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A B S T R A C T   

Higher heating value (HHV) is a key characteristic for the assessment and selection of biomass feedstocks as a 
fuel source. The HHV is usually measured using an adiabatic oxygen bomb calorimeter; however, this method 
can be time consuming and expensive. In response, researchers have attempted to use artificial neural network 
(ANN) systems to predict HHV using proximate and ultimate analysis data, but these efforts were hampered by 
varying case specific approaches and methodologies. Based on the complex ANN structures, a clear state of the 
art ANN understanding must be required for the prediction of biomass HHV. This study provides a compre-
hensive ANN application for HHV prediction in terms of how the activation functions, algorithms, hidden layers, 
dataset, and randomisation of the dataset affects the prediction of HHV of biomass feedstocks. In this paper we 
present a comparative qualitative and quantitative analysis of thirteen different algorithms, four different acti-
vation functions (logsig, tansig, poslin, purelin) with a wide range of hidden layer (3–15) for ANN models, used 
to predict the HHV of the biomass feedstocks. ANN models trained by the combination of ultimate-proximate 
analyses (UAPA) datasets provided more accurate predictions than the models trained by ultimate analysis or 
proximate analysis datasets. Regardless of the used datasets, sigmoidal activation functions (tansig and logsig) 
provide better prediction results than linear activation function (poslin and purelin). Furthermore, as training 
activation functions, “Levenberg-Marquardt (lm)” and “Bayesian Regularization (br)” algorithms provide the 
best HHV prediction. The best average correlation coefficients of 30 randomised run were observed with tansig 
as 0.962 and 0.876 for the ANN model developed by the UAPA dataset with a relatively high confidence levels of 
~96% for training and ~92% for testing.   

1. Introduction 

Biomass and bio-based fuels such as bio-oil, biogas and biochar are 
potential energy sources of low carbon energy [1,2] to generate heat and 
power. Since biomass-based power generation is defined as a low carbon 
energy source [3], CO2 emissions from biomass and/or bio-based fuels 
combustion can be considered to be approximately neutral in terms of 
mass balance [4–6]. Biomass has a lower energy content than coal [7,8], 
and thus more fuel is required for the same thermal output. The differ-
ences in physical and chemical properties of biomasses complicate the 
application of the biomasses in terms of the process application and 
product standardisation [9,10]. A variety of characterisation and 
experiment studies are required to assess the applicability of different 

kinds of biomass feedstocks for their potential application in energy 
conversion processes such as combustion, pyrolysis, gasification, lique-
faction, hydrothermal processing [11–19]. Higher heating value (HHV, 
also termed gross calorific value or gross energy) is a crucial property for 
the thermal conversion of biomasses [20–23]. HHV refers to the heat 
released when a unit mass of the fuel is completely combusted and 
generated water in a condensed state [24,25]. The HHV of fuel sources 
such as biomasses can be measured experimentally using an adiabatic 
oxygen bomb calorimeter [20–22], which is the most common, accurate 
and simple method [20,21,26–28]. However, the method is time- 
consuming with high consumables costs [29,30], and therefore, is not 
always available to all researchers seeking to measure the HHV of bio-
masses. Numerous empirical correlations have been proposed in the 
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Table 1 
Ultimate and Proximate analysis datasets for different kind of biomasses [54,55].  

Biomass Samples Ultimate analysis (wt.%) Proximate analysis (wt.%) HHV  

N C S H O Ash VM FC kJ/g 

Almond shell  0.30  46.35  0.22  5.67  47.46  2.20  82.00  15.80  18.28 
Almond tree branches  0.65  47.35  0.16  6.36  45.47  5.40  75.60  19.00  18.35 
Almond tree leaves  2.85  43.25  0.34  5.50  48.06  9.30  87.19  3.50  17.56 
American oak acorn  0.60  44.68  0.18  5.98  48.55  3.20  74.00  22.80  17.37 
Apple tree branches  0.81  46.24  0.39  11.55  41.01  5.00  74.00  21.00  17.82 
Apple tree leaves  1.61  44.45  0.23  6.15  47.56  12.00  71.90  16.10  17.51 
Barley grain  1.79  41.59  0.35  6.08  50.18  3.00  76.90  20.10  16.52 
Barley straw  1.64  40.69  0.23  6.95  50.50  6.10  77.90  16.00  17.37 
Bean husk  0.66  39.66  0.31  5.38  53.98  8.00  74.00  18.20  15.11 
Beetroot pellets  1.19  38.94  0.51  5.23  54.13  9.00  76.00  15.00  15.10 
Black poplar bark  0.42  43.25  0.34  6.33  49.66  8.00  71.00  20.80  17.41 
Black poplar leaves  1.03  58.30  0.35  8.41  31.92  7.80  71.20  21.00  18.17 
Black poplar wood  0.18  46.19  0.56  5.70  47.36  1.50  86.00  12.30  18.39 
Briquette  1.24  46.74  0.10  6.39  45.52  0.80  85.00  14.20  18.50 
Building wastes chips  0.08  47.26  0.17  6.45  46.04  0.80  86.00  13.20  18.28 
Cherry stone  0.43  48.57  0.19  6.21  44.60  0.87  85.00  14.10  19.07 
Cherry tree branches  0.52  46.42  0.17  6.21  46.68  4.40  74.00  21.50  19.36 
Cherry tree leaves  1.49  45.52  0.19  6.25  46.55  7.40  71.00  21.60  17.73 
Chestnut shell  0.42  42.31  0.33  5.17  51.77  3.90  67.00  29.10  14.31 
Chestnut tree chips  0.23  45.30  0.17  6.10  48.20  1.30  78.20  20.50  17.49 
Chestnut tree leaves  2.21  47.82  0.27  6.24  43.46  4.90  72.41  22.70  18.76 
Chestnut tree shaving  0.12  45.88  0.27  5.00  48.73  0.40  79.00  20.60  17.62 
Cocoa beans husk  2.64  43.25  0.29  5.89  47.93  9.96  69.00  21.00  17.31 
Coconut shell  0.15  47.93  0.24  6.05  45.63  1.40  79.20  19.40  18.88 
Coffee husk  2.53  45.06  0.48  6.42  45.51  5.80  76.20  18.00  18.33 
Corncob  0.22  44.78  0.21  6.02  48.77  2.40  83.00  14.60  17.69 
Cypress fruit  0.35  27.81  0.18  5.70  65.96  4.70  71.80  23.50  20.17 
Date stone  1.03  43.37  0.32  6.23  49.05  1.40  82.00  16.60  18.15 
Eucalyptus bark  1.69  46.53  0.30  5.87  45.61  6.20  77.00  16.80  16.24 
Eucalyptus chips  0.14  44.77  0.15  6.33  48.60  1.90  79.00  19.10  16.49 
Eucalyptus fruit  1.14  46.81  0.39  5.81  45.84  4.70  73.60  21.70  18.52 
Feijoa leaves  1.23  45.28  0.20  6.03  47.25  6.70  71.20  22.10  17.81 
Gorse  1.49  43.49  0.33  5.53  49.16  5.00  45.20  50.20  18.60 
Grapevine branches  0.76  45.00  0.46  6.95  46.83  7.60  71.50  20.90  16.82 
Grapevine waste  1.35  35.74  0.30  5.95  56.67  13.30  73.00  13.70  16.47 
Hazelnut and alder chips  0.40  45.47  0.20  5.94  47.99  5.00  77.00  18.00  17.56 
Hazelnut shell  0.27  47.80  0.16  6.14  45.64  2.20  77.00  20.80  18.87 
Hazelnut tree leaves  2.05  45.14  0.31  6.79  45.71  8.00  79.00  13.40  17.87 
Holm oak branch chips  0.76  45.65  1.99  5.75  45.84  7.40  74.90  17.70  17.18 
Horse chestnut burr  0.45  53.38  0.23  7.16  38.77  5.40  70.00  24.60  17.17 
Horse chestnut tree br.  1.05  43.71  0.43  6.27  48.54  6.90  73.50  19.60  17.47 
Kiwi branches  1.06  46.41  2.44  6.09  43.99  4.50  74.00  21.50  17.81 
Lemon rind  1.08  42.95  0.42  6.56  48.98  9.70  73.20  17.10  17.18 
Lemon tree branches  0.54  54.74  0.33  5.72  38.68  4.70  76.70  18.60  17.56 
Maize grain  1.17  40.96  0.23  6.92  50.71  2.10  78.90  19.10  16.43 
Mimosa branches  0.75  45.81  0.17  6.19  47.08  4.00  75.00  21.00  17.75 
Medlar tree branches  0.52  44.36  0.18  6.17  48.77  8.40  74.00  17.60  17.65 
Miscanthus  0.10  47.09  0.10  6.30  46.42  9.60  79.00  11.40  18.07 
Nectarine stone  0.50  48.57  0.23  6.22  44.48  1.10  76.00  22.90  19.56 
Oak acorn  0.80  41.84  0.25  6.82  50.28  2.60  75.10  22.30  16.17 
Oak tree branches  2.87  48.26  0.33  6.28  42.26  4.20  78.40  17.40  17.72 
Oak tree leaves  3.04  46.90  0.38  5.47  44.20  3.80  72.00  24.20  18.31 
Oak tree pruning  0.73  37.89  0.21  5.94  55.23  4.30  77.00  18.70  17.59 
Oats and vetch  0.92  41.69  0.29  5.82  51.27  7.33  72.00  20.70  16.66 
Oats bran  2.17  44.01  0.29  7.17  46.36  4.15  77.00  18.90  18.06 
Olive stone  1.81  46.55  0.11  6.33  45.20  1.40  78.30  20.40  17.88 
Olive tree pruning  1.47  45.36  0.28  5.47  47.42  13.00  78.00  9.00  17.34 
Orange tree branches  0.56  45.76  0.21  6.12  47.34  4.50  79.00  16.90  16.31 
Orange tree leaves  2.59  41.11  0.40  5.28  50.62  15.40  73.20  11.40  16.17 
Pea husk  1.24  39.62  1.82  6.54  50.78  4.50  83.00  12.50  15.46 
Pea plant waste  0.90  44.06  0.39  4.73  49.91  5.80  78.00  15.90  17.35 
Peach stone  3.94  40.72  0.30  6.96  48.07  0.50  75.60  23.90  19.59 
Peach tree leaves  2.03  59.59  0.77  9.76  27.86  10.20  75.00  14.70  18.34 
Peanut shell  1.05  49.35  0.24  6.40  42.96  2.50  81.00  16.50  20.09 
Pepper plant waste  3.66  36.56  0.83  5.27  53.67  22.90  73.10  4.00  13.66 
Pine and eucalyptus chips  1.59  45.90  0.19  6.30  46.03  3.60  71.60  24.80  16.99 
Pine chips  0.09  48.15  0.28  5.59  45.90  0.60  81.60  17.80  19.43 
Pine kernel shell  0.31  47.91  0.60  4.90  46.28  2.70  77.60  19.70  18.89 
Pine pellets  0.28  46.83  0.31  5.30  47.28  1.30  83.50  15.20  18.84 
Pine shaving  0.07  48.67  0.26  5.08  45.92  0.80  85.00  14.20  19.79 
Pineapple leaf  0.40  42.26  0.27  4.81  52.27  3.20  75.00  21.80  18.15 
Pinecone heart  0.29  42.22  0.84  5.06  51.59  3.50  66.00  30.50  16.44 
Pinecone leaf  0.27  47.65  0.44  5.43  46.21  1.30  80.00  18.70  18.63 

(continued on next page) 
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Fig. 2. The schematic topological architecture of three layers ANN models; input layers (a-combined Ultimate-Proximate analyses, b-Ultimate analysis and c- 
Proximate analysis datasets), hidden layers (3–14) and output layer (HHV). 

Table 1 (continued ) 

Biomass Samples Ultimate analysis (wt.%) Proximate analysis (wt.%) HHV  

N C S H O Ash VM FC kJ/g 

Pistachio shell  0.11  44.69  0.18  5.16  49.87  1.30  82.50  16.20  17.35 
Plum stone  0.87  48.22  0.17  6.60  44.14  1.80  77.00  21.20  19.14 
Pomegranate peel  0.69  42.19  0.33  5.11  51.68  6.80  68.00  25.20  15.17 
Potato plant waste  1.13  38.33  0.44  5.07  55.03  15.80  69.00  14.70  15.07 
Rice husk  0.21  26.69  0.17  2.88  70.05  13.70  73.00  13.30  15.90 
Rye grain  1.20  41.11  0.21  6.76  50.72  1.80  78.90  19.30  16.14 
Rye straw  1.16  40.18  0.32  6.85  51.48  3.20  79.90  16.90  17.11 
Sainfoin  1.80  41.68  0.57  5.90  50.05  9.20  73.00  17.80  16.41 
Sawdust  0.53  45.34  1.07  6.02  47.05  1.60  81.00  17.40  18.02 
Sorghum  0.73  40.79  0.23  4.38  53.87  17.00  62.00  21.00  11.87 
Soya grain  1.16  44.42  0.24  6.33  47.86  4.80  77.00  18.20  16.71 
Straw pellets (grass)  0.56  47.89  0.17  5.51  45.87  9.80  79.00  11.20  16.58 
Sunflower Seed husk  0.38  45.33  0.24  5.91  48.14  1.90  80.00  18.10  18.00 
Tomato plant waste  1.19  36.63  1.48  0.68  60.01  16.20  78.00  6.00  14.15 
Triticale  1.23  42.14  0.76  5.80  50.07  6.20  75.00  18.80  16.65 
Vegetal coal  0.65  79.34  0.30  2.74  16.97  5.90  26.00  68.10  29.71 
Vine orujillo  1.91  44.15  0.58  5.31  48.04  12.70  79.00  8.30  17.74 
Vine shoot chips  0.61  40.15  0.31  5.02  53.91  9.70  66.00  24.30  14.63 
Vine shoot waste  0.63  34.60  0.24  5.61  58.91  4.10  64.00  31.90  13.29 
Walnut shell  0.22  46.97  0.10  6.27  46.44  2.30  79.00  18.70  18.38 
Wheat bran  2.34  42.74  0.31  6.62  47.98  3.50  78.00  18.50  17.37 
Wheat grain  0.24  49.22  0.26  6.52  43.76  2.80  80.00  17.20  16.33 
Wheat straw  1.18  45.58  0.59  6.04  46.60  5.30  76.00  18.20  17.34 
Wood chips  0.13  42.20  0.27  5.51  51.88  1.50  68.60  29.90  15.16 
Wood pellets  0.60  46.79  0.32  6.13  46.15  1.30  82.00  17.10  18.22 
Wood sawdust  0.12  45.97  0.24  5.13  48.53  0.60  83.00  16.40  18.21  
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literature to estimate the HHV using the proximate analysis (PA); 
Moisture (M), Volatile matter (VM), Fixed carbon (FC), Ash (A), and 
ultimate analysis (UA); Carbon (C), Hydrogen (H), Oxygen (O), Nitrogen 
(N), Sulphur (S) for a variety of solid fuels such as coal [31–34], solid 

wastes [35–38], and biomass [20,35,39,40]. As UA and PA are the main 
characteristics of biomass fuel, predicting HHV from these character-
isations eliminate the requirement of bomb calorimeter with an ANN 
model. These correlations are mainly based on linear regression even 
though biomass feedstocks show clear non-linear relationships between 
HHV and PA [41]. Furthermore, Ghugare et al. [29] demonstrated that 
linear models may not be the most appropriate method for the accurate 
prediction of biomass HHV, and non-linear models need to be investi-
gated. The reliability of linear regression-based models is therefore 
relatively low and are inadequate in predicting the HHV for different 
types of biomass feedstocks [41]. Due to the variety of PA/UA values, 
the exact form of the PA/UA based nonlinear empirical model is un-
known [29] and is beyond the realm of possibility without computa-
tional models. 

More recently, the application of artificial intelligence (AI) for the 
prediction of experiment has gained attention due to its exclusively data- 
driven nonlinear modelling formalisms. Artificial neural network (ANN) 
is one of the most commonly used methods to analyse data that contains 
inherent dependency and non-linear relationships. Over the last few 
decades, ANN models have been thoroughly statistically tested in a wide 
range of technology and it has been demonstrated better prediction 
capacity over the counterpart ML models [42–44] such as logistic 
regression [45], SVM [46,47], ANFIS [48] or MLP [49]. The application 
of genetic programming (GP) and multilayer perceptron (MLP) neural 
network were investigated for the prediction of HHV of biomass feed-
stocks by Ghugare et al. [19]. Both models provided better prediction of 
HHV compared to existing linear and/or nonlinear simulations. 
Furthermore, Akkaya [41] demonstrated a high precision with adaptive 
neuro-fuzzy inference system (ANFIS) models based on fuzzy inference 
systems in which computational algorithms works in a collaborative 
way with expert knowledge and experimental results. Artificial neural 
networks (ANN) models are also emerging as an advanced tool for 

Table 2 
Artificial neural network structures.  

Optimisation Algorithms Activation 
Functions 

Hidden 
Layers 

Input 
Layers  

1. Levenberg-Marquardt 
(lm)  

2. Bayesian 
Regularization (br)  

3. Scaled Conjugate 
Gradient(scg),  

4. BFGS Quasi Newton 
(bfg)  

5. Conjugate Gradient 
Powell/Beale Restarts 
(cgb)  

6. Fletcher-Powell 
Conjugate Gradient 
(cgf)  

7. Polak-Ribiére 
Conjugate Gradient 
(cgp)  

8. Gradient Descent (gd)  
9. Gaussian Discriminant 

Analysis (gda)  
10. Gradient Descent 

Momentum (gdm)  
11. Variable Learning Rate 

Gradient Dscent (gdx)  
12. One Step Secant (oss)  
13. Resilient 

Backpropagation (rp) 

1. Log sigmoid 
transfer function 
(logsig) 
2. Tan sigmoid 
transfer function 
(tansig) 
3. Pure linear 
transfer function 
(purelin)4. Positive 
linear t 
ansfer function 
(poslin) 

From 3 up to 
15 nodes 
each trial 

8 inputs 
nodes (PA 
+ UA) 
5 inputs 
nodes 
(UA) 
3 inputs 
nodes 
(PA)  

Fig. 3. Prediction results of the ANN models developed by sigmoidal activation functions, a) Tansig-train, b) Tansig-test, c) Logsig-train, and d) Logsig-test using 
ultimate-proximate analyses dataset. 
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biomass feedstock [20,50,51] and bio/hydro-chars [21,52]. Jakšić et al. 
[20] demonstrated that ANN can predict the calorific values of different 
biomass feedstocks and any mixture of biomass feedstocks using the PA 
results. Pattanayak et al. [22] also developed three ANN models based 
on PA, UA, and a combination of UA-PA datasets to predict the HHV of a 
wide range of bamboo biomasses. Aladejare et al. [50] developed an 
optimised ANN model using particle swarm optimisation (ANN-PSO) to 
predict the HHV of a variety of different solid fuels such as coal, lignite, 
industrial waste, biomasses varying from agricultural wastes to forest 
residues using their UA and PA results. The ANN-PSO models predict the 
HHV of various solid biomasses better than the multilinear regression 
models as reflected in the statistical analysis conducted to validate the 
models. ANN models also provided better HHV prediction for the 

hydrochars [52] and biochars [21] produced by thermal conversion of 
biomass feedstocks. The ANN models usually perform better HHV pre-
dictions for both biomass and biobased products compared to the linear/ 
nonlinear regression correlations [21,22,50,53]. With ANN, biomass 
feedstock HHV prediction has been shown to outperform HHV predic-
tion using PA and/or UA datasets. Current literature is focusing on 
specifically tailored ANN models or integrating these models with other 
the sate-of-the art algorithms on a specifically chosen on set of bio-
masses. Although the current approaches report high accuracy in 
modelling HHV, the used ANN models are frequently unfeasible as 
studies are often focus on a case-specific model such as a specified 
custom ANN model structure based on a selected specific dataset which 
often ultimately presenting a selected highest correlation coefficient 

Fig. 4. Prediction results of the ANN models developed by linear activation functions, a) Poslin-train, b) Poslin-test, c) Purelin-train, and d) Purelin-test using 
ultimate-proximate analyses dataset. 

Fig. 5. a) Predicted average correlation coefficients (Tansig-test, also presented in Fig. 3b), b) the visualisation of confidence level of 30 random ANN runs, c) the 
highest 15 average R2 values - each was determined by 30 random ANN runs, and d) the results above the confidence level (HL: Hidden Layer, Alg: Algorithms). 
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(R2) value in the experiment results. Consequently, the applicability of 
these models is not generalisable due to the case-specific model struc-
tures. Furthermore, there is not a clear and detailed ANN study for the 
prediction of biomass HHV based on the algorithms, activation func-
tions, and hidden layers. 

In this study, a detailed state-of-the-art ANN model was created to 
predict HHV of biomass based on PA and UA datasets of different 
biomass feedstocks. Whilst some literature exists on the application of 
ANN for the prediction of HHV of various biomass fuels, there is a need 
for a detailed understanding of the importance of data and random-
isations in training and testing data partitioning. This research covers 
the comparative qualitative and quantitative analysis of thirteen 
different algorithms, four different sigmoidal and linear activation 
functions (logsig, tansig, poslin, purelin), a wide range of hidden layers 
(3–15) for training the ANN model which predicts the HHV of the 
biomass feedstocks characterised by the PA, UA, and combination of UA- 
PA. 

2. Material and methods 

2.1. Biomass feedstocks dataset 

As dataset, a hundred data (both PA and UA of biomass feedstocks, 
Table 1) were collected from the literature [54,55]. This data was used 
to develop a correlation between PA–UA and HHV of biomass feed-
stocks. The dataset consists of a wide range of biomass feedstocks such as 
commercial fuels (17 data points), industrial wastes (32 data points), 
forest wastes (including branches and leaves, 38 data points), energy 
crops and cereals (13 data points), which all can build an ANN model 
valid in a wide range of biomass feedstocks to predicts the HHV. Addi-
tionally, the statistical data distributions of UA and PA in mass fractions 
are presented in Fig. 1. 

2.2. Artificial neural network structures 

In the ANN model constructions, three main representative models 
are built based on the experimental setting. The first model’s input layer 
is designed to receive 8 inputs (C, H, O, N, and S (ash free distribution) 
and Ash, volatile matter (VM), fixed carbon (FC) on dry basis), as shown 
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in Fig. 2a. The second models input layer is designed to receive 5 inputs 
(C, H, O, N, and S (ash free distribution)), as shown in the Fig. 2b. 
Finally, the third model input layer is designed to receive 3 inputs (Ash, 
volatile matter (VM), fixed carbon (FC) on dry basis), as shown in 
Fig. 2c. 

Later, a comparative qualitative and quantitative analysis were 
carried out on each of the ANN models. Overall, as shown in Table 2, 
thirteen optimisation algorithms, four activation functions, and from 
three to fifteen hidden layers were used for training each ANN model, 
which predict the biomass HHV with different input sets. In total, 
extensive number of experiments (13 × 4 × 12 × 3 = 1872) are 
implemented to test and report the ability of the state-of-the-art ANNs 
with different structure and algorithms. Furthermore, in order to cap-
ture the statistical insight, each of these experiments are repeated 30 
times. A detailed explanation of the used optimisation algorithms has 
been previously reported [56,57]. As shown in Table 2, the activation 
functions are selected based on two main structures as linear (poslin and 
purelin) and sigmoidal (logsig and tansig). 

Log sigmoid transfer function (logsig) 

z = f (x) = logsig (x) =
1

1 + e− x (1) 

Tan sigmoid transfer function (tansig) 

z = f (x) = tansig (x) =
2

(1 + e− 2x) − 1
(2) 

Pure linear transfer function (purelin) 

z = f (x) = purelin (x) = (x, 0) (3) 

Positive linear transfer function (poslin) 

z = f (x) = poslin (x) =
{

0, x⩽0
x, x⩾1 (4) 

Due to the stochastic nature of optimisation process in ANNs, as a 
common practice the weights of each ANN are initialised randomly for 
each experiment. Also, in order to minimise any bias in the model and 
increase the chance of having a generalisable model, the randomness is 
used in the selection of training, validation and testing datasets. For 
training, validation and testing the model, the dataset is divided into 
70:15:15 ratios. Accordingly, the ANN model randomly selected of those 
sets in test and validation analysis. In the ANN models, the state-of-the- 
art instruments have been used to avoid overfitting. As mentioned 
throughout the paper, the random data partitioning has been applied 
which maximise the diverse coverage of selected samples for both 
training and testing sets. This minimises the chance of having a biased 
model on dataset and increasing the chances of having a representative 
dataset for training. In addition to randomisation and the statistical 
procedures, the validation technique has also been applied to avoid the 
overfitting of the models. Furthermore, extensive experiments have 
been carried out to deduce the structure which statistically to be opti-
mum model in predictions. The ANN network model is formed using 
MATLAB Deep Learning Toolbox [58,59]. The training settings of the 3 
main ANN models were selected as follows: number of input nodes 8 for 
combined UA-PA, 5 for UA, and 3 for PA, number of hidden layers are 
between 3 and 15, number of output node is 1 (HHV), as presented in 
Fig. 2. The results of 30 randomised run were presented with a confi-
dence interval of minimum and the maximum coefficient of correlation 
values (R2). 

2.3. Statistical analysis of the developed ANN models 

The developed ANN models randomly choose the training data from 

Fig. 7. Prediction results of the ANN models developed by sigmoidal activation functions, a) Tansig-train, b) Tansig-test, c) Logsig-train, and d) Logsig-test using 
ultimate analysis dataset. 
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the dataset to make the model more comprehensive for other types of 
biomass feedstocks. Therefore, the model shows a range of predicted 
data depending on the run number instead of a specific number as 
experimental data points. Statistical evaluation of the results produced 
by ANN models are very important in demonstrating the applicability of 
these ANN models in this specific subject. Confidence interval (CI) 
(Equation (5)) is a useful statistical method used in these kinds of ap-
plications, as they include a population value with a certain degree of 
confidence. As CI shows how the average results could be produced in 
the same confidence range and eliminate the highest and lowest points 
in the application. CI is expressed as a percentage, and it represents how 
much the prediction results will match with the results produced by 
experimental results in multiple cycles. The other most commonly used 
statistical values are correlation coefficient (R2, Equation (6)) and mean 
square error (MSE, Equation (7)), which are also reported. 

CI = x ± z
s
̅̅̅
n

√ (5)  

R2 = 1 −
∑Ntotal

i=1 (yi,cal − yi,exp)
2

∑Ntotal
i=1 (yi,exp − yexp)

2 (6)  

MSE =
1

Ntotal

∑Ntotal

i=1
(yi,cal − yi,exp)

2 (7) 

Where CI is confidence interval, x is sample mean, z is confidence 
level value, s is the sample standard deviation, n is the sample size. R2 

and MSE are the correlation coefficient and mean square error, respec-
tively. Ntotal is the number of the total samples. i is the sample index. yi, 

cal and yi,exp are the predicted and measured HHVs for the ith sample, and 
yexp is the average measured HHV of the entire training or application 
samples. 

3. Results and discussions 

In order to demonstrate the potential applicability of ANN for the 
prediction of biomass HHV feedstocks, detailed ANN models were 
developed and presented with the models developed by thirteen 
different training functions, four different activation functions and up to 
fifteen hidden layers using a combination of UA-PA datasets. The ANN 
models was assessed using the datasets of PA (VM, FC, Ash, dry basis), 
UA (C, H, O, N, and S) and combination of UA-PA to predict HHV. The 
prediction results of ANN models are evaluated and presented with the 
statistical analysis and data interpretation. 

3.1. HHV prediction via the combination of ultimate and proximate 
analyses 

In order to predict the HHV of the biomass feedstocks, the first ANN 
model was developed using eight inputs of combine UA-PA dataset (C, 
H, O, N, S, and VM, FC, Ash) and one output as HHV with a wide range of 
hidden layers, training functions and activation functions. The rela-
tionship of hidden layers, training functions, and correlation coefficients 
(R2, between the experimental HHV and predicted HHV) are presented 
in Fig. 3 and Fig. 4 based on the ANN models build by sigmoidal and 
linear activation functions, respectively. 

Each correlation coefficient presented in Figs. 3 and 4 is the average 
of 30 runs of randomly selected train (85 data points) and test (15 data 
points) data with the defined activation functions, algorithms, and 
hidden layers. Although there is a slight difference, the train and test 
results show relatively similar trends for different activation functions; 
sigmoidal transfer functions (tansig and logsig) in Fig. 3 and linear 
transfer functions (poslin and purelin) in Fig. 4. 

Fig. 3 and Fig. 4 show that the training functions could be cat-
egorised into three groups: 

Fig. 8. Prediction results of the ANN models developed by linear activation functions, a) Poslin-train, b) Poslin-test, c) Purelin-train, and d) Purelin-test using ul-
timate analysis dataset. 
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i) algorithms (“lm” and “br”) provide good HHV prediction  
ii) algorithms (“scg”, “bfg”, “cgb”, “cgf”, “oss”, and “rp”) provide 

fair HHV prediction  
iii) algorithms (“gd”, “gda”, “gdm” and “gdx”) failed to predict the 

HHV 

Regardless of activation function, the higher correlation coefficients 
were observed with the “lm” and “br” algorithms at the higher hidden 
layers of 11–15 in training (Fig. 3a, 3c, 4a, and 4c). Additionally, 
category-ii algorithms also show higher correlation coefficient in the test 
ANN models as demonstrated in Fig. 3c-d and 4c-d. Sigmoidal activation 
functions (tansig and logsig) provided better prediction results (Fig. 3) 
than linear activation function (poslin and purelin, Fig. 4). Furthermore, 
in the sigmoidal group, the tansig activation function (Fig. 3a-b) 
demonstrated better predictions than the logsig activation function 
(Fig. 3c-d) in both train and test groups. The order of activation func-
tions was tansig > logsig > poslin ≫ purelin. 

In order to elaborate the reported results in the statistical view, Fig. 5 
demonstrates a representative Fig. of average correlation coefficient, the 
confidence level of this average correlation coefficient, and the highest 
correlation coefficient above the confidence level. Fig. 5a shows the 

average corelation coefficient of UA-PA Tansig Test models. Specifically, 
the average correlation coefficient of the experiment Tansig-Test with 
“lm” algorithm, and 15 hidden layer provides a confidence level of 88% 
(see black point in Fig. 5a). However, as mentioned this is the average of 
30 repeated implementation. All 30 repeated implementations are 
visualised in Fig. 5b, where the confidence interval of this particular 
experiment is shown to be between 0.84 and 0.92. The ANN model run 
for Tansig-Test with “lm” algorithm, and 15 hidden layer provides a 
confidence level of 92.2% (lead to ~0.04 confidence intervals) with an 
average correlation coefficient of R2 = 0.88 (Fig. 5b). The highest fifteen 
average correlation coefficient for the activation function presented 
with the related algorithms and hidden layers as in Fig. 5c. These 
average correlation coefficients with the confidence level demonstrate 
how ANN model can be applicable for the prediction of HHV. An average 
correlation coefficient with a higher confidence level demonstrates the 
reliability of the prediction of biomass HHV using the developed ANN 
models. However, some correlation coefficients predicted in these 
randomised 30 ANN runs could be above (and/or below) the confidence 
level, i.e. R2 = 0.9922 in the same ANN model for Tansig-Test with “lm” 
algorithm, and 15 hidden layers (Fig. 5d). Presenting the statistical 
analysis, particularly regarding confidence intervals and confidence 

0.75

0.5

0.6

0.7

0.8

0.9

4 13 5 7 9 3 3 4 13 10 4 14 9 11 3

lm br scg cgb cgf cgp gda rp

R
2

Algorithms and Hidden Layers

0.84

0.5

0.6

0.7

0.8

0.9

5 7 9 10 14 13 9 15 4 8 4 3 5 6 8

lm scg bfg cfgcgboss rp

R
2

0.87

0.5
0.6
0.7
0.8
0.9

10 11 12 14 15 4 5 6 7 8 11 12 13 14 15

lm br

R
2

0.83

0.5
0.6
0.7
0.8
0.9

3 7 8 9 10 11 12 13 14 15 8 3 3 5 6

lm bfgcgp rp

R
2

0.86

0.5
0.6
0.7
0.8
0.9

5 6 8 9 10 11 12 13 14 15 3 4 5 6 7

lm br

R
2

0.82

0.5
0.6
0.7
0.8
0.9

3 4 5 6 7 8 9 10 11 12 13 14 15 14 15

lm bfg

R
2

0.80

0.5
0.6
0.7
0.8
0.9

6 8 9 11 12 13 14 15 6 7 8 12 13 8 4

lm br cgf rp

R
2

0.60

0.5

0.6

0.7

0.8

0.9

3 6 8 9 12 14 15 4 5 6 14 4 14 13 9

lm br bfg cgb cgposs

R
2

Algorithms and Hidden Layers

a1) Tansig Train

b1) Logsig Train

a2) Tansig Test

b2) Logsig Test

c1) Poslin Train c2) Poslin Test

d1) Purelin Train d2) Purelin Test

Fig. 9. The highest fifteen average correlation coefficients at the ANN models developed by ultimate analysis dataset. (Numbers in x-axis represent the hidden layers, 
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level are therefore critical in these kind of ANN predictions in order to 
justify the applicability of ANN models for the prediction of targeted 
values. As in the statistical point of view, the highest correlation coef-
ficient does not validate the ANN models if it is not in the confidence 
level. Further details of the importance of statistical analysis are pre-
sented in Section 3.5. 

In order to demonstrate the best model structure, the best 15 cor-
relation coefficients (each is the average of 30 runs) are presented with 
the ANN structure of algorithms and hidden layers in Fig. 6. The “lm” 
and “br” algorithm provides relatively higher prediction values for both 
sigmoidal and linear activation functions at a wide range of hidden 
layers. In terms of the average correlation coefficients calculated on a set 
of training data, the best performance (higher R2), had the “br” training 
function for the sigmoidal activation functions (0.96 for Tansig and 0.95 
for Logsig) and “lm” for the linear activation functions (0.91 for Poslin 
and 0.74 for Purelin). As for the correlation coefficient calculated on a 
set of testing data, “lm” training function has the best performance for 
Tansig, Logsig, and Poslin activation functions for the hidden layers 
higher than 5. In general, training results provide a higher confidence 
level (lower confidence intervals) than the testing results regardless of 
the activation functions, which could be attributed to the datasets used 
for training and test work. The increase in the test datasets would in-
crease the confidence level and potentially the average correlation 
coefficient. 

3.2. HHV prediction via ultimate analysis 

The second ANN model was developed using five inputs of UA (C, H, 
O, N, S) and one output as HHV with a wide range of hidden layers, 
training functions and activation functions. The relationship between 
hidden layers, training functions, and correlation coefficients (R2) 

between the experimental and predicted data are presented in Figs. 7 
and 8 based on the ANN models built using sigmoidal and linear acti-
vation functions, respectively. Figs. 7 and 8 show that UA dataset also 
generate three similar categories of training functions as defined in 
Section 3.1. 

Regardless of activation function, category-i (“lm” and “br”) showed 
relatively higher average correlation coefficients in the ANN models 
developed by UA, which is similar to the ANN models developed by 
combined UA-PA (in Section 3.1). Furthermore, category-iii algorithms 
such as “gd”, “gda”, “gdm” and “gdx” failed to predict the HHV of bio-
masses as these algorithms showed the lowest average correlation co-
efficient regardless of activation function. The hidden layers up to 15 has 
insignificant effects on the prediction of HHV unlike algorithms and 
activation functions. As similar to the results provided in Section 3.1, 
sigmoidal activation functions (tansig and logsig) provided higher 
average correlation coefficients (Fig. 7) than linear activation function 
(poslin and purelin, Fig. 8). In the ANN models developed by UA, the 
activation functions could be followed as similar as ANN models 
developed by combined UA-PA; tansig > logsig > poslin ≫ purelin. 

The best 15 average correlation coefficients (each is the average of 
30 randomise runs) are presented in Fig. 9 with the models (algorithms 
and hidden layers) and confidence intervals. The “lm” algorithm pro-
vides relatively higher prediction values for both sigmoidal and linear 
activation functions at a wide range of hidden layers. Following “lm”, 
the other training functions such as “br” and “bfg,” also provide rela-
tively good prediction in training and testing (Fig. 9). 

The best average correlation coefficients for train and test were 
observed with tansig as (R2 = 0.87 and 0.84), followed by logsig (R2 =

0.86 and 0.83) and poslin (R2 = 0.82 and 0.80), which provides a 
reasonable level of HHV prediction. However, purelin provides rela-
tively poor average correlation coefficients (R2 = 0.60 and 0.75) for 

Fig. 10. Prediction results of the ANN models developed by sigmoidal activation functions, a) Tansig-train, b) Tansig-test, c) Logsig-train, and d) Logsig-test using 
proximate analysis dataset. 
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train and test results (in Fig. 8-c and -d). Additionally, the confidence 
intervals of the average correlation coefficients for training results 
usually lower than that for testing results, as presented with the error 
bars in Fig. 9. 

3.3. HHV prediction via proximate analysis 

Although the calorific value of a solid fuels usually relies on the 
combustible portion of the fuel, non-combustible portions such as “ash” 
can also contribute the calorific value due to a potential catalytic reac-
tion during combustion [60,61]. Therefore, in order to predict the HHV 
of the biomass feedstocks, a second ANN model was developed using 
three inputs of PA (VM, FC, Ash) and one output as HHV with a wide 
range of hidden layers, training functions and activation functions. The 
effects of hidden layers, training functions, and correlation coefficients 
(between the experimental HHV and predicted HHV) are presented in 
Figs. 10 and 11 based on the ANN models build by sigmoidal and linear 
activation functions, respectively, using the PA dataset. 

Similar to the previous models, the train and test results show rela-
tively similar trends for different activation functions; sigmoidal transfer 
functions (tansig and logsig) in Fig. 10 and linear transfer functions 
(poslin and purelin) in Fig. 11. As previously defined with the models 
developed by combined UA-PA (section 3.1) and UA (section 3.2), the 
training functions could be divided into three categories, algorithms 
have better HHV prediction (“lm” and “br”), fair HHV prediction (“scg”, 
“bfg”, “cgb”, “cgf”, “oss”, and “rp”), and failed to predict the HHV (“gd”, 
“gda”, “gdm” and “gdx”) in the model developed by PA. Regardless of 
activation function, the higher correlation coefficients were observed 
with the “lm” and “br” algorithms at the higher hidden layers in training 
(Fig. 10a, 10c, 11a and 11c) while category-i and -ii algorithms provide 
similar correlation coefficient in testing (Fig. 10b, 10d, 11b, and 11d). 
Sigmoidal activation functions (Tansig and Logsig, Fig. 10) provided 

better prediction results than linear activation function (Poslin and 
Purelin, in Fig. 11). Among the sigmoidal activation functions, tansig 
shows the best correlation coefficients in both train and test results 
(Fig. 10a and 10b) with the PA dataset, which is similar with the results 
provided by combined UA-PA (section 3.1) and UA (section 3.2) data-
sets. The alignment of activation functions is also similar as previous 
sections; tansig > logsig > poslin ≫ purelin. 

The best 15 average correlation coefficients (each is the average of 
30 randomise runs) are presented in Fig. 12 with the models (algorithms 
and hidden layers) and confidence intervals. The “lm” is the only algo-
rithm provides higher correlation coefficients for the activation func-
tions of tansig, logsig, and poslin as shown in Fig. 12a, 12b, and 12c. The 
best average correlation coefficient of 30 randomise runs was observed 
as R2 = 0.85 and 0.83 for tansig train and test, R2 = 0.82 for logsig train 
and test, and R2 = 0.81 and 0.79 for poslin train and test in Fig. 12. 
Besides “lm”, the other algorithms such as “br” and “bfg” provide rela-
tively good prediction in training (Fig. 12-a1, b1, c1) and “br”, “bfg”, 
“scg”, “cgb”, “cfg”, and “rp” are the other potential algorithms showing 
fair prediction in testing (Fig. 12-a2, b2, c2). Additionally, the train 
results provide better confidence levels (lower confidence intervals) 
than the test results for all four activation functions, as demonstrated in 
Fig. 12. The ANN model developed by the combination of UA-PA pro-
vide higher average correlation coefficients (Fig. 6) than the ANN 
models developed by only UA (Fig. 9) and only PA (Fig. 12) datasets. 

3.4. Comparison of the ANN models 

The best average correlation coefficients between the experimental 
and predicted HHV for each activation functions (tansig, logsig, poslin 
and purelin) and developed ANN models are presented in Table 3 with 
the algorithms and hidden layers. Regardless of the dataset, tansig and 
logsig activation functions provides the best average correlation 

Fig. 11. Prediction results of the ANN models developed by linear activation functions, a) Poslin-train, b) Poslin-test, c) Purelin-train, and d) Purelin-test using 
proximate analysis dataset. 
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coefficients for train and test results. Following tansig and logsig acti-
vation functions, poslin also provided reasonable level of average cor-
relation coefficients. Among 14 algorithms, “lm” and “br” are defined 
the best algorithms for the train and test models in the activation 
functions of tansig, logsig and purelin. While “lm” provides better results 
with a high hidden layer (13–15) in the models developed via low 
number inputs (Model-3, three inputs of PA), “br” shows the better re-
sults with a lower hidden layer (5–9) in the models developed via high 
number inputs (Model-1, eight inputs of ultimate-proximate analyses). 
The ANN model developed by the combination of ultimate-proximate 
dataset provide the highest average correlation coefficients (0.965 for 
train and 0.876 for test) and the corresponding MSE (0.15 and 0.69) are 
the lowest among the three ANNs models. Furthermore, the results are 
provided relatively high confidence levels, higher than 95% for the 
training and 89% for the testing results regardless of activation function. 
Confidence level (CL) demonstrates how confident the average corre-
lation coefficient results from the 30 runs of ANN model with the same 
algorithm, hidden layer, activation function and randomly selected train 
and test data. 

3.5. Importance of statistical analysis 

There are two concerns in the ANN applications for the prediction of 
HHV using ultimate and proximate analyses datasets. The first is data 
selection, as the datasets were usually divided into two different data 
groups and used as separated train data and test data in the ANN ap-
plications [21,22,26,29,41,62]. The clarification “how” and “why” the 
datasets divided as test data and train data are not provided. The only 
clarification on the data separation as train and test was “to ensure a 
homogeneous distribution of data (to select the training versus testing 
sets) data were put in increasing order of HHV, and every third dataset 
was selected for testing” [25]. However, the data partition (specifically 
being homogenous) into two categories (train and test) can cause bias 
for the developed models, as homogenously divided data can trick the 
model in the training phase. Consequently, the biased model could 
provide relatively higher prediction value since the test data is similar to 
the train data. The second concern is presenting the ANN results without 
a right statistical analysis – in some literature, the results were justified 
based on the highest correlation coefficient and lowest mean square 
error [22,28,63]. However, due to the non-deterministic behaviours of 
ANNs, the selected highest correlation coefficient does not validate the 
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ANN models in the statistical point of view (as the clarified example can 
be seen in Fig. 5). This section therefore elaborates some results showing 
how the highest correlation coefficient may actually be misleading for 
validation level of the ANN models (as showed in Figs. 13–15). 

Fig. 13 shows the highest correlation coefficients of HHV prediction 
with the ANN models developed by combined UA-PA datasets. The 
highest correlation coefficients were observed as 0.933 and 0.992 for 
tansig train and test, 0.944 and 0.982 for logsig train and test, and 0.927 
and 0.977 for poslin train and test, respectively. Figs. 14 and 15 present 
the highest correlation coefficients of HHV prediction with the ANN 
models developed by UA and PA datasets, respectively. In the ANN 
model developed by UA dataset, the highest correlation coefficients 
were observed as ~0.94 for tansig, ~0.90 for logsig, and ~0.88 for 
poslin activation functions, which are slightly higher than the correla-
tion coefficients observed by the ANN models developed by PA (~0.86 
for tansig, ~0.83 for logsig, and ~0.82 for poslin activation functions, 
Fig. 15). 

Regardless of dataset, the order of the importance of the activation 
function is similar to the average correlation coefficients presented in 
Section 3.1–3.3 as tansig > logsig > poslin. However, the level of cor-
relation coefficients presented in this section are relatively higher than 
the average correlation coefficient presented in Table 2. The highest 
correlation coefficients are therefore clearly out of the confidence level 
of ANN models and misguiding the validity of these models and pre-
diction results, as the highest correlation coefficient is only one of the 
many randomise runs (one of the 30 runs in this study). However, once 
the models were trained with randomly selected train and test datasets 
in a dataset group for each run, the models provide a range of prediction 
data for these dataset groups. From the statistical point of view, it is 

possible to do an adequate justification whether ANN models be appli-
cable for the prediction of HHV with the average correlation coefficients 
in a range of confidence levels. 

3.6. General summary of ANN models 

As a summary of this research, a clear state-of-the-art ANN model 
was developed for the prediction of HHV of biomass feedstocks using UA 
and/or PA datasets. In order to provide a comparative qualitative and 
quantitative analysis, thirteen different algorithms (lm, br, scg, bfg, cgb, 
cgf, cgp, gd, gda, gdm, gdx, oss, rp), four different activation functions 
(logsig, tansig, poslin, purelin) with a wide range of hidden layer (3–15) 
for training and testing the ANN model were investigated to predict the 
HHV of the biomass feedstocks characterised by the PA and UA datasets. 
The research shows that a better ANN model for the prediction of HHV of 
biomass feedstocks could be build based on the following decisions.  

• Dataset: Combine UAPA (eight inputs) > UA (five inputs) > PA 
(three inputs)  

• Data points: (train and test) must be seleced randomly to generelise 
the model  

• Activation function selection: tansig > logsig > poslin ≫ purelin  
• Algorithm selection: “lm” and “br” algorithms provide better HHV 

prediction  
• Hidden layers: High hidden layers (13–15) for “lm” and lower 

hidden layers (5–9) for “br” algorithms 

Using this comprehensive ANN findings, it is possible to build ANN 
models providing better prediction for a specific group of biomass 
feedstocks with the minimum dataset or for a wide range of biomass 
feedstocks with extensive datasets of combined UA-PA, UA and/or PA of 
biomass feedstocks. These experimental results have relied on the 
collected dataset which contains 100 samples of UA and PA. In the 
future, we will seek to expand the dataset by including different biomass 
as well as further machine learning models explorations. In particular, as 
the ANNs are known as black-box models, it poses a challenge to 
interpret results. Thus, while the ANN deliver good performance, 
providing an insight into the decision process is also an important asset 
for understanding the relation between inputs and outputs, such as the 
level of effect of “FC” on the given output “HHV”. 

As the initial findings emphasize that the zero centred sigmoidal 
activation functions tend to produce better results in comparison to the 
linear activation functions which might be an indication of the necessity 
of having negative values in the output of each neuron and the range 
from − 1 to 1. Even though these sigmoidal functions may pose risk for 
the well-known vanishing gradient problems, the used ANN structures 
have no multiple hidden layers which naturally avoid such issues. 
Furthermore, the experiment results show the number of hidden layers 
has no critical effect on the produced correlation coefficient values. Yet, 
the phenomenon of “the more data the better” model has been followed 
in the dataset selection process where the more inputs (UA-PA with 8 
neurons in the input layers) led to more accurate predictions. 

4. Conclusions 

In this study, a detailed state-of-the-art ANN model was developed to 
produce a comprehensive understanding to predict biomass feedstocks 
HHV basing on PA and UA datasets of different biomass feedstocks. ANN 
models trained by the combination of ultimate-proximate analyses 
datasets provided better prediction than the other ANN models trained 
separately by UA or PA datasets. Regardless of the dataset, sigmoidal 
activation functions provide better prediction results than linear acti-
vation function as tansig > logsig > poslin ≫ purelin. The highest 
average correlation coefficients were observed with the Levenberg- 
Marquardt (lm) and Bayesian Regularisation (br) algorithms regard-
less of activation function. While “lm” provides better results with a high 

Table 3 
The best average correlation coefficients and corresponding MSE for the ANN 
models and activation functions.  

Activation Functions Train results   

Alg. HL (R2)* CL** CI† MSEþ

ANN model 1: Combination of ultimate-proximate analyses dataset 
Tansig br 9 0.962 95.7 0.02 0.15 
Logsig br 8 0.951 95.2 0.02 0.19 
Poslin lm 13 0.908 97.8 0.01 0.37 
Purelin lm 12 0.741 95.8 0.02 0.99 
ANN model 2: Ultimate analysis dataset 
Tansig lm 15 0.873 96.5 0.02 0.60 
Logsig br 5 0.856 98.6 0.01 0.57 
Poslin lm 15 0.818 95.4 0.02 0.75 
Purelin lm 9 0.602 95.4 0.02 1.37 
ANN model 3: Proximate analysis dataset 
Tansig lm 15 0.848 97.3 0.01 0.64 
Logsig lm 14 0.818 95.5 0.02 0.74 
Poslin lm 13 0.812 95.9 0.02 0.75 
Purelin cgb 8 0.647 97.4 0.01 1.28  

Activation Functions Test results   

Alg. HL (R2)* CL** CI† MSEþ

ANN model 1: Combination of ultimate-proximate analyses dataset 
Tansig lm 15 0.876 92.2 0.04 0.69 
Logsig lm 14 0.852 92.0 0.04 0.62 
Poslin lm 13 0.851 89.1 0.05 0.84 
Purelin gdx 3 0.811 94.4 0.03 0.87 
ANN model 2: Ultimate analysis dataset 
Tansig lm 14 0.835 93.9 0.03 0.75 
Logsig lm 10 0.825 93.0 0.03 0.64 
Poslin lm 14 0.805 92.5 0.04 0.74 
Purelin cgb 3 0.749 92.9 0.04 1.41 
ANN model 3: Proximate analysis dataset 
Tansig lm 14 0.831 94.2 0.03 0.85 
Logsig lm 13 0.815 93.9 0.03 0.79 
Poslin lm 14 0.793 91.7 0.04 0.88 
Purelin cgp 6 0.739 92.4 0.04 0.95  

* Average R2 of 30 runs (the red labelled results in Figs. 6, 9, 12). + Mean 
square error. **Confidence level (%) of 30 runs. † Confidence intervals of 30 runs. 
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Fig. 13. The highest correlation coefficients of HHV prediction with the ANN model developed by combined ultimate-proximate analyses datasets (one of the highest 
training and testing results in 30 run). 

Fig. 14. The highest correlation coefficients of HHV prediction with the ANN model developed by ultimate analysis datasets (one of the highest training and testing 
results in 30 runs). 
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hidden layer (13–15) in the models developed via low number inputs 
(three inputs of PA), “br” shows the better results with a lower hidden 
layer (5–9) in the models developed via high number inputs (eight in-
puts of ultimate-proximate analyses). The best average correlation co-
efficients provided by tansig for train and test are 0.848 and 0.831 by PA 
dataset (with “lm” and hidden layers of 14–15), 0.873 and 0.835 by UA 
dataset (with “lm” and hidden layers of 14–15), and 0.962 and 0.876 by 
the combination of ultimate-proximate analyses datasets (with “br” and 
“lm” and hidden layers of 9 and 15). Although the highest correlation 
coefficients were observed as 0.992 for tansig and 0.982 for logsig in the 
ANN models developed by the combination of ultimate-PA, the average 
correlation coefficients (of 30 randomised run) demonstrate the real 
ability of ANN models for the prediction of HHV. As the best average 
correlation coefficients (for train and test) were observed with tansig as 
0.962 and 0.876 for the ANN model developed by the combination of 
ultimate-proximate analyses dataset with a relatively high confidence 
level of ~96% for training and ~92% for testing. This study demon-
strated how important to randomise the train and test data selection and 
present the results within a confidence level for understanding the real 
potential of ANN models in the application of HHV prediction. 
Furthermore, this study provides a clear understanding on how the 
activation functions, algorithms, hidden layers, dataset, and random-
isation of the dataset effects the prediction of HHV of biomass feedstocks 
for the further studies. 
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