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Abstract12

The purpose of this paper is to investigate the flexural characteristics and to quantitatively13

study the flexural-induced cracking of reference and rubberized cement stabilized aggregate14

mixtures. Four volumetric replacement percentages (0%, 15%, 30% and 45%) of 6 mm15

fraction size were used. This modification was found to affect the material strength16

detrimentally. However, material toughness was improved and stiffness was reduced. The17

latter findings were supported by quantitative assessment of the fractured surfaces which18

revealed more tortuous and rougher cracking as a result of rubber content increasing. This, in19

turn, may ensure a good load transfer across the cracks after their formation. Overall, using20

rubber in pavement construction is a sustainable solution that ensures consumption of large21

quantities of these waste materials. At the same time, it may considered as a promising22

method to reduce cracking tendency and sensitivity which may improve shrinkage, thermal23

and fatigue performance.24
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1. Introduction30

The increased number of tyres stockpiled every year has created a serious economic and31

environmental problem. Disposal sites may become places for breeding of creatures that32

spread many diseases and can cause significant fire hazard (Zheng et al. 2008). Consequently,33

to deal with these problems and to save natural resources, many studies (Khatib and Bayomy34

1999; Güneyisi et al. 2004; Papakonstantinou and Tobolski 2006; Balaha et al. 2007; Zheng et35

al. 2007; Khaloo et al. 2008; Taha et al. 2008; Zheng et al. 2008; Topçu and Bilir 2009;36

Nguyen et al. 2010; Pelisser et al. 2011; Najim and Hall 2012; Eiras et al. 2014) have been37

conducted to investigate the properties of rubberized concrete. How feasible is it to use waste38

tyres in concrete structure by replacing the fine, coarse or fine and coarse aggregate with39

rubber particles of different sizes and shapes? In general, the above researchers’ findings40

revealed that replacing natural aggregate with rubber particles decreased the strength,41

although some researchers (Jingfu et al. 2009) reported a slight increase in tensile strength.42

However, less stiffness, less brittleness and improvement in toughness was obtained as results43

of aggregate replacement by coarse or fine rubber particles (Balaha et al. 2007; Taha et al.44

2008).45

46

In pavement structures, it is customarily to use cement stabilized aggregate as a base or47

subbase course to increase the structural capacity of that structure, namely in terms of strength48

and stiffness. Cement stabilized aggregate (CSA) is a mixture of aggregate, cement and a49

small amount of water (Lim and Zollinger 2003). Unlike normal concrete, cement stabilized50

aggregate contains a low amount of cement and is constructed by rolling. In spite of the51

similarity between cement stabilized aggregate and roller compacted concrete in terms of52

construction method, the latter usually contains cement contents approaching that used in53

normal concrete (PCA 2005) .54

55
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Different testing methods are used to characterize the stabilized aggregate mixtures. These56

include uniaxial compressive testing (Lim and Zollinger 2003), direct tensile testing (Shahid57

1997), indirect tensile testing (Hudson and Kennedy 1968; Khattak and Alrashidi 2006) and58

flexural testing (Disfani et al. 2014; Arulrajah et al. 2015). The tensile properties in terms of59

flexural strength and indirect tensile are considered critical for pavement design (Xuan et al.60

2012). However, the flexural testing mode is most preferable test (Arulrajah et al. 2015) used61

since it is the most simulative to what actually happening in the field (Arnold et al. 2012). In62

the Mechanistic- Empirical (M-E) pavement design guide, CSA layers are usually designed to63

resist tensile fatigue failure at the bottom of that layer. This requires estimation of flexural64

strength as an important parameter. Therefore, reduction of stiffness without significant65

strength loss, which rubber addition might achieve, could be an attractive option as it would66

be likely to reduce the applied stress and, hence, extend fatigue life.67

68

A very limited number of studies have been conducted regarding the effect of rubber on the69

behaviour of cement stabilized aggregate intended to be used for pavement structure (Guo et70

al. 2013). Since the construction of highways consumes large quantities of natural resources71

as compared with other engineering applications, using crumb rubber in this application is a72

highly sustainable option (Cao 2007; Barišić et al. 2014). Furthermore, it may mitigate the 73

disadvantages of cement stabilization regarding high stiffness and brittleness. Another74

motivation comes from the fact that since the mix will be compacted, this might ensure a75

good interaction between the rubber and the natural aggregate particles as compared with wet-76

cast concrete mixtures. For the above reasons, the purpose of this paper is to study the effect77

of crumb rubber on the flexural properties of rubberized cement stabilized aggregate (R-CSA).78

79

80

81

82
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2. Experimental Program83

2.1 Properties of materials used84

The aggregate used in this study is a crushed limestone, with a nominal maximum size of 2085

mm, obtained from Dene quarry in Nottinghamshire, UK. This was collected in different sizes86

(20mm, 14mm, 10mm, 6mm and dust (< 6mm)). These were dried then the gradation for each87

fraction size was estimated by sieve analysis in accordance with BS EN 933-1:2012. The88

crumb rubber (Figure 1) was sourced from J Allcock and Sons Ltd. in Manchester, UK. Its89

gradation is presented in Figure 2. Two reasons are behind selecting this size. Firstly, from the90

economic point of view, this size is cheaper and commonly available as compared with finer91

ones (Najim 2012). Secondly, initial examination showed that the gradation of this size is92

similar to that of the 6 mm natural aggregate fraction (Figure 2) which would be likely to93

enable replacement of some of the latter size without a big change in volumetric relationships94

of the mix. Hence its use would permit estimation of the effect of rubber replacement alone.95

The specific gravity of the rubber was adopted as a 1.12 as measured by (Najim and Hall96

2012). An Ordinary Portland cement CEM I 52.5 R conforming to BS EN 197-1: 2000 was97

used as the binding agent. Potable tap water is used across this investigation.98

99

2.2 Mixture design100

To constitute the required Cement bound granular mixture (CBGM) gradation as stated in BS101

EN 14227-1:2013- [CBGM2-0/20] , all five aggregate fractions sizes were combined together102

in different proportions using the trial and error method (Garber and Hoel 2009). These103

proportions are 11%, 20%, 11%, 13% and 45% for 20mm, 14mm, 10mm, 6mm and dust,104

respectively. The final gradation after blending all sizes in these proportions is illustrated in105

Figure 3. The cement content used to stabilize the aggregate mixture was 5% of the dry106

weight of aggregate. Optimum water content as a percentage of the dry weight of cement and107

aggregate was estimated through the compactibility test in accordance with BS EN 13286-108

4:2003. This was done by constructing a water content-maximum density relationship as109
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presented in Figure 4. Since the gradations of 6 mm natural aggregate and crumb rubber are110

similar, it was decided to replace the former by the latter volumetrically to help ensure the111

same packing. Thus, investigate the effect of aggregate type. Three volumetric replacement112

percentages were taken into considerations. These are 15%, 30% and 45% of the 6 mm113

aggregate fraction volume, which are equivalent to 2.1%, 4.2% and 6.2% of the total volume114

of the aggregate, respectively. To produce comparable mixtures, the quantity of water and115

cement was kept constant for all replacement levels. Conventionally (and for the reference116

mix) water and cement contents were computed as percentages of the dry weight of aggregate117

in the conventional mix. As rubber replacement would change this weight due to its low118

specific gravity, mix design maintained the same volumetric proportions and hence the same119

opportunities for packing of aggregate with the same surrounding mortar. Table 1 shows the120

investigated mixtures which are designated as follows: C5R0 for the reference mixture121

without rubber whereas C5R15, C5R30 and C5R45 are used to describe the mixtures122

containing 15%, 30% and 45% rubber replacement, respectively.123

124

2.3 Mixing and sample preparation125

All mixing was conducted in a pan mixture with a capacity of 0.1 m3. In terms of mixing126

sequence, the cement and dust were firstly mixed together until a uniform colour was127

achieved then this was added to the rest of aggregate and mixed thoroughly for one minute.128

After that, mixing for another two minutes was done after adding the required quantity of129

water. A standard 100 mm x 100 mm x 500 mm steel mould was used for manufacturing130

prisms. In order to achieve a uniform density, regular dimensions and a smooth surface for131

accurate testing, a mould extension was fabricated to fit on top of the mould and used so that132

more than a 100 mm height was achieved. The specimen was then sawn down to 100 mm133

height. After placement in the mould, the mixture was compacted in three layers using a134

Kango 368 vibrating hammer fitted with a 100 mm x 100 mm square tamper. The compaction135

time was 60 second per layer and each was scarified prior to compacting the next layer.136
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Triplicate samples were manufactured for each mix. All manufactured samples were left137

inside their moulds and covered with wet paper and polythene sheets to prevent moisture loss.138

After 24 hours, they were demoulded and wrapped with nylon film and placed in wet139

polythene bags and closed tightly. Then, they were moved to the humid room and kept for 28140

days.141

142

2.4 Testing procedures143

Flexural testing was conducted in accordance with BS 188: Part 118:1983. A 200 KN144

capacity closed loop deflection controlled Zwick 1484 universal testing machine was used for145

the static flexural testing program. Four point bending test configuration was used for146

prismatic specimens spanning 300 mm. To obtain the post-peak load-deflection behaviour,147

the test was conducted under deformation control at a stroke rate of 0.05 mm/min and148

corresponding deflection was measured at mid-span of beams using two linear variable149

differential transducers (LVDTs). These were mounted utilizing a yoke arrangement. The150

average value from these two LVDTs was used as a deflection at each load application.151

Figure 5 illustrates the flexural testing configuration.152

153

The ultrasonic pulse velocity (UPV) and dynamic modulus of elasticity were measured non-154

destructively in accordance with ASTM C597 using the PUNDIT- plus apparatus. This was155

done by measuring the stress wave speed by the direct transmission method from transducer156

to receiver. Then, from the measured UPVs values, the dynamic modulus of elasticity (Ed)157

was also calculated as follows (Mardani-Aghabaglou et al. 2013):158

159

݀ܧ =
 ρ UPV2(1+ν)(1-2ν)

1 − ν

160

where ρ and ν are the density and Poisson`s ratio, respectively. The bulk density of the161

fabricated beams was estimated using the water displacement method.162
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3. Results and discussion163

3.1 Bulk density and rubber distribution164

Table 1 shows the effect of rubber substitution on the bulk density of test samples. It can be165

clearly seen that, as expected, replacement of natural aggregate with crumb rubber causes a166

decrease in the bulk density since the specific gravity of rubber particles is much lower than167

that of natural aggregate. This can also be attributed to the higher elasticity of rubber particles168

which might have a detrimental effect on the effectiveness of the compaction. The rate of169

decrease in density was about 16 Kg/m3 for every 1% increase in rubber content which is170

consistent with the findings of Khatib and Bayomy (1999) who investigated the replacement171

with rubber (albeit in conventional concrete) of fines-only, only-coarse fraction and of both172

fine and coarse fractions.173

174

Regarding the rubber distribution, Figure 6 illustrates the rubber distribution (at mid height of175

the sample) for different investigated mixtures. For C5R30 mix, rubber distribution is shown176

at three levels of the prism height (top, mid, and bottom). As shown in the latter figure, a177

uniform rubber distribution was achieved for all replacements. Unlike the normal wet-cast178

concrete mixtures where the rubber may float upwards due to the vibration as well as the179

consistency of this mixture, compacted CSA with relative dry consistency shows a fairly180

uniform rubber distribution across the individual levels. This, in turn, might ensure a uniform181

stress distribution inside the mixture since, otherwise, the accumulation of rubber due to non-182

uniform distribution might cause stress concentrations and accelerate sample failure183

accordingly.184

185

3.2 Flexural properties186

3.2.1 Flexural strength187

Tests were conducted at 28-day age and triplicate specimens were used for each mix. The188

flexural strength was computed utilizing the formula ௦ܨ = /ܮܲ ℎܾଶwhere Fs, L, P, b, h are the189
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flexural strength, span, ultimate load, width of the prism and height of the prism, respectively.190

Figure 7 illustrates the effect of rubber replacement on flexural strength. A clear reduction in191

strength is seen as the amount of replacement increases. It seems that the introduction of192

rubber has an adverse effect on the aggregate interlocking, which can be considered, in this193

type of mixture, as the main factor for frictional resistance development. The latter is the194

mechanism by which the compacted mixtures resist applied traffic loading. In addition, the195

reduction in flexural strength can be attributed also to the drop in both tensile and196

compressive strengths due to replacement of natural aggregate of high strength by the softer197

rubber particles.198

199

3.2.2 Flexural stiffness200

Flexural stiffness as reported by (Turatsinze and Garros 2008) can be calculated as a slope201

(∆P/∆δ) of the linear part of load-deflection curve based on the 30% pf the ultimate load and 202

its corresponding deflection (Arnold et al. 2012) . Figure 7 clearly shows that there was a203

reduction in stiffness of the mixture as a result of rubber replacement. This can be attributed204

to the lower modulus of elasticity of the rubber particles. This confirms previous findings for205

concrete mixtures (Turatsinze and Garros 2008; Najim and Hall 2012).206

207

3.2.3 Flexural toughness208

Toughness can be considered as an indication of the ability of material to absorb energy209

(Erdem 2012) or, in other words, it is an expression of the energy required to fail the210

specimen. Regarding normal concrete, a limited number of researches have been conducted to211

quantify the toughening effect due to rubber replacement (Najim and Hall 2012). Toughness212

was estimated from the area under the load-deflection curves (Figure 8) based on the ASTM213

C 1018 method which is most widely used. This specification defines the toughness in terms214

of three indices (I5, I10 and I20) which were calculated by dividing the area under the load-215
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deflection curve at deflections of 3, 5.5 or 10 times the first crack deflection, respectively, by216

the area under the curve up to the deflection when the first crack was observed.217

The conclusion that can be drawn from Figure 9 is that the replacement of natural aggregate218

by rubber enhances the toughness of the resulted mixtures. This might be partly because219

rubber particles contribute to delay the micro-crack initiation by stress relaxation (Najim and220

Hall 2012) and/or due to lengthening of the crack path by propagation through the rubber221

particles. Many authors (Toutanji 1996; Aiello and Leuzzi 2010; Guleria and Dutta 2011;222

Najim 2012) have reported similar improvement in toughness due to the inclusion of rubber223

in concrete mixtures. In addition, this means improvement in deformability of material and,224

hence, the formation of a more ductile material (Topcu 1995). In fact, this may ensure a225

mixture with less sensitivity to fatigue cracking which is, as reported by (Brown 2012), the226

main mode of failure in bound base courses of pavement structures. The investigation of227

fatigue characteristics has been undertaken but will be presented in a separate paper.228

229

3.3 Ultrasonic pulse velocity and dynamic modulus of elasticity230

Figure 10 shows the relative dynamic modulus of elasticity and ultrasonic pulse velocity231

(UPV) of rubberized mixtures with respect to the reference one. This figure revealed that a232

decrease in wave velocity by 3.6%, 4.7% and 7.9% occurred when the 6 mm fraction233

aggregate was replaced by 15%, 30% and 45% crumb rubber particles, respectively. There234

was also a commensurate decrease in the compacted dynamic modulus of elasticity values by235

7.7%, 10.65% and 18.5%. These changes may be because of the interlocking of rubber236

particles with natural aggregate causing loss of contact points between stiff aggregate237

particles which in turn would affect the transmission of ultrasonic wave. In addition, the lower238

modulus of elasticity of the rubber particles relative to that of the conventional aggregate may239

explain the reductions. Similarly, in concrete technology, where the UPV and dynamic240

modulus of elasticity is frequently used for assessing concrete quality non-destructively, many241
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authors (Zheng et al. 2008; Najim and Hall 2012) have reported similar behaviour for242

rubberized normal concrete.243

244

Figure 11 shows that the flexural strength is fairly well correlated with the UPVs. One245

application of this relationship is the possibility to estimate the flexural strength (and hence246

the stress ratio) for the flexural fatigue test. Mechanistic pavement design is significantly247

dependent on the fatigue performance of the bound mixtures, and the stress ratio at which248

they are called to operate plays a crucial role. Stress ratio can be defined as the ratio between249

the applied flexural stress and strength. In the latter test, the conventional approach is to250

measure the flexural strength of the mixture based on the static flexural test then to estimate251

the stress ratios to be applied to the different specimens in flexural fatigue tests. However, due252

to the heterogeneity of CSA, this approach does not necessarily ensure that a representative253

flexural strength is obtained. (Sobhan and Das 2007) tried to overcome this by correlating the254

flexural strength of full-sized beams to the flexural and compressive strengths of beams and255

cubes sawn from fatigue failed specimens. In this way they were able to estimate the actual256

flexural strength and, hence, stress ratio of the fatigued specimens. In this paper, the257

suggested correlation between flexural strength and UPV provides a means of better258

estimating the flexural strength, non-destructively, for the same specimen to be used for the259

fatigue test instead of totally relying on estimation of this parameter based on static flexural260

testing. This methodology may also help to reduce the cost and time of specimen sawing and261

testing.262

263

4 Quantification of the flexural induced cracks264

To provide more understanding regarding the effect of rubber on the behaviour of CSA and265

the mechanism of its failure, a quantitative evaluation of the flexural induced fractured266

surfaces was performed in terms of surface tortuosity and volumetric surface texture ratio267

(VSTR). Tortuosity can be defined as the ratio between the actual crack length and the268
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projection of that crack (Hassan 2012). In this paper, the earlier definition was extended to269

evaluate the 3D tortuosity as the ratio of the surface area of the fractured surface to the270

projection of that surface. The surface area was calculated according to the methodology271

presented in (Chupanit and Roesler 2008). The VSTR is the surface parameter that can be272

calculated from the volume between the actual surface and the mean plane of the surface as273

shown below (Chupanit and Roesler 2008)274

275

VSTR =
∑│R୧��A୧│ + ∑│S୨A୨│

∑(A୧+ A୨)

276

where Ri=distance above the mean plane; Sj= distance below the mean plane; Ai or Aj =277

projected area of each small element (1 mm2).To estimate above surface parameters, it278

necessary to acquire the fractured surface in terms of xyz coordinates to use them in surface279

creation. This was done utilizing the photogrammetry procedure280

281

4.1 Photogrammetric procedure282

It is well known that many methods are available for characterizing and modelling 3D283

surfaces, for example, laser scanning or photogrammetry. There are two main approaches that284

can be used to process digital images to generate 3D surfaces using either algorithms from285

photogrammetry or the structure from motion (SfM) technique which has been largely286

developed by the computer vision community. Using close range photogrammetry, it is287

possible to reach an estimated accuracy of better than 1mm with non-metric cameras288

(Remondino and Fraser 2006). There are a number of commercial photogrammetric software289

packages accurate 3D surface measurements. In SfM however, often the visualisation and290

automation of 3D model is more important than the accuracy. Similar to stereo-291

photogrammetry, SfM can use a set of images acquired with a consumer grade camera to292

generate a 3D surface. The main difference compared to photogrammetry is that image293

acquisition can be more flexible in relative position and attitude of the images. The294
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procedures that both photogrammetry and SfM share are; camera calibration, image matching,295

and inverse triangulation with bundle adjustment for 3D point cloud generation. Figure 12296

shows this sequence of activities.297

298

The photogrammetric and SfM processes were used to generate the 3D surface modelling of299

fractured concrete samples in terms of a cloud of X, Y, Z coordinated points. To minimize the300

processing time and to help extraction of the coordinates defining the fractured surface, the301

sides of each sample were painted white and placed on a white background. This helped the302

process of removing unwanted point as it is easier to differentiate points on the fractured303

surface from those on the white surfaces. A datum is required to define the coordinate system304

and four specially designed markers of 0.5x0.5 cm were placed on each of the samples as305

shown in Figure 13 and surveyed using a reflectorless total station in order to produce306

coordinates so they could be used as control points in the image orientation process, see307

Figure 12.308

309

Eight fractured samples were modelled and transformed to their ‘total station' coordinate310

system utilizing the aligning tool in Cloud Compare (CC), (CloudCompare 2013) . Cloud311

compare provides details of the transformation process such as the transformation matrix,312

RMSE of the transformation and the recovered scale. With 4 control points on each sample313

the RMSE values of the residuals give a quality estimate of transforming each sample to local314

‘total station’ coordinate system This gives an indication of the estimated quality of the315

coordinates defining the surface. RMSE values for different scanning are tabulated in Table 2.316

As can see from the latter table, significant differences among RMSE values exist between317

different samples of the same mixture especially for C5R0 and C5R15. This can be attributed318

to the process of surveying and measuring targets or the difference in the angle of image319

capturing during image acquisition process, where the RMSEs is a scanning-dependent320

parameter. However, as can be seen from Table 2 all the Root Mean Square Error (RMSE)321



13

values are well below 1mm with an average RMSE value of 0.64mm. This was considered322

acceptable for the purposes of these experiments. Based on the work by Beshr and Abo323

Elnaga (2011), RMSE values of less than 0.2mm are achievable for the coordinates of the324

marks based on a range of less than 2m, and an inclination of less than 45°, so there appears325

to be the possibility of further improving the technique in the future.326

327

4.2 Fractured surface quantification findings328

329

Based on the above procedure the 3D digital fractured surfaces were constructed from the xyz330

coordinates for each surface as shown Figure 14. From these surfaces, the tortuosity and331

VSTR were estimated as mentioned earlier. Figure 15 reveals that the inclusion of rubber332

causes greater tortuosity and VSTR for all replacement levels. This can be explained as333

follows. An increase in the embedded rubber particles increases the number of weak points334

because of the large differences between moduli of rubber and adjacent particles. This, in335

turn, may causes cracks to divert via these weak points, hence changing (and may be336

lengthening) the crack path so that it becomes more tortuous. However, amongst the337

rubberized mixtures, the smaller differences between the value of both VSTR and tortuosity338

might be because the local distribution of the crumb rubber inside the sample. In addition,339

each surface parameter gave different ranking where C5R15 has the larger VSTR while340

C5R30 has the larger tortuosity. (Chupanit and Roesler 2008) have reported the same341

behaviour and they attributed that to unavoidable differences in the scale and resolution when342

scanning to assess both surface parameters. The practical implication of tortuosity increase343

means production of tougher and less brittle materials as observed by (Guo et al. 2007) who344

introduced a brittleness parameter as the inverse of the tortuosity value (brittleness parameter345

=A/As, where As and A represent the surface area of the fracture surface and the projection of346

that surface, respectively). The rougher crack is likely to ensure good load transfer efficiency347
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across the crack after its formation (Vandenbossche 1999; Vandenbossche et al. 2014) from348

which greater material toughness results.349

350

In support of the above hypothesis that the rubber deflects the crack route through the351

mixture, the amount of rubber per perpendicular unit length across the fractured surface was352

determined by an image processing technique utilizing the ImageJ software. Firstly, the353

fracture surfaces images were captured using a high resolution camera. Then these were354

converted from RGB mode to an 8 bytes greyscale. ImageJ tools were then utilized to conduct355

thresholding (Figure 16) and eventually estimation of the rubber content across this surface.356

The resulting measurement was compared with the quantity used which was known from the357

mix design. It was found, as shown in Figure 17, that the quantity of rubber visible on the358

crack surface is more than that used. Furthermore, this difference increases as rubber content359

increases. The above results confirm that the cracks propagate around rubber particles which360

support the conjecture of longer crack paths. This explanation is further supported by the361

measured toughness index changes.362

363

5. Conclusions364

In this paper, the effect of rubber replacement on the properties of cement stabilized aggregate365

with emphasis on flexural properties was investigated. In the light of the findings the366

following conclusions can be drawn:367

1. Flexural strength, density and stiffness were reduced as a result of rubber replacement.368

However, more ductile mixtures were produced as confirmed by toughness improvement.369

This was further confirmed by ultrasonic testing where both dynamic modulus of370

elasticity and UPV decreased due to the introduction of rubber particles. This indicates371

that both the studied mixture and normal concrete exhibit similar trends of behaviour372

when rubber is added.373

374
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2. Quantitative assessment of the fractured surfaces revealed that as the rubber replacement375

level increased, the tortuosity and the VSTR of the crack surfaces increased. This means376

more fracture energy was dissipated. These, combined with an evaluation of the rubber377

content on fractured surfaces, may lead to an improved understanding of the mechanism378

of the failure.379

380

3. A good correlation was found between flexural strength and UPV values. This may381

enable accurate estimation of the static flexural strength of the material non-destructively.382

This in turn will help to overcome problems associated with the heterogeneity of this type383

of cementitious mixture when performing fatigue tests.384

385

4. Use of the crumb rubber in compacted cement stabilized mixtures aggregate does not386

experience the same segregation difficulties as encountered in conventional concrete after387

casting and vibration.388

389

5. In spite the decline in the flexural strength of the mixtures due to rubber incorporation,390

the use of rubber will be justified since this detrimental impact on the flexural strength391

may be balanced by the other advantages like improvement in the cracking pattern392

(achieving good load transfer across the crack) and ,importantly, disposing of the waste393

materials. Furthermore, reduction in stiffness will reduce the stress experienced at the394

bottom of the stabilized layer.395

396

6. More investigation is required to assess the performance of rubberized cement stabilized397

mixtures in terms of fatigue performance and durability so as to evaluate and validate398

their use.399

400

401
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Figure Captions422

Fig.1. Appearance of rubber used in this study.423

Fig.2. Individual grain size distribution of the 6 mm fraction size and rubber.424

Fig.3 Mixture gradation after blending all different sizes.425

Fig.4 Water content- dry density relationship.426

Fig.5 Flexural test configuration.427

Fig.6 Distribution of rubber for different replacement levels: (a) C5R15-mid (b) C5R30-top (c)428

C5R30-middle (d) C5R30-bottom (e) C5R45-mid.429

Fig.7. Effect of rubber replacement on flexural strength and stiffness.430

Fig.8. Load-deflection curves for investigated mixtures.431

Fig.9. Effect of rubber replacement on toughness indices.432

Fig.10. Ultrasonic dynamic moduli and UPVs for different mixtures.433

Fig.11 Relationship between UPV and flexural strength.434

Fig.12. A flow diagram of the photogrammetric and structure from motion processes.435

Fig.13. Fixing markers on the fractured surfaces.436

Fig.14. Samples of fractured surfaces scan: a. C5R0, b. C5R30.437

Fig.15. VSTR and tortuosity of investigated mixtures.438

Fig.16. Analysis of rubber quantity through fractures surface: a. captured image, b.439

thresholded image and c. thresholding process.440

Fig.17. Effect of replacement level on amount of rubber across the fractured surfaces.441
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Table 1: Investigated mixtures details and designation442

Mixture

Cement content(% by

wt. of aggregate and

cement of control mix)

Rubber content(%by

volume of 6mm

fraction size)

Water (% wt. of

aggregate and

cement of control

mix)

Bulk

Density

Kg/m3

C5R0 5 0 4.6
2529.647

(0.1%)

C5R15 5 15 4.6
2494.5

(0.17%)

C5R30 5 30 4.6
2456.433

(0.2%)

C5R45 5 45 4.6
2418.533

(0.24%)

Values in the brackets are the coefficient of variation.443
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Table2: RMSE of the residuals at the control points on the fractured surface463

464

Sample
ID

C5R0-1 C5R0-2 C5R15-1 C5R15-2 C5R30-1 C5R30-2 C5R45-1 C5R45-2

RMSE
(mm)

0.54 0.20 0.68 0.44 0.84 0.82 0.88 0.73
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Figure 1: Appearance of rubber used in this study.
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Figure 2: Individual grain size distribution of the 6 mm fraction size and rubber
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Figure 3: Mixture gradation after blending all different aggregate sizes.
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Figure 4: Water content- dry density relationship.
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Figure 6: Distribution of rubber for different replacement levels: (a) C5R15-mid (b) C5R30-

top (c) C5R30-middle (d) C5R30-bottom (e) C5R45-mid
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Figure 7: Effect of rubber replacement on flexural strength and stiffness
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Figure 8: Load-deflection curves for investigated mixtures.
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Figure 9: Effect of rubber replacement on toughness indices
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Figure 10: Ultrasonic dynamic moduli and UPVs for different mixtures
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Figure 11: Relationship between UPV and flexural strength.
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Figure 12 A flow diagram of the photogrammetric and structure from motion processes.
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Figure 13: Fixing markers on the fractured surfaces.
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Figure 15: VSTR and tortuosity of investigated mixtures
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Figure 16: Analysis of rubber quantity through fractures surface: a. captured image,

b. thresholded image and c. thresholding process
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Figure 17: Effect of replacement level on amount of rubber across the fractured surfaces.
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