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The future development of high-performance power electronics will rely increasingly on system-level integration, where
semiconductor devices are co-packaged with other active and passive components (e.g., gate drivers, filter capacitors, and
inductors) into a power module. In view of the widespread electrification of pivotal elements of the energy generation
and distribution infrastructure (e.g., smart grids, electric aircraft, electric vehicles), modularity is also increasingly gaining
importance as a means of enhancing overall system performance and reducing long-term maintenance costs. This paper
focuses on the development of a highly integrated three-to-one phase matrix converter for avionic applications. It proposes
an integration approach that enhances the volumetric and gravimetric power handling capability, with enhanced electromagnetic
and electrothermal performance as compared to established solutions. Maintenance is also simplified by the modular assembly
approach. © 2015 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.
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1. Introduction

AC-to-AC power conversion requires switches that enable bidi-
rectional (BD) current flow between the power source and the
load and blocking the voltage irrespective of its polarity. Steady
advances in semiconductor technology keep enhancing the elec-
trothermal performance of solid-state power switches, and pack-
aging is presently very often the limiting factor of performance
and reliability. In order to overcome the limitations of standard
bond-wire packaging technology, novel approaches have been pro-
posed over the last decades based on the replacement of bond
wires with solid bumps. These have enabled a dramatic improve-
ment of the thermal and electromagnetic performance and allowed
optimum space exploitation and advanced integration schemes tar-
geting application-related switch performance optimization [1–6].

Figure 1 shows the circuit schematic of a BD matrix-converter-
type switch (in the following, BD switch). In the case of insulated-
gate bipolar transistors (IGBTs) being used as the active devices, a
series diode is necessary to ensure reverse blocking capability (i.e.,
between the emitter and collector terminals). During operation,
current conduction is either through the device pair T1–D1 or
through T2–D2. Figure 2 shows the cross-section and the actual
structure of a vertical IGBT and a vertical diode chip (in this case,
latest generation 70-μm-thick vertical IGBTs and diodes, rated at
200 A/600 V) with an indication of their electrical terminals. The
most effective interconnection solution between the IGBT emitter
(E) and the diode anode (A) terminals is achieved by flipping, for
instance, the diode upside down and contacting its top surface to
the top surface of the IGBT.

The interconnection can be achieved by means of surface power
bumps instead of bond wires, a technological feature already
demonstrated that enables keeping the backside of each device
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Fig. 1. Circuit schematic of a bidirectional power switch

in contact with a substrate for optimum thermal management
(see [1,3,5], for example).

2. Power Switch Integration

The mounting scheme is illustrated in Fig. 3. The upper devices
are flipped upside down, and the interconnection between the
two layers of chips is implemented by means of bumps soldered
directly between the two device surfaces. This way, the parasitic
inductance of the switch can be greatly reduced by removing
bond wires and by ensuring that the flow of current through
the switch is entirely vertical. Thermal management is also
improved since all devices have their backside in contact with
a principal cooling plane; partial heat removal also takes place
via the surface, through the interconnection posts, and the stacked
device. The design of the basic switch and the choice of specific
technology features, such as the shape, material, and size of the
bumps, for instance, rely on a built-in reliability design approach,
consisting of extensive structural analysis (e.g., finite elements)
of the electrothermal and thermomechanical stress both during the
assembly process and under real operational mission profiles [5,6].
So, for instance, here the bumps are implemented by means
of stacked copper–molybdenum–copper (Cu_Mo_Cu) layers to

© 2015 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.
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(a) Schematic cross-section and actual structure of IGBT
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(b) Schematic cross-section and actual structure of DIODE
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Fig. 2. 70-μm-thick vertical chips, where the top metallization is
treated with AlSiCu finish to be solderable
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Fig. 3. Stacked assembly of substrate–chip–bump–chip–
substrate for a bidirectional switch
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Fig. 4. Representative cut view of the meshing system to dis-
cretize the sandwich assembly

minimize the creep strain accumulation in the solder joints as
compared to solid copper bumps.

The modeling and simulation were done using the commercial
finite element analysis software ABAQUS 6.12-3 and its graphic
user interface CAE. Figure 4 shows a cut-out view of the meshing
system consisting of 156 294 elements to discretize the assembly
with an AlN (aluminum nitride)-based substrate.
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Fig. 5. Power losses of one IGBT and one diode during a mission
profile derived from a real system operation

3. Thermomechanical History

The thermal and mechanical performances of the assembly
using two different vertical interconnection posts (Copper_only
and Cu_Mo_Cu type) were analyzed. The power loss of the IGBTs
and diodes, as shown in Fig. 5, were taken as the heating source to
simulate the thermal performance of the assembly during realistic
mission profile, and the heat exchange boundary condition of
5000 W/m2 K was applied to both the top and bottom cooling
surfaces of the assembly. Then the temperature field obtained
from the thermal simulation was used as inputs to simulate the
further development of stress/strain in the assembly during the
mission profile. During the first stage, all the solder joints were
deactivated, and thus no strain and stress development occurred
on them until solidification of the molten solder was established.
In both cases (Copper_only and Cu_Mo_Cu type), the assembly
was first subjected to a predefined temperature profile associated
with five mission profiles, as illustrated in Fig. 6, to simulate the
stress and strain development.

For the thermal and mechanical properties of the materials in
the assembly, Chaboche’s plastic model was used to describe the
mechanical properties of the Cu and Al, and Anand’s creep model
was used to describe the mechanical properties of the Sn–3.5Ag
solder alloy. All the mechanical and thermal properties for the Cu,
Al, and Sn-3.5Ag were taken from Refs. [7,8].

4. Simulation Results

The simulation results of the temperature distribution in the
assembly, Fig. 7, revealed that the highest temperature occurs at
the IGBT that is attached to the top substrate at 23.01 s during
mission profile with only 1.5 ◦C lower for the copper_only bump
type. This is understandable because the power loss by the IGBT
is higher than that of a diode and the cooling surface of the top
substrate is smaller than that of the bottom substrate. The highest
maximum temperature in the assembly is with Cu_Mo_Cu-type
bumps, which is due to the molybdenum in the bumps having a
lower thermal conductivity as compared to copper.

The maximum von Mises stress and creep strain accumulations
are at the corners of the solder layer in contact with the emitter
metallization of the IGBT, which are the most critical areas
of failure. Such a result can be attributed to the mismatch of
thermal expansion between the Sn–3.5Ag solder and the Si
chips. Furthermore, it is also related to the joining area or
the shapes and size of the bumps. This can be seen from the
representative simulated results of the assembly with copper_only
and Cu_Mo_Cu bumps, as shown in Figs. 8 and 9.

2 IEEJ Trans 0: 0 (2015)
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Fig. 6. Thermal history of predefined temperature of a single reflow process followed by five cycles of mission profile
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Fig. 7. Simulated temperature field at 23.01 s during one cycle of temperature mission profile

Figures 10 and 11 compare the simulated maximum residual
von Mises stress and creep strain accumulation in all solder
joints for copper_only and Cu_Mo_Cu-type bump assemblies. •InAQ3
comparison with the bumps made of copper, the bumps constructed
with molybdenum and copper can reduce the maximum residual
stress and the creep strain accumulation in the solder joints.

5. Switch Prototype and Reliability Test

The prototype was designed and constructed with an AlN-
based substrate. First, the transistor and diode chips were soldered

to the underside (collector and cathode) onto a direct-bonded
copper substrate with a 100-μm-thick Sn–3.5Ag preform that
was employed in a fluxless reflow soldering process at a peak
temperature of 260 ◦C for 5 min. Then the bumps were soldered
onto the chips using the 62Sn36Pb2Ag solder paste reflowed at a
peak temperature of 240 ◦C for 5 min. Finally, the two substrates
shown in Fig. 12(a) were positioned one on top of the other and
soldered using the 62Sn36Pd2Ag solder paste at a temperature of
260 ◦C for 5 min.

The switches were then assembled and gel-filled for insulation
to deliver the hardware prototype parts, as shown in Fig. 12. An
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Fig. 8. Simulated distribution of von Mises stress in the solder
joints after 5 cycles of the mission profile

important feature of these switches is their ability to separate the
transistor driving path (gate and emitter terminals) from the power
terminals.

For the switches of Fig. 12, preliminary reliability tests for
technology validation, summarized in Fig. 13, delivered an initial
lifetime estimate of ∼240 cycles (∼430 h), based on thermal
cycling between −60 ◦C and 150 ◦C (in these tests, the variation
of the IGBT on-state voltage for a fixed on-state current and
temperature was used to monitor the interconnect degradation [9]).
The two main factors that contribute to the rapid increase of
on-state voltage in the end-of-life period are degradation of the
solder layer underneath chip and bumps and peeling-off of the
copper tracks from the ceramic. The number of cycles at which
these effects become detrimental depends on the type and quality
of the materials involved in the assembly.

6. Power Module Integration

At least three switches as per Fig. 1 are required to build a three-
to-one phase matrix converter, as shown in the circuit schematic of

(a) Copper_only bump type model

(b) Cu_Mo_Cu bump type model
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Fig. 9. Simulated distribution of creep strain accumulation in the
solder joints after 5 cycles of the mission profile
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Fig. 10. Evolution of maximum von Mises stress in all solder
joints through 5 cycles of mission profile
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Fig. 11. Evolution of maximum creep strain in all solder joints
through five cycles of mission profile
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Fig. 12. Bidirectional switch prototype. (a) Switch components
view and side view of assembled switch. (b) Fully terminated and

insulated switch
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Fig. 13. Preliminary lifetime estimation results for the integrated
bidirectional switches

Fig. 14. The controller is designed based on a four-step voltage-
based commutation scheme, which is set to generate a constant
output voltage by properly changing the required gate pattern at
all times. In such a topology, current commutations take place not
between the device pairs in the same BD switch but within device
pairs in different phases and switches, conducting current in the
same direction. So, for instance, in the case of Fig. 14, current
commutations would be between the pairs T1–D1 and T3–D3,
T1–D1 and T5–D5, and T3–D3 and T5–D5 during the positive
half wave of the input voltage, and between the pairs T2–D2 and
T4–D4, T4–D4 and T6–F6, and T2–D2 and T6–D6 during the
negative half wave.

So, for minimizing the parasitic inductance associated with
layout and interconnection, it is better to refer to the positive
and negative cells in each BD switch: it is between such cells
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Fig. 14. Circuit schematic of a three-to-one matrix converter
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Fig. 15. Convectional wire-bonded matrix converter power
module

(identified with different colors in Fig. 14) that it is important to
minimize the electromagnetic path for enhanced performance in
the application.

The proposed matrix-converter module integration in standard
packaging technology is intrinsically limiting in the achievable
system performance (e.g., maximum switching frequency) due
to the well-known shortcomings of bond-wire technology and
2D layout. For instance, Fig. 15 shows the photograph of a
failed integrated three-to-three phase BD power module. Current
commutations, as discussed above, would necessarily imply a
relatively high inductance and asymmetric loops (i.e., some switch
pairs are closer to each other than the others), even with optimized
external bus-bar design. Power and temperature distribution are not
easy to be maintained uniform over the module during transient
operation, and the unification of source drive-terminal and source
power-terminal prevents very high speed transistor commutation.
Moreover, as is evident from Fig. 15, failure of a single chip
implies the need to replace and dispose of the whole module, with
a major disproportion between the cause and effect (i.e., cost of a
single chip as compared to the cost of the module) resulting in non-
negligible long-term running costs of the power system. Clearly,
the impact of a single chip failure is even more significant in the
case of passives, gate drivers, sensors, and logic circuits when
co-packaged within the same module.

To overcome such limitations and drawbacks, here an alter-
native module integration approach is pursued. Referring to the
schematic diagram of Fig. 14, the module is constructed using
three independent BD switches. The switches are enclosed within
a forced-liquid-based cooler that can cool the top and bottom side
of the switch. A common output terminal (load side) and three
input terminals (input side) are designed to be connected only by
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(a) Load interconnects (b) Gap between load and phase (c) Input filter interconnects
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Fig. 16. Internal view of the assembly and the interconnection setup
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Fig. 17. Three phase-to-single phase matrix converter assembly
with water cooler. G1–G6 are six IGBT gate connections and
E12, E34, and E56 are common emitter connections for each

bidirectional switch

means of bolts and screws (no soldering), as shown in Fig. 16.
Three rectangular blocks of copper are placed on each phase to
form a gap between the load and phases (Fig. 16(b)). As seen
from Fig. 16(c), properly shaped interconnect enables enclosing
phase-to-phase high-frequency filtering capacitors (here, a total of
6.6 μF ceramic capacitance is introduced between the phases; the
value can be easily increased by stacking the capacitors one on
top of the other. The module design is fully symmetrical, so that
each switch sees identical electromagnetic and electrothermal con-
ditions. Figure 17 shows the closed module. The power and gate
signals are completely separated, and the topside of the enclosure
(the cooler) can be used to mount gate drivers and additional filter
and control elements to deliver a self-contained unit.

The water cooling system flow path inside the power module is
designed to directly target the hot spot (light blue area shown in
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Fig. 18. Heat transfer temperature contour (in K) using ANSYS
Fluent of 0.08 m/s water flow

Fig. 16) where the power devices are located. The flow of liquid
will start from the inlet and go to the top surface of each of
the three switches; and once it passes the third switch, it turns
down and flows via the bottom side of each switch to get to the
outlet. Although this initial cooler design, with a single inlet and
outlet, cannot guarantee exactly symmetrical thermal conditions
for the switches, 3D simulations carried out with established
industrial computational fluid dynamic design tools indicated that
the temperature gradient would be low enough to make it a viable
and easier solution for initial testing. In the simulations, the liquid
flow rate is defined as the inlet boundary condition with initial
liquid temperature set at 300 K. At the outlet, the external gauge
pressure is set to zero. Thermal properties of the materials involved
in the model have been assigned to evaluate the heat conduction
through all solid bodies due to the fluid flow. For this simulation,
a heat transfer coefficient of 5 W/m2K was used for each wall that
is exposed to the air considered as a free convection. An evenly
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Fig. 19. Hardware and test setup for preliminary functional testing
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Fig. 20. Schematic of the experimental setup

distributed heat flux of 10 000 W/m2 is used for the top surface
of each of the three silicon blocks. This is a typical value used for
water cooler in power electronics [10]. A velocity of 0.08 m/s (a
flow rate of 0.3 l/min) is used at the inlet, while the outlet is fixed
at zero pressure. This flow rate corresponds to the realistic heat
transfer value between 500 and 5000 W/m2K. Figure 18 shows the
resulting temperature distribution. Although the cooler design is
not fully symmetrical, this initial study ensured that the asymmetry
is negligible under realistic operational conditions and the cooler
design can easily be optimized.

7. Functional Tests

The fully assembled module was subjected to some preliminary
functional tests. Figure 19 shows the assembled hardware and
test setup. The corresponding schematic circuit is also shown
in Fig. 20, containing the popular snubber configuration (voltage
clamp) used with matrix converters where two diode bridges feed
a DC regulated snubber capacitor. This clamp circuit is used to
protect the BD switches from getting damaged as a result of over
voltages or in the event of commutation failure. In the initial
setup, a dedicated test board was built, which accommodates
passives and interfaces with the control platform; also, the gate
drivers were connected to the switch terminals still using additional
connectors to enable more easily a thorough characterization of
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Fig. 21. Representative preliminary test waveforms for the mod-
ular matrix converter
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Fig. 22. Detailed view of test waveforms, including the voltage
across a single bidirectional switch

the converter performance. In the final implementation, the PCBs
(printed circuit boards) can be mounted directly onto the switch
terminals (Fig. 17), and a number of passives can be allocated
directly on the sides of the cooler for higher integration levels and
a more compact overall design.

The overall open-loop control structure for three-to-one matrix
converter drive is shown in Fig. 20. A four-step voltage-based
commutation scheme is employed as a commutation control using
a 32-bit TMS320C6713 digital signal processor (DSP) board and
a general-purpose field-programmable gate array (FPGA)-based
matrix converter interface card. The test conditions were very
conservative to avoid unnecessary failures. The cooling liquid
temperature was regulated in the range −15 to 20 ◦C. Propylene
glycol (which is 40% less toxic) is used for corrosion and frost
protection. Figure 21 shows typical matrix converter waveforms:
from bottom to top, gate-drive signals (C2, 20 V/div), load output
current (C3, 2 A/div), and load output voltage (C1, 50 V/div). In
these tests, the output voltage was set as DC, but a purely resistive-
inductive RL load was used without any filter capacitors, which
explains the load voltage and current waveforms. The switching
frequency is 10 kHz.

Figure 22 shows a zoomed-in view of the waveforms, and also
the voltage drop measured across one of the BD switches (C4).
As can be seen, the switching waveform is free from overshoots
of any sort, indicating a significantly contained value of the
overall switch parasitic inductance. Finite-element electromagnetic
analysis indicated a value of just a few nanohenries for each current
conduction path in a switch at 10 kHz [11].

The wave forms in Fig. 23 show the output voltages measured
while operating at different cooling liquid temperatures with

7 IEEJ Trans 0: 0 (2015)



A. K. SOLOMON ET AL.

0.008 0.01 0.012 0.014 0.016 0.018 0.02
–60

–40

–20

0

20

40

60

Time (s)

O
u
tp

u
t 

v
o
lt

ag
e 

(V
)

0.008 0.01 0.012 0.014 0.016 0.018 0.02
–60

–40

–20

0

20

40

60

Time (s)

O
u
tp

u
t 

v
o
lt

ag
e 

(V
)

0.008 0.01 0.012 0.014 0.016 0.018 0.02
–60

–40

–20

0

20

40

60

Time (s)

O
u
tp

u
t 

v
o
lt

ag
e 

(V
)

0.008 0.01 0.012 0.014 0.016 0.018 0.02
–60

–40

–20

0

20

40

60

Time (s)

O
u
tp

u
t 

v
o
lt

ag
e 

(V
)

0.008 0.01 0.012 0.014 0.016 0.018 0.02
–60

–40

–20

0

20

40

60

Time (s)

O
u
tp

u
t 

v
o
lt

ag
e 

(V
)

Output voltage at 20 °C

Output voltage at 10 °C

Output voltage at 0 °C

Output voltage at –10 °C

Output voltage at –15 °C

C
ol

or
Fi

gu
re

-O
nl

in
e

on
ly

Fig. 23. View of test waveforms measured at different operating
cooling fluid temperatures

Table I. Functional test conditions

Parameter Value

Vin (3ϕ) Input supply voltage 50 and 100 V
fin Input line frequency 50 Hz
Cin Input capacitance 6.6 uF
Rout Load resistance 9.6–56.7 �

Lout Load inductance 10 mH
Vout (1ϕ) Output voltage 85 V
fout Output frequency 0 Hz
Iout Output current 8.9–1.5 A
fs Switching frequency 10 KHz
Module Volume ∼82.7 cm3
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Fig. 24. Efficiency of the three-to-one matrix converter prototype
against its output power

50 V/3ϕ input voltage. As seen from the results, the module shows
no indications of failure or difference and remains active over the
entire temperature range (−15 ◦C to +20 ◦C). The indication is
that such module can be further implemented over a wide and
harsh temperature range. The converter is also tested at 100 V/3ϕ

input with various load resistances, as shown in Table I and
Fig. 24.

Figure 24 shows the efficiency, which is the ratio between the
output and input power of the converter. A power analyzer is used
to detect the measurement of the three input and single output
voltages and currents. The load resistance was varied, while the
3ϕ input voltage was fixed at 100 V. As seen from the graph in
Fig. 24, the power efficiency of the converter remains >80%.

8. Conclusions

This paper presented the modular integration of a three-to-
one phase matrix converter. It aims to progress beyond the state
of the art in power system assembly by proposing a solution
that significantly improves the electromagnetic and electrothermal
performance of the semiconductor switches, as a result of both
an original switch design and assembly process and system-level
integration of the switches in the converter. In particular, fully
bond-wire-less, double-sided cooling and layout symmetry are the
key aspects of the design. The proposed approach is transferable
to a number of topologies and has the additional important benefit
of limiting the impact of single device/switch failure on the
overall system availability. The solution can be of interest to all
applications in which weight and volume reduction are highly
favored, such in as aerospace, automotive, traction.
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