus the

threat represented by drug resistance in these zoonotic pathogens is very high. LMICs lack of

supportive regulation and widespread informal use of antibiotics might represent a risk of

transmission for workers and their households. Further studies on the causes that foster or

confine AMR exchange between environmental microbiota, human non-pathogenic and path-

ogenic bacteria, particularly during farming, are desirable.
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Methods

Ethics statement

A key component of the programme of work was the recruitment of human faeces, hand

swabs, nose swabs, chicken faeces and cloacal swabs and chicken carcasses for conventional

microbiological analysis for presence of Escherichia coli.

Ethical approval has been obtained from the Research Ethic Committee in the School of

Veterinary Medicine and Science at the University of Nottingham, and from Food Safety Risk

Assessment, China National Center for Food Safety Risk Assessment, Beijing, China and

assigned the following application IDs: 2340 180613 and 2018018.

Sample collection and bacterial isolation

A total of 284 samples were taken over two independent 6-weeks broiler production cycles (March

to June 2019) from a farm and connected slaughterhouse in Shandong province, China. The farm

implements self-breeding uses the closed-end management model and contains on average 12000

chickens. A total of 284 isolates, were collected and included: soil surrounding the chicken barn

(n = 12), chicken drinking water (n = 10), chicken feed (n = 16), farmworker faeces (n = 21), veteri-

nary surgeon faeces (n = 3), farmworker hand swabs (n = 20), veterinary surgeon hand swabs

(n = 3), worker nasal swabs (n = 20), veterinary surgeon nasal swabs (n = 3), chicken faeces

(n = 60), chicken caecal droppings (n = 12), chicken cloacal swabs (n = 10), abattoir operator faeces

(n = 11), abattoir operator nasal swabs (n = 11), abattoir operator hand swabs (n = 11), abattoir

operator household faeces (n = 8), abattoir operator household nasal swabs (n = 8), abattoir opera-

tor household hand swabs (n = 9), abattoir waste water (n = 4), chicken carcass (n = 32). Connectiv-

ity of the samples is explained below for the E. coli positive samples. Farmed chickens were treated

with kanamycin (aminoglycoside) for the first 5 days, tylosin (macrolide) from day 6 to 9, neomycin

(aminoglycoside), from day 12 to 15, and florfenicol (chloramphenicol) from day 18 to 21 in the

first production cycle and with amoxicillin (penicillin) from day 5 to 8 and neomycin (aminoglyco-

side) from day 9 to 12 in the second production cycle. To isolate E. coli strains an approximately

10g mixed fresh sample of 2–3 chicken faeces or an approximately 2g mixed fresh sample of 2–3

chicken caecal droppings was collected from the bottom of the chicken cage using a sterilized

spoon. Chicken cloacal swab samples were collected using cotton-tipped swabs (108C.USE, Copan

Diagnostics, Italy) from the same cage. Chicken carcass samples were collected in abattoir using

sponge swabs (SS100NB, Hygiena International, Watford, UK). About 10g soil surrounding the

chicken barn was collected at depth of 1-3cm within a distance of 5m from chicken barn. Not less

than 20mL each of chicken drinking water of farm and waste effluent water from the slaughter-

house were collected from the water pipe or by using pipettes. About 10g each feed sample was col-

lected using a sterilized spoon. Sterilized sampling spoons were used to collect 8g each of faeces

from humans including chicken farm workers, the poultry veterinarian, slaughterhouse workers

and slaughterhouse worker households. The hand swab sample and nasal swab samples were also

collected using cotton-tipped swabs. All samples were collected using aseptic techniques, and then

kept in secure containers at 4˚C during transportation to the laboratory and analysed within 24h.

Bacteria isolation and diarrheagenic E. coli (DEC) identification

A quantity (volume) of 1 g (mL) sample of faeces, soil, feed, drinking water and polluted water

each was vortexed with 9 mL of sterile buffered peptone water tube (BPW; Luqiao Inc., Beijing,

China) for 1 min; nasal swab samples, hand swab samples and cloacal swab samples were vig-

orously vortexed with 9 mL BPW for 1 min in a test tube; chicken carcass sponge samples

were homogenised with 10 mL BPW for 1 min in a stomacher bag. Approximately 1mL
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dilution (of any of the above samples) was then added to 9 mL E. coli (EC) broth (Luqiao Inc.)

and incubated at 37˚C for 16-20h in order to enumerate presumptive E. coli populations. A

loopful of these solutions was then streaked onto an eosin-methylene blue (EMB) agar and

MacConkey (MAC) Agar (Luqiao Inc.) and incubated at 37˚C for 18-24h. Typical E. coli colo-

nies were screened and subsequently characterized by a Bruker MALDI Biotyper (Germany).

The positive isolates identified were further confirmed by PCR using E. coli-specific primers

ITS-F (5’-CAATTTTCGTGTCCCCTTCG-3’) and ITS-R (5’- GTTAATGATAGTGTGTC-

GAAAC-3’). Thermal amplification conditions were as follows: pre-incubation at 94˚C for 5

min, followed by 30 cycles of denaturation at 94˚C for 30s, annealing at 55˚C for 30s, elonga-

tion at 72˚C for 30s, and a final extension of 72˚C for 5 min. Out of 284 isolates analysed, 154

were identified as E. coli positive and included: chicken faeces (n = 49), farmworker faeces

(n = 19), chicken carcasses (n = 15), cloacal (anal) swabs (n = 9), chicken caecal dropping

(n = 9), farmworker hand swabs (n = 9), farmworkers nasal swabs (n = 8), abattoir operators

faeces (n = 7) and their households’ faeces (n = 7), animal feed (n = 6), abattoir polluted water

(n = 3), abattoir operators’ hand swabs (n = 3), soil surrounding the chicken barn (n = 3), abat-

toir operator households’ nasal swabs (n = 2), abattoir operator households’ hand swabs

(n = 2), chicken drinking water (n = 2), abattoir operators’ nasal swabs (n = 1). Chicken faeces

samples were taken from small cages containing up to 10 chickens (cage ID numbers given in

S1 Table), with up to two pooled samples taken per cage (each pooled sample containing 2–3

faeces). Sampling in this way gave a 5.2–11.4% probability of sampling the same chicken more

than once at any time point (18.7–34.1% over both time points). A single pooled caecal sample

containing 2–3 individual chicken samples gave rise to a 1.0–2.8% probability of sampling the

same chicken more than once (5.2–11.4% over both time points). Cloacal swabs were taken

from individual chickens and were all independent. Finally, humans were sampled at multiple

body sites once per time point (human ID numbers given in S1 Table).

Confirmed E. coli strains were screened for five diarrheagenic pathotypes, EAEC (enteroaggrega-

tive E. coli; aggR and/or astA and/or pic), EPEC (enteropathogenic E. coli; escV), STEC (shiga toxin-

producing E. coli; stx1 and/or stx2), ETEC (enterotoxigenic E. coli; lt and/or stp and/or sth), and

EIEC (enteroinvasive E. coli, invE), by the DEC multiplex PCR kit (Meizheng, Inc., Beijing, China).

Antimicrobial susceptibility testing

Antimicrobial susceptibility to a panel of agents was determined by broth microdilution and

interpreted according to the criteria based on the Clinical & Laboratory Standards Institute

(CLSI) interpretive criteria (CLSI 2009). The minimum inhibitory concentrations (MIC) of 26

antimicrobial compounds were measured for the 154 E. coli isolates, and these included ampi-

cillin (AMP), ampicillin/sulbactam (AMS), tetracycline (TET), chloramphenicol (CHL), tri-

methoprim/sulfamethoxazole (SXT), cefazolin (CFZ), cefotaxime (CTX), ceftazidime (CAZ),

cefoxitin (CFX), gentamicin (GEN), imipenem (IMP), nalidixic acid (NAL), sulfisoxazole

(SUL), ciprofloxacin (CIP), amoxycillin/clavulanic acid (AMC), polymyxin E (PE), polymyxin

B (PB), minocycline (MIN), amikacin (AMK), aztreonam (AZM), cefepime (FEP), merope-

nem (MEM), levofloxacin (LEV), doxycycline (DOX), kanamycin (KAN) and streptomycin

(STR). E. coli ATCC 25922 was used as a control for the antimicrobial susceptibility testing.

The MIC50 value (the MIC required to inhibit 50% of cells), MIC90 value (the MIC required

to inhibit 90% of cells), resistance rate and MIC distribution were calculated.

DNA purification and extraction

The identified E. coli isolates were kept in brain heart infusion broth (BHI) medium with 20%

glycerol at -80˚C and genomic DNA (gDNA) was purified using Omega EZNA Bacterial DNA
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Kit (Omega Bio-tek, GA, USA). All the E. coli isolates were subjected to genomic DNA extrac-

tion in accordance with the manufacturer’s protocol of E.Z.N.A. Bacterial DNA Kit (Omega

Bio-Tek, Norcross, GA, USA).

Library construction and whole genome sequencing

The template genomic DNA was fragmented by sonication to an insert size of 350 bp using

NEBNext Ultra DNA Library Prep Kit for Illumina (NEB, USA) following the manufacturer’s

recommendations and index codes were added to attribute sequences to each sample and

sequenced using an Illumina Hiseq 2500 PE150 achieving a median genome coverage of 270x

(Range 140x-380x).

Genome assembly and annotation

All sequences were pre-processed through readfq v10. To clean the data, reads containing low-

quality bases (mean quality value� 20) over 40% were removed. Reads with greater than 10%

unidentified bases (N) were removed as well as the adapters. The whole-genome shotgun

sequencing produced 154 high-quality reconstructed E. coli genomes with a N50 larger than

50,000 and less than 250 contigs (S1 Table). Cleaned data were processed for genome assembly

with SPAdes v3.13, and QUAST v4.5 was used for assessing the assembly. The contigs with

length shorter than 500 nucleotides were filtered out. The completeness and contamination of

genomes were assessed through checkM with the lineage_wf pipeline. Genomes were anno-

tated with Prokka v1.14.5 [90] using default parameters with—addgenes–usegenus.

Screening of annotated genes against ABR databases

The whole genome sequences were screened against the CARD [38] database with a minimum

coverage and identity of 90% to identify known AMR-associated genes in the isolate cohort. In

addition the annotated genes obtained from Prokka v1.14.5 [90] were screened against the

CARD [38], ARG-Annot [40] and Resfinder [39] databases using Abricate [91] and the NCBI

AMRfinder [41] database; all the comparative analyses have been done with a minimum cover-

age and identity of 90%. For some genes identified in the AMR databases, the gene name dif-

fers from the name assigned by Prokka, due to synonymous genes. In these cases, we have

opted to use the more widely recognised gene name as reported in the AMR databases

throughout the text, though the original name can be found in S3 Table. Additionally, gene

names were screened against the MutationDB database that records genes reported in litera-

ture to have undergone mutations due to antibiotic stress [49]. Where available, gene accession

numbers were added to S3 Table.

In silico subtyping identification and standard index of association (IA)

calculation

Sequence types were identified through MLST which mapped the sequences to the PubMLST

E. coli MLST database. Clonal complexes were annotated from known CC types in the MLST

database. Phylogroups were identified using in silico Clermont typing [92]. Serotypes were

identified through the EcOH database [92] using Abricate [91].

Linkage disequilibrium of the 154 isolates in our cohort was evaluated using the standard-

ized index of association (IS
A) [43], which estimates the homologous recombination for the

cohort by assessing the linkage disequilibrium among the seven MLST loci. The LIAN Ver. 3.7

program was used to calculate the IS
A for all the isolates and for a subset of them (one isolate

for each ST type) from the ratio of the variance of observed mismatches in the test set (VD) to
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the variance expected for a state of linkage equilibrium (Ve), scaled by the number of loci used

in the analysis (L) [43,93].

ISA ¼
1

L � 1

VD

Ve
� 1

� �

The significance of IS
A was determined by a Monte Carlo simulation with 105 resamplings.

Whole-genome phylogenetic analysis and network analysis based on

pairwise SNP alignment

All annotated genomes were taken as input for pan-genome analysis with core gene align-

ments through Roary v3.13 [94]. IQTree v2.0.3 [95] was then used to construct the phyloge-

netic trees from the core genome alignment. Fifty-three different nucleotide replacement

models were tested automatically with the GTR (+F+R5) replacement model selected as the

best model. The Ultrafast bootstrap algorithm was used with 1000 replicates to assess branch

support. The phylogenetic trees were subsequently visualised through iTOLv5 [96]. The core

genome alignment was taken as input to produce a file of core gene SNPs present in the cohort

using snp-sites [97]. A network of E. coli isolates collected from different sources in the farm

(human, chicken and environmental) was created using a pairwise hamming distance compar-

ison based on SNPs in the core genome. Each node represents an isolate while the edge repre-

sents the hamming distance between two isolates multiplied by the total number of SNPs

found in our cohort (133,631 SNPs). A threshold of 15 or less SNPs difference was used to filter

the edges in the network as suggested by Ludden et al (2019) [37].

Machine learning analysis

Machine learning methods were used to search for the features in the genome sequence of each iso-

late which could strongly correlate to resistance to each one of the of the 26 selected antimicrobials.

Sample genomes were first split into overlapping 13-mers using GenomeTester [98] to produce a

feature table for all samples. The AMR phenotype (resistant, susceptible or intermediate) of each

sample (S1 Table) was used as the class label with intermediate phenotypes neglected. As the classes

were unbalanced a synthetic minority oversampling technique [99] was used during the training

phase of the classifiers to balance the proportion of classes in the data set. The Python package Sci-

kit-learn [100] was used to make the classification and to select the most important features.

Fig 2A indicates the pipeline with the five steps used in this work. The Python package Sci-

kit-learn [100] was used to make the classification and to select the most important features.

1. A two-step approach to overcome the disadvantages of applying a chi-square test in multi-

ple comparisons is used: i) all the k-mers that have a p-value > 0.05 (the null hypothesis

was not rejected) were discarded; ii) the ones with a p-value < 0.05 were used as input to an

Extra Tree Classifier (randomized decision trees) and the k-mers with a Gini feature impor-

tance above the overall mean were selected.

2. A panel of machine learning methods (logistic regression (LR), linear support vector

machine (L-SVM), radial basis function support vector machine (RBF-SVM), extra tree

classifier, random forest, adaboost, xgboost, naïve bayes, linear discriminant analysis and

quadratic discriminant analysis) were then run using as input the k-mers uncovered on the

first step and their performances were evaluated.

3. A BLASTN approach on the whole genome sequence of each sample to identify the genes

related to each k-mer selected on the first step.
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4. The genes with a relative presence higher than 30% between resistant and susceptible sam-

ples are selected to be input for the clustermaps and gene sharing networks.

5. The genes selected in the previous step are evaluated in AMR public databases (CARD [38],

ARG-Annot [40], ResFinder [39]) to confirm if they are known AMR genes.

Nested Cross-validation (NCV) [101] was employed to assess the performance and

select the hyper-parameters of the proposed classifiers. In NCV, there was an outer loop

split of the data set into test and training sets. For each training set, a grid search (inner

loop) was run, to find the best hyper-parameters of the classifier using accuracy as a perfor-

mance metric. Then, the test set was used to score the best classifier found in the inner

loop. Thirty iterations were carried out, wherein each iteration an NCV was employed. The

inner loop of the NCV found the best hyper-parameters of each classifier using stratified

3-fold cross-validation; the outer loop measured the ROC-AUC (receiver operating charac-

teristic area under the curve) accuracy, sensitivity, specificity and Cohen’s kappa of the test

data set (unseen in the inner loop for the training) using 5-fold stratified cross-validation,

to compare all the classifiers [102]. A synthetic minority oversampling technique (SMOTE)

was used to reduce the impact of unbalanced classes in the antimicrobial label groups. The

number of splits in the nested cross validation and the number of k-nearest neighbours for

SMOTE necessitated at least 12 samples in each class. The prediction metrics accuracy (TP

+TN/(P+N)), sensitivity (true positive rate: TP/P), specificity (true negative rate: TN/N),

Area Under the ROC Curve (AUC) and Cohen’s Kappa were used, as typically used to mea-

sure ML performance, see [22,30,103–105]. Violin plots from the Seaborn package [106]

were used to show the final prediction metrics.

To compare the results obtained by the 10 different classifiers used, a Friedman Statisti-

cal F-test was employed. The Friedman test FF with Iman-Davenport correction [107] is

employed for statistical comparison of multiple classifiers as suggested by [108]. First, we

rank the algorithms for each dataset separately, i.e., the best algorithm gets ranking 1, the

second best ranking 2, and so on. In case of ties, average ranks are assigned. Next, we apply

the FF and verify if the null hypothesis is rejected. After, the post-hoc Nemenyi test [108]

was used to find if there is a single classifier or a group of classifiers that differ in terms of

their average rank after the FF test has rejected the null hypothesis that the performance of

the comparisons on the groups of data is similar.

To analyse if the antibiotics studied had enough samples to make the test representa-

tive, a wrapper backward selection (WBS) approach in terms of samples was used, i.e. if

initially we have 100 samples we are first going to test the model using all 99 possible

sample combinations (leaving one out), the worst performance is identified and the sam-

ple that was left out on this performance is removed for the next iteration. This is done

until the minimum number of samples (12) is reached for one of the classes. This mini-

mum number of samples is a requirement for the SMOTE approach used in the classifica-

tion framework.

Annotation and abundance of the ARGs in the farm and slaughterhouse

Where the machine learning was able to predict the antimicrobial class based on k-mers, these

were then used to search the genome for genes that contained the k-mers. The k-mers were

mapped to the pangenome of the 154 isolates using a BLASTN [109] query with the parame-

ters: e-value = 1000, word-size = 13, gap-open = 0, gap-extend = 0, out-fmt = 5. Genes with an

identity of>70% and coverage of>70% were considered to be variants of the same gene and

hence were discounted as duplicates, as done in previous literature [110], however a more
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stringent threshold was used to ensure all gene variants were accounted for. The k-mer hit

count (how many k-mers mapped to each identified gene) of the genes identified was then

assessed for statistical significance at a significance level of 0.05 using a binomial exact test,

with the probability of a gene hit based on the length of the gene and number of k-mer combi-

nations possible per gene. To analyse the co-presence of the aadA2 gene, a BLASTN search

was used to find contigs in the WGS isolates with the aadA2 sequence as the query and a 95%

identity threshold. Genes present in contigs matching to the aadA2 sequence were selected

from the annotated whole genome sequences and summarised by isolate.

To select the most relevant genes we analysed their presence in the resistant (Pr) and sus-

ceptible (Ps) isolates. Where a gene was considered as present in a sample if at least one k-mer

recognised as discriminant for the specific AMR profile by the classifiers could be mapped to

that specific gene. A gene was considered not present in a given sample if all the discriminant

k-mers associated to that gene were absent in that specific isolate. If the difference |Pr–Ps| was

higher than δ the gene was selected and identified as important to differentiate resistant and

susceptible isolates; in our case δ was equal to 30%. To analyse the co-occurrence of the genes

that considered to be the most relevant the Jaccard coefficient was calculated in a pairwise

manner between the two vectors of gene presence/absence (binary data) in each assembled

contig within the cohort.

Functional enrichment analysis

The functional characterisation of the genes not annotated in AMR public databases that pre-

sented a |Pr-Ps| > 30% was done using StringDB v11.5 [59], that scans against both the Gene

Ontology (GO) [60] terms (biological process and molecular function) and Kyoto Encyclopae-

dia of Genes and Genomes (KEGG) pathways [111]. All strains of the Escherichia genus pres-

ent in StringDB were queried and E coli K12 MG655 gave the best match with 211 out of 278

matched genes (75.9%) while E coli O157:H7 gave a match to 200 out of 278 genes (71.9%).

The functional enrichment analysis was run on both E. coli strains with default settings. The

hypergeometric test with false discovery rate correction were used to analyse statistically the

GO and KEGG pathways analysis. To visualize the results, a chord diagram was produced

using the library nxviz v0.6.3 in python.

AMR gene sharing network analysis for the chicken farm and

slaughterhouse environments

To identify the hot-spots of resistant bacteria and AMR-conferring genes and investigate their

transmissibility across humans, animals and their environment, within and between farm and

slaughterhouse environments a novel graph network was constructed based on the work of

Bernard et al. (2016) [112]. The AMR gene sharing network for each one of the 21 selected

antimicrobials was built using the ARGs recognised as discriminant by the machine learning

approach and fulfilling the |Pr–Ps|>30% selection criteria. To data mine the graph network, a

community detection algorithm was applied using the NetworkX [113] and the community

python-louvain [114] libraries. A community is a set of nodes (cluster) that are densely con-

nected. It is typical to identify social behaviours [115]. In order to find the communities in a

graph, the algorithm partitions the nodes that maximise the modularity using the Louvain heu-

ristics [116]. In the gene sharing network, each node represents a sample (colour and shape

indicates the metadata associated with each sample), and an edge connecting two nodes repre-

sents the Euclidean distance between two samples based on the presence/absence of the dis-

criminant k-mers related to the genes. The networks were analysed to assess modularity and

betweenness centrality. Modularity measures the strength of division of a network into
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communities. It is usually expressed in the 0–1 range, and higher modularity values indicate a

network with tightly connected samples within the communities, but sparse connections

between communities. Betweenness centrality is computed for all the nodes in the network,

and -for each node- quantifies how many paths connecting two other nodes pass through that

node.

Plasmid reconstruction and hierarchical clustering

Plasmids were reconstructed using the MOB-recon algorithm in the MOB-suite package [61],

using default settings. The presence/absence of each plasmid in the cohort was visualised in

iTOLv5. Reconstructed plasmid sequences were searched using BLASTN to identify which

genes from the WGS pangenome were plasmid located (search with the pangenome as a query

with a 95% identity threshold, default settings). The 1113 genetic determinants of resistance

were then checked to see if they were present on any plasmid in the isolate and assumed to be

chromosome based if not present. Each reconstructed plasmid was annotated using Prokka

v1.4.5 [90]. For each identified replicon type with more than 5 reconstructed plasmid

sequences, gene presence/absence was analysed using Roary v3.13 [94]. The gene presence/

absence output from Roary was used as input for hierarchical clustering of the reconstructed

plasmids in R [117]. A binary distance matrix (scaled between 0 and 1) of the reconstructed

plasmids was created then the plasmids were clustered hierarchically using the hclust function

in R (with method = ‘Jaccard’). The heights of the clusters represent the Jaccard distance

between plasmids.

Supporting information

S1 Fig. Single nucleotide polymorphism network analysis of highly connected isolates. Net-

work diagram showing pairwise connections between human, chicken and environmental iso-

lates with less than 15 pairwise SNP differences. The lines between pairs of isolates are colour-

coded by SNP number.

(PDF)

S2 Fig. Nemenyi Diagram. Nemenyi post-hoc test for the performance metrics (A) AUC, (B)

accuracy, (C) sensitivity, (D) specificity, (E) precision and (F) Cohen’s Kappa score for the fol-

lowing classifiers: logistic regression, linear SVM, RBF-SVM, extra tree classifier, random for-

est, adaboost, xgboost, naïve bayes, linear discriminant analysis (LDA) and quadratic

discriminant analysis (QDA).

(PDF)

S3 Fig. Learning Curves. Learning curves of the 21 antibiotics using a wrapper backward

selection to evaluate the training and testing performance whilst decreasing the number of

samples. (A) The original number of samples for each antibiotic and 5 nested cross validation

iterations with an RBF-SVM as the main classifier; (B) SMOTE approach as a pre-processing

step to increase the number of samples by adding synthetic samples to the minority class for

each antibiotic and 5 nested cross validation iterations with an RBF-SVM as the main classi-

fier. In both cases, the same features used to acquire the performances in the Fig 2 and S2

Table are used and kept for all the iterations of the WBS. The red lines indicate the training

performance, the green lines the testing performance and the blue vertical line the original

number of samples.

(PDF)

S4 Fig. Networks of AMR genes shared across host species (animals and workers) and envi-

ronments (farm and slaughterhouse) for 18 antimicrobials. The resistome networks for
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amoxycillin/clavulanic acid, ampicillin, aztreonam, ceftazidime, cefoxitin, chloramphenicol,

ciprofloxacin, cefotaxime, doxycycline, cefazolin, gentamycin, levofloxacin, minocycline, nali-

dixic acid, streptomycin, sulfisoxazole, trimethoprim/sulfamethoxazole and tetracycline from

(A) to (R). For each network: (i) Panel on the left, indicates the communities and their respec-

tive numbers found using Louvain heuristics. Each community is indicated with a distinct col-

our. Each community is a set of nodes or clusters, that are densely and connected with

statistical significance and identically coloured. For each network the node represents a sample

and is shown in a distinct colour and shape depending on the metadata of the sample (e.g.,

source, AMR profile, location). In all panels the nodes are separated according to the Euclidean

distance between the isolates; The central panel shows the AMR phenotype (resistant or sus-

ceptible) as the shape of the node and the source of the samples (human, chicken or environ-

mental) as the colour of the node. An edge represents the Euclidean distance between two

samples, and it is coloured according to the associated statistical value. The panel on the right

indicates the location of the sample (farm or slaughterhouse) as the shape of the node and the

type of sample as the colour of the node. (ii) Clustermap showing the genes associated with the

AR discriminant k-mers used to build the networks. The columns on the left show the meta-

data (Class, Location, Source, Type, Clonal Complex, Phylogroup, Community number). The

presence of the genes (in terms of its related k-mers) is indicated in black, while the absence is

indicated in white).

(PDF)

S5 Fig. Machine learning hits to transcription factor binding sites in intergenic regions of

the whole genome sequences. The heatmap shows for each antibiotic model, transcription

factors where the k-mers selected by machine learning mapped to binding sites for the tran-

scription factor and the proportion of individual isolates hit were more than 30% different

between the resistant and susceptible isolates. The presence of a binding site hit is indicated in

pink, with blue denoting no hit. Antibiotic models with no significant hits were neglected

from the figure.

(PDF)

S6 Fig. Functional enrichment analysis of genes identified by machine learning. (A) Circos

plot of KEGG pathways found to be significantly enriched in the 278 unique genes found by

the machine learning compared to the whole genome background not annotated as ARM in

public databases. (B) Circos plot of gene ontology molecular functions found to be signifi-

cantly enriched in the 278 unique genes found by the machine learning compared to the whole

genome background not annotated as AMR in public databases.

(PDF)

S7 Fig. Proportion of genes located on plasmid and hierarchical clustering of isolates

based on similarity of plasmid type. (A) Boxplot showing the proportion of genes located on

plasmids per isolate grouped by host type. Isolates from chicken were found to have signifi-

cantly more genes located on plasmids that human farmworkers and abattoir worker house-

hold members. (B) Hierarchical clustering of plasmids with low number of significant genes

grouped by replicon type. Clustering was based on gene presence or absence. Green under-

scores indicate areas of high similarity (>0.996 WGS ANI value) between isolates from differ-

ent hosts, suggestive of transmission between hosts.

(PDF)

S1 Table. Characteristics of the single isolates, including collection details, typing data,

genomic features, and results of antibiotic susceptibility testing, CARD ARGs and ST
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types.

(XLSX)

S2 Table. Performance metrics (AUC, Accuracy, Sensitivity, Specificity, and Cohen’s

Kappa value) results for the RBF-SVM classification into resistance or susceptible for 21

antibiotics and for the results of the other 9 classifiers used (logistic regression, linear

SVM, extra tree classifier, random forest, adaboost, xgboost, naïve bayes, linear discrimi-

nat analysis and quadratic discriminant analysis); Genes in which k-mers selected as fea-

tures for the machine learning were found; Jaccard coefficients indicating the gene co-

occurrence for all genes found to be significantly correlated with AMR phenotypes.

(XLSX)

S3 Table. List of the 361 genes found to be significantly correlated with AMR phenotypes

by machine learning. For each antibiotic, a sheet showing the frequencies of each gene in each

sample are shown.

(XLSX)

S4 Table. Gene ontology enrichment analysis (molecular function and biological process)

and KEGG pathways results for the 278 unique genes that were not annotated as AMR in

public databases and were selected due to their significance when comparing resistant and

susceptible samples (|Pr-Ps| > 30%).

(XLSX)

S5 Table. List of the 361 genes found to be significantly correlated with AMR phenotypes,

as found by supervised machine learning and their associated plasmids. Known AMR and

virulence genes are noted. Presence in a plasmid is indicated in pink and absence in blue.

(XLSX)

S6 Table. Presence/absence of all annotated genes located on plasmids of different replicon

types. Presence in a plasmid is indicated by 1 and absence by 0.

(XLSX)
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