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1. Introduction

Highly sophisticated algorithms and fast computer technology have originated a new class of

trading known as “intraday trading”. Intraday trading has numerous advantages: it offers a

great deal of liquidity in the market; it facilitates the instantaneous transmission of informa-

tion into prices, pushing markets to be more efficient; and it creates a market place for small

(retail) as well as large investors (institutions).

However, intraday trading also presents unique challenges (see for example the Final

Project Report from The Government Office for Science, London - 2012). Chiefly, it has

been criticised as liable to cause large market crashes which may be amplified by the influx

of algorithmic trading and the order clustering caused by unintended trading strategy coor-

dination (see e.g. Beddington et al., 2012; Kirilenko et al., 2017; Manhire, 2018; and media

coverage such as Brush et al., 2015). Hence, regulators (see the Press Release, European Par-

liament, MEPs Vote Laws to Regulate Financial Markets and Curb High Frequency Trading

(Apr. 15, 2014)), economists (e.g. Kirilenko and Lo, 2013) and law scholars (e.g. Yadav, 2015)

have proposed measures to mitigate such trading behaviour.

As a consequence of the issues discussed above, market participants are required to measure

and report several market risk metrics, and to take them into account when calculating their

regulated capital requirements. For example, on January 16th, 2016 the Basel Committee

on Banking Supervision (henceforth, “the Commitee”) published a document that revised

standards for minimum capital requirements for Market Risk. In addition, the Committee

had also produced three consultative papers on the Fundamental review of the trading book,

namely (i) Fundamental review of the trading book, May 2012, (ii) A revised market risk

framework, October 2013 and (iii) Fundamental review of the trading book: Outstanding

issues, December 2014. Furthermore, ECB imposes capital requirements (via the Capital

Requirements Regulation) on institutions who engage in intraday trading. Such requirements

are based on risk metrics or asset volatility.1 However, standards set by regulators are based

1For details see https://www.bankingsupervision.europa.eu/press/publications/newsletter/2019/html/ssm.nl190213-
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on risk metrics that are calculated - at most - at daily frequency. Given that intraday trading

takes place at higher frequencies, this leaves the market risk, generated by such trading

activity, largely as a dark pool. Indeed, very little is known about market risk associated

with intraday trading; similarly, only little analysis has been conducted on how traditional

risk metrics such as Value-at-Risk (V aR, hereafter) or Expected Shortfall (ES, hereafter)

behave at such high frequency trading. The investigation of this issue is arguably of immense

importance, due to the fact that typical risk metrics users assume that high order moments

of asset returns at intraday frequency are finite. This assumptions is based on the fact that

such moments are finite at lower, e.g. daily, frequency, which may be not hold true for higher

frequencies. Consequently, the V aR and ES are calculated under the assumptions that high

order moments are finite, typically using the quantiles of the normal distribution. In turn, such

risk metrics computations are assumed to adequately capture capital requirements, which

may be grossly incorrect in the presence of heavy tails. Of course, it is perfectly possible

to compute the V aR and ES without assuming normality. However, existing methodologies

require several assumptions which may not be satisfied: for example, Extreme Value Theory

based methodologies usually require the i.i.d. assumption (see Manganelli and Engle, 2001),

which is highly unlikely to be satisfied by intraday returns. Thus, prior to calculating any

risk metric, it is of vital importance to have a deep understanding of the properties of the

data. Despite its importance, the assumption of finite moments has not been formally tested

thus far to the best of our knowledge.

In this study, we fill the gaps discussed above by offering two contributions. Firstly, we

develop a methodology to check whether high order moments are finite. We point out that,

in this context, very few tests are available. One exception is Trapani (2016), but his test (as

we discuss in more detail below) produces non replicable results, so that different researchers

using the same datasets may obtain different results as to the finiteness, or not, of high order

moments. Conversely, our methodology overcomes this issue, ensuring that all researchers

using the same dataset will obtain the same results and draw the same conclusions. As a

5.en.html
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second contribution, we assess the impact of having infinite moments in a risk management

framework. In our empirical analysis, we focus on the foreign exchange market, which is

justified by the fact that - in that context - trading has become increasingly electronic and

automated. The use of intraday frequency algorithms and machine learning protocols are

continuously increasing in the foreign exchange market with more than 65% of the more than

5 trillion dollars daily volume to be traded from such algorithms. In addition, more than 80%

of Central Banks monitor Fasted Paced Electronic Markets operations and 60% is for market

stability reasons alone.

In our empirical analysis (Section 3), we apply our test to check whether the first four

moments are finite, using intraday data from the currency markets. We find that the distri-

bution of the returns of the assets traded intraday does not have finite absolute moments of

order higher than 3,2 implying that mainly the kurtosis is infinite at intraday frequencies. In

contrast, daily data do have finite moments. The finiteness of high order moments at lower

frequencies may explain why the traditional, Gaussian-based way of computing V aR and ES

is used also at high frequency. However, using a distribution which admits all moments in

the presence of heavy tails may lead to wrong conclusions: in Section 3.3, we illustrate the

consequences of neglecting this feature, calculating the high losses incurred by (and the short

survival of) an investor who ignores this issue. In order to shed further light, in Section 4

we report extensive Monte Carlo evidence showing that V aR and ES are much larger than

implied e.g. by the classical risk management approaches. We find that this is due to two

reasons. First, the natural increase in the sample size as the frequency increases directly af-

fects potential losses. Secondly, we find clear numerical evidence that, at higher frequencies,

data sampled from a distribution which has heavy tails tend to have higher sample moments

(chiefly, higher kurtosis) than the theory would predict.3 In turn, this affects the potential

2We note that there are intraday frequencies which exhibit infinite third moment. However, our analysis is

focused on the severe implications brought about by the fourth moment being infinite in intraday frequencies,

since our testing and simulations show that even when the 3rd moment is infinite, this does not alter the

V aR or ES metrics in any statistically significant manner.
3This consideration is based on the Marcinkiewicz-Zygmund SLLN, which provides an upper bound on
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losses associated with V aR or ES. In order to confirm this striking empirical finding, and

to disentangle possible sources of the extreme (infinite) potential losses, we carry out an ex-

tensive series of simulations. Evidence from simulated data suggests that, on one hand, the

estimated kurtosis grows as the sampling frequency increases (as the Strong Law of Large

Numbers - SLLN henceforth - implies), yet, on the other hand, the growth pattern exhibits

a much faster rate than the one implied by the SLLN bound. Thus, kurtosis diverges much

faster from its theoretical path as the sampling frequency increases, contributing significantly

to the increase of the potential losses at intraday trading. Hence, the simulated data lend

strong support to our empirical conclusions generated from the use of actual currency pairs

data. We call this phenomenon superkurtosis ; it implies that traditional risk metrics are not

a good measure for the true market risk (see also Bradley and Taqqu, 2003), and should

therefore not be employed to gauge capital adequacy under intraday trading.

The remainder of the paper is organised as follows. Section 2 describes the methods used

for the test of moments, as well as, for the assessment of the impact of these moments on

risk management. Section 3 presents our empirical results from the real data and Section 4

for the simulated data. Finally, Section 5 concludes the study and provides ideas for future

research. Technical results and further tables are in the appendix.

2. Methodology

Our methodology consists of two steps. We start by verifying whether higher order moments

are finite (Section 2.1); we then turn to assessing the impact of having infinite high order

moments on risk metrics (Section 2.2).

2.1. Testing for the finiteness of the asset returns’ moments.

In this section, we discuss testing for the finiteness of the moments of a random variable X,

given a sample {xt}Tt=1, also proposing an improved, replicable version of the original test by

the growth rate of sample moments when the corresponding population moments are infinite.
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Trapani (2016) - see below for details. Our hypothesis testing framework is as follows: H0 : E |X|k =∞

HA : E |X|k <∞
, (2.1)

with k = 2, 3 and 4. In (2.1), the null hypothesis is the infinity of the k-th absolute moment.

As in Trapani (2016), for each k, test statistics are based on

µk = ck ×
T−1

∑T
t=1 |xt|

k(
T−1

∑T
t=1 |xt|

p
)k/p (2.2)

where p = min{k − 1, 2} and ck is defined in equation (A.3) in Appendix A. Hence, we

construct the statistic

ψk = exp (µk)− 1. (2.3)

Trapani (2016) showed that ψk diverges to positive infinity under H0, whereas it drifts to

zero under HA. In order to produce a test statistic which has a well-defined limiting law, ψk

is randomised by using the following algorithm.

Step 1 Randomly generate an i.i.d. N (0, 1) sample of size R =
⌊
T 1/2

⌋
, say

{
ξ

(k)
j

}R
j=1

, inde-

pendently across k, and define
{
ψ

1/2
k × ξ

(k)
j

}R
j=1

.

Step 2 For u ∈
{
−
√

2,
√

2
}

, generate ζ
(k)
j,T (u) = I

(
ψ

1/2
k × ξ

(k)
j ≤ u

)
, 1 ≤ j ≤ r.

Step 3 For each u, define

ϑ
(k)
T,R (u) =

2√
R

R∑
j=1

[
ζ

(k)
j,T (u)− 1

2

]
, (2.4)

and finally the test statistic

Θ
(k)
T,R =

1

2

[(
ϑ

(k)
T,R

(
−
√

2
))2

+
(
ϑ

(k)
T,R

(√
2
))2

]
. (2.5)

The limiting distribution of Θ
(k)
T,R is in Theorem A.1 in Appendix A; in essence, under

the null, Θ
(k)
T,R follows a chi-squared distribution with one degree of freedom (henceforth

χ2
1). However, this result is different from a standard limit theorem, and it suffers from a

replicability issue which we now proceed to explain. Indeed, under H0 it holds that

lim
min(T,R)→∞

P ∗{Θ(k)
T,R ≥ cα} = α, (2.6)
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conditional on the sample, where cα is a critical value defined by P (χ2
1 ≥ cα) = α. However,

the test statistic Θ
(k)
T,R is constructed using the randomness

{
ξ

(k)
j

}R
j=1

, which does not van-

ish asymptotically. As a consequence, different researchers using the same data will obtain

different values of Θ
(k)
T,R and, therefore, different p-values; indeed, if an infinite number of

researchers were to carry out the test, the p-values would follow a uniform distribution on

[0, 1]. This is a well-known feature of randomised tests (see e.g. the discussion in Horváth

and Trapani, 2019).

In order to address the issue mentioned above, we construct a “strong” (i.e., valid almost

surely) decision rule which ensure that the decision between H0 and HA is not subject to

such arbitrariness, and that all researchers will end up having the same outcome. Our decision

rule works as follows. Each researcher, instead of computing Θ
(k)
T,R just once, will compute the

test statistic S times, at each time s using an independent sequence
{
ξ

(s)
j , 1 ≤ j ≤ R

}
for

1 ≤ s ≤ S, thence defining

Q(k) (α) = S−1

S∑
s=1

I
[
Θ

(k)
T,R,s ≤ cα

]
, (2.7)

where Θ
(k)
T,R,s is the test statistic computed according to the algorithm above using the artificial

sample
{
ξ

(s)
j , 1 ≤ j ≤ R

}
. The function Q(k) (α) is related to the “fuzzy confidence interval”

discussed in equation (1.1b) in Geyer and Meeden (2005). We note (heuristically) that an

immediate consequence of Theorem A.1 is

limmin(T,R,S)→∞ P
∗{Q(k) (α) = 1− α} = 1 under H0

limmin(T,R,S)→∞ P
∗{Q(k) (α) = 0} = 1 under HA

. (2.8)

This indicates that, as S →∞, Q(k) (α) has been “de-randomised” - that is, the randomness

added by the researcher has been washed out, and the conclusions drawn from a test based on

Q(k) (α) are exactly the same across all researchers. We formalise the properties of Q(k) (α) in

Theorem A.2 in Appendix A. Based on the results in Theorem A.2, a decision rule in favour

of H0 can be based on

Q(k) (α) ≥ (1− α)−
√
α (1− α)

f (S)
, (2.9)
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for all sequences f (S) → ∞ such that f (S) = o
(
S1/2

)
. In the empirics section, we discuss

the choice of f (S) and the robustness of Q(k) (α) to its choice.

2.2. Assessing the impact of infinite moments in risk management

We consider a representative trader with unlimited capital, who wants to calculate her V aR

measure at each point in time. Without loss of generality, each trading day t is divided in

τ equidistant intraday subintervals. The observed prices at day t are denoted as Ptj , for

j = 1, 2, ..., τ , with sample frequency defined as m = τ−1. We define daily log-returns as

yt = logPtτ − logP(t−1)τ , and intraday log-returns as ytj = logPtj − logPtj−1
.

The V aR for a long trading position at (1 − p) level of confidence, at sampling (trading)

frequency m, is denoted as V aR
(m)
(1−p), defined such that P (ytj ≤ V aR

(m)
(1−p)) = p. The V aR

(m)
(1−p)

is computed non-parametrically as the p-quantile of the intraday log-returns at sampling

frequency m: V aR
(m)
(1−p) = fp

(
{ytj}

t=1,...,T
j=1,...,τ

)
.4 We measure the potential losses conditional to a

V aR violation (i.e. the losses that occur when the returns are lower than the V aR measure)

by constructing an evaluation function, l
(m)
tj that measures the absolute distance between

actual returns, ytj , and the V aR measure, i.e. the potential loss (l
(m)
tj ):

l
(m)
tj =


|ytj − V aR

(m)
(1−p)| if ytj < V aR

(m)
(1−p)

0 otherwise.

. (2.10)

We note that the expected shortfall, recently proposed as an alternative risk measure, is the

expectation of the potential loss (E(l
(m)
tj )), given that the V aR violation is present.

The total potential losses over the sample period are computed as L(m) =
∑T

t=1

∑τ
j=1 l

(m)
tj .

To allow comparison across the different sampling frequencies we also compute the daily

adjusted losses per V aR violation as L̄(m) = 1361(Nm)−1L(m), for N =
∑T

t=1

∑τ
j=1 I

(m)
tj ,

where:

4The V aR of intraday log-returns ytj for a short trading position at (1− p) level of confidence at sampling

frequency m is P
(
ytj ≥ V aR

(m)
(1−p)

)
= (1− p).
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I
(m)
tj =


1 if ytj < V aR

(m)
(1−p)

0 otherwise.

(2.11)

We multiply the number of violations by the daily adjustment, 1361/m, where 1361 reflects

the 1-minute observations per day that the market is open.

3. Empirical findings from actual data of three currency pairs

In this section, we carry out an empirical exercise, where we (i) check whether our data

have heavy tails or not (by testing for the finiteness of up to the fourth moment); and (ii)

evaluate the potential losses when using a strategy that fails to acknowledge that higher order

moments are infinite. We find that, when considering intraday frequency data, higher order

moments such as the kurtosis are infinite; and that potential losses tend, in such cases, to be

much higher than anticipated.

3.1. Data description

We use 1-minute data of the front-month futures contracts, as well as, the spot prices, for

the EUR/USD, GBP/USD and CAD/USD exchange rates, obtained from TickData and

HistData, respectively. The period of the study spans from January 3, 2000 to August 5,

2015 for the futures data, whereas, due to data availability issues, the sample period for the

spot prices runs from January 3, 2005 to August 5, 2015. We focus on a sample of the G10

exchange rate market as it is considered the deepest continuously trading market in the world,

so that we do not have to take into consideration significant data alterations. The choice of

the specific currency pairs is justified by the fact that (i) they are among the most liquid,

and (ii) they represent the most heavily traded exchange rate for financial transactions. Our

sample consists of 3, 990 trading days, which contain more than 25 million 1-minute data in

total.

Descriptive statistics - for the currency pairs’ spot and futures returns for sampling (trad-

9



ing) frequencies from 1-minute to 1-day - are summarised in Table B.1 in Appendix B. We note

that volatility is falling linearly as the sampling frequency is increasing. By contrast, the third

moment (skewness) does not change materially from symmetry at the different frequencies.

More importantly, the fourth moment (kurtosis) shows the well documented leptokurtosis,

which increases dramatically as the sampling frequency increases. This is particularly evident

for the futures price returns, which suggests that investors in the futures market are exposed

to greater tail risk. Of course, the magnitude of kurtosis at the higher frequencies differs

among the different crosses, with the higher values to be observed in the EUR/USD.

3.2. Testing for the finiteness of higher order moments

We start our analysis with the results on the finiteness of moments in Tables 1 and 2.5

When computing (2.9), we used the same specifications as in the paper by Trapani (2016)

- namely, we set R =
⌊
T 1/2

⌋
(note that T is a much larger number than in the simulations

considered in Trapani (2016), so R is likely to be much larger than needed). Consistently

with Theorem A.2, we chose S = 2, 000, which is essentially the same order of magnitude as

R for all cases considered; we would like to point out that we tried to vary S, but results

are virtually unchanged. Finally, in the computation of the threshold for Q(k) (α), we use

f (S) = S1/4; we note that functions like f (S) = Sa, for 0 < a < 1
2
, are in principle all

acceptable. We experimented with different functional forms for f (S), using e.g. f (S) = S1/3

and f (S) = S1/5, but results are exactly the same, which illustrates the robustness of our

procedure to this specification.

[Insert Tables 1 and 2 around here]

The results in Tables 1 and 2 show that the second moment is finite across all currencies

5We have also considered lower frequencies than the daily (e.g. weekly, biweekly and so on) and the results

show that all moments continue to be finite. These unreported results are available from the authors upon

request.
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and sampling frequencies (for both spot and futures returns), whereas skewness seems to exist

in most cases, with the main exceptions being the 1m-20m frequencies for the EUR/USD and

GBP/USD futures. More importantly, though, for all intraday sampling frequencies across

the three currency pairs (either in their futures or spot returns), the null hypotheses of

infinite fourth moment cannot be rejected, lending preliminary support to the superkurtosis

phenomenon. On the other other hand, moving to lower sampling frequencies, i.e. daily, we

find evidence that all moments are finite.

3.3. The impact of the infinity of moments in intraday returns

The results presented in Tables 1 and 2 seem to suggest that risk management tools, such as

the V aR or ES, that are used by implicitly assuming finite moments, might be inappropriate

to assess the true underlining risk of loss in the ultra-high frequencies. To ascertain this, we

consider a scenario where traders assume that high order moments are finite at the intraday

frequencies. Under this scenario, we calculate the potential losses (L(m) and L̄(m)), conditional

to V aR violation, as shown in Section 2.2 (see Figures 1 and 2, which depict the results for

the futures and spot price returns, respectively).

[Insert Figure 1 around here]

In all cases considered in Figure 1, potential losses are decidedly higher for the higher sam-

pling (trading) frequencies, while they decrease rapidly as the sampling (trading) frequency

decreases. This holds for both the total potential losses (L(m)) and the daily adjusted poten-

tial losses (L̄(m)). For instance, in the 1-minute trading frequency of the EUR/USD futures

prices we observe that a trader would have lost 48 times more capital than anticipated by the

V aR, whereas the daily adjusted losses, for the same frequency, are about 25% more. Similar

figures are reported for the GBP/USD and CAD/USD futures prices, as well6.

6Please note that we have also considered a short position in the currency pairs and the results are

qualitatively similar, suggesting that the infinity of the third moment that was exhibited in some frequencies
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We supplement our analysis by focusing also on the spot prices of the three currency pairs.

We do so, since the spot and futures prices are related via covered interest rate parity and thus

the empirical findings could be driven by the interest rate differential component. Figure 2

depicts the potential losses and daily adjusted potential losses conditional to V aR violations,

using the spot exchange rates. We observe that the potential losses increase exponentially

as the trading frequency increases. For instance, the potential losses in all currencies are 30

times larger at the 1-min sampling frequency, suggesting that a trader is anticipated to lose 30

times more capital (or about 25% based on the daily adjusted losses) more than anticipated

by the V aR, when she trades on a 1-min frequency. Although the magnitude of the potential

losses is lower compared to the futures prices (for the Euro/Dollar futures the potential losses

were 48 times higher at the 1-min sampling frequency), we can immediately understand that

the main findings observed using the futures prices remain unchanged for the case of spot

prices.

[Insert Figure 2 around here]

To elaborate further on our key finding, we proceed with a simple example of the conse-

quence of ignoring the infinity of high-order moments and in particular, the superkurtosis

phenomenon, by quantifying how much a trader is miscalculating her expected losses. To

do so, we assume three representative traders that each have an initial capital of $10, 000.

The only difference among the three traders is the choice of trading frequency. Indicatively,

we assume that the first trader chooses to trade every minute, the second every 60 minutes

and the third trader makes her trades on a daily basis. Furthermore, the traders have an

investment horizon equal to our sample period. Each trader calculates her 95% V aR measure

and invests the capital that respects the V aR in the foreign exchange market at each point

in time. To quantify the miscalculation of the potential losses we proceed as follows. When

the trader makes a positive return or a loss that falls within the V aR, then we report this

cannot be blamed for the observed behaviour of the potential losses.
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as a zero potential excess loss. However, when the trader suffers a loss greater than the 95%

V aR number then we calculate the excess loss beyond and above the V aR (for the specific

minute, hour or day). We do that for all trading observations of each trader and we then

aggregate these excess losses over the sample period. We do so to quantify the maximum

potential excess losses (rather than the actual losses) of each trader. For brevity, Figure 3

presents only the cumulative potential excess losses for each trader for the EUR/USD futures

market.

[Insert Figure 3 around here]

Figure 3 clearly demonstrates the severity of the issue discussed in this paper. The po-

tential excess losses for 1 minute trader is massively higher compared to the daily trader.

In particular, based on the study period used in this paper, the potential excess loss for

the 1 minute trader reaches the level of almost $600, 000, which means that the trader can

potentially deplete her capital within a very short period of time (in the first 3-months in

our numerical example), showing that V aR is heavily misleading. By contrast, for the daily

trader this amount is about $9, 000, which means that this trader never depletes her capital

and thus V aR is a valid risk management metric in this context.

3.4. Robustness analysis

To complement our empirical analysis based on the actual intraday data of the three cho-

sen currency pairs, we further assess our findings by distinguishing between intraday and

overnight returns, as well as, between the ebb and flow trading periods. Finally, we assess the

validity of our findings using a carry trade strategy where the investor goes long on the high

interest rate and short on the low interest rate currency.

Initially we remove the overnight returns from the intraday returns of our futures prices.

We time stamp our analysis considering as closing times the period between 4:00pm and

5:00pm Chicago time. Thus, we remove the overnight returns (which are defined as the
13



returns occurring between the closing time of the day and the opening time of the next day)

and we re-estimate the potential losses and daily adjusted potential losses. Figure 4 presents

our results.

[Insert Figure 4 around here]

Similarly to our previous analysis, we note that removing the overnight returns does not

alter our main findings, showing that our results are not driven by the potential price jumps

that could be observed when the market is considered closed.

Next, we proceed with an additional robustness check, distinguishing the futures price

returns between the ebb and flow transaction periods. The busiest time zones for foreign

exchange trading are London and New York. Thus, we isolate the intraday futures returns

of our currency pairs for the time period 2:00am to 3:00pm Chicago time, which denote the

high trading period and we leave the remaining opening hours as the low trading period.

The results are shown in Figures 5 and 6. The results are qualitatively similar to our initial

findings from Figure 1.

[Insert Figures 5 and 6 around here]

To complement further our empirical analysis based on actual intraday data, we proceed

with a currency carry trade. To do so, we use one of the most popular carry trades, which

is going long the Australian Dollar (AUD) and short the Japanese Yen (JPY). As in the

previous analysis, Figure 7 suggests that the main findings not only still persist, but they are

exacerbated. Using once again the 1-min sampling frequency, we document that the potential

losses are more than 60 times higher compared to the amount anticipated by the V aR, which

translates into 45% more daily adjusted potential losses.

[Insert Figure 7 around here]
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4. Findings from simulated data

Our analysis above shows that the superkurtosis phenomenon, i.e. the infinite kurtosis, could

be the source of the extreme potential losses as the sampling (trading) frequency increases.

However, the actual source of these losses is rather unclear. Thus, to shed light in this respect

we now perform an experiment using simulated data, to pin down the most important sources

of the association between potential losses and frequency of trading. Specifically, we assess

the impact of the sample size on potential losses, showing that as this increases, so do the

potential losses. Further, we assess the impact of having heavy tails on the potential losses.

We find that sample moments, when population moments are infinite, tend to be much higher

than the SLLN would suggest, which we show is particularly true for the sample kurtosis.

4.1. Assessing the impact of the sample size on potential losses

We analyse - via a simulation exercise - the impact of the sample size on potential losses,

considering a Gaussian data generating process where we simulate the (log) prices, log (Pt),

for 1 ≤ t ≤ 106 as

log (Pt) = log (Pt−1) + zt, (4.1)

with zt
i.i.d.∼ N(0, 1/h2), and initial price P1 = $1, 000. The total sample is split in 1, 000

trading days with 1, 000 intraday prices. Without any loss of information, the sample {Pt}106

t=1

mimics the Ptj for j = 1, ..., 1, 000 and t = 1, ..., 1, 000, at sampling (or trading) frequency

m = 10−3. For example, at 1-minute sampling frequency, or m = 10−3, we have τ = 1, 000

intraday prices, for T = 1000 trading days, at 2-minutes sampling frequency, we have τ = 500

intraday prices, for T = 1, 000 trading days, and so on.

Figure 8 illustrates the V aR
(m)
(95%), the kurtosis of log-returns, ytj = log(Ptj) − log

(
Pt−1j

)
,

and the potential losses L(m), L̄(m) for the simulated log-returns. We have set h = 10; we

note however that, in unreported experiments, very similar results were found when using

different values of h. The x-axis presents the trading frequency in minutes, from 1 up to 120

minutes. Without any loss of generality, we assume a long trading position, hence the 95%
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V aR measure is computed as the 5% quantile point of the empirical distribution of ytj .
7

[Insert Figure 8 around here]

The simulated results provide us with an important finding: the potential losses are de-

pendent on the trading frequency, where higher trading frequency leads to higher potential

losses, despite the fact that the kurtosis (upper right graph) is around the value of 3 across

any trading frequency m = 1, ..., 120. So, such finding could simply suggest that the increased

potential losses are not related with the effect of superkurtosis, but rather they are the artifact

output of the effect of number of observations which increases exponentially as the sampling

frequency increases.

In order to shed further light on the impact of the sample size, we investigate the analytical

form of the total potential losses. The potential loss L(m) is given by

L(m) =
T∑
t=1

τ∑
j=1

(
|ytj − V aR

(m)
(1−p)| × I{ytj<V aR(m)

(1−p)}

)
, (4.2)

for I{.} representing the indicator variable and we compute the expected value of total poten-

tial losses, E(L(m)). For our long trading position and under the condition ytj < V aR
(m)
(1−p),

we have ytj < 0 and V aR
(m)
(1−p) < 0, as well. So, for ytj < V aR

(m)
(1−p), we have |ytj −V aR

(m)
(1−p)| =

−(ytj − V aR
(m)
(1−p)). Hence:

E(L(m)) =
T∑
t=1

τ∑
j=1

E
(
|ytj−V aR

(m)
(1−p)|×I{ytj<V aR(m)

(1−p)}

)
= −

T∑
t=1

τ∑
j=1

pE
(
ytj−V aR

(m)
(1−p)|ytj < V aR

(m)
(1−p)

)
.

(4.3)

Note also that E(I{ytj<V aR
(m)
(1−p)}

) = p, as well as, that E(ytj |ytj < V aR
(m)
(1−p)) = ES

(m)
(1−p), and

that E(V aR
(m)
(1−p)|ytj < V aR

(m)
(1−p)) = V aR

(m)
(1−p). Hence, it follows that

7For a short trading position, the 95% quantile point of the empirical distribution would have been con-

sidered.
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E(L(m)) = −Tτp(ES(m)
(1−p) − V aR

(m)
(1−p)). (4.4)

Under the data generated process of eq. 4.1, it is easy to see that,

V aR
(m)
(1−p) = Φ(1−p)

(
E(ytj) = 0, V (yt) =

(√
m

h2

)2
)

(4.5)

and

ES
(m)
(1−p) = − σ

1− p
ϕ

(
Φ(1−p)(0, 1)

)
, (4.6)

where ϕ (·) denotes the standard normal probability density function and σ = h−1
√
m. Hence,

the V aR
(m)
(1−p) measure equals to the (1− p) percentile point of the inverse cumulative normal

distribution with zero mean and h−1
√
m standard deviation (we would like to bring to the

reader’s attention that m = τ−1 is the intraday trading frequency).

So, as presented in Figure 9, the total potential losses per trading frequency m are not

only affected by the number of observations (Tτ , which denotes the effect of size), but also

from the distance between the two risk measures; i.e. the expected shortfall and the V aR, i.e.

(ES
(m)
(1−p)−V aR

(m)
(1−p)). Therefore, as the trading frequency increases, (i) the number of trades

increases exponentially (see the effect of size in Figure 9), while (ii) the distance between

the two risk measures decreases (see the expected shortfall and value-at-risk in Figure 9).

Indicatively, some estimates of (4.4) are E(L(1)) = 0.02089 and E(L(120)) = 0.00191, for

ES
(1)
(5%) − V aR

(1)
(5%) = 4.2E − 7 and ES

(120)
(5%) − V aR

(120)
(5%) = 4.6E − 6.

[Insert Figure 9 around here]

Thus, both analytical and simulated evidence show that the total potential losses per

trading frequency m are affected positively by the number of trades and negatively by the

distance between the two risk measures. Having established the aforementioned effects, in
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the paragraphs that follow, we investigate whether there are any additional effects from the

infinity of moments.

4.1.1. Assessing the impact of heavy tails on potential losses

We now turn to investigating the effect of heavy tails on potential losses; in particular, we

assess the impact of superkurtosis. To this end, we consider a heavy tailed data generating

process, as follows:

log (Pt) = log (Pt−1) + zt, (4.7)

for zt
i.i.d.∼ t(0, 1/h2, v), for v ≥ 2 and initial price of P1 = $1, 000. The probability density

function for Student t is considered as: ϕ(0, 1/h2, v) =
Γ( v+1

2
)

Γ( v
2

)
√

πv
h2

(
1 +

z2
t h

2

v

)− v+1
2

.

Figure 10 shows the values of the sample kurtosis and the potential losses L(m), L̄(m) for the

simulated log-returns, from the Student t random walk data generated process under various

degrees of freedom, v = 3, 4, 5, 10, 30, 100 and h = 10; clearly, the population kurtosis does

not exist for the first two values.

[Insert Figure 10 around here]

We note that, for the near-Gaussian cases v = 30, and 100, the kurtosis remains constant

across various values of trading frequency, and, as expected, the potential losses L(m) and

L̄(m) are almost identical to those found in the previous section. As is natural to expect, as

the degree of freedom v decreases, the sample kurtosis increases; for example, for v = 10,

the kurtosis of log-returns at 120-minutes trading frequency is around 3.1, whereas for v = 3

the kurtosis of log-returns at 120-minutes trading frequency is around 3.6. However, Figure

10 shows a remarkable feature of the sample kurtosis. Heuristically, when v ≤ 4, the sample

kurtosis should pass to infinity as the sample size Tτ →∞; in particular, the Marcinkiewicz-

Zygmund SLLN implies that the sample kurtosis should pass to infinity at a rate given by
18



(modulo some slowly varying sequence) O
(

(Tτ)
4−v
v

)
. For example, when v = 3, the sample

kurtosis should diverge to infinity as fast as (approximately) O
(
(Tτ)1/3

)
. Based on these

heuristic considerations, when e.g. v = 3, one could expect the sample kurtosis for the 1-

minute trading frequency to be larger by a factor 1201/3 than the sample kurtosis calculated

for the 120-minutes trading frequency, keeping T constant. On the contrary, from Figure

10, it is apparent that the sample kurtosis is larger than the theory would predict. For

example, for v = 3, the 1-minute sampling frequency log-returns have kurtosis of 96, which is

approximately 26 times as much as in the 120-minute sampling frequency case, whereas the

theory would predict an increase of approximately 5 times only.

Turning now to the relationship between kurtosis and potential losses at the highest trading

frequency of 1-minute, we document that a kurtosis of 4 (as derived for v = 10 degrees of

freedom) implies potential losses of L(1) = 27.8 and L̄(1) = 0.80, whereas a kurtosis of 96 (as

derived for v = 3) increases the potential losses to L(1) = 75.8 and L̄(1) = 2.18.

To segregate the effect of the mechanically increasing sample size from this of the superkur-

tosis, we normalize the potential loss measure so to remove the effect of the former. To do

so, we compute the ratio of the potential losses across sampling frequencies from the data

generated process log (Pt) = log (Pt−1) + zt, for zt
i.i.d.∼ t(0, 1/h2, v), at different degrees of

freedom. Indicatively, Figure 11 presents the ratio of potential losses for v = 3 and v = 30

degrees of freedom. For example, at 1-minute sampling frequency the L(1) for v = 3 is 75.43

and for v = 30 is 23.49, hence the ratio, as presented in Figure 11, is 3.21 times. In other

words, superkurtosis leads to 3.3 times higher potential losses at 1-minute sampling frequency.

This finding holds across all sampling frequencies, however, it is evident that as the sampling

frequency increases, the effect of superkurtosis is magnified exponentially.

[Insert Figure 11 around here]

Both simulated and analytical results strengthen our findings, from the real data, that the

potential losses are dependent on the trading frequency, where higher trading frequency leads
19



to higher potential losses. Most importantly, though, we observe the effect of superkurtosis,

which is also evident in the real data, to influence radically the potential losses. Put differently,

the shape of the potential losses from the simulated data do resemble those of the actual data.

Thus, as the sampling (trading) frequency increases, the effect of superkurtosis becomes more

material and the potential losses increase substantially.

Finally, we would like to highlight that we have further experimented with the previous

simulation for P1 = 1 in order to mimic the exchange rate values, as well as, using a condi-

tionally heteroscedastic data generating process and the results remain robust.8

5. Discussion and conclusions

It is common practice for risk metrics users to assume that the moments of asset returns are

finite, and to use this assumption to capture the potential losses from asset trading, using

metrics such as the V aR or ES. Whilst this assumption appears to be correct for daily fre-

quencies, it is not clear whether this also entails that it holds for higher, intraday frequencies.

Further, if this assumption fails to hold, it is not clear what the likely consequences are.

On the other hand, whilst computing the V aR under non Gaussian assumptions is perfectly

possible, existing methodologies require several assumptions which, if not satisfied, may make

calculations unreliable. Hence, it is important to have a methodology to verify whether the

assumption of finite higher order moments is adequate.

In this paper, we make two contributions. Firstly, we develop a (replicable) methodology to

assess whether the moments of intraday data are finite or not. Secondly, we thoroughly assess

the potential losses arising from intraday trading, when a risk management metric, such as

V aR or ES, is used under the implicit assumption that the higher order moments of asset

returns are finite. Using both real data and a simulation exercise, we (unsurprisingly) find

that, when daily trading is implemented, V aR estimates work as expected, with potential

losses being in line with what the theory predicts. Conversely, results are far from standard

when high frequency, intraday trading is considered. In this case, the potential losses are much

8Results are not reported in this paper for the sake of brevity, and they are available upon request.
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larger than what the theory predicts. We show that there are two concurring features that

can explain our findings. Firstly, the sample size itself: as the sampling frequency increases,

so does the number of datapoints; hence, our results show that this (obviously) increases

the potential losses. Secondly and more importantly, intraday data are more likely to have

heavy tails. In our simulations, we show that the sample kurtosis computed using datasets

with infinite fourth moment tends to be much higher than what the theory would predict,

which in turn, further increases the potential losses. We call this discrepancy between the

theoretical behaviour and the actual magnitude of the sample kurtosis superkurtosis, and we

argue that it is one component of the heavy potential losses which, as a stylised fact, are

encountered when trading at intraday frequency under the (implicit in the use of V aR or

ES) assumption that high order moments are finite when, in fact, they are infinite.

Our findings entail that employing traditional risk measures for market participants who

engage in intraday trading imposes serious threats to the stability of financial markets, given

that capital ratios may be severely underestimated. Indeed, based on our analysis, it follows

that the hidden risks from intraday trading in the foreign exchange market alone in the finan-

cial system are immense, and minimum capital requirement must be substantially increased

in such higher trading frequencies, so that risk metrics like V aR or ES match the central

bank’s capital adequacy preset levels for financial stability reasons.

Currently, the importance of the frequency of trading is typically underplayed. For instance,

the Fundamental Review of the Trading Book framework recently finalised by the ECB9

emphasizes the importance of including risk factors such as the ES in an institution’s risk

metrics, but it does not offer any guidance as to how a risk factor might change in value when

trading takes place at extremely high frequency or how the fair value of a trading asset might

be impacted by the frequency of trading. Perhaps more importantly, our findings also have

implications for the development of the financial institutions risk assessments metrics set by

the Bank for International Settlements (BIS). Appropriate risk measurement is key to the

9https://www.eba.europa.eu/regulation-and-policy/market-risk/draft-technical-standards-on-the-ima-

under-the-frtb
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assessment of both firm-specific risk and of aggregate risk, independently of the leverage used

by financial institutions. In this sense, if capital requirements, which are designed to mitigate

the losses incurred in extreme events, are mis-measured, then they do not solve the underlying

problem that arises from a potential underestimation of actual risks that arise from intraday

trading. For instance, in the most recent report of BIS for the minimum capital requirements

for market risk, in 2019,10 the severity of intraday trading is acknowledged, noting that banks

“are expected to maintain strict risk management systems to ensure that intraday exposures

are not excessive” (p.13) - yet maintaining the suggestion that risk metrics, such as ES,

should be computed on a daily basis.

The main purpose of this paper is to highlight the stylised fact that intraday trading is based

on data with infinite high order moments, and that this invalidates the standard V aR and

ES metrics. However, our results also have clear policy implications. Indeed, an immediate

conclusion from our findings is that central banks, and banking supervisory authorities, should

make use of more appropriate risk metrics that reflect the presence of superkurtosis. Several

alternatives could be proposed to the classical V aR. For example, a naive, but arguably

robust, methodology could be based on multiplying the standard, “Gaussian” estimate of

a risk metric by a factor K to take account of the increased trading frequency and of its

impact of superkurtosis. Such a factor could be calibrated e.g. by simulation, based on the

sample moments of the data at hand. An alternative, more classical, approach could be based

on choosing a flexible family of distributions (e.g., the Generalised Pareto Distribution), and

using the quantiles thereof instead of the quantiles of the Gaussian distribution. The choice of

an appropriate parametric form, in such a case, would be of pivotal importance, as well as the

development of a robust estimator. Having a correct measurement of risk metrics is bound to

enhance the effectiveness of the macroprudential policies (such as the countercyclical capital

buffers and minimum capital requirements), by reducing the vulnerabilities of the financial

system, and thus, leading to higher financial stability.

Now more than ever, the use of the correct high frequency risk metrics is of paramount

10https://www.bis.org/bcbs/publ/d457.pdf
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importance, given the ultra-fast emergence of new assets that reflect no economic fundamen-

tals but are heavily traded by market participants, like cryptocurrency perpetual futures,

imposing real risks at the very heart of the financial system. The important issues mentioned

above are under investigation by the authors.
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Table 1
Tests for the finiteness of moments for the futures currency pairs at different sampling (trading) frequencies

Frequency Size St.Dev. Skewness Kurtosis

EUR/USD futures

St. Dev. Q(2) (α) Skewness Q(3) (α) Kurtosis Q(4) (α)

1m 5, 350, 727 1.88× 10−4 0.000 1.806 0.948∗ 729.97 0.938∗

2m 2, 675, 321 2.63× 10−4 0.000 1.396 0.948∗ 395.10 0.941∗

5m 1, 070, 147 4.07× 10−4 0.000 0.799 0.953∗ 161.38 0.957∗

10m 535, 031 5.69× 10−4 0.000 0.545 0.938∗ 85.43 0.939
15m 356, 717 6.92× 10−4 0.000 0.439 0.946∗ 62.34 0.942∗

20m 269, 462 7.94× 10−4 0.000 0.469 0.937∗ 52.64 0.941∗

30m 178, 316 9.70× 10−4 0.000 0.304 0.902 36.85 0.948∗

60m 95, 138 13.28× 10−4 0.000 0.271 0.820 24.67 0.937∗

daily 3, 990 64.48× 10−4 0.000 0.033 0.000 4.33 0.000

GBP/USD futures

St. Dev. Q(2) (α) Skewness Q(3) (α) Kurtosis Q(4) (α)

1m 5, 142, 433 1.78× 10−4 0.000 −0.487 0.948∗ 269.39 0.947∗

2m 2, 571, 564 2.12× 10−4 0.000 −0.500 0.945∗ 119.22 0.940∗

5m 1, 029, 113 3.16× 10−4 0.000 −0.422 0.958∗ 85.45 0.944∗

10m 514, 904 4.42× 10−4 0.000 −0.364 0.926∗ 61.41 0.944∗

15m 343, 557 5.29× 10−4 0.000 −0.348 0.905 36.53 0.942∗

20m 257, 800 6.16× 10−4 0.000 −0.345 0.929∗ 41.92 0.940∗

30m 172, 128 7.44× 10−4 0.000 −0.317 0.878 27.83 0.946∗

60m 89, 664 10.14× 10−4 0.000 −0.288 0.729 19.71 0.947∗

daily 3, 990 56.79× 10−4 0.000 −0.321 0.000 5.33 0.000

CAD/USD futures

St. Dev. Q(2) (α) Skewness Q(3) (α) Kurtosis Q(4) (α)

1m 5, 142, 433 1.87× 10−4 0.000 0.116 0.942∗ 103.30 0.947∗

2m 2, 571, 564 2.57× 10−4 0.000 0.067 0.927∗ 64.32 0.939∗

5m 1, 029, 114 3.96× 10−4 0.000 0.029 0.903 39.46 0.945∗

10m 514, 904 5.51× 10−4 0.000 0.049 0.860 29.89 0.944∗

15m 343, 561 6.64× 10−4 0.000 −0.035 0.801 24.33 0.952∗

20m 257, 800 7.63× 10−4 0.000 0.067 0.786 22.01 0.951∗

30m 172, 128 9.24× 10−4 0.000 0.021 0.717 19.25 0.940∗

60m 89, 664 12.31× 10−4 0.000 0.192 0.686 17.48 0.945∗

daily 3, 990 58.10× 10−4 0.000 −0.142 0.000 6.01 0.000
For each currency, we report the value of the relevant descriptive statistic, and the value of the function Q(k)(α) as defined in equation (2.7). The

asterisks next to each value of Q(k)(α) indicate that Q(k)(α) exceeds the threshold defined in (2.9). In turn, this entails that the null that the
corresponding, k-th absolute moment is infinite is not rejected at nominal level α, thus indicating that the relevant moment is infinite.
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Table 2
Tests the finiteness of moments for the spot currency pairs at different sampling (trading) frequencies

Frequency Size St.Dev. Skewness Kurtosis

EUR/USD spot

St. Dev. Q(2) (α) Skewness Q(3) (α) Kurtosis Q(4) (α)

1m 3, 814, 542 1.80× 10−4 0.000 0.337 0.917∗ 79.58 0.941∗

2m 1, 907, 174 2.55× 10−4 0.000 0.117 0.920∗ 71.02 0.941∗

5m 762, 817 3.97× 10−4 0.000 0.155 0.880 45.01 0.953∗

10m 381, 417 5.55× 10−4 0.000 0.071 0.738 26.34 0.953∗

15m 254, 275 6.78× 10−4 0.000 0.353 0.818 30.59 0.941∗

20m 190, 704 7.78× 10−4 0.000 −0.001 0.622 20.03 0.953∗

30m 127, 134 9.51× 10−4 0.000 0.173 0.619 20.65 0.946∗

60m 63, 564 13.35× 10−4 0.000 0.047 0.350 13.93 0.935∗

daily 2, 662 63.12× 10−4 0.000 0.198 0.002 6.55 0.004

GBP/USD spot

St. Dev. Q(2) (α) Skewness Q(3) (α) Kurtosis Q(4) (α)

1m 3, 791, 546 1.74× 10−4 0.000 −0.025 0.892 46.44 0.941∗

2m 1, 895, 673 2.47× 10−4 0.000 −0.088 0.913 48.42 0.945∗

5m 758, 224 3.86× 10−4 0.000 −0.096 0.868 32.66 0.944∗

10m 379, 114 5.41× 10−4 0.000 −0.107 0.781 25.23 0.951∗

15m 252, 740 6.55× 10−4 0.000 −0.075 0.707 21.23 0.949∗

20m 189, 553 7.57× 10−4 0.000 −0.129 0.776 24.21 0.955∗

30m 126, 366 9.18× 10−4 0.000 −0.056 0.601 17.84 0.942∗

60m 63, 180 12.91× 10−4 0.000 −0.113 0.524 16.15 0.940∗

daily 2, 666 60.99× 10−4 0.000 0.357 0.000 8.12 0.205

CAD/USD spot

St. Dev. Q(2) (α) Skewness Q(3) (α) Kurtosis Q(4) (α)

1m 3, 416, 089 1.97× 10−4 0.000 0.049 0.856 40.32 0.950∗

2m 1, 707, 811 2.77× 10−4 0.000 −0.045 0.855 40.25 0.954∗

5m 683, 011 4.32× 10−4 0.000 −0.033 0.699 24.17 0.948∗

10m 341, 507 6.00× 10−4 0.000 −0.079 0.562 19.89 0.944∗

15m 227, 669 7.34× 10−4 0.000 −0.002 0.533 18.88 0.948∗

20m 170, 749 8.41× 10−4 0.000 −0.038 0.454 16.45 0.946∗

30m 113, 829 10.26× 10−4 0.000 0.067 0.400 15.13 0.935∗

60m 56, 911 14.35× 10−4 0.000 0.044 0.337 14.50 0.934∗

daily 2, 686 65.76× 10−4 0.000 0.002 0.000 6.40 0.003
The numbers in the table have the same meaning as in Table 1.
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Fig 1: Trader’s potential capital losses, on the three futures exchange rates, above the anticipated losses from the V aR measure.
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Note: The x-axis denotes the m=1,...,60 minute intraday sampling (trading) frequencies. The values in the
y-axis refer to number of times, whereas in the z-axis refers to percentages.
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Fig 2: Trader’s potential capital losses, on the three spot exchange rates, above the anticipated losses from the V aR measure.
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Note: The x-axis denotes the m=1,...,60 minute intraday sampling (trading) frequencies. The values in the
y-axis refer to number of times, whereas in the z-axis refers to percentages.
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Fig 3: Traders’ potential capital losses in $ terms, on the EUR/USD futures exchange rate, above the anticipated losses from
the 95% V aR.

1m trading frequency 
 

 
 

60m trading frequency 
 

 
 

Daily trading frequency 
 

 
 
 

 

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

25000 50000 75000

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

500 1000 1500 2000 2500 3000 3500 4000

Note: The figure shows the potential losses that can be suffered from three representative traders of the
EUR/USD futures prices. From the top panel to the bottom, we show the cumulative potential losses for

the 1 minute trader, the 60 minute trader and the daily trader. The y-axis denotes the amount of potential
excess losses in $. The values in the x-axes refer to number observations, over the sample period, for the 1

minute trader, 60 minutes trader and the daily trader.
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Fig 4: Trader’s potential capital losses, on the three futures exchange rates (excluding overnight returns), above the anticipated
losses from the V aR measure.
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Note: The x-axis denotes the m=1,...,60 minute intraday sampling (trading) frequencies. The values in the
y-axis refer to number of times, whereas in the z-axis refers to percentages.
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Fig 5: Trader’s potential capital losses, on the three futures exchange rates (low transaction period), above the anticipated losses
from the V aR measure.
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Note: The x-axis denotes the m=1,...,60 minute intraday sampling (trading) frequencies. The values in the
y-axis refer to number of times, whereas in the z-axis refers to percentages.
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Fig 6: Trader’s potential capital losses, on the three futures exchange rates (high transaction period), above the anticipated
losses from the V aR measure.
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Note: The x-axis denotes the m=1,...,60 minute intraday sampling (trading) frequencies. The values in the
y-axis refer to number of times, whereas in the z-axis refers to percentages.
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Fig 7: Trader’s potential capital losses, on the AUD/JPY carry trade, above the anticipated losses from the V aR measure.

Carry trade between AUD/USD and JPY/USD 
 

 
 

 

0%
5%
10%
15%
20%
25%
30%
35%
40%
45%
50%

0

10

20

30

40

50

60

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58
potential loss (LHS) daily adj. av. potential loss (RHS)

Note: The x-axis denotes the m=1,...,60 minute intraday sampling (trading) frequencies. The values in the
y-axis refer to number of times, whereas in the z-axis refers to percentages.

Fig 8: The Value-at-Risk, kurtosis and potential losses for the random walk data generated process.

 

Note: The V aR
(m)
(95%) (upper left), the kurtosis of yt (upper right) and the potential losses L(m) (lower left),

L̄(m) (lower right) for the simulated log-returns ytj = log(Pt/Pt−1), for log (Pt) = log (Pt−1) + zt,

zt
i.i.d.∼ N(0, 1/h2), P1 = $1, 000 and h = 10. The x-axis denotes the m=1,...,120 minute intraday sampling

(trading) frequencies.
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Fig 9: The total potential losses, the number of observations (Tτ), the expected shortfall (ES
(m)
(1−p)), and the Value-at-Risk

(V aR
(m)
(1−p)), under the random walk data generated process, per sampling frequency m = 1, ..., 120.

 

-0.002

0.003

0.008

0.013

0.018

0.023

0

10000

20000

30000

40000

50000

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 10
6

11
3

12
0

Effect of size (LHS) Theoretical L (RHS)

-0.000025

-0.00002

-0.000015

-0.00001

-0.000005

0
1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 10
6

11
3

12
0

Theoretical VaR95 Theoretical ES95

Note: The left panel shows the (E(L(m))) and the effect of size (i.e. number of observations, Tτ), per
trading frequency m = 1, ..., 120, whereas the right panel shows the ES and the V aR, per trading frequency

m = 1, ..., 120. The x-axis denotes the m=1,...,120 minute intraday sampling (trading) frequencies.
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Fig 10: The total potential losses and kurtosis from the Student t random walk data generated process under various degrees of
freedom.
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Note: The kurtosis of yt (left panel), the potential losses L(m) (middle panel) and the L̄(m) (right panel)
from the Student t random walk data generated process under various degrees of freedom, v,

log (Pt) = log (Pt−1) + zt, zt
i.i.d.∼ t(0, 1/h2, v), P1 = $1, 000, h = 10. The x-axis denotes the m=1,...,120

minute intraday (trading) sampling frequencies.
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Fig 11: The effect of superkurtosis on potential losses across different sampling frequencies.

 
 

Note: The figure presents the ratio of the potential losses (L(m)) from the Student t random walk data
generated process under 3 and 30 degrees of freedom. The x-axis denotes the m=1,...,120 minute intraday

(trading) sampling frequencies.
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Appendix A: Complements to Section 2

We report some results which are referred to in the main paper, and the proof of Theorem

A.2.

A.1. Construction of µk

In the construction of µk, we begin by noting that we apply the tests to demeaned data.

The first statistic to be employed is µ2, which has been designed to test for H0 : E |X|2 =∞

- i.e., the non-existence of the variance. When k = 2, the sample second moment (at the

numerator) is made scale-invariant by dividing by the square of the mean absolute value of

xt; other rescalings would be possible (chiefly, the median, which has the advantage of being

well-defined), but the simulations in Trapani (2016) show that the mean absolute value yields

better power and size.

For k = 3, 4, rescaling is done using the sample variance, as is more natural. The rationale

for these choices is also discussed in Trapani (2016). Here, we point out that we need a scale

invariant test statistic - i.e. a sample moment which is not sensitive to the unit of measurement

of the data. The sample variance is an obvious candidate for this, as a “natural” measure of

scale. The simulations in Trapani (2016) also show that it works well in finite samples. In

general, other rescalings could be considered, based on a sample moment of order lower than

k. As mentioned also in Section 2, letting p < k, one could compute

µp =
1

T

T∑
t=1

|xt|p , (A.1)

and then define the statistic

µ̃k =
T−1

∑T
t=1 |xt|

k

µ
k/p
p

. (A.2)

Trapani (2016) shows that Theorem A.1 below holds for all p < k (see in particular Section

3.1 in that paper).
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Finally, we note that, in the formula which defines µk, some constants are used, denoted

as ck. These are taken directly from Trapani (2016), where they are defined as

ck =


4
π

when k = 2

1 when k = 3

1
3

when k = 4

. (A.3)

The rationale underpinning the choice of ck is as follows. The test works by evaluating whether

a sample moment is “very large” (so that the corresponding population moment is infinite)

or “sufficiently small” (which, conversely, implies that the population moment is finite). As

mentioned above, the notions of being large or small are only relative notions, i.e. relative to

a benchmark: Trapani (2016) argues that, letting Z ∼ N (0, 1), a useful term of comparison

for the sample k-th order moment of the data could be ck = E |Z|k.

A.2. Asymptotic behaviour of Θ
(k)
T,R

Let “
d∗→” and “

P ∗
→” denote convergence in distribution and in probability, respectively, with

respect to the probability conditional on the sample {xt}Tt=1, say P ∗. We summarise the

properties of the test above in the following theorem.11

Theorem A.1. We assume that the assumptions of Theorem 1 in Trapani (2016) are satis-

fied, and that R = O (T ). Then, as min (T,R)→∞, it holds that

Θ
(k)
T,R

d∗→ χ2
1, under H0, (A.4)

R−1Θ
(k)
T,R

P ∗
→ 1, under HA, (A.5)

for almost all realisations of {xt}Tt=1.

We now present a result on the behaviour of Q(k) (α).

11The proof can be derived using exactly the same arguments as in Horváth and Trapani (2019), and we

do not report it here to save space.
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Theorem A.2. We assume that the assumptions of Theorem A.1 are satisfied, and that

S = c0R for some 0 < c0 <∞. Then, as min (T,R)→∞, it holds that there exist a triple of

random variables T0, R0, S0 such that, for T ≥ T0, R ≥ R0 and S ≥ S0

Q(k) (α) ≥ (1− α)−
√
α (1− α)

√
2 log logS

S
, (A.6)

under H0, and

Q(k) (α) ≤ ε, (A.7)

under HA, for almost all realisations of {xt, 1 ≤ t ≤ T} and all ε > 0.

Proof. We begin by noting that E∗I
[
Θ

(k)
T,R,s ≤ cα

]
= P ∗

(
Θ

(k)
T,R,s ≤ cα

)
. From the proof of

Theorem 1 in Trapani (2016) (see also more explicit calculations in Horváth and Trapani,

2019), we know that

Θ
(k)
T,R,s = XR,s + YR,s, (A.8)

where

XR,s =

(
2R−1/2

R∑
j=1

(
ζ

(k)
j,T,s (0)− 1

2

))2

, (A.9)

and Horváth and Trapani (2019) show that the remainder YR,s is such that E∗Y 2
R,s =

c0

(
ψ−1
k +Rψ−2

k

)
- henceforth, we omit the dependence on s when possible. Let now εT =(

ψ−1
k +Rψ−2

k

)1/3
, and note that, using elementary arguments

P ∗
(

Θ
(k)
T,R,s ≤ cα

)
≤ P ∗ (XR ≤ cα + εT ) + P ∗ (|YR| ≥ εT ) . (A.10)

Thus

P ∗
(

Θ
(k)
T,R,s ≤ cα

)
− P ∗ (XR ≤ cα) (A.11)

≤ P ∗ (XR ≤ cα + εT )− P ∗ (XR ≤ cα) + P ∗ (|YR| ≥ εT ) . (A.12)

Markov inequality immediately yields P ∗ (|YR| ≥ εT ) ≤ ε−2
T E∗Y 2

R = c0

(
ψ−1
k +Rψ−2

k

)1/3
. Also

note that

P ∗ (XR ≤ cα + εT )− P ∗ (XR ≤ cα) (A.13)

= P ∗ (XR ≤ cα + εT )± P
(
Z2 ≤ cα + εT

)
−
[
P ∗ (XR ≤ cα)± P

(
Z2 ≤ cα

)]
, (A.14)
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where Z ∼ N (0, 1). Using Taylor’s expansion, it is easy to see that

P
(
Z2 ≤ cα + εT

)
− P

(
Z2 ≤ cα

)
≤ c0εT . (A.15)

Also, by the Berry-Esseen theorem (see e.g. Michel, 1976) it holds that

∣∣P ∗ (XR ≤ cα + εT )− P
(
Z2 ≤ cα + εT

)∣∣ ≤ c0
R−1/2

1 + |cα + εT |3+δ
, (A.16)

for all δ ≥ 0. Finally, using again the Berry-Esseen theorem,

∣∣P ∗ (XR ≤ cα)− P
(
Z2 ≤ cα

)∣∣ ≤ c0
R−1/2

1 + |cα|3+δ
. (A.17)

Putting all together, it follows that∣∣∣P ∗ (Θ
(k)
T,R,s ≤ cα

)
− P

(
Z2 ≤ cα

)∣∣∣ ≤ c0

(
R−1/2 + εT

)
. (A.18)

Hence we have√
S

2 log logS

Q(k) (α)− (1− α)√
α (1− α)

=

√
S

2 log logS

S−1
∑S

s=1 Zs − (1− α)√
α (1− α)

+c0

√
S

2 log logS

(
R−1/2 + εT

)
,

(A.19)

where {Zs, 1 ≤ s ≤ S} is an i.i.d. sequence with common distribution Z1 ∼ N (0, 1). By

Trapani (2016), it follows that√
S

2 log logS

(
R−1/2 + εT

)
= oa.s. (1) ; (A.20)

the desired result now follows from the Law of the Iterated Logarithm.
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Appendix B: Descriptive statistics

Table B.1
Descriptive statistics of the three currency pairs at different sampling (trading) frequencies

Frequency Mean Std.Dev. Skewness Kurtosis Mean Std.Dev. Skewness Kurtosis
EUR/USD futures EUR/USD spot

1m 1.34 × 10−8 1.88 × 10−4 1.806 729.97 8.29 × 10−8 1.80 × 10−4 0.337 79.58

2m 2.68 × 10−8 2.63 × 10−4 1.396 395.10 1.66 × 10−7 2.55 × 10−4 0.117 71.02

5m 6.70 × 10−8 4.07 × 10−4 0.799 161.38 4.14 × 10−7 3.97 × 10−4 0.155 45.01

10m 1.34 × 10−7 5.69 × 10−4 0.545 85.43 8.29 × 10−7 5.55 × 10−4 0.071 26.34

15m 2.01 × 10−7 6.92 × 10−4 0.439 62.34 1.24 × 10−6 6.78 × 10−4 0.353 30.59

20m 2.68 × 10−7 7.94 × 10−4 0.469 52.64 1.66 × 10−6 7.78 × 10−4 -0.001 20.03

30m 4.01 × 10−7 9.70 × 10−4 0.304 36.85 2.49 × 10−6 9.51 × 10−4 0.173 20.65

60m 8.02 × 10−7 13.28 × 10−4 0.271 24.67 4.97 × 10−6 13.35 × 10−4 0.047 13.93

Daily 8.99 × 10−5 64.48 × 10−4 0.033 4.33 5.93 × 10−6 63.12 × 10−4 0.198 6.55
GBP/USD futures GBP/USD spot

1m −6.52 × 10−9 1.78 × 10−4 -0.487 269.39 −7.92 × 10−9 1.74 × 10−4 -0.025 46.44

2m −1.30 × 10−8 2.12 × 10−4 -0.500 119.22 −1.59 × 10−8 2.47 × 10−4 -0.088 48.42

5m −3.25 × 10−8 3.16 × 10−4 -0.422 85.45 −3.99 × 10−8 3.86 × 10−4 -0.096 32.66

10m −6.49 × 10−8 4.42 × 10−4 -0.364 61.41 −8.17 × 10−8 5.41 × 10−4 -0.107 25.23

15m −9.76 × 10−8 5.29 × 10−4 -0.348 36.53 −1.23 × 10−7 6.55 × 10−4 -0.075 21.23

20m −1.30 × 10−7 6.16 × 10−4 -0.345 41.92 −1.67 × 10−7 7.57 × 10−4 -0.129 24.21

30m −1.95 × 10−7 7.44 × 10−4 -0.317 27.83 −2.45 × 10−7 9.18 × 10−4 -0.056 17.84

60m −3.93 × 10−7 10.14 × 10−4 -0.288 19.71 −4.94 × 10−7 12.91 × 10−4 -0.113 16.15

Daily 6.22 × 10−5 56.79 × 10−4 -0.321 5.33 −5.96 × 10−6 60.99 × 10−4 0.357 8.12
CAD/USD futures CAD/USD spot

1m 1.63 × 10−8 1.87 × 10−4 0.116 103.30 1.74 × 10−8 1.97 × 10−4 0.049 40.32

2m 3.25 × 10−8 2.57 × 10−4 0.067 64.32 3.48 × 10−8 2.77 × 10−4 -0.045 40.25

5m 8.14 × 10−8 3.96 × 10−4 0.029 39.46 8.59 × 10−8 4.32 × 10−4 -0.033 24.17

10m 1.63 × 10−7 5.51 × 10−4 0.049 29.89 1.73 × 10−7 6.00 × 10−4 -0.079 19.89

15m 2.44 × 10−7 6.64 × 10−4 -0.035 24.33 2.59 × 10−7 7.34 × 10−4 -0.002 18.88

20m 3.25 × 10−7 7.63 × 10−4 0.067 22.01 3.45 × 10−7 8.41 × 10−4 -0.038 16.45

30m 4.87 × 10−7 9.24 × 10−4 0.021 19.25 5.18 × 10−7 10.26 × 10−4 0.067 15.13

60m 9.71 × 10−7 12.31 × 10−4 0.192 17.48 1.03 × 10−6 14.35 × 10−4 0.044 14.50

Daily 5.09 × 10−5 58.10 × 10−4 -0.142 6.01 1.50 × 10−5 65.76 × 10−4 0.002 6.40
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