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Abstract

The wave dissipation properties of layered periodic stmgst are modelled by FE as well as analytical approaches.
A linear oscillator incorporating a negativefitiess element and having exceptional energy dissipatiqrepties is
exhibited and incorporated within the modelled structufiéee structural dynamic stability of both the oscillatodan
the modelled waveguides is discussed and ensured. The icahresults provide evidence of a drastic increase of
several orders of magnitude for the damping ratio of the flaiwaves propagating within the structures.
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1. Introduction

The need of cost and mag&ieient vibration isolation within the modern aerospacegedtive and civil industries
has been a particularly intense subject of research durelgst decades. For the space industry it is crucial to pteve
damage to the payload and the spacecraft structures daimgh. Aircraft structures are facing similar challenges
with the cabin interior noise levels being one of the majaliy criteria for modern aircrafts, while in the automativ
industry there is also a growing interest to isolate theangs induced by the road surface roughness and the power-
train system from the passenger compartment.

The current perception is that damping is produced by phl/siechanisms generating energy dissipation in an
oscillating system, such as friction, hysteresis, dradrawlic and electrical resistance, etc. The dominant exgging
practice for increasing structural damping is the usagessightive (mostly viscoelastic) materials [1, 2]. Cutren
dissipative materials are characterized by moderate tostdimess, which renders them unsuitable for demanding
load carrying applications [3]. Despite being of generldly mass density, the volume of dissipative materials that
has to be used renders their application prohibitive for imggtructures. Moreover it has been demonstrated [4, 5]
that within a layered structure the impact of the damping sihigle layer on the total damping factor of the structure

is proportional to the flexural sthess of the layer (proportional to the deformation energgest in the layer); thus
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suggesting that for composite structures comprisin, gtarbon fibre containing layers, thé&ect of the damping
factor of a viscoelastic layer will inevitably be allevidte

However, possibilities towards achieving significant damgghave been identified in materials comprising a neg-
ative sttthess phase [6, 7]. Quite interestingly, such a behaviornsbmed with high stthess properties. The fact
that structures with negative 8tiess perform satisfactorily in certain types of shock aihdation damping engineer-
ing applications has been studied for some time and a corapséle review of such applications can be found in
[8]. The negative sfiness behavior is shown to result actually in special meclaadesigns involving conventional
positive stifness prestressed elastic mechanical elements, such astfspagh’ designs, or post-buckled beams.
Quite recently, the authors in [9, 10] have shown that irolusf negative-stiness phases within elastic compos-
ites can only induce an elevatedfBtess in a dynamic sense. Periodic cellular structures haee also proposed
[11, 12,13, 14, 15] with pronounced damping properties,ltiamg high positive and negative Stiesses. Although
the physical mechanisms that generate pronounced dampiogllular structures are not profoundly understood,
microbuckling or slip-stick phenomena [16, 17, 18] are agitire possible explanations.

With regard to the design of engineering structures whedseation damping is achieved by the use of discrete
macroscopic elements, such as springs and dampers. ltdsheutoted that the concept of introducing negative
stiffthess elements (or 'anti-springs’) for vibration isolatibas a long history, being introduced in the pioneering
publication of [19] as well as in the milestone developmégd@s 21]. A rich variety of designs has been proposed
for the realisation of negative spring configurations, ipawating various structural elements such as post-bdckle
beams, plates, shells and precompressed springs, ariaragguaopriate geometrical configurations. Some intangsti
designs are described in [22, 23, 24, 25, 26, 27]. The certralept of these approaches is to significantly reduce the
stiffness of the isolator and consequently of the natural fregjuefthe system even at almost zero levels [28]. In this
way, the transmissibility of the system for all operatingduencies above the natural frequency is reduced, ragultin
to enhanced vibration isolation. An initial comprehengieeiew of such designs can be found in [29]. Since then,
numerous other applications have been reported in a diyefsngineering domains, such as automotive suspensions
[30, 31, 32] or seismic isolation [33, 34]. From the fundamaédesign point of view, many interesting improvements
have been proposed, based on the non-linear propertie® adlaistic force of such designs [35, 36, 37, 38, 39].
However, all these designsfBer from their fundamental requirement for a drastic redurctf the stifness of the
structure almost to negligible levels, limiting thus thatit load capacity of such structures.

In this paper the design of a stable oscillator comprisirgatiee stifness elements is initially exhibited and results
on its dynamic response are presented. The results suggetital increase of the oscillator’s inherent dampingati
The suggested oscillator is then implemented in two strattionfigurations: i) An elastically supported continuous
beam structure which is analytically modelled and ii) A péit layered beam structure which is modelled using
FE. The damping ratio for each wave type propagating withenttvo modelled configurations is computed. The
numerical results provide evidence of a drastic increaseweéral orders of magnitude for the damping ratio of the
waves propagating within the structures when the suggestefiguration comprising negative$tiess inclusions is
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Figure 1: Left: A typical (reference) SDoF dynamic systemsisting of a mase, a stifnesskp and a dashpoj. The system exhibits a natural
frequencywp and a damping rati¢p. Right: The proposed configuration, resulting from thenaiiee SDOF system, after the proper redistribution
of the stifness, the reallocation of the damping element and the addifim, as a result of introducing the negativefistess mechanism. Both

systems have the same (staticjiaiss under Eq.1.

implemented.

The paper is organized as follows: In Sec.2 a descriptioivengor the design of the unit cell oscillator having
negative sttness inclusions. In Sec.3 a continuous beam structure pstagpby stifthess and dissipation elements
on an undeformable floor is modelled. The suggested unibselllator is then implemented in the system and the
damping ratio of the propagating flexural waves are compateticompared before and after the implementation of
the oscillator. In Sec.4 a periodic layered structure is efled using FE and the characteristics of the propagating
acoustic waves are sought using periodic structure th€mge again the suggested oscillator is incorporated within
the system and the results on the flexural wave dissipatiopepties are computed in Sec.5. Conclusions on the

presented work are eventually drawn in Sec.6.

2. The proposed configuration having a negative dfiness inclusion

The proposed configuration with a stable negati@&ss inclusior, is introduced in Fig.1.

2.1. Dynamic analysis
It is actually a linear stable oscillator, designed in suebeg that it has a static $ihess«p which is the same to
the one of the reference SDoF oscillator (also in Fig.1).
KeKc

Ks + —— = K 1
s Ke + Ko 0 ()

An additional massm, is included in the modified oscillator to take into accoumttfe additional weight implied
by the introduction of the negative ftiess mechanism. A variety of choices exists for realizirgrtbgative sff-
3



ness, including post-buckled elements [40] and negatiyedance piezoelectric circuits [41]. The two systems also
comprise the same damping element offiontrn. The equations of motion for the Do&y of the modified system

illustrated in Fig.1 can be written as

M X+ (X —Y) + ksX+ ke(X—Yy) = f (2a)
MY +7(Y = X) + ke(y = X) + kcy = 0 (2b)
with f being the external excitation applied to the 'apparent’ Doy introducing Eq.2b in 2a and applying a

Laplace transform the above system of equations can bessqutas

7 + Ke
= X 3
Szm2+817+/<e+/<c (a)
My + 9 + Ke + K

X= (52m1+S7+Ke+Ks)(Szm2+S7+Ke+KC)—(S]+Ke)2F (3b)
which results in
_ S] + Ke
Y= b252 + b]_S+ box (4a)
_ Szm2+817+/<e+/<c (4b)
CsS* + C3S® + C 2 4+ C1S+ Cp
with
b2 = m2 (Sa)
by =7 (5b)
bo = Ke + K¢ (SC)
and
Cs4 = MMy (6a)
C3 = n(my + my) (6b)
C2 = m]_(KC + Ke) + mz(Ke + Ks) (6C)
C1 = n(kc + Ks) (6d)
Co = Kks(Ke + Kc) + Keke (6e)

The stability of the proposed configuration is subsequetitigussed.

2.2. Design of a stable oscillator
The authors in [42] have shown that lumped parameter osniavith negative system inclusions can be stable.
By applying a Routh-Hurwitz stability criterion it is degd that the necessary andfstient conditions for the stability

of the oscillator proposed in this work are



bp>0em>0 (7a)

by>0en>0 (7b)
by >0 ket+k:>0 (7¢)
as well as
Co > 0 © kg(ke + kc) + kekc > 0 (8a)
c1> 0o nlke+ks) >0 (8b)
C2 > 0 © mMy(ke + ke) + Mp(ke + k) > 0 (8c)
cz>0on(m+m) >0 (8d)
c2>0e mm >0 (8e)
C3C2 > CaC1 & KITE + KelTE + KelTB + KM + 2keMymp > 0 (8f)
C3C2C1 > C4C5 + C3Co © 172 (keMy — ksMp)? > O (89)

Itis evident that Eq.7a, 7b, 8d, 8e and 8¢ are a priori satisBatisfaction of Eq.7c implies that Eq.8c should also be
valid. Moreover if Eq.8a is true, Eq.7c is also satisfied. $tability conditions for the system are therefore acquired

by Eq.8a, 8b and 8f. Eq.8f can be expressed as
2 2
mp mp mp
1+ = 22— kel ==
Ke > Ke( +(m1) + ml] Ks(ml) (9)

However(l + (%)2 + 2%1) > 1 and in view of the above it is implied that if Eq.8a holds temn9 is also satisfied,

therefore static and dynamic stability for the oscillakwensured by

KeKc

(10a)

Ke + K¢ >
Ks

Ks > —Ke (10b)

The oscillator is designed so that an engineering toleréorcgafety marging exists, prohibiting. from reaching

its limit value that would induce neutral static stabilitiyerefore

(1 + &)kcke
~©/fcle  _ 11
7 (L+ &)ke + ke (11)
Itis also assumed that
Ks = @Ko (12)
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Figure 2: Comparison of the FR¥/F for: the SDOF system (-), the modified oscillator with=0 (---) and the modified oscillator with
mp=0.05m; (--). The design parameters of the systemsar8% andw=3.3 whilen=10%.

with « being the second design parameter. In view of Eq.1, 11 andhd Btifhess elementss, «. andxe of the

proposed oscillator, are designed with relatiorgof the original system, by the following set of equations

Ks = @Ko (13a)
_ea(a-1)

Ke_K01+s—as (13b)
-1

Ke = —Ko% (13¢)

while simultaneously satisfying Eq.10 will ensure the 8iigtof the system.

2.3. Numerical case study on the suggested oscillator design

The admittance Frequency Response Functions (RRH} for the original SDOF system as well as for the
oscillator having negative $iihess inclusions are presented in Fig.2. The parametriesdbar the SDoF oscillator
are selected astg = 10* N/m, m = 1073 kg andzn=0.1. It is observed that when lim, — 0" the response of
the modified oscillator presents a significantly higherrattgion compared to the SDOF system and is reduced by a
factor of 25 close to the original natural frequengyof the system. Beyond resonance, the response of the modified
oscillator asymptotically converges towards the one ofSBEOF system. Whem, >0 two resonance frequencies
are observed for the modified system. The respdgE thus presents an antiresonance and is further reduced in the
vicinity of wg while it exhibits two local maxima at resonanegg, wn; With the later being due to the addition of the
massry.

One of the most important design objectives for the osoitl&®8 maximizing its damping characteristics. The
damping ratia’,, of the modified system can be calculated as a function of thespad the characteristic equation of
the system in Eq.4. The value &f for various values of the damping dtieientr of the dashpot element is shown in

Fig. 3 The results are given as the ratia/pfo the damping ratio of the SDoF system
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Figure 3: The impact af on the damping ratio enhancemenpt/y of the suggested oscillator withp,=0: /o=0.1 (- - ), £0=0.01 (- -),{0=0.001 (-).
All computations conducted with=5%.

_ n
do= 2 e (14)

It is observed that an optimal value exists for any that maximizes the damping ratio of the system. As expected,
increasing; increaseg,; however this increase is not linear as with the SDoF sysieking a look at the maximum

{n values it is observed that increasindy a factor of 100 will only increase the maximugi by a factor of 4.
Comparing the maximun, values tay it is observed that fofy = 1% the damping ratio is amplified by a factor of
18, while forZy = 0.1% the damping ratio is increased by up to a factor of 100.rttbarefore be concluded that an
impressive improvement of the damping capabilities takesepfor the modified system; this improvement is greater

for lightly damped systems.

3. Wave dissipation within a continuous beam structure

The first configuration under consideration will be a beamneated to an undeformable body (floor) through
a stifnesskp and a viscous damping elemepts illustrated in Fig.4. The beam is made of a material haging
Young’s modulus equal t& and a mass per length ratio ratio equaMo while its second moment of area (around
the bending neutral axis) is equalltoUsing the Euler-Bernoulli beam theory to model the streee{thus ignoring
shear deformation and rotational inertideets) the equation of motion for an infinitesimal part of thracure can be
written as
%}+M(§—t\g+n%—vtv+/<0w=0 (15)

Assuming time harmonic wave motion within the infinite meditthe Bloch’s theorem [43] can be employed in

El

order to provide a generalized relation for the displacemas
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Figure 4: lllustration of an infinitesimal part of the considd beam. Top: The beam connected to the floor througlffiaestico and a damping

codficientn. Bottom: The beam connected to the floor using the suggestetianism with; equal to the precedent casg, e positive stifness

andkc negative sfiness elements.

W(x, t) = We ket (16)

with W being the wave motion amplitudg,the longitudinal distance from the reference to the comeii@oint on
the structurek represents the wavenumber ands a complex frequency function permitting time induced av
attenuation. In the absence of dampiigz +iw so that the usual form of Bloch's theorem is recovered. In the

presence of damping the real partiafepresents the attenuation of the wave in which case

AK) = —&(K)w (k) * iwa(k) (17)

with ¢ the damping ratio of the considered wave type agdhe frequency at which the assumed wavenumber value
for the damped wave is occurring. Substituting Eq.16 int@ E&8cond order polynomial expression is obtainedi for

is therefore obtained as

M2+ A+ ElK} + k=0 (18)

the solutions of which can provide the wavenumber deperdsenping ratios for the flexural wave propagating within
the considered system.

The 'beam on a floor’ system incorporating the suggestedtivegdiffness inclusions is also illustrated in Fig.4. It
should be stressed that the two systems presented in the fgristatically equivalent. The equations for the vertical
motion of the beamv and the internal Doly can be written again using an Euler-Bernoulli approach as

8
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EIW‘F W TI(E—E)'FKE(W—)/)'FKSW—O (19a)
d%y ay ow

nbﬁ-l-r](a—ﬁ)-i-Ke(y—W)-FKcy:O (19b)

The Bloch’s theorem is engaged to provide a generalizetorlfor the displacements as

W(X, A, 1) = We ket (20a)
y(x, A, 1) = Yekdt (20b)
with W Y being the wave motion amplitudes. Introducing Eq.20 intb @8n provide an expression for the relation

of WY as

mz/IZYe—ikxMt + n(/lYe—ikxMt _ /lwe—ikx+,{t) + Ke(Ye—ikx+,{t _ We—ikxMt) + KCYe—ikx+,{t =0>
Ke + A

>Yy=——"°""1 (21)
MpA2 + A + k¢ + Ke
while by substituting Eq.21 into 19a a fourth order polynaheixpression is obtained fdras
MmpA® + (M + mp)na® + (Elmpk? + Mie + Mke + keMb + ksp) A2 +
+(EIK* + ke + ko)A + EIK} (ke + Ke) + Keke + Keks + Keks = 0 (22)

the solutions of which will provide the wavenumber dependimmping ratios for the waves propagating within the

configuration comprising negativeftiess inclusions at.

4. Wave dissipation within a periodic layered structure

The second configuration to be considered is a layered beactige comprising two facesheets and a core
layer. In order to take into account for the impact of the cgitear deformation to the acoustic wave propagation
characteristics a periodic segment of the layered straégtumodelled by FE. This would be rather complicated to
capture using analytical methods [44]. An additional ad&ge of FE techniques over analytical approaches is that
when it comes to modelling geometrically complex structutee embedded FE 3D displacement functions ensure a
more generic way of capturing the entirety of the propagatiaves. The mass, damping andisgss matrices of the
segmeniM, C andK are extracted using a conventional FE software. In the fesigth the core has afitiess equal
to ko and a viscous damping element with a fméents in the vertical direction. When negativefitiess inclusions
are incorporated and in order for the two designs to be sitiequivalent, the vertical sthess of the core is altered

to s (by altering its Young's modulus in the vertical directi@ar)d an additional periodic branch is added comprising

9



Figure 5: lllustration of an infinitesimal part of the considd layered beam. Dashed line encloses the considerexdlipesegment. Top: The
structure with its facesheets connected to each otherghrawore having a longitudinal Stiess equal teg and a damping cdgcientr. Bottom:
The structure with its facesheets connected to each otfmrgh a core having a longitudinal fftiess equal tes and the addition of the suggested

mechanism withy equal to the precedent case positive stitness and. negative stiness elements.

10



the stitness elementg, «. as well as the viscous damping device of ffi@éenty. Both designs are illustrated in
Fig.5.
As with the continuous beam structure, time harmonic waepagation is considered within the layered beam in

the x direction implying
W(x, w, 1) = W@tk (23)
A clarification on the equivalence of Eq.16 and Eq.23 is preegkin what follows.

4.1. A note on the equivalence of the two Bloch'’s theorem expressions

It is noted that Eq.23 assumes spatial wave dissipationnirast to Eq.16 where time induced wave dissipation
was considered. However the two expressions are totalliya&gunt implying
ei(“)t*(kre“kim)x) — e*ikreer(/lreJriflim)t (24)
Considering the wave propagation at a distance equal to emelengthu from the reference point which will in-
evitably correspond to one periddthe above equivalence is expressed as
ei(“)T*(kreJrikim)ll) — —ikrept+(Are+idim) T = ekmll - e(lreT (25)

thereforedreT = kimu, howevelu = 2r/ke, T = 27/w and ;e = —éw therefore

&= —Kim/Kre (26)

for a direct comparison between the two approaches of digsipmodelling.

4.2. \ave propagation properties

The problem will be modelled by a wave and finite element aagindcoupling FE to periodic structure theory)
as exhibited in [45]. The structure can be modelled usingdsted FE techniques and the Dynamidi&gss Matrix
(DSM)

D=K -w’M +iwC (27)

can be calculated for each considered frequency. The DSMbisegjuently partitioned with regard to its Jefyht

sides and internal DoF as

D Dy Dir qc fL
D Di Dir a (=90 (28)
Dr. Dr  Drgr ar fr

11



with g the displacement arfdthe force vectors. By condensing the internal DoF the proldan be expressed as

MW
ar fr

Assuming that no external forces are applied on the segremlisplacement continuity and force equilibrium equa-

DL —DuD;'Di.  Dir— DD 'Dir
Dr. - DriD;!Di.  Drr— DriD;'Dir

tions at the interface of two consecutive periodic segmeatglr + 1 give

r+1 _ ~r
a. " =0r

1 (30)
=

Using Egs.(29),(30) the relation of the displacements amdef of the left and right sides of the segment can be

r+1 r
{qu}zT{qL} (31)
fre fr

and the expression of the symplectic [46] transfer matroan be written as

written as

D D
T 1 P12 (32)
D21 D2
with
D11 = —(Dir - DuD;*Dir) (Dy1 — DuyD;*Dit)
D12 = (Dir— DuD;'DiR) (33)

Dy; = —Dgr. + Dg D|_|1D||_ + (DRR —Dri D|_|1DIR)(DLR - Dy DﬂlDIR)_l(DLL - Du D|_|1D||-)
D22 = —(Dgrr — Dri Dj'Dir)(Dir — DuiD;'Dir) ™

Free wave propagation is described by the eigenproblem

r r
yp bd=Tt (34)
f fl
whose solutiory; is related to the complex values of the structural wavenurkley

In(y;)

ilx

K =—

(35)

corresponding to wave typg with |, being the length of the periodic segmentThe real part ok; indicates the

spatial frequency of the wave, while the imaginary partéatis spatial wave dissipation.
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4.3. Dynamic structural stability criterion

Including negative sfiness elements in the modelled configuration has the potémtiaduce structural dynamic
instabilities, [47] even if the included negativefBiess oscillator is stable when standing alone. For thiorets
computed solutions of the eigenproblem in Eq.34 have to leelad against stability criteria. Dynamic instability
implies the existence of waves for which the power flow tramspccurs with an exponentially increasing amplitude.

The time—averaged energy crossing the junction betweelsents of the periodic waveguide is given [48] by

1 . 1 )
(E) = ERGGQR) = ERG(M;QR) (36)

However due to the time harmonic motion assumption

ar = 7Y0L (37)
fr=—yfL
therefore the time—averaged energy can be written as
1 PV26T
(E) = SRe(-iwy*faL) (38)

For damped systems Ik} # 0 and for the waves propagating towards the positive valbtiestoe following is

true

bil<1 (39)
For positive—propagating waves the value(Ei) should be negative, suggesting that their amplitude woaldéd>
creasing towards the direction of propagation. MoreoéE,—r> and Img;) should be of same signs, suggesting that the

power flow takes place towards the same direction as the aleed the wave amplitude and implying the following

dynamic stability criterion

Im(k;) (E;) > 0 (40)

which should be true for every computed wave type

5. Numerical case studies

5.1. Continuous beam
A continuous 'beam on a floor’ as illustrated in Fig.4 is hgrebnsidered witiFE=700 MPa,| = 10°°> m* and
M=1 kg/m while ko=10" N/m andy=0.1. The wavenumbers for the flexural waves propagatingmitie supported
beam are initially sought for the two configurations presdrih Sec.3. Real values firare injected into Eq.18, 22
and the corresponding complex valuesiaire computed. It is noted that a valuesof 3% is used throughout the
calculations presented below.
13
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Figure 6: Wavenumbek as a function of frequency for the flexural wave propagatiridpivv the beam: No negative fitiess (-), With negative

stiffness inclusions (- -). Computations conducted wit1.6,7=0.1

5.1.1. Resultsformp =0

The results for the flexural wave propagating within the eystvhenm, = 0 are exhibited in Fig.6. It can be
observed that thefiect of the inclusion of the suggested configuration with rega the wave phase and group
velocities is negligible throughout the considered fretpyerange. It is therefore evident that the two configuration
are both statically and dynamically equivalent. A frequelmand gap is also observed for the flexural wave within the
0-500 Hz region.

The damping rati@ for the flexural wave can be calculated through the real mdris The results for the two
configurations are presented in Fig.7. An impressive irsg@hthe damping ratio by over three orders of magnitude is
observed for the system having negativéiséss inclusions. Frequency dependencginfthis case is also observed
with ¢ presenting a slight decrease for higher frequencies. Ormtiiner hand, for the original systefhremains
constant with respect to frequency.

A parametric analysis with regard ipis subsequently conducted. The values of the damping ridfathree
different values ofy are presented in Fig.8. The damping @méent is raised by an order of magnitude each time.
For the original system it is observed that the increagei®fairly proportional to the increase gfand no frequency
dependence is observed as expected. With regard to the etbslifitem, it is observed thawill gradually decrease,
asymptotically converging towards the damping ratio of diniginal system at high frequencies. For the modified
system,£ also presents a trend to increase wijtrhowever this increase is not proportional to the increnoént
This result is in accordance with the conclusions extrafrtaa Fig.3. Once again, it is concluded that systems with
lower inherent damping cdigcient see more pronounced increases in their wave dampiiogéran the presence of
the suggested oscillator.

All the above computations for the modified system were cotatlusing values far that are optimal in terms of

maximizingé. The question that directly arises is therefore how peinaliwould be the fact of not designing a system

14
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Figure 7: Damping rati@ as a function of frequency for the flexural wave propagatiiifiw the beam: No negative finess (), With negative

stiffness inclusions (- -). Computations conducted wit1.6,7=0.1
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Figure 8: Damping rati@ as a function of frequency for the flexural wave propagatiritiiw the beam. Results for the SDoF oscillatge0.01
(O), n=0.1 (©), n=1 (¢). Results for the mechanism having negativérstiss inclusionsy=0.01 ande=1.2 (- -), n=0.1 anda=1.6 (-),n=1 and
a=3 (--).
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Figure 9: Damping ratig as a function of frequency for the flexural wave propagatirthiw the beam for=0.1. Result for no negative fiiness

(O). Results for the mechanism having negativératiss inclusionsy=1.3 (--),a=1.6 (-),@=2.5 (- ).

with an optimalx value. It is evident that for lim — 1* the system will converge towards the original configuration
Results for a below-optimal and an above-optimal value afe presented in Fig.9. Itis observed that for high values
of @ the system will generally exhibit reducé&d/alues, while the frequency dependency & gradually alleviated.
For higher values ofr the resulting values of will progressively be reduced and will converge towards dhes

of the original system. For values afbelow the optimal, the damping ratio presents a radicaledess for higher

frequencies. For suboptimalvalues however an increaseis observed for very low frequencies.

5.1.2. Resultsfor mp >0

Results fom, > 0 are subsequently sought in order to investigate fieeeof the added mass on the wavenumber
and the damping ratio for the propagating waves. Three gdhran, are introduced in the model

The results on the obtained valueskadre presented in Fig.10. The first observation is relatedeantroduction
of frequency band gaps due to the antiresonances inducdwlesigned oscillator. The frequency width of these
band gaps increases with an increasmgwhile frequency—wise the band gaps occur at the antires@faequencies
wa imposed by the design of the oscillator; with decreasing proportionally tq/m.

The damping ratio of the propagating waves for various \&bfen, is presented in Fig.11. A maximum value
for £ is observed fom, >0. This maximum occurs at the antiresonance frequenoyhich varies in relation to the
design of the configuration as described above. It is obdehat for certain values af, the maximum value of
can be even higher than the onefier = 0. It is also shown that whem, >0, in the high frequency range the value of
& will converge towards the damping ratio of the SDoF osa@laT his convergence will be faster for systems having
a largermp. It is interesting to note that when a high damping ratio isid& within a specified frequency band,

can be tailored for maximisingwithin that frequency range.
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Figure 10: Wavenumbee as a function of frequency for the waves propagating withzteam. Result for no negativefBtess inclusionsC().

Results for various values afp: mp=0.3M (--), mp=0.03M (=), mp=0.003M (- - - ). Computations conducted with=3, =0.1
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Figure 11: Damping ratig as a function of frequency for the waves propagating withanlteam for=0.1. Result for no negative fimess [J)
and modified configuration wittp=0 (o). Results form;=0.3M (- -), mp=0.03M (=), mp=0.003M (- - -).
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Figure 12: Real part of the wavenumbers for each wave typgagetting within the layered beam. P-wave type: No negatiféass [(J), With
negative sttness inclusions—(- —). Torsional: No negative stness ¢), With negative sftness inclusions:(-). Bending around axis: No

negative sttness ¢), With negative sftness inclusions (--). Bending aroumdaxis: No negative sfiness 4), With negative sfthess inclusions

).

5.2. Periodic layered beam

A layered beam is hereby modelled comprising two facesta®lsa core layer. The facesheets are made of an
isotropic material having a Young’s modul&s=70 GPa, a Poisson’s ratig=0.3 and a mass density pf=3000
kg/m3. The thickness of the facesheets is equdlitel mm. The core has a thickness equatde6 mm and is made
of a material having.=0.7 GPay=0.2 ando.=50 kgm®. The length of the period i = 5mm while the width of
the beam is equal to 3 mm. Itis noted that the parameter valae3% anda = 2 are used throughoutthe calculations
presented below for the modified structure.

The layered structure is modelled through standard FE agpes. Matrice&, M andC are computed and
postprocessed as described in Sec.4.2 in order to obtaacthestic wave propagation properties. All computations

were conducted using the R2013a version of MATLAB

5.2.1. Resultsformp =0

The real part of the wavenumbers for the four wave types atirag within the layered structure whem = 0
is exhibited in Fig.12. An pronounced correlation betwdenresults for the initial and the modified structure can be
observed validating the assumption of the static equiva®fthe two structures. For the out of plane flexural motion
around axiz discrepancies are observed between the two configuratovefy low frequencies, which are due to
the impact of the high damping ratio of the flexural motiontirstfrequency range.

The ratio of the imaginary to the real part of the wavenumbethe flexural motion aroundaxis of the layered
beam is exhibited in Fig.13. The quantity is equivalent ® damping ratio of the wav& An inverse tendency is

observed for the two quantities. Whigds constantly increasing with respect to frequency for tigal system with
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Figure 13: Damping ratio of the predicted flexural motionua@z axis of the layered beam: No negativeffsiess (—), Modified with negative

stiffness inclusions (- -).
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Figure 14: Damping ratio of the predicted flexural motiontef tnodified layered beam aroundxis: Withn=10 (- - ), With n=1 (=), Withn=0.1
-9

an asymptotic tendency, the damping ratio for the modifingttiire presents a constant decrease. A radical increase
(more than six orders of magnitude)éis observed in the very low frequency range, while at fregiesharound 10
kHz this increase drops to approximately four orders of nitage.

A parametric survey on thefect of the damping cdicientn on the damping ratio of the flexural motion around
z axis of the layered beam is presented in Fig.14. It seemddatringn will intensify the peak of¢ in the low
frequency range. For higher frequencies the damping ratickty settles down towards an asymptotic limit; that
is the damping ratio value of the unmodified structure. Aioré on understanding the damping ratio frequency
dependence and optimising the design of the oscillatoraigyeted frequency bands is ongoing. On the other hand,
for an increaseg value the low frequency peak 6fs suppressed. An increase of one order of magnitudgifatuces
an approximately 550% increase of the damping ratio, confgrthe conclusions drawn for the beam structure in

Sec.5.
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Figure 15: Damping ratio of the predicted flexural motiontaf modified layered beam aroumexis when;=0.1: Withmy=0 (=), Withmp=0.3m;
(=-)

5.2.2. Resultsfor mp > 0

The values of the damping ratio for the flexural wave when> 0 are exhibited in Fig.15. The added lumped
mass is expressed as a functiomafwhich stands for the total mass of the facesheets includédnrone period of
the modelled segment. The results present a maximugmabthe antiresonance frequency of the oscillator as was
the case for the continuous beam structure. In the highguénecy range the damping ratio asymptotically converges

towards the values obtained for the modified sandwich having 0.

6. Conclusions

The main findings of the work are summarized as follows:

(i) The design of a configuration comprising negativéfiséiss elements was exhibited and implemented in con-
tinuous and periodic structures and the attenuation of tbpgmating waves was computed using analytical models
as well as a wave and finite element approach.

(ii) The structural stability of both the oscillator and theodelled waveguides was discussed and ensured. A
dynamic stability criterion for the waves propagating witthe modelled structures was exhibited.

(iii) A radical increase of several orders of magnitude wasilgited for the damping ratio of the flexural waves
propagating within the modelled configurations having iegatiffness inclusions.

(iv) 1t was shown that the added mass implied by the adoptfoth@ modified oscillator can be designed for
maximising the damping ratio of the system within a targétequency range.

(v) It was demonstrated that the damping ratio increase dtigetinclusion of the suggested mechanism will be
greater for lightly damped systems.

This work has shown how a lumped parameter oscillator carsee within periodic structures in order to enhance

their damping performance. The suggested oscillator lmaslsineous high dtiness and damping properties and
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extends the existing concepts concerning single DoF negstiifness and zero-#iness oscillators. Future work will
focus on manufacturing and implementing the suggestedgumafion within continuous systems in order to compare

their performance to high dampifstifftness composite materials exhibited in recent bibliography
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List of symbols

bi, G
E
(E)

- a 4 2 X U 0O X =

Codficienti of the characteristic equation
Young’s modulus

Time averaged wave energy
External force

Second moment of area
Length of the periodic segment
Mass variables

Laplace variable

Apparent DoF

Internal DoF

Damping matrix

Dynamic stifness matrix
Stiffness matrix

Mass matrix

Transfer matrix

Displacement DoF vector

Force vector

Transfer matrix eigenvalue

Design parameters of the oscillator
Damping ratio of the oscillator’s motion
Damping coéicient

Positive stifhesses

Negative stifness

Complex frequency function
Wavelength

Wave damping ratio

Angular frequency
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