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Graphical Abstract 27 

 28 

 29 

Highlights 30 

 An eco-friendly green processing method for Anaerobically digested POME treatment has been 31 
investigated. 32 

 Combined chitosan coagulation with AOPs was utilised. 33 
 Higher COD (82.82±1.71%) removal for chitosan/H2O2 compared to chitosan-Fenton oxidation was 34 

observed. 35 
 Chitosan-Fenton oxidation was found to be favourable for higher TSS removal but not for COD 36 

removal. 37 
 Comparison of performance with other technologies has been reported with economic analysis. 38 

 39 

Research significance 40 

Industrial wastewater treatment exploiting advanced oxidation processes (AOPs) involves generation of 41 

hydroxyl radicals (OH.) to degrade the organic components and is a well-documented approach. In the present 42 

study, natural biomaterial Chitosan as a coagulant combined with various AOP’s  have been investigated for the 43 

anaerobically digested palm oil mill effluent (AAD-POME) treatment. Research investigations to-date on the 44 

post-treatment of POME is very limited and the lacking of lab-scale study could be the major reason for the 45 

failing industrial plant trials. Hence the current study explores the possibility and reports in detail on an 46 

alternative eco-friendly green processing technique for POME treatment. The objectives of present investigation 47 

focuses on the post-treatment of AAD-POME primarily by coagulation using (a) chitosan (b) chitosan with 48 

FeSO4 (c) chitosan with H2O2 and (d) chitosan with Fenton oxidation.  The results conclude that chitosan with 49 

H2O2 proved to be the most promising alternative for POME treatment compared to chitosan with Fenton 50 

oxidation. 51 

  52 
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Abstract 53 

The present study investigates the removal efficiency of chemical oxygen demand (COD) and total suspended 54 

solids (TSS) of anaerobically digested palm oil mill effluent (AAD-POME) in batch studies through the 55 

following 4 strategies: coagulation by chitosan, addition of ferrous sulphate (FeSO4), chitosan with hydrogen 56 

peroxide (H2O2) and chitosan with Fenton oxidation. The parameters tested were: chitosan dosage (500-12500 57 

mg/L), FeSO4 dosage (500-12500 mg/L), mixing time (15-60 min), sedimentation time (1-4 h), initial pH (2-9) 58 

and H2O2 (500–7500 mg/L). Coagulation only by using chitosan (2500 mg/L) achieved the maximum COD and 59 

TSS removal of 70.22±0.23% and 85.59±0.13% respectively. An increase in the TSS removal (98.7±0.06 %) 60 

but with a reduction in the COD removal (62.61±2.41%) was observed when FeSO4 (2500 mg/L) was added 61 

along with chitosan (2500 mg/L). Alternatively, an improvement in the COD (82.82±1.71%) and TSS 62 

(89.92±0.48 %) removal efficiencies was observed when chitosan was coupled with H2O2 (500 mg/L). Finally 63 

chitosan (2500mg/L) integrated with Fenton oxidation (FeSO4 of 2500 mg/L and H2O2 of 500 mg/L) resulted in 64 

100% TSS and 73.08±4.11% COD removals. Overall chitosan with H2O2 proved to be the most promising 65 

alternative for POME treatment compared to chitosan with Fenton oxidation. 66 

Keywords: Palm oil mill effluent, POME, Treatment, Chitosan, Hydrogen peroxide, Coagulation, Chemical 67 

oxygen demand, Total suspended solids. 68 
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1 Introduction 81 

The palm oil industry is one of the fastest growing agro based industries in Malaysia (Wu et al. 2009). The 82 

major downside of this industry is the large volume of wastewater, commonly termed as palm oil mill effluent 83 

(POME), generated from the palm oil milling process (Faisal and Unno 2001; Chungsiriporn et al. 2006; Al-84 

Shorgani et al. 2012). Palm oil mill effluent contains 95-96% water, 0.6-0.7% oil, 2-5% solids and possesses a 85 

very high chemical oxygen demand (COD) (45000-75000 mg/L) and biochemical oxygen demand (11000-86 

45000 mg/L) (Bhatia et al. 2007).  87 

Anaerobic digestion of POME followed by aerobic post-treatment by ponding system is commonly practiced in 88 

palm oil mills mainly because of the low equipment cost and simple operational control to achieve the discharge 89 

limit standards (Chaiprapat and Laklam 2011; Zinatizadeh et al. 2007). Table 1 shows the Environmental 90 

Quality Act (EQA) 1974 for POME discharge (Zinatizadeh et al. 2007).  91 

Table 1 POME discharge standards set by Department of Environment (Malaysia) under the Environmental 92 

Quality Act 1974 93 

Parametersa Discharge Limits 

Biochemical Oxygen Demand 100 

Chemical Oxygen Demand  Not legislated 

Total Suspended Solids 400 

Total Nitrogen 200 

Oil & Grease 50 

pH 5 - 9 

                               a: All parameters are in mg/L except pH 94 

However the disadvantages of this biological treatment include long hydraulic retention time (HRT) (75-120 95 

days), huge investment in the land for ponds and digesters and problems associated with the methane gas 96 

collection which have been identified to be the most important reasons for the greenhouse effect on the 97 

environment (Ahmad et al. 2009; Igwe and Onyegbado 2007). Even after aerobic ponding, many mills are not 98 

able to achieve the discharge limits due to poor operational design of the existing aerobic ponding system. 99 

Moreover, the chemical components from the finally treated effluent after anaerbobic treatment become difficult 100 

to treat further biologically (Bhatia et al. 2007). 101 
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Research studies dealing with the post-treatment of anaerobically digested POME (AAD-POME) are limited 102 

with the most dealing with biological approaches for the treatment. Vijayaraghavan et al. 2007 used an activated 103 

sludge reactor for the post-treatment of AAD-POME. However the treated effluents failed to meet the discharge 104 

limits, in addition to their high operational cost. A sequential batch reactor (SBR) was proposed to treat AAD-105 

POME by Chan et al. 2010, where a maximum COD (95–96%), BOD (97–98%) and TSS (98–99%) removal 106 

were obtained and met the standard discharge limits. Even though the earlier treatment methods delivered 107 

promising results, their operational costs were neither cheap nor an easy route to commercialise industrially. The 108 

disadvantages of the current biological methods necessitate looking for alternative and efficient technologies to 109 

treat POME.  110 

Coagulation is a process by which agglomeration and hence destabilization of colloidal particles occur due to 111 

chemical aids (coagulants) and the resulting agglomerates could be removed by flocculation, sedimenatation and 112 

filtration (Chan et al. 2010; Aboulhassan et al. 2006; Abood et al. 2013). In flocculation, the destabilised 113 

colloidal particles further conglomerate into larger agglomerates, referred as flocs, which are easily settled down 114 

(Jiang and Graham 1998; Bolto and Greory 2007). Chitosan is a poly N-acetyl-glucosamine, a non-toxic 115 

biopolymer and a cationic polyelectrolyte and environmentally safe (Roussy et al. 2004). It is produced by the 116 

acetylation of chitin and has a wide range of applications in pulp and paper, food, agriculture as well as in the 117 

industrial effluent treatments (Roussy et al. 2004; Chi and Cheng 2006; Meyssami and Kasaeian 2005). For a 118 

majority of the applications, the following characteristics of chitosan are considered i.e. molecular weight, pH, 119 

degree of deacetylation and basicity (Meyssami and Kasaeian 2005; Bratskaya et al. 2006). Since chitosan is 120 

positively charged and hydrophilic in nature, the electrostatic interactions between chitosan and other negatively 121 

charged compounds could be easily achieved resulting into charge neutralisation. This is a very unique feature 122 

of this biopolymer (Roussy et al. 2005). In addition, its use eases the sludge handling abilities. Application of 123 

chitosan has been reported for the following wastewater treatments i.e. brewery wastewater (Cheng et al. 2005), 124 

river silt (Divakaran and Pillai 2001) and raw POME (Ahmad et al. 2006). However, its use for post-treatment 125 

of AAD-POME has yet to be explored. 126 

Ferrous sulphate (FeSO4) is a commercially available and a cheaper inorganic coagulant when compared with 127 

synthetic polyelectrolytes and hence widely used for the municipal and industrial wastewater treatment to 128 

control odour, to thicken sludge and as a dewatering agent (Tang and Chen 1996). Since it is positively charged 129 

in nature, it can attract the negatively charged counter ions present in the colloidal suspensions to form small 130 

http://www.sciencedirect.com/science/article/pii/S0301479710000939#bib34
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flocs. Coupling FeSO4 with chitosan has never been investigated to treat POME and the reasons to employ both 131 

of them in the present study are due to: (1) chitosan acts both as a destabiliser and as a bridge (2) FeSO4 acts as 132 

a coagulant aid and improves the destabilisation efficiency. 133 

Industrial wastewater treatment exploiting advanced oxidation processes (AOPs) involves generation of 134 

hydroxyl radicals (OH.) to degrade the organic components and is a well-documented approach (Oller et al. 135 

2011; Klavarioti et al. 2009; Pera-Titus et al. 2004; Sekaran et al. 2013). Hydrogen peroxide (H2O2) is a well-136 

known and a promising oxidant (Raffellini et al. 2011) and owing to its performance and ease of operation, 137 

many studies utilise this oxidant (Chu et al. 2012; Kestioğlu et al. 2005; Szpyrkowicz et al. 2001; Cailean et al. 138 

2014). However, it has been previously reported that when H2O2 was used alone it was not effective for certain 139 

complex organic components due to kinetic limitations at reasonable peroxide concentrations (Kestioğlu et al. 140 

2005; Chen et al. 2014). Taking into account of its oxidant capability, H2O2 has been considered along with 141 

chitosan as a hybrid system so that process intensification and hence an improvement in the efficiency could be 142 

achieved. The main idea behind this hybrid approach is to apply AOP for POME and optimising the 143 

concentration of H2O2 required to form the intermediate by-products thereby improving the performance of 144 

subsequent coagulation using chitosan. Such a coupled operation of chitosan with H2O2 for the post-treatment of 145 

AAD-POME has yet to be attempted. H2O2 with an iron salt known as Fenton’s reagent generates hydroxyl 146 

radicals is another promising oxidation process for industrial wastewater treatment (Szpyrkowicz et al. 2001). 147 

Pre-treatment of organic compounds using Fenton’s oxidation has been reported earlier (Szpyrkowicz et al. 148 

2001; Tang and Chen 1996; Rizzo et al. 2008). Fenton oxidation is a simple AOP technique utilized to generate 149 

hydroxyl radical (HO•) (Gernjak et al. 2006). HO• is generated through the reaction between ferrous (Fe2+) and 150 

hydrogen peroxide (H2O2) at acidic condition is shown in equation (1). 151 

H2O2 + Fe2+ → Fe3+ + HO• + OH-                                     (1) 152 

Numerous studies on the applications of Fenton oxidation process with different pollutants and wastewaters 153 

have been reported (Szpyrkowicz et al. 2001; Tang and Chen 1996; Rizzo et al. 2008). In addition, Fenton 154 

oxidation is also capable of removing pollutants via coagulation (Kuo, 1992; Lin and Lo, 1997; Kang and 155 

Hwang, 2000).  A study was conducted by Aris et al. 2008 to determine the feasibility of Fenton oxidation 156 

process in treating biologically treated palm oil mill effluent. It was reported that the highest removals of COD 157 

(75.2%) and color (92.4%) for were achieved by Fenton oxidation.  Also, it was reported that Fenton oxidation 158 
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is capable of removing COD and color from the POME and thus a viable treatment option. However the 159 

effectiveness of chitosan coupled with Fenton oxidation has never been explored for POME. 160 

Thus, the objectives of present investigation focus on the post-treatment of AAD-POME primarily by 161 

coagulation using (a) chitosan (b) chitosan with FeSO4 (c) chitosan with H2O2 and (d) chitosan with Fenton 162 

oxidation. Besides, the investigation also looked into evaluating and optimising the suitable process conditions 163 

such as dosage, mixing time, sedimentation time and pH for the effective treatment of AAD-POME. 164 

2 Experimental 165 

2.1 Materials 166 

Anaerobically digested POME (AAD-POME) was collected from Ulu Kanchong Oil Palm Mill, Rantau, 167 

Malaysia. The collected POME samples were at a temperature of 27.5±2.5 °C and the characteristics of samples 168 

differed based upon the processing of palm oil, climate and operating conditions during the sampling period. 169 

The COD and TSS of the samples were 15290±855 mg/L and 14950±2400 mg/L respectively. Chitosan, a white 170 

fine powder with a molecular weight of 350 kDa with 95% deactylation was obtained from Chitin-Chitosan 171 

Research Centre of Universiti Kebangsaan Malaysia. FeSO4 was purchased from R&M chemicals, (NJ, USA). 172 

Distilled water was used for diluting 37 % fuming H2O2 (Merck, Germany) and sodium hydroxide pellets (R&M 173 

chemicals, NJ, USA) to prepare 5M solution for pH adjustment. 174 

2.2 Methods  175 

The experiments were carried out in a conventional jar-tester (Loviband water testing, model ET720, Germany) 176 

which accommodates six glass reactors at a time and all the reactors were simultaneously mixed at the same 177 

speed using the stainless steel paddles. Each reactor was filled with 200 ml of POME and the coagulant was 178 

added into POME and mixed rapidly for various periods (15-60 min) with different doses of chitosan and 179 

ferrous sulphate (500-12500 mg/L). The effect of sedimentation time (1-4 h) and the effect of pH (2-9) were 180 

also investigated. The role of hydrogen peroxide (500–7500 mg/L) in the treatment was also considered. At the 181 

end of the treatment, the samples were taken from the clarified supernatant layer to determine the COD, TSS 182 

and Zeta potential (ζ).  183 

2.3 Analysis 184 

The COD test was carried out using COD vials (HR 20-1500 mg/L) following the American Public Health 185 

Association (APHA) standard method 8000 using a spectrophotometer (HACH model DRB 2000). TSS was 186 

http://www.google.com.my/url?sa=t&rct=j&q=siri%20ulu%20langat%20palm%20oil%20mill&source=web&cd=1&ved=0CF4QFjAA&url=http%3A%2F%2Fwww.malaysia.com%2Fdirectory%2Fagriculture-and-food%2Fcrude-palm-oil%2Fselangor%2FSeri_Ulu_Langat_Palm_Oil_Mill_Sdn._Bhd._127914.html&ei=eO3OT_GIFcbtrQfe4bmvDA&usg=AFQjCNEsEmVZT1Sr8uCbnxGPcwCEc9P1_g
http://www.google.com.my/url?sa=t&rct=j&q=siri%20ulu%20langat%20palm%20oil%20mill&source=web&cd=1&ved=0CF4QFjAA&url=http%3A%2F%2Fwww.malaysia.com%2Fdirectory%2Fagriculture-and-food%2Fcrude-palm-oil%2Fselangor%2FSeri_Ulu_Langat_Palm_Oil_Mill_Sdn._Bhd._127914.html&ei=eO3OT_GIFcbtrQfe4bmvDA&usg=AFQjCNEsEmVZT1Sr8uCbnxGPcwCEc9P1_g
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measured by following the APHA standard method 8006 using a spectrophotometer (HACH model DR 2800) 187 

by filling 10 ml of sample in a specially designed glass bottle. Zeta potential was calculated using Zetasizer 188 

(Malvern 2000, UK) and pH was tested using a pH meter (Martini Instruments, NC, USA).   189 

3 Results and discussion 190 

3.1 Effect of dosage 191 

Fig. 1 shows the effect of chitosan dosage (500-12500 mg/L) on the COD (%) and TSS (%) removal of POME.  192 

At an initial dose of 500 mg/L, 67.34 ± 3.76 % (Fig. 1 (a)) and 85.68 ± 0.81 % (Fig. 1 (b)) of COD and TSS 193 

removals were observed. A further increase in the dose to 2500 mg/L improved the COD removal to 70.22 ± 194 

0.23 %, whereas the removal of TSS remained the same (85.59 ± 0.13 %). A decrease in the COD (66.57 ± 195 

7.13%) was observed when the dosage was finally increased to 12500 mg/L which may be probably due to 196 

overdosing of chitosan. Similar observations were noticed by Zhu et al. 2011 during the coagulation process by 197 

employing polymeric aluminium ferric sulphate (PAFS). It has been observed that when the dosage was 198 

increased more than the optimum, restabilisation of colloidal particles of POME occurs, decreasing the COD 199 

and TSS removal efficiencies. From the results it is evident that optimising the chitosan dose is important for the 200 

increased removal of COD and TSS.  201 

The obtained results could be explained by three different mechanisms i.e. charge neutralisation, patch 202 

flocculation and micro-bridging. Charge neutralisation of the colloidal particles is normally achieved by the 203 

addition of coagulant aids of opposite charges (Zhu et al. 2011; Assaad et al. 2007). The organic molecules in 204 

POME are normally negatively charged and the coagulant aids are positively charged in nature. Thus, when 205 

these coagulant aids are introduced to the effluent, attraction of oppositely charged ions occurs owing to Van der 206 

Waals forces resulting in neutralisation of charges and hence the formation of larger agglomerates (Wu et al. 207 

2008; Crini and Badot 2008; Gérente et al. 2007). The bridging of colloidal particles is achieved by the addition 208 

of polyelectrolytes and is very similar to the charge neutralisation by the coagulant aids. The colloidal particles 209 

are attracted to the long polymer chains of these polyelectrolytes forming a bridge resulting in the agglomeration 210 

and coagulation (Varma et al. 2004; No and Mayers 2000). POME contains various types of colloidal 211 

particulates including organic components and is negatively charged. Chitosan is a linear polyelectrolyte and has 212 

a positive charge at acidic conditions and thus attracts the negatively charged colloidal particles of POME and 213 

destabilizes them resulting in agglomeration (Ravi Kumar 2000). Besides, amine functional groups of chitosan 214 

help to adsorb components of POME into larger agglomerates thereby achieving the maximum COD removal at 215 
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lower dosages of chitosan (Ravi Kumar 2000). The obtained results using chitosan could be compared with the 216 

previous results for olive oil wastewater where it was observed that increasing the chitosan dosage achieved the 217 

maximum TSS removal (Rizzo et al. 2008). Based on this study, the optimised chitosan dosage of 2500 mg/L 218 

was used for further investigation to treat POME using FeSO4. 219 

The effect of dosage of FeSO4 was studied in the range of 500-12500 mg/L. Maximum COD removal of 62.61 ± 220 

2.41 % (Fig. 2 (a)) and TSS removal of 98.7 ± 0.06 % (Fig. 2 (b)) were achieved for 2500 mg/L of FeSO4. 221 

Further it was observed that with the addition of FeSO4 to chitosan, TSS removal increased from 85.59 ± 0.13 % 222 

(2500 mg/L of chitosan alone) to 98.7 ± 0.06 % (2500 mg/L of chitosan with 2500 mg/L of FeSO4) whereas the 223 

COD removal was decreased from 70.22% (2500 mg/L of chitosan alone) to 62.61 ± 2.41 % (2500 mg/L of 224 

chitosan with 2500 mg/L of FeSO4). Similar observations were earlier reported by Ginos et al.  2006 while using 225 

FeSO4 coupled with poly-electrolytes where a maximum TSS removal of 95-98% with the lower COD removal 226 

of 22-28% was noticed for olive mill wastewater treatment. This observation clearly indicates that addition of 227 

FeSO4 is favourable for TSS removal but not for COD removal. The obtained results could be further supported 228 

by analysing the zeta potential. Fig. 3 shows the zeta potential measurements using different doses of chitosan 229 

and chitosan with FeSO4. 230 

Zeta potential (ζ) is defined as the electrical potential difference between the colloidal particles and the solution 231 

and it is an indirect way of measuring the charge of colloidal particles. Isoelectric point is defined as the 232 

condition where the colloidal particles have enough counter ions so that they can be electrically neutral and zeta 233 

potential is zero. The highest degree of agglomeration is achieved at this isoelectric point (Ariffin et al. 2012). It 234 

was observed that increasing the chitosan dosage increased the ζ value nearing the isoelectric point (mV=0). 235 

Similar observations were earlier reported by Ariffin et al. for the paper and pulp mill wastewaters using a 236 

hybrid flocculant system of PolyDADMAC and polyacrylamide (Ariffin et al. 2012). The observed ζ values 237 

were -0.9 mV for 2500 mg/L of chitosan and 0.07 mV for 2500 mg/L of chitosan with 2500 mg/L of FeSO4 238 

which were very close to the isoelectric point. Thus, a consistency in the results was observed in this range of 239 

dosage with COD and TSS removal. Hence at the end of this study, 2500 mg/L of chitosan and 2500 mg/L of 240 

FeSO4 were selected for further investigation. 241 

3.2 Effect of mixing time 242 

The effect of mixing time (15-60 min) was studied for the optimised chitosan and chitosan with FeSO4 dosages 243 

at a mixing speed of 100 rpm and the observed results have been shown in Fig. 4.  In the case of chitosan after 244 
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an initial mixing time of 15 min, the COD and TSS removal efficiencies were 82.11 ± 0.23 % (Fig. 4 (a)) and 245 

89.61 ± 0.43 % (Fig. 4 (b)) respectively. But after 15 min of mixing time, no significant improvement in the 246 

COD and TSS removal was observed. Thus 15 min of mixing time was found to be the optimum condition for 247 

chitosan. The zeta potential values were also observed within the range of -0.805 to 1.37 mV (Fig. 5) which are 248 

close to near zero or isoelectric point proving the role of chitosan as a coagulant that causes charge 249 

neutralisation.  250 

For coagulation processes, two kinds of mixing were followed i.e. rapid mixing (up to 700 rpm for 5 min) and 251 

slow mixing (150 rpm for 30 min). Rapid mixing focused on the coagulant dispersion for the destabilisation of 252 

colloidal system whereas the slow mixing concentrated on the propagation of growth of floc by limiting the 253 

breakdown of aggregates. When the mixing speed was very rapid and mixing time was longer, the COD and 254 

TSS removal efficiencies were decreased, even though it was assumed that the longer mixing time and higher 255 

mixing speed would indirectly increase the collision frequency of the flocs. The disruption of flocs to smaller 256 

particles occurs with the higher shear rate, thereby inhibiting the flocs to settle down and decreasing the COD, 257 

TSS removal efficiencies. On the other hand when the mixing time was very short, the flocs would not have 258 

been formed due to the inadequate contact of the coagulants with the components of the effluent.  259 

For chitosan with FeSO4, the maximum COD and TSS removal efficiencies were 69.06 ± 0.27 % (Fig. 4 (a)) 260 

and 98.01 ± 1.26 % (Fig. 4 (b)) respectively after 15 min of mixing. However at the end of 60 min, the COD 261 

and TSS removal efficiencies were 65.59 ± 0.36 % and 97.60 ± 0.77% respectively. The zeta potential (Fig. 5) 262 

was 0.0414 mV for chitosan with FeSO4  after 15 min of mixing time which clearly proves that the surface 263 

charge was very close to zero or to the isoelectric point improving the coagulation performance of POME 264 

treatment. Thus, 15 min was considered as the optimised mixing time for chitosan and chitosan with ferrous 265 

sulphate. 266 

3.3 Effect of sedimentation time 267 

Using the optimised conditions of dosage and mixing time from the previous studies, optimisation of 268 

sedimentation time was investigated both for chitosan and chitosan with FeSO4 without aeration and the 269 

obtained results have been presented in Fig. 6 and Fig.7. For chitosan, after 1 h of sedimentation time, the COD 270 

and TSS removal efficiencies were 85.70 ± 3.09% (Fig. 6 (a)) and 90.06 ± 4.36% (Fig. 6 (b)) respectively with 271 

a surface charge of 0.0015 mV (Fig.7). Since no aeration was employed, the chances of oxidation of FeSO4 to 272 

Fe2 (SO4)3 is not possible and hence the possibility of its precipitaton is negligible.  273 
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Whereas, after 4 h of sedimentation, the COD and TSS removal efficiencies were 87.18±4.06 % and 91.84 ± 274 

2.61% respectively, along with a surface charge of 0.093 mV. Thus with an increase in sedimentation time no 275 

significant change in the COD and TSS removal efficiencies was observed. Chitosan shows a faster 276 

agglomeration of organic compounds forming larger flocs and hence a higher settling velocity (Divakaran and 277 

Pillai 2001). In the case of chitosan with FeSO4, after 1 h of sedimentation time, COD and TSS removal 278 

efficiencies were found to be 67.06 ± 3.37% (Fig. 6 (a)) and 98.32±0.24% (Fig. 6 (b)) respectively with a 279 

surface charge of 0.0545 mV. But at the end of 4 h of sedimentation time, COD and TSS removal efficiencies 280 

were 66.38 ± 5.64 % and 91.84 ± 2.61% respectively with a surface charge of -0.883mV.  281 

Chitosan shows predominant effects as compared to chitosan with FeSO4 for the COD removal. But maximum 282 

TSS removal was achieved when chitosan was coupled with FeSO4 as compared to using chitosan alone. This 283 

effect is mainly because of iron salts which act as destabilisers for the POME colloidal suspension, whereas 284 

chitosan acts as a neutraliser and bridger that promotes faster agglomeration of organic particulates and resulted 285 

in faster settling of the formed flocs thereby reducing the TSS of POME. Based on this investigation, 1 h was 286 

considered to be the optimised sedimentation time to achieve the maximum removal of COD and TSS.  287 

3.4 Effect of pH 288 

In the case of coagulation-flocculation process, pH acts as a crucial parameter since the performance of 289 

coagulant aids is always observed to be in a specific range of pH. Hence the effect of initial pH of POME was 290 

studied using the optimised dosage of coagulant, mixing time and sedimentation time in reducing the COD and 291 

TSS. 292 

Fig. 8 shows the effect of initial pH on the COD and TSS removal efficiencies. From the results, a very similar 293 

trend in the COD reduction could be observed for chitosan and chitosan with FeSO4. As the pH increased from 294 

2 to 7 there was a substantial increase in the COD removal for chitosan and chitosan with FeSO4. For chitosan, 295 

the COD removal increased from 69.39 ± 1.38 % at pH 2 to 82.66 ± 0.18 % at pH 7 (Fig. 8 (a)). Similarly for 296 

chitosan with FeSO4, the COD removal increased from 38.65 ± 0.83 % to 67.49 ± 1.20 % (Fig. 8 (a)). There 297 

was also a decrease in the COD removal at pH 9. This could be due to the hydrolysis of coagulant at a higher 298 

alkaline environment resulting in the inhibition of bridging flocculation or particle aggregation (Divakaran and 299 

Pillai 2001). The highest TSS removal for chitosan was observed at pH 2; also with an increase in pH there was 300 

a substantial reduction in the TSS removal from 95.37 ± 1.01% at pH 2 to 91.43% at pH 9 (Fig. 8 (b)). Fig. 9 301 

shows the zeta potential measurements at various pH.  302 
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The highest degree of agglomeration is achieved at the isoelectric point. The surface charges increase when the 303 

pH increased from 2 to 5 for both the coagulants whereas there was a decrease in the surface charge at neutral 304 

pH 7. The surface charge of POME gets decreased due to the charge neutralisation mechanism at neutral pH 305 

indirectly improving the coagulation efficiency and hence the COD and TSS removals. At an alkaline pH, an 306 

increase in the surface charge decreases the coagulation efficiency. This trend was very similar to the 307 

observations as reported by Zhu et al. 2011.  At the end of this study, pH 7 was chosen to be the optimum pH 308 

which is also the pH after the aerobic digestion of POME and which resulted in the COD and TSS removals. 309 

3.5 Effect of hydrogen peroxide 310 

The effect of hydrogen peroxide (500-7500 mg/L) on the COD and TSS removals was investigated and the 311 

results have been shown in Fig. 10, whereas Fig. 11 shows the surface charge measurements. 312 

For chitosan, it was observed that at the lowest H2O2 concentration (500 mg/L), COD and TSS removal 313 

efficiencies were 82.82 ±1.71 % (Fig. 10(a)) and 89.92 ±0.48 % (Fig. 10(b)) respectively along with a zeta 314 

potential of 0.175 mV (Fig. 11). The reason for introducing H2O2 was to increase the generation of hydroxyl 315 

radicals (OH.) thereby improving oxidation and hence the removal of chemical components of POME. H2O2 is 316 

widely used in the advanced oxidation processes (AOPs) for wastewater treatment. When this AOP is coupled 317 

with chemical coagulation, an increase in the removal of chemical components of POME could be expected. It 318 

was evident from the observation that the COD removal efficiency was increased from 66.59 ± 7.13 % (for 2500 319 

mg/L chitosan without H2O2) to 82.82 ± 1.71 % (for 2500 mg/L chitosan with 500 mg/L H2O2); for TSS, the 320 

removal efficiency was improved from 85.15 ± 0.47 % (for 2500 mg/L chitosan without H2O2) to 89.92 ± 0.48 321 

(for 2500 mg/L chitosan with 500 mg/L H2O2). When the concentration of H2O2 was further increased to 5000 322 

mg/L, a maximum removal of 91.80 ± 1.30% in the TSS and 84.95 ± 3.32% in the COD was achieved. Hence 323 

an external addition of H2O2 improves the removal of chemical components of POME by oxidation due to the 324 

abundant availability of OH. radicals. This confirms that the radical attack is the main pathway for the POME 325 

degradation which significantly increases the performance of chitosan coagulation. Whereas, when the 326 

concentration of H2O2 was further increased to 7500 mg/L there was a reduction in the removal efficiency of 327 

both the COD as well as TSS. This observation could be explained due to the over abundant generation of 328 

hydroxyl radicals, which in turn results in the formation of hydrogen peroxide and finally reduces the oxidation 329 

as hydrogen peroxide is relatively a weak oxidising agent as compared to OH. radicals (Harish Prashanth and 330 
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Tharanathan 2007; Chu et al. 2012). a possibility of oxidation of FeSO4 by H2O2 into Fe2(SO4)3 at pH 7 as well 331 

as oxidation of chitosan by H2O2 must 332 

Thus an optimum concentration of H2O2 (500 mg/L) is found to be suitable for POME treatment. Apart from 333 

this, the effect of Fenton oxidation was also investigated using ferrous sulphate. The mechanism involved in the 334 

Fenton oxidation has been shown in the following equations (2-10) (Sychev and Isak 1995):  335 

HO* +   H2O2                                  H2O + HO2
*  (2) 336 

 HO*+ Fe2+                             Fe3+ + OH-  (3) 337 

Fe3++   H2O2                                   Fe2+ + H* +   HO2
*             (4)          338 

HO* + HO*                                     H2O2                                 (5)            339 

H2O*+ H2O2                           O2 + H2O + HO*                 (6) 340 

Fe3+ +     HO2
*                             Fe2+ + O2 +   H+                   (7) 341 

In the presence of organic substrate (XH), the primary product of the oxidation would be the organic radical, X•, 342 

which possesses mainly reducing properties and may be consumed through the reactions with H2O2 and Fe3+. 343 

HO* +   XH                                     H2O + X*  (8) 344 

 X* + H2O2                              XOH + HO*  (9) 345 

 X* +   Fe3+
                                       Fe2+ + H+ +   Product      (10)          346 

 It was also observed that chitosan with Fenton oxidation reduced the COD removal from 82.82 ± 1.71 % (for 347 

2500 mg/L chitosan with 500 mg/L H2O2) to 73.08 ± 4.11% (for 2500 mg/L chitosan with 2500 mg/L FeSO4 348 

and 500 mg/L H2O2).  Thus, chitosan with Fenton oxidation does not show any favourable result for the COD 349 

removal and it could be concluded that the chitosan with H2O2 proves to be producing better results for POME 350 

as compared to chitosan with Fenton oxidation. 351 

3.6 Economic analysis and performance comparison with other technologies 352 

The chitosan coagulation coupled with H2O2 as a POME treatment method has been compared to other reported 353 

work to evaluate its performances and has been shown in Table 2.  354 

 355 

 356 

 357 
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Table 2 Comparison of the current chitosan coagulation coupled with H2O2 treatment process with other 358 

reported work for POME treatment 359 

Treatment Process 

Operational 

Conditions 

Overall 

COD 

reduction 

(%) 

Overall 

TSS 

reduction 

(%) 

References 
Temperature 

(°C) 
pH 

2.5 g/L chitosan + 0.5 g/L 

H2O2 
25-30 7 89.92 82.82 Current Study 

8 g/L alum 26-30 4.5 - 89 Ahmad et al. 2006 

6 g/L alum 30 5 66 89 Bhatia et al. 2007 

6 g/L MOA 30 5 52.2 95 Bhatia et al. 2007 

0.1 g/L Magnafloc LT22 

polymer + 

0.3 g/L FeCl3 

25 5 49 92 
Karim and Hie 

1987 

4 g/L MOAE + 7 g/L 

flocculant NALCO 7751 
70 5 42 98 Bhatia et al. 2007 

6 g/L polyaluminum chloride 26-30 4.5 - 93 Ahmad et al. 2006 

 360 

Among the other POME treatment methods reviewed above; it is observed that the chitosan coagulation coupled 361 

with H2O2 is appeared to be a suitable alternative for POME treatment. Table 3 shows the operational costs 362 

estimation calculation for the POME treatment. 363 

The optimum dosage for the POME treatment was found to be 2500 mg/L from the previous lab scale 364 

optimisation studies. If the price of chitosan used is 162.30 MYR/kg, then for the treatment of 400 tonnes of 365 

POME, 1 tonne of chitosan is required. The chemical cost for treating 1m3 of POME under optimum conditions 366 

is MYR/m3 163575. The treatment needs an electricity usage of 144000 KWh.  The total operation cost of 367 

anaerobically digested POME treatment using chitosan coagulation was found to be 1.96 MYR/thousand gallon. 368 

The operation cost of using chitosan coagulation for the treatment of anaerobically digested POME is still seems 369 

to be acceptable for commercial feasibility. It has been reported that the open digesting tank for POME 370 

treatment without land application, the capital cost quoted (Gopal et al. 1986) for a palm oil mill processing 30 371 

tons FFB/h is MYR 750,000. Also, the capital cost for a membrane system in POME treatment for a palm oil 372 

mill processing 36 tons FFB/h at MYR 3,950,000 (Chong, 2007). 373 
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Table 3 Operational costs estimation 374 

Item Notes Cost in MYR 

Energy 

Average power of installation-25 kW 

Average unit price of electrical energy MYR 

0.345/kwh 

49680 

Labour Three shift work. Costs MYR 6/hr 345600 

Chemical Costs 

Prices calculated for local market  

Chitosan: MYR 162.3/kg 

Ferrous sulphate: MYR 0.685/kg 

Hydrogen Peroxide: MYR 1.275/kg 

65704000 

 

Land cost  1235927 

Taxes and Insurance  66522.77 

Maintenance  133045.55 

Total O&M Cost  67534775.33 

 375 

 376 

4 Conclusions 377 

The effectiveness of chitosan, FeSO4, combined chitosan with H2O2 and combined chitosan with Fenton 378 

oxidation were evaluated for the AAD-POME. From the results it could be concluded that chitosan has been 379 

identified as an effective coagulant for maximum COD removal. Also, FeSO4 addition to chitosan is favourable 380 

for TSS removal but not for COD removal. The TSS removal was improved from 66.59 % (2500 mg/L of 381 

chitosan without any H2O2) to 82.82 % (2500 mg/L of chitosan with 500 mg/L H2O2) whereas the COD removal 382 

was improved from 85.15 % (2500 mg/L  chitosan without any H2O2) to 89.92 % (2500 mg/L  chitosan with 383 

500 mg/L H2O2). The optimum parameters were: chitosan dose of 2500 mg/L; 500 mg/L of H2O2; 15 min of 384 

mixing time; 1 h of sedimentation time; and a pH of 7. It could be concluded that chitosan coagulation coupled 385 

with H2O2 proves to be a better alternative for the post-treatment of anaerobically digested POME due to its 386 

improved performance, safe handling and availability. 387 
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Figure Captions 1 

Figure1Effect of chitosan dosage on the removal (%) of (a) CODand (b) TSS  2 

Figure 2Effect of FeSO4 dosagewithchitosan (2500 mg/L) on the removal (%) of (a) COD 3 

and (b) TSS  4 

Figure 3Zeta potential at different dosages of chitosan andchitosan(2500 mg/L )with FeSO4 5 

Figure 4Effect of mixing time by employing chitosan (2500 mg/L) and chitosan (2500 mg/L) 6 

with FeSO4 (2500 mg/L) on the removal (%) of a) COD and (b) TSS 7 

Figure 5Zeta potential measurements at different mixing time for chitosan (2500 mg/L)and 8 

chitosan (2500 mg/L) withFeSO4 (2500 mg/L) 9 

Figure 6Effect of sedimentation time using chitosan(2500 mg/L) and chitosan (2500 mg/L) 10 

with FeSO4 (2500 mg/L) on the removal (%) of a) COD and (b) TSS  11 

Figure 7Zeta potential measurements at different sedimentation time for chitosan (2500 12 

mg/L) and chitosan(2500 mg/L) with FeSO4 (2500 mg/) 13 

Figure 8Effect of pH of chitosan (2500 mg/L) and chitosan (2500 mg/L) withFeSO4  (2500 14 

mg/L) on the removal (%) of a) COD and (b) TSS  15 

Figure 9Zeta potential measurements at different pH for chitosan (2500 mg/L) andchitosan 16 

(2500 mg/) withFeSO4 (2500 mg/) 17 

Figure10Effect of hydrogen peroxide with chitosan (2500 mg/L) andchitosan (2500 mg/L) 18 

with FeSO4 (2500 mg/L) on the removal (%) of a) COD and (b) TSS  19 

Figure 11Zeta potential measurements at different hydrogen peroxide concentrations for 20 

chitosan (2500 mg/L) and chitosan (2500 mg/L) with FeSO4 (2500 mg/L) 21 
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Fig. 6 91 
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List of tables 1 

Table 1  2 

POME discharge standards set by Department of Environment (DoE), Malaysia under the 3 

Environmental Quality Act 1974 4 

Parametersa Discharge limits 

Biochemical oxygen demand 100 

Chemical oxygen demand  Not legislated 

Total suspended solids 400 

Total nitrogen 200 

Oil & grease 50 

pH 5 - 9 

                               a: All parameters are in mg/L except pH 5 

Table 2 6 

 Performance comparison between activated carbon (AC)  adsorption and ultrasound (US) 7 

cavitation on COD (mg/L) and TSS (mg/L)) removals from  POME 8 

Operating conditions COD (mg/L) 
BOD 

(mg/L) 

TSS 

(mg/L) 

Biologically digested POME 4700±550 1355± 434 1800±282 

AC adsorption   

(6 h, 200 g AC/L) 

 

ND* ND*  ND* 

US cavitation 

(50% amplitude, 90 min cavitation time) 

 

965± 49.49 260±60.10 75±35.35 

US cavitation followed by AC adsorption 

(50% amplitude & 15 min cavitation time, 

 50g AC/L & 30 min AC contact time) 

 

ND* ND* 310±56.56 

US cavitation 

 (50% amplitude, 15 min cavitation time)  

coupled with 

 AC adsorption 

 (50 g AC/L) 

1265±190.91 360±106.06 30±14.14 

            *ND: Not detected 9 


