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This paper proposes a novel method for parametrisation and remeshing incomplete and irregular polygonal meshes. Spherical
harmonics basis functions are used for parametrisation. This involves least squares fitting of spherical harmonics basis functions to
the surface mesh. Tikhonov regularisation is then used to improve the parametrisation before remeshing the surface. Experiments

show that the proposed techniques are effective for parametrising and remeshing polygonal meshes.

1. Introduction

Polygonal meshes are often used to represent the surfaces of
graphical models. Often a mesh is irregular or unsatisfactory
due to over- or undersampling or the triangularisation
technique used. There is thus the need to improve the quality
of the mesh by remeshing.

There are two main categories of remeshing techniques:
parametrisation methods [1-5] and mesh adaptation strate-
gies [6-8]. Parametrisation methods indirectly improve a
given mesh by parametrising it, often through bijective
mapping from the original mesh to a 2D planar domain.
New sampling can then be performed on this planar domain
and, using the inverse of the original mapping function, is
mapped back to the surface to form a new mesh. Unlike
parametrisation techniques, mesh adaption strategies directly
improve meshes using relaxation or modification processes
to iteratively make local improvements to the mesh [9], until
either some size or quality criterion is reached.

Parametrisation and adaption approaches can also be
combined. An example of this is a method that assumes a
mesh is formed of parametric patches bounded by parametric
curves [10] and iteratively improves the mesh by calculating
the quality of a patch. Vertices and therefore faces are inserted
into some areas and deleted from others until the global
quality criterion is achieved. The refinement of a mesh
region is determined by a local error computed at each

vertex in a patch, which is the difference between the surface
curvatures of the original patch and the new patch.

Another example of the combined approaches is the
isometric parametrisations (MIPs) method [11]. Here, the
remeshing is an adaption strategy on a mesh parametrised
to a planar domain and the final result is mapped back to
the domain of the original mesh. The remeshing process
involves an umbrella operator that selects a vertex to be
improved while fixing all neighbouring vertices and treats
edges connecting the centre vertex and the neighbouring
vertices as “springs.” Each spring is assigned an energy, and
the minimisation of the combined energy of all springs is
used to determine the new position of the centre vertex.
Essentially, this minimisation can be seen as a push and pull
to reach an equilibrium of energy. The process is repeated for
all vertices until the mesh reaches a certain specified quality
or the difference in movement in the vertex positions between
iterations is below a certain threshold.

Such local improvement methods tend to be greedy
in their approach, and therefore the global quality of the
resulting mesh can suffer [12]. These meshes may also be
inefficient when carrying out numerous sampling operations
in 3D space [3]. Furthermore, methods that parametrise
surfaces to a single domain are often constrained to meshes
that are topologically similar to that domain.

One group of methods exploits the fact that some meshes
can be transformed into a single topologically planar mesh



through a series of cuts [13]. These cuts are stored in a graph
and are applied to the original mesh prior to parametrisation.
The cuts allow the mesh to be simplified for parametrisation
using a planar domain. Creating the cut graph for these
meshes is the major challenge of such methods. Meshes of
genus-1 or above will require multiple cuts and the particular
location of these can be difficult to compute automatically.
The particular location of each cut needs to be considered
carefully to strike a balance between the goal of low dis-
tortion and discontinuities introduced with each cut. Even
though methods such as these overcome the topological
limitations of mesh parametrisation, they often suffer from
visible discontinuities along the seams of the cuts. Where
the discontinuities are not tolerated by some applications,
changing the base domain is often worthwhile [12].

Another approach uses harmonic mappings to parame-
trise individual segments, before each segment is remeshed
[14]. Although this method can produce high quality meshes,
with very little to no discontinuities, and is computationally
robust, the partitioning of the mesh can result in unnecessary
segmentation. For example, it may segment a straight tube
into two segments [14]. This is due to the planar domain used,
limiting the topology of the mesh. There is a considerable
advantage to using spherical domain for parametrisation,
as many meshes can be parametrised to a sphere without
the need to cut the mesh [15]. Planar meshes that can
be parametrised by a square domain can be mapped to a
spherical domain using the process of UV mapping [12].

Spherical parametrisation is not without its problems.
Many methods face the issue of not being able to guarantee a
bijective (one-to-one) mapping between the sphere and the
mesh. Some attempts to overcome this create a geometry
image that approximates the mesh [16]. First, the mesh is
mapped to the spherical domain, and then an arbitrary
polyhedron is spherically parametrised. The 2D geometry
image is then created by unfolding the polyhedron and then
remeshing it by mapping back to the original surface domain.
However, the method demonstrates an inherent limitation
of spherical parametrisation. A trade-off is required between
stretching of the mesh and conformality, as both cannot be
attained simultaneously for highly deformed shapes.

This paper proposes a technique for parametrising 3D
meshes for remeshing which uses the theory of spherical
harmonics to approximate a continuous surface. Spherical
harmonics are a natural basis for representing functions
defined over spherical and hemispherical domains. They have
been used for many applications in 3D modelling, including
face recognition [17], lighting and systems [18, 19], and
diffusion imaging [20-22]. Spherical harmonics have been
suggested as a parametrisation technique for surfaces [13]. To
use spherical harmonics basis, a solution to find the weights of
the basis functions is obtained through solving a linear system
of equations. To overcome computational challenges in using
linear least squares to fit a large mesh using a large number of
basis functions, regularisation is investigated for reducing the
effects of numerical outliers and computational inefficiency.
Once the mesh has been parametrised as a combination of
spherical harmonic basis functions, the new mesh defined on
a sphere can be remeshed to approximate the original surface.
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Further to this, the consequences of surface parametrisation
as a solution to surface inpainting are addressed.

2. Methods

2.1. Spherical Harmonics. For a sufficiently smooth surface,
represented by a function f(6, ¢), an infinite series of spheri-
cal harmonic basis functions can be used to represent it in the
following form [23]:

6.¢), @

f(6.¢)= Zzaz

1=0 m=-1

where 6 and ¢ are the polar and azimuth angles in a spherical
coordinate system. As [, — 00, this representation
becomes an exact description of the surface f(0,¢). The
spherical harmonic functions are defined by Y;" (¢, 0), with
order [ and degree m (Im| < 1), and a;" is some weighting
coeflicient for Y;". The degree m describes the number of basis
functions to be computed for each order.

Spherical harmonics are formed from the set of solutions
to the 3D Laplace equation, given here as a combination of
associated Legendre polynomials, P;"(cos 0):

m 21+1(
Y (6’¢):\/ 4; §l+m;| (co

s0) ™. (2)

The associated Legendre polynomials, P/, are defined as
follows:

1" (1-x )m/2 d” ~_PB(x) ifm=0
O Ly temt |
(-1) 0+ )' () otherwise, 3)

1 d !
P,(x)=ﬁ<@(x2—l)>.

The order [ specifies the number of polynomial terms that
a harmonic function contains. Relatively smooth functions
can be obtained using low order spherical harmonics, with
increasing order corresponding to an increased number of
frequencies captured by the spherical harmonics. The higher
the order, the more precise the approximation. Figure 1 shows
the spherical harmonics for even orders up to/ = 8—note that
Y, ™ is the reflection of Y.

The expression of spherical harmonics uses complex
domain functionals in (2). However, for ease of program-
ming, and since many of the desired properties are still
present, only the real part of Y;" is used, denoted by YR}". This
is calculated as follows:

YR (6,¢)
2P (cos 0) sin (mgh) itm>0 (4)

(1) H'2P" (cos B) cos (—m¢p)  otherwise,
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FIGURE 1: Spherical harmonics.
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The function in (1) may be solved for 4" to calculate
the weighting of each basis function and thereby allow an
analytical representation of the surface, using the inverse
transform known as the spherical harmonics transform:

a" = rﬂ r £(6,4)Y™ (6,4)sin0d0dg.  (6)
0 0

However, this is often not possible to solve. As an alternative,
(1) can be written as a series of linear equations in matrix
form, for some finite [, on some discrete sampling of the
surface, f; = f(0,,¢;), for 1 <i < n.The system is then solved
for coefficients a", Vi, I:

Y1 iz o ik a h
Yo1 Vo2t Vak ) 1
o )
Yu1 Y2 7 Yuk ay fn
where y; ; = YR["(0,,¢,), j = P +1+m+1,and k = (I +1)°.

The unique indexing j for each pair (I, m) is as used in [13].

2.2. Regularisation. The spherical harmonics basis is used to
approximate the surface using least squares optimisation. The
procedure minimises the sum of the squared residuals to the
curve determined by the best fit. This involves solving a set
of linear equations, where, for an overdetermined system of
equations, Ax = b, with x unknown, the best approximation,
X is calculated such that the sum of square differences
between AX and b is minimised. Often, the solution does

not exist, and instead the best approximation of x is found,
minimising the function ||[AX — b|. This can be done more
simply by solving the equivalent system of equations A7 Ax =
ATb. For the spherical harmonics system, in (7), the system
to approximate the weighting coefficients x = a;".

Regularisation is often used to optimise solutions. This is
done by introducing additional information, usually in the
form of a penalty for complexity, for example, restrictions
to ensure smoothness. Tikhonov regularisation is one of
the most commonly used methods for regularisation [24,
25]. The additional information introduced is described
as the Tikhonov matrix, which is added to the original
minimisation term, acting as a smoothness constraint. The
Tikhonov matrix, I, can be constructed in a number of ways.
One such way is to use unimodal regularisation (I' = I) [26].
Alternatively, the construction may be based on the Laplace-
Beltrami smoothing operator [27-29].

Due to the linear least squares allowing outlying points
to have a disproportionate effect on the fitting, there is
often a degree of noise that presents itself when fitting the
spherical harmonics to the surface using higher orders of
I. The noise is amplified as the order increases, due to the
massive increase in the number of calculations performed. As
the matrix system gets bigger, a higher number of numerical
inaccuracies occur, increasing the number of outlying points
generated. Consequently, constructing the Tikhonov matrix
based on the Laplace-Beltrami operator is the natural choice
in this case, as the regularisation introduced will smooth
the harmonic signal produced. The regularisation term is
introduced in minimisation term as the following constraint:

IAx - b|* +» ||, (8)

where A is the basis matrix, x is the radii vector, b is the
coeflicient vector, v is a tuning parameter used to balance
the fidelity of the data and the smoothness requirement [30],
and T'is the Tikhonov matrix. Minimising this newly formed
functional results in an equivalent solution to the following
equation:

(ATA+R)x = A"D, )
where R = I''T and has the following structure:

B+ 1)
R = , 10)

2o (P +1)

where [; is the spherical harmonics order associated with the
jth coeflicient.

L2 regularisation is more computationally efficient than
L1 regularisation as it has an analytical solution. It also gives
nonsparse outputs. Sparsity refers to the number of values
in a vector or matrix that are nonzero where a dense matrix
or vector has mostly nonzero entries. Conversely, a sparse
matrix or vector contains very few nonzero entries. Using
an L2-norm penalty gives nonsparse coeflicients which is
desirable with spherical harmonics whereas using an L1-norm
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FIGURE 2: Example of regularly sampled meshes on sphere: UV sphere (left) and geodesic icosphere (right).

penalty would result in sparse outputs. Therefore, L2-norm
penalty has been used instead of L1-norm. The multiplicity of
eigenfunctions is beyond the scope of this paper and readers
are invited to read [31].

2.3. Spherical Meshing. Typically surface representations as
polygonal meshes are described in Cartesian coordinates
(x, ¥, z). For the surface mesh to be represented by f(6, ¢),
the mesh must be transformed into spherical polar coordi-
nates (, 0, ¢) about the origin, where f(0, ¢) = r, the distance
from the origin to the point on the surface at inclination 6 and

azimuth ¢:
r=x?+y* + 22

0 = arccos ( E) (1)

r
- Z)
¢ = arctan(x .

On calculating the spherical harmonics coefficients and
obtaining the approximation of continuous functional f, a
value for + may be obtained for any given 6 and ¢. As a
result, it is possible to define a new set of points, or a new
mesh, on a unit sphere (or any sphere, disregarding its radius).
An example of regularly sampled spherical meshes is shown
in Figure 2, which can be used to remesh an approximated
surface. The mapping from polar coordinates to Cartesian
coordinates is x = rsinfcos¢, y = rsinfsin¢, and z =
7 cos 0.

3. Implementation

3.1. Surface Parametrisation. Given a mesh, with vertices
transformed into spherical coordinates treating the geometric
centre of all mesh points as the origin, a set of basis functions
for angles 0 and ¢ is calculated up to the specified order
I.x- Each basis function is calculated according to (4) and
the values indexed in n-by-k matrix, where # is the number
of vertices in the mesh and k = (I_.. + 1)®. As described

max

previously, for the ith vertex, the calculated values for each
basis function YR)"(6;,¢;) are added to the matrix at y;,

where j= > +1+m+ 1.

The system of equations is set up as in (7), where f; = r;,
the spherical radius value at angle (0;, ¢;), and solved using
the Laplace-Beltrami Tikhonov regularisation described in
Section 2.2, using v to control the added smoothness con-
straint. The resulting vector of coefficients can then be used
to weight spherical harmonics in the functional f(6,¢) (1),
describing the surface which the mesh represents. As the
spherical harmonics series has been truncated to a maxi-
mum order, [ .., the computed values of f (corresponding
to radius values r in a spherical representation) are only
approximations of the original values.

Multiplying the calculated coeflicients a;" by the spherical
harmonics values for the original set of mesh vertex angles,
the residual error for each vertex can be obtained in the form
Ax — b, where A are the bases, x is the set of approximated
coeflicients, and b is values of f for each pair of 9; and ¢;.

The newly reapproximated vertices can also be visualised
by converting the values from spherical to Cartesian coordi-
nates and retaining the face information of the original mesh.
This face information is in the form of a list. This list does
not contain the vertex values themselves but the indices for
each vertex. Therefore, each line in the list contains three (for
a triangular mesh) indices that comprise a single face. The
face information remains valid as long as the order of initial
vertices and their approximations stay the same.

3.2. Remeshing. Once the coeflicients for the mesh have been
calculated, they can be used in the remeshing process. New
sampling is defined on angular sphere and the spherical
angles of the vertices are used to calculate values for the basis
functions. Note that these basis functions are still limited by
I .x used when generating the set of coeflicients to ensure the
matrix dimensions agree. A new basis matrix S of dimension
p x k is formed, where p is the number of vertices defined
on the sphere. The new values of f,: Sx = f, are calculated
by multiplying out the basis functions and coeflicients. The
angles 0 and ¢ for the new spherical mesh, coupled with
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FIGURE 3: Two triangular meshes of human heads: Mannequin (left) and Obrubovka (right).

approximation f,, can be converted into a set of Cartesian
coordinates (x,, ¥,, z,) describing the remeshed surface of the
original mesh. Again, face information defined on the sphere
can be applied to these new vertices.

4. Results

4.1. Parametrisation. It is important for a remeshing algo-
rithm to approximate an input surface well. Therefore, there
is a need to measure how close the reconstructed surface
is to the original. The numerical measures used in [13] to
describe the fit are the mean residual and the maximum
residual, and consequently these measures are used here.
The residual is calculated for each vertex in the original
and approximate mesh, as described in Section 3.1, and for
two given meshes, the surfaces are approximated and results
given. These meshes, both representing a human head, exhibit
different levels of features. They are distinguished in this
paper as Mannequin and Obrubovka and shown in Figure 3.

The residuals of parametrisation of the meshes by spheri-
cal harmonics, solved only by linear least squares for different
values of [, are given in Table 1, with reconstructed meshes
shown in Figure 4. As the order of the spherical harmonics
increases, the residual errors decrease. This is as expected,
since a higher order captures higher frequencies in the surface
and is a better representation of the structure.

In addition to the quantitative metrics, the resulting
meshes are plotted and shaded with the local vertex residuals,
shown in Figure 5. Visual analysis shows the performance
of spherical harmonics as a parametrisation technique is
suitable for a large proportion of a mesh, with the highest
errors occurring where the curvature in the mesh is sharpest,
notably the nose and brow region. As the maximum order
is increased, these effects are reduced, as demonstrated
by the results presented in Table 1. The results here agree
with the observation that spherical harmonics perform well

TABLE 1: Mean (msd) and maximum (xsd) residuals for different
orders of spherical harmonics parametrisation of two meshes, solved
using linear least squares.

Mesh Vertices Faces L ax msd xsd
10 3.526 23.093

Mannequin 1693 3382 20 2380 19.526
40 1.341 21.384
60 0.511 16.531
10 2.743 14.209

Obrubovka 3301 6598 20 1.285 13.634
40 0.533 9.888

60 0.202 7.061

as a parametrisation technique [13]. The reconstruction in
Figure 4 is visually very similar to the original mesh and
spherical harmonics representation can capture main surface
features from the original mesh well. However, at lower
orders, very sharp features are difficult to reconstruct, as can
be seen in the ears of the Mannequin mesh at /,,, = 20.

4.2. Remeshing. Each of the meshes parametrised has been
remeshed using a unit icosphere (4-time subdivided regular
icosahedron) at increasing orders: [, = 10, 20, 40, and
60. The calculation of the basis coefficients has been done
using linear least squares only and has not been subject
to regularisation. There are two factors that influence the
number of calculations that must now be performed: the
value of [, and the number of vertices in the new mesh.
Increasing the order, [, and increasing the resolution of the
mesh will significantly increase the number of calculations
required to solve the linear system of equations. This increase
in the number of calculations is due to the larger number of
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FIGURE 4: Original surface meshes, Mannequin (top) and Obrubovka, approximated by spherical harmonics and meshed using the original

vertex angles and face information using increasing values of [, ..

FIGURE 5: Plots showing residual errors in the spherical harmonics approximation of Mannequin (left) and Obrubovka. Colour represents

residual error value.
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FIGURE 6: Surfaces represented by spherical harmonics, solved using linear least squares, remeshed with an icosphere for values of ., = 10,

20, and 40 for Mannequin (a—c) and Obrubovka (d-f).

basis functions that would need to be calculated and utilised
in the linear system.

Figure 6 shows the remeshing results for the two models.
These show outlying regions affected by high frequency
harmonics, which increase in noise as the order increases.
At high levels, the original mesh’s structure is virtually
unrecognisable in the remeshed figure. The “spikes” are
amplified particularly in regions of low detail or resolution in
the original mesh. The mesh created through the remeshing
process inherits many properties of the given spherical
sampling mesh, in this case a pseudouniform triangular grid
over the entire surface. Increasing the resolution of the mesh
much greater than that of the initial mesh can significantly
reduce the interpolating effects of the remeshing process.

4.3. Tikhonov Regularisation. Tikhonov regularisation was
introduced to aid solving the discrete spherical harmonics
transform, adding a smoothing constraint to the resulting
surface representation and reducing computational runtime
in solving the linear system [32]. Residuals errors of the
results for the original meshes parametrised using Tikhonov
regularisation are shown in Table 2 for increased order, [,
and various values of », the weighting coefficient for the
Tikhonov matrix. Note that when v = 0, the result is the linear
least squares solution. The residuals for the results of varied

combinations of vand [ ,, are shown in Figure 8, showing the
lowest residuals (both mean and maximum) for high order
(Ihax) and low regularisation (v).

Using the same process for remeshing, the regularised
coefficients are used to approximate the meshes on finer,
more uniform sampling. The effects of the smoothing reduce
the impact of the high frequency harmonics, allowing high
orders to increase refinement of the mesh, while avoiding
numerical errors and “spiky” outliers. The resulting meshes
using the icosphere sampling are shown in Figure7 at
different orders, showing the effectiveness of the remeshing
technique and the substantial improvement regularisation
brings about compared to the results using only linear least
squares (Figure 6).

However, the regularisation process, by nature, smoothes
the entire mesh surface resulting in some loss of sharp edges
and folds that are present in the original mesh. Another
factor that can result in the loss of sharp regions is the vertex
placement used in the remeshing process. Where vertices are
not specifically placed at edge regions, it can oversmooth
the surface. As shown in both Table2 and Figure 8, the
smoothing effects of the regularisation parameter decrease
the accuracy of the spherical harmonics approximation; how-
ever, a compromise must be reached between the smoothing
constraint and the numerical anomalies experienced. The
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FIGURE 7: Remeshed (using an icosphere) surfaces for Mannequin (top) and Obrubovka approximated by regularised spherical harmonics

(Inax = 100) for increased values of regularisation coefficient ».

combination of high order I ,, = 100 and very low
regularisation coeflicient, v = 5e — 5, gives global minima
in the residual plots for the combinations tested. Visually,
the remeshed plots show clearly retained structure over the
regular grid (Figure 7) without the presence of the “spikes”
seen in the nonregularised linear least squares representation.

4.4. Surface Inpainting. When surface meshes are created,
they may contain undersampled regions rendering the mesh
incomplete with holes. For example, when using 3D range
scanners to produce a mesh of an object, there may be holes
on the surface of the mesh due to occlusion. In order to
use the mesh for processes such as animation, texturing,
and simulation, the holes on the surface need to be closed
in a preprocessing step. Filling these holes is known as
surface inpainting. Current methods for surface inpainting
incorporate hole detection schemes that use the local context
of the surface on the boundary of the hole in order to make a
judgement on how to close the hole. Information gathered by
the local context includes the surface curvature and sampling
rate. Locating the hole on a mesh, especially a large highly
sampled mesh, can be computationally expensive.

Using spherical harmonics, holes on the mesh can be
closed without the need to locate the holes first. This
inpainting process is a natural consequence of the spherical
harmonics remeshing process. This consequence is the new
mesh inheriting the properties of the sphere mesh used in
the remeshing process and effectively interpolating across
the hole. The closure of the hole occurs when the surface is
remeshed but this is done after computing the continuous
surface description. This means that the coefficients for
the surface are calculated when there is missing informa-
tion for the surface which may result in their incorrect
determination. The larger the hole in the mesh, the larger
the error in the coeflicient values. A sufficiently large hole
causes the newly generated mesh to “balloon” where the
hole was originally located, similar to the spikes experienced
in the nonregularised remeshing. Minor ballooning can be
mitigated through increasing the spherical harmonics order
and regularisation parameter. Increasing the order of the
spherical harmonics allows for higher frequencies to be
captured and therefore a closer approximation, of the surface,
can be achieved, while regularisation will constrain these
frequencies from having too much of an effect where the
surface is unknown.
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TABLE 2: Mean (msd) residuals for different orders of spherical harmonics parametrisation of two meshes, solved using increasing degrees of
Tikhonov regularisation.

Mesh Lax \ 7V 5e -5 le—4 2e—4 5e—4 8e—4 le-3 2e—-3
10 3.526 3.526 3.526 3.528 3.531 3.534 3.544
20 2.375 2.374 2.376 2.404 2.439 2.465 2.601
. 40 1.528 1.592 1.701 1.919 2.058 2132 2.392
Mannequin
60 1.296 1.431 1.596 1.864 2.021 2.100 2.373
80 1.228 1.388 1.571 1.852 2.012 2.093 2.368
100 1.199 1.369 1.560 1.846 2.008 2.090 2.367
10 2.742 2.742 2.742 2.741 2.742 2.743 2.754
20 1.283 1.284 1.291 1.337 1.389 1.425 1.608
40 0.556 0.606 0.705 0.912 1.060 1141 1.433
Obrubovka
60 0.427 0.518 0.645 0.882 1.040 1.125 1.422
80 0.391 0.494 0.631 0.875 1.035 1.120 1.420
100 0.379 0.486 0.626 0.873 1.033 1.119 1.419

100

100
14.5

14 80
13.5

B & 60
125 -F

12

115 40
11

105 20

FIGURE 8: Error plots showing the mean (top row) and max residual error for regularised spherical harmonics reconstruction of Obrubovka
(left column) and Mannequin, showing values for v against [, . Note that v values are plotted on a log scale.

5. Conclusions to represent the surface over an arbitrary computational

grid. The spherical functional allows seamless parametri-
This paper proposes a technique for remeshing using spher-  sation of nonoccluded genus-0 meshes. The results have
ical harmonics as a parametrisation technique. By repre-  demonstrated low residual errors between approximated

senting a mesh through a finite series of spherical basis  vertices and their original positions, showing a clear positive
functions with increasing frequencies, it has been possible  correlation between accuracy and the order of spherical
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harmonics basis. The coarse-to-fine hierarchy of spheri-
cal harmonics allows for the resolution of the model to
be altered with ease. This method could be used as a
preprocessing algorithm for processes that require a reg-
ular mesh such as animation, texturing, simulation, and
modelling.

The approach presented was tested with both quantitative
and visual analysis of results. Spherical harmonics perform
well as a parametrisation technique, although when the basis
equations were solved using only linear least squares a source
of error occurred in regions with little detail available in
the original mesh. This was observed in the remeshing, with
errors increasing with basis order, a result of using higher
frequencies to represent the surface. As a result, Tikhonov
regularisation as a smoothing measure was investigated and
found to be effective at constraining high frequency errors
without significantly reducing the approximated detail. The
Tikhonov matrix used is based on the Laplace-Beltrami
smoothing operator, so for highly weighted regularisation,
oversmoothing may occur. The best results were observed
with high spherical harmonics order and low (nonzero) levels
of regularisation.

The computational complexity of this method is affected
by two main variables: the number of vertices, n, of the
original mesh to be remeshed and the value of [ ,,.. The larger
the values of nand [, the more the basis functions that need
to be computed. With more basis functions, there are more
computations required in solving the linear system in (9).
The complexity of calculating the basis functions becomes
Ol 2).

The technique has some limitations. The first is a limita-
tion regarding features in the original mesh. It is common
for vertices to be placed along edges of a surface in order
to capture sharpness of the edge. However, remeshing may
not account for these features, and the surfaces are by
nature rounded by spherical harmonics. Research efforts
in the future may be focussed towards feature detection
and feature preservation schemes, for example, searching
for sharp edges in the mesh and preserving these dur-
ing the remeshing by placing vertices along the original
edges.

Additionally, there is compromise between regularisation
parameter and spherical harmonics order, which are inversely
proportional in producing the highest accuracy. Despite this,
if the weight of the regularisation matrix in solving the
spherical harmonics system is too low, the noisy spikes can
occur during remeshing. This can be manually selected, or
similar effects may be investigated with regularisation in
alternative solvers, such as those discussed in [13], which
deals with calculating approximations of high resolution
meshes.

In its present form, the technique here does not explicitly
deal with the presence of occluded regions in its mapping to
spherical domain. This is especially important in higher genus
surfaces or those with structural complexities, such as the
ears of the Stanford bunny. Ongoing research is investigating
surface segmentation to remesh individual components. The
main challenge here is combining remeshed components in a
seamless way.
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