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CORRIGENDUM

Corrigendum: Spectral thresholding quantum tomography for low
rank states (2015New J. Phys.17 113050)

Cristina Butucea1,Măda ̆linGuta̧ ̆2 andTheodoreKypraios2
1 Université Paris-EstMarne-la-Vallée, LAMA(UMR8050), UPEMLVF-77454,Marne-la-Vallée, France
2 University of Nottingham, School ofMathematical Sciences, University Park,NottinghamNG7 2RD,UK

In this corrigendum to the paper Butucea et al (2015New J. Phys. 17 113050)we point out an error in one of the
theoretical results describing the upper bound to the operator norm error of the least squares estimator.We
provide a corrected version of the upper boundwith a new convergence rate, and discuss the implications for
other results which rely on the above upper bound.

Proposition 1 as stated in the paper is incorrect, in particular the dependence of the upper bound ( )n 2 on
the number of atoms k is not valid. The error lies in the evaluation of the upper boundW of the variance term in
the concentration bound. Belowwe provide a new version of proposition 1with a corrected rate ( )nc

2 replacing
the rate ( )n 2 stated in the paper. Ignoring the logarithmic factors, the new upper bound scales as N3k

compared to erroneous rate N2k , where k is the number of atoms and =N n3k is the total number of
measurements.We note that although the corrected bound is weaker that the one claimed in the paper, it is still
an improvement compared to the previously known bound [2]which scaled as N4k .

Wewill nowdiscuss the implication of the correction to subsequent results in the paper. Proposition 2,
theorem1, corollary 1, and theorem 2 establish error rates for estimators obtained by normalising, penalising or
thresholding the least square estimator. The proofs of these results use the operator norm error rate ( )n 2 as a
generic expression, and are therefore not affected by its concrete dependence on the number of atoms k.
Therefore proposition 2, theorem1, corollary 1, and theorem2hold truewhen the operator norm rate is taken
to have expression ( )nc

2 in proposition 1 below. In particular, the upper bounds on the Frobenius square norm
error in corollary 1 and theorem2, will scale as · ( )n e =r r N3c

k2 rather than =rd N r N2k . The remaining
results including the lower bound in theorem 3 and the simulation results are independent of proposition 1 and
do not require any correction.

Proposition 1. Let ( )rn
ls be the linear estimator of r. Then, for any e > 0, the following operator norm inequality

holds, for n large enough, with probability larger than e-1 under r
( )( )  r r n e- ,n

ls
c

where

( ) ·
n e

e
=

+⎛
⎝⎜

⎞
⎠⎟N

4 3
log

2
c

k k
2

1

with ≔ ·N n 3k the total number ofmeasurements. The same bound holds when ( )=k k n as long as ( )n e  0.

Proof of proposition 1.Note that the empirical frequencies canwritten as ( ∣ ) ( )= å =f I Xo s o
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, , where the

randomvariables X is, are independent for all settings s and all i from1 to n. To estimate the risk of the linear
estimator wewrite

( ( ∣ )) ( ∣ )) ( ∣ )

( ( ) ( ∣ )) ( ∣ )

≔

( )
( )

( )

 ååå

ååå å

åå

r r s

s

- = -

= = -

f p
A

n
I X p

A

W

o s o s
o s

o o s
o s

2 3

1

2 3

.

n
ls

k d

i
i k d

i
i

b o s

b
b b

b o s
s

b
b b

s
s

,

,

OPEN ACCESS

PUBLISHED

3 June 2016

Original content from this
workmay be used under
the terms of the Creative
CommonsAttribution 3.0
licence.

Any further distribution of
this workmustmaintain
attribution to the
author(s) and the title of
thework, journal citation
andDOI.

© 2016 IOPPublishing Ltd andDeutsche PhysikalischeGesellschaft

http://dx.doi.org/10.1088/1367-2630/18/6/069501
http://dx.doi.org/10.1088/1367-2630/17/11/113050
http://dx.doi.org/10.1088/1367-2630/17/11/113050
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/18/6/069501&domain=pdf&date_stamp=2016-06-03
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/18/6/069501&domain=pdf&date_stamp=2016-06-03
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0


whereW is, are independent and centeredHermitian randommatrices.Wewill apply the following extension of
the Bernsteinmatrix inequality [1] due to Tropp, see also [4, 6].

Proposition 2 (Bernstein inequality, Tropp). Let ¼Y Y, , n1 be independent, centered, ´m m Hermitian random
matrices. Suppose that, for some constants >V W, 0 we have  Y Vj , for all j from 1 to n, and that

( )  å Y Wj j
2 . Then, for all t 0,

( )   + + -
+

⎛
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⎞
⎠⎟Y Y t m

t

W tV
... 2 exp

2

3
.n1

2

In our setup,W is, play the role ofYj.We bound  W Vis, for all s and i and ( ) * å W W Wi i is s s, , , ,
whereV W, are evaluated below.Wehave
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In the last inequality we used that

( ) ≔ ( ( ) ( )) ( ∣ ) ( ∣ ) · ( ∣ )d= = ¢ = - ¢¢ ¢I X I X p p ps o o o s o s o sCov Cov ,o o s s o o, ,1 ,1 ,

which implies the following inequality between ´2 2k k matrices: ( ) ( ) ps sCov where ( )p s is the diagonal
matrix with elements ( ) ( ∣ )d=¢ ¢p ps o so o o o, , .

By expressing ( ∣ )B o s in terms of sb as above, we get
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Before giving the upper boundwe introduce some combinatorial notationswhichwill be used below. Let
{ }Î x y z Ib , , , k and recall that ≔ { } { }= ÌE i b I k: 1 ,...,ib .We say that b agrees with a setting s if bj= sj for

all Îj E c
b. In this case b is completely determined by the set Eb, for afixed s. This fact will be used to replace the

sums over b and ¢b with those over Eb and ¢Eb inT. Indeed since ( ∣ )A o sb is proportional to dÏj E b s,j jb
, the sums

over b and ¢b inT are restricted to sequences which agree with s.We denote by
≔ ( ⧹ ) ( ⧹ )Ç È¢ ¢ ¢E E E E E Eb b b b b b and Ç ¢E Eb b the symmetric difference and respectively the intersection of Eb

and ¢Eb .With these notations we have

( ∣ ) ( ∣ ) ·s s s=¢ ¢
Î D ¢

A A oo s o s
j E E

jb b b b g

b b

where ( )= D ¢E Eg g s, b b is the sequencewith ( )= D ¢E E E c
g b b , and it agrees with s.With these notationswe

have
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In the last expressionwe rewrite the sumover settings s as a double sumover s̃ and s̃c where s̃ is the restriction of
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In the second equality we have used formulas (2.3) and (2.6) in the paper [3], to evaluate the interior sumas a
Fourier coefficient of ρ. In the third equality we replaced the sumover s̃ with an equivalent sumover sequences
g such that ( )= D ¢E E E c

g b b .
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Thefinal sumgoes over subsetsD and over sequences g such that =E Dc
g , and is similar to the Fourier

decomposition of ρ except that each terms is weighted by the factor -5 D . In fact, a closer inspection shows that
theweighted sum is nothing but the output state of a product of depolarising channels acting in parallel in the
state ρ, where an individual depolarising channel is defined by
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For an arbitrary quantum channel  , let ( ) ≔ ( ( ) )n ttT Tsup Trp
p p1 be its p-norm,where the supremum is

taken over all input states τ; in particular for  ¥p this becomes the¥-norm ( ) ≔ ( ) n tt¥ T Tsup . For the
depolarising channel  defined above, the¥-norm can be computed easily by applying the channel to an
arbitrary pure state and is equal to ( )n =¥ 3 5.Moreover, it is known [5] that the depolarising channel has
multiplicative p-norm, i.e. ( ) ( ) n n=Ä ,p

k
p

k which implies that ( ) ( )  rÄ 3 5k k. Together with (3) this
gives upper bound
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Abstract
The estimationof highdimensional quantumstates is an important statistical problemarising in current
quantum technology applications. A key example is the tomography ofmultiple ions states, employed in
the validation of state preparation in ion trap experiments (Häffner et al2005Nature438 643). Since full
tomography becomesunfeasible even for a small number of ions, there is a need to investigate lower
dimensional statisticalmodelswhich capture prior information about the state, and todevise estimation
methods tailored to suchmodels. In this paperwepropose several newmethods aimed at the efficient
estimation of low rank states and analyse their performance formultiple ions tomography. Allmethods
consist infirst computing the least squares estimator, followed by its truncation to an appropriately
chosen smaller rank. The latter is doneby setting eigenvalues below a certain ‘noise level’ to zero,while
keeping the rest unchanged, ornormalizing themappropriately.We show that (up to logarithmic factors
in the space dimension) themean square error of the resulting estimators scales as ·r d N where r is the
rank, =d 2k is the dimensionof theHilbert space, andN is the number of quantum samples.
Furthermorewe establish a lower bound for the asymptoticminimax riskwhich shows that the above
scaling is optimal. The performanceof the estimators is analysed in an extensive simulations study,with
emphasis on the dependence on the state rank, and the number ofmeasurement repetitions.Wefind
that all estimators performsignificantly better than the least squares, with the ‘physical estimator’ (which
is a bonafidedensitymatrix) slightly outperforming the other estimators.

1. Introduction

Recent years havewitnessed significant developments at the overlap between quantum theory and statistics:
fromnew state estimation (or tomography)methods [2–8], design of experiments [9–11], quantumprocess and
detector tomography [12, 13] construction of confidence regions (error bars) [14–16], quantum tests [17, 18]
entanglement estimation [19], asymptotic theory [20–23]. The importance of quantum state tomography, and
the challenges raised by the estimation of high dimensional systemswere highlighted by the landmark
experiment [1]where entangled states of up to eight ionswere created and fully characterized.However, as full
quantum state tomography of large systems becomes unfeasible [24], there is significant interest in identifying
physically relevant, lower dimensionalmodels, and in devising efficientmodel selection and estimationmethods
in such setups [7, 8, 25–28]. In this paperwe reconsider themultiple ions tomography (MIT) problemby
proposing and analysing several newmethods for estimating low rank states in a statistically efficient way.We
emphasize that, while the theoretical and simulations results are specific to the ion tomography setup, the
generalmethods based on combining linear (least squares) estimationwith spectral thresholding (or eigenvalues
truncation) can be applied to any informationally complete tomography scenario. Below, we briefly review the
MIT setup, after whichwe proceedwith presenting the key ideas and results of the paper.

InMIT [1], the goal is to statistically reconstruct the joint stateof k ions (modelled as two-level systems), from
counts data generated byperforming a largenumber ofmeasurements on identically prepared systems.The
unknown stateρ is ad×ddensitymatrix (complex, positive trace-onematrix)where =d 2k is the dimensionof
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theHilbert space of k ions. The experimenter canmeasure an arbitraryPauli observable s s,x y or sz of each ion,

simultaneouslyon allk ions. Thus, eachmeasurement setting is labelled by a sequence = Î( ) { }s s x y zs ,..., , ,k
k

1

out of 3k possible choices. Themeasurement produces anoutcome = Î + -( ) { }o oo ,..., 1, 1 ,k
k

1 whose
probability is equal to the corresponding diagonal element ofρwith respect to the orthonormal basis (ONB)
determinedby themeasurement setting s.Themeasurement procedure and statisticalmodel canbe summarized as
follows. For each setting s the experimenter performsn repeatedmeasurements and collects the counts of different
outcomes ( ∣ )N o s , so that the total number ofquantumsamples used is ´≔N n 3 .k The resulting dataset is a

´2 3k k tablewhose columns are independent and contain all the counts in a given setting. A commonly used [1]
estimationmethod ismaximum likelihood (ML)which selects the state forwhich theprobability of the observeddata
is thehighest among all states.However,while thismethod seems to performwell inpractice, andhas efficient
numerical implementations [29], it does not provide confidence intervals (error bars) forfinite samples, and it has
been criticized for its tendency to produce rank-deficientstates [2].

The goal of this paper is tofind alternative estimators which can be efficiently computed, andworkwell for
low rank states. The reason for focusing on low rank states is that they form a realisticmodel for physical states
created in the lab, where experimentalists often aim at preparing a pure (rank-one) state.While this is generally
difficult, the realized states tend to have rapidly decaying eigenvalues, so that they can bewell approximated by
low rank states. Our strategy is to combine an easy but ‘noisy’ estimationmethod—the least square estimator
(LSE)—with an appropriate spectral truncation (tuned using available data only)which involves setting certain
eigenvalues of the LSE to zero, while possibly adjusting the remaining ones. It turns out that this can lead to
significant reduction of themean square error (MSE) of the estimator.We discuss some of the key results on the
LSE and the proposed truncation estimators below.

The LSE r( )
n

ls is obtainedby inverting the linearmap r rA : between the state and theprobability
distribution of thedata,where the unknownprobabilities are replaced by the empirical (observed) frequencies of
themeasurement data. The resulting estimator is unbiased, and is ‘optimal’ in the sense that itminimizes the
prediction error, i.e. the euclidian distance between the empirical frequencies and the predictedprobabilities.
However, one of thedisadvantages of theLSE is that it does not take into account the physical properties of the
state, i.e. its positivity and trace-one property.More importantly, aswe explain below, the LSEhas a relatively large
estimation error for the class of low rank states, andperformswell only on verymixed states. This is illustrated in
figure 1where the eigenvalues of r( )

n
ls are plotted (indecreasing order) against those of the true state ρ, the latter

being chosen to have rank r=2.We see thatwhile the non-zero eigenvalues ofρ are estimated reasonablywell, the
LSE is poor in estimating the zero-eigenvalues, and as consequence, it has a large estimation variance.

Our goal is to designmore precise estimators, which have the LSE as a starting point, but take into account
the ‘sparsity’ properties of the unknown state. Figure 1 suggests that the non-zero eigenvalues of the LSEwhich
are below a certain ‘statistical threshold’, can be considered as statistical noise andmay be set to zero in order to
improve the estimation error. Tofind this noise level, we establish a concentration inequality (see proposition 1)
which shows that the operator-norm error r r- ( )

n
ls 2 is upper bounded by a rate n2 which (up to logarithmic

factors in d) is proportional to d/N.
Thefirst estimator we propose, is a rank penalized one obtained by diagonalizing the LSE, arranging its

eigenvalues in decreasing order of their absolute values, and setting to zero all those eigenvalues whose absolute

Figure 1.Eigenvalues of the LSE (red) arranged in decreasing order, versus those of the true state of k=4 ions of rank r=2 (blue), for
n=20measurement repetitions (left) and n=100measurement repetitions (right).
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values are below the threshold ν


å år l y y r l y y= ñá = ñá

l n=

  


∣ ˆ ˆ ∣ ⟶ ∣ ˆ ˆ ∣( ) ( ) .n
i

d

i i i n i i i
ls

1

pen

i

The same outcome can be obtained as solution of the following penalized estimation problem: among all
selfadjointmatrices, choose the one that is close to the LSE but in the same time it has low rank, so that it
minimizes over τ the norm-two (also known as Frobenius norm) distance squared, penalized by the rank

t t r n t- + ( ) ≔ · ( )( )D rank .n
ls

2
2 2

In particular the estimator’s rank is determined by the data. In theorem 1we show that if ρ is of unknown rank
r d, then theMSE  r r- ( )

n
pen

2
2 is upper-bounded (up to logarithmic factors) by the rate ( · )r d N .This

captures the expected optimal dependence on the number of parameters for a state of rank r. Indeed, in section 5
we show that no estimator can improve the above rate for all states of rank r, see theorem 3 for the asymptotic
minimax lower bound.

The penalized estimator has however thedrawback that itmay not represent a physical state. To remedy this,
and further improve its statistical accuracy,wepropose a physical estimatorwhich is the solution of the following
optimizationproblem.We seek thedensitymatrixwhich is closest to the LSE r( ),n

ls andwhose non-zero eigenvalues
are larger that the threshold n4 . It turns out that the solution canbe found via a simple iterative algorithmwhereby
at each step the eigevalues of r( )

n
ls below the threshold are set to zero, and the remaining eigenvalues are normalized

by shiftingwith a commonconstant, while the eigenvectors are not changed throughout theprocess. In theorem2
we show that thephysical estimator satisfies a similar upper bound to the penalized one.

In section 6wepresent results of extensive numerical investigations of the twoproposed estimators. In
additionwe consider the oracle ‘estimator’ and the cross-validated estimator r( )

n
cv (seenext paragraph for a brief

explanation of the cross-validationmethod). The oracle estimator is simply the spectral truncationof theLSE that
is closest to the true state ρ, and is obtainedby setting to zero a number of eigenvalueswith smallmagnitude. It is
not a proper estimator since it uses the true unknowndensitymatrixρ, but it is very useful as a benchmark.The
cross-validated estimator is also a spectral truncation of the LSEwhich aims tofind the optimal truncation rank
(i.e. rank of the truncated estimator)byminimizing an estimate of thenorm-two square error over all ranks.

Cross-validation is awidely used collection of procedures formodel validation and selection [30]which
involve splitting the data into different (independent) batches, some ofwhich are used for estimationwhile the
others are used for testing themodel.We found that cross-validation can help in better tuning the constant
factor of the threshold rate of the penalized and physical estimators. As expected from the theoretical results, we
find that all estimators perform significantly better than the LSE on low rank states;moreover the physical
estimator has slightly smaller estimation error than the others, including the oracle estimator.We alsofind that
allmethods converge to the correct rank in the limit of large number of repetitions but through different routes:
the penalized estimator tends to underestimate, while the physical one tends to overestimate the rank, for small
number of samples.

Having discussed the upper bounds on the estimators’MSE, wewould like to knowhow they compare with
the best possible estimation procedure. For each estimation procedure rn one can consider itsmaximumMSE
over the class d r, of rank r states



r r r= -
r

r
Î

  ( )R r; sup .n nmax 2
2

d r,

Itsminimumover all estimators is called theminimax risk ( )R r n, .minmax Asymptotic statistics theory [31]
shows that the limiting value of theminimax risk rescaled by the number of samples = ·N n 3 ,k satisfies the
following lower bound



 r r
r¥ Î

-( )( ) ( ) ( )NR r n I Glim inf , sup Tr .
n

minmax
1

d r,

The left side is the asymptoticminimax risk while on the right side r( )I is the Fisher information corresponding
to allmeasurement settings taken together, and r( )G is a positivematrix describing the quadratic approximation
of the norm-two (Frobenius) distance squared, around ρ. In theorem 3we show that the above lower bound is
further bounded frombelow by -( )r d r2 which shows that (up to logarithmic factors) the upper bounds of the
penalized and physical estimators have the same scaling as the asymptoticminimax risk.

Recently, a number of papers discussed related aspects of quantum tomography problems. The idea of the
penalized estimator has been proposed in [8], which provided aweaker upper bound for itsMSE.Herewe
improve on theMSEupper bounds, provideminimax lower bounds, and propose and analyse new classes of
estimators, e.g. a ‘physical’ estimator with improved estimation performance. Reference [7] analysesmodel
selectionmethods forfinite rankmodels andML estimation. Reference [32] proposes a different estimator and
establishes a comparable upper bound for itsMSE. The class of low rank states is also employed in compressed
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sensing quantum tomography [25, 28, 33], but their statisticalmodel is based on expectations of Pauli
observables rather thanmeasurement counts.

The paper is organized as follows. In section 2we describe themeasurement procedure and introduce the
statisticalmodel ofMIT. In section 3we define the linear (least squares) estimator and derive an upper bound on
its operator norm errorwhich improves on a previous bound of [8]. In section 4we define the penalized and
threshold estimators and derive upper bounds for theirMSEswith respect to the norm-two (Frobenius) distance
squared. The performance of the differentmethods is analysed in section 6. An asymptotic lower bound for the
minimax risk is derived in section 5, based on the Fisher information of themeasurement data. The upper and
lower boundsmatch in the scalingwith the number of parameters and number of totalmeasurements, up to a
logarithmic factor.We give a detailed description of the numerical implementation of the algorithms, including
the cross-validation routines used for tuning the pre-factor of the penalty and threshold constants.We illustrate
the simulation results with box plots of theMSEs for the least squares, oracle, cross-validation, penalization and
threshold estimator, for states of ranks 1, 2, 6 and 10, and for different choices ofmeasurement repetitions
=n 20, 100.Additionally, we plot the empirical distribution of the chosen rank for different estimators,

showing the concentration on the true rank as the number of repetitions increases.

2.Multiple ions tomography

This paper deals with the problemof estimating the joint quantum state of k two-dimensional systems (qubits),
as encountered in ion trap quantum tomography [1]. The two-dimensional system is determined by two energy
levels of an ion, while the remaining levels can be ignored as they remain unpopulated during the experiment.
The jointHilbert space of the ions is therefore the tensor product  @Ä( ) k d2 where =d 2 ,k and the state is a
densitymatrix ρ on this space, i.e. a positive d×dmatrix of trace one.

Our statisticalmodel is derived from standard ion trapmeasurement procedures, and takes into account the
specific statistical uncertainty due tofinite number ofmeasurement repetitions.We consider that for each
individual qubit, the experimenter canmeasure one of the three Pauli observables s s s, , .x y z Ameasurement

set-up is then defined by a setting = Î( ) ≔ { }s s x y zs ,..., , ,k k
k

1 which specifieswhich of the three Pauli
observables ismeasured for each ion. For eachfixed setting, themeasurement produces randomoutcomes

Î + -≔ { }o 1, 1k
k with probability

r r= á ñr ( )( ∣ ) ≔ ∣ ∣ ( )p P e eo s Tr , 2.1o
s

o
s

o
s

where Po
s are the one-dimensional projections

= ñá Ä Ä ñá∣ ∣ ∣ ∣ ( )P e e e e... 2.2o
s

o
s

o
s

o
s

o
s

k
k

k
k

1
1

1
1

and ñ∣eo
s are the eigenvectors of the Paulimatrices, i.e. s ñ =  ñ ∣ ∣e e .s

s s

Themeasurement procedure consists of choosing a setting s, and performing n repeatedmeasurements in
that setting, on identically prepared systems in state ρ. This provides information about the diagonal elements of
ρwith respect to the chosenmeasurement basis, i.e. the probabilities r ( ∣ )p o s . In order to identify the other

elements, the procedure is then repeated for all 3k possible settings.
Before describing the statisticalmodel of themeasurement counts data, we start by discussing inmore detail

the relation between the unknown parameter ρ and the probabilities ( ∣ )p o s .Consider the ‘extended’ set of Pauli
operators s s s s{ ≔ }1, , ,x y z I which form a basis in ( )M .2 Weconstruct the tensor product basis in ( )M d

with elements s s s= Ä Ä...b bb k1
where Î { }x y z Ib , , , k and note that the following orthogonality relations

hold s s d=( ) dTr .b c b c, The state ρ can be expanded in this basis as

år r s r rs= =
Î

( ) ( )
{ }

d, where Tr . 2.3
I x y zb

b b b b
, , , k

Equation (2.1) can then bewritten as

å år s r= =r
Î Î

( )( ∣ ) ( ∣ )
{ } { }

p P Ao s o sTr .
I x y z I x y zb

b b o
s

b
b b

, , , , , ,k k

The coefficients ( ∣ )A o sb can be computed explicitly as

s d= =
Î

( )( ∣ ) · ( )A P oo s Tr , 2.4
j E

j b sb b o
s

,j j

b

where =≔ { }E i b I: .ib Let r Î˜ 4k
be the representation of ρ as a the vector of coefficients r ,b and let rp be

the corresponding vector of probabilities for all settings  Î ´r( )( ∣ ) ( )p o s o s: , ,k k with settings, and

outcomeswithin settings ordered in lexicographical order. Themeasurement is then described by the linear
map    ÄA : 4 3 2k k k

withmatrix elements ≔ ( ∣ )( ) AA o sb o s b, , defined in (2.4), such that
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r=r ˜ ( )p A . 2.5

The linearmap A is injective andwe solve the previous equation via the optimization problem:


r t= -

tÎ
 ˜ ˜

˜
p Aarg inf ,2

k4

which comes down tomultiplying equation (2.5) by theMoore–Penrose pseudoinverse of A and gives
* *r = r

-˜ ( · ) · ·A A A p .1 The following lemmahas appeared in [8] but for completeness we include its proof in
appendix A.1.

Lemma1. Let A be the linearmap defined in equation (2.5). Then * ·A A is diagonal and its elements are

⎡⎣ ⎤⎦* d= Î
¢

¢· { }( ) I x y zA A b2 3 , for all , , , ,k d k
b b

b
b b

,
,

where ( ) ≔ ∣ ∣d Eb b is the number of I’s in the sequence b.

From the decomposition (2.3) and lemma 1we find

ååå år s r s= =r ( ∣ ) ( ∣ ) ˜ ( )( )p
A

o s
o s

2 3
. 2.6

k d
b o s

b
b b

b
b b

The above formula allows to reconstruct thematrix elements from themeasurement probabilities. However,
since the experiment only provides random counts from these probabilities, we need to construct a statistical
model for themeasurement data. After n repetitions of themeasurementwith setting s,we collect independent,
identically distributed observations ÎX ,i ks for i from1 ton. The data can be summarized by the set of
counts Î{ ( ∣ ) }N o s o: ,k where å d=( ∣ )N o s

i X o,i s
is the number of times that outcome o has occurred.

After repeating this for each setting Îs ,k we collect all the data in the counts data-
set  Î ´≔ { ( ∣ ) ( ) }D N o s o s: , .k k

Since successive preparation-measurement cycles are independent of each other, the probability of a given
set of counts ( ∣ )N o s (obtained by repeating n times themeasurement in setting s) is amultinomial distribution,
and the probability of a certain datasetD is the product of suchmultinomials over the different settings:

     = Î ´ =r r r( ){ }( ) ( ∣ ) ( ) !
( ∣ )!

( ∣ ) ( )( ∣ )D N
n

N
po s o s

o s
o s: , . 2.7k k

N

s o o

o s

The statistical problem is to estimate the state ρ from themeasurement data summarized by the counts dataset
D. Themost commonly used estimationmethod isML. TheML estimator is defined by

r
s

sˆ ( ) ≔ ( )( ) D Darg max ,n
ml

where themaximum is taken over all densitymatrices τ on  ,d and can be computed by using standard
maximization routines, or the iterative algorithms proposed in [29, 34]. However,MLbecomes impractical for
about k=10 ions, and the iterative algorithmhas the drawback that it cannot be adapted tomodels where prior
information about the state is encoded in a lower dimensional parametrization of the relevant densitymatrices,
e.g. when the states are low rank. In the next sectionwe discuss an alternativemethod, the LSE, and derive an
upper bound on itsMSE. After this, wewill show that by ‘post-processing’ the LSE using penalization and
thresholdingmethods, its performance can be considerably improvedwhen the unknown state has low rank.

3. The LSE

Recall that the vectorized version r̃ of the state ρ satisfies (2.5), it is therefore the solution of the optimization


r t= -

tÎ
 ˜ ˜

˜
p Aarg inf ,2

k4

giving år r s= ˜ ·
b b b in (2.6). If the number of repetitions n is large comparedwith the dimension d, then the

outcomes’ empirical frequencies are good approximations of the corresponding probabilities, i.e.
( ∣ ) ≔ ( ∣ ) ( ∣ )f N n po s o s o s by the law of large numbers. Therefore, by replacing p by the vector of

frequencies f in in the previous display, we can define the linear estimator also known as the LSE of ρ


r t-

tÎ
 ˜ ≔ ˜( )

˜
f Aarg inf ,n

ls 2
k4

which has the explicit expression

ååår s= ( ∣ ) ( ∣ ) ( )( )
( )f

A
o s

o s

2 3
. 3.1n k d

b o s

b
b b

ls
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Note that in this case it comes down to replacing the unknown probability p in equation (2.6)with the empirical
frequencies f (also known as the plug-inmethod).

In spite of this ‘optimality’ property and its computationally efficiency, the LSE has the disadvantage that in
general it is not a state, i.e. it is not trace-one andmay have negative eigenvalues. Amore serious disadvantage is
that its risk—measured for instance by theMSE  r r- ( )( )

n
ls

2
2 —is large comparedwith other estimators such

as theML estimator. This is due to the fact that the LSE does not use the physical properties of the unknown
parameter ρ, that is positivity and trace-one. Aswewill see below, themodified estimators proposed in section 4
outperform the LSEwhile adding only a small amount of computational complexity.Moreover, the second
estimator will be a densitymatrix.

In the remainder of this sectionwe provide concentration bounds on the square error of the LSE, whichwill
later be used in obtaining the upper bounds of the improved estimators. The following proposition improves the
rate ( )k n4 3 k obtained in [8] to ( )k n2 3 .k

Proposition 1. Let r( )
n

ls be the LSE of ρ. Then, for any e > 0 small enough the following operator norm inequality
holds with probability larger than e-1 under r

r r n e-  ( )( ) ,n
ls

where

⎜ ⎟⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠n e

e e
= =

+
( )

n

d

N

d2 2

3
log

2 2
log

2k k
2

1

with ≔ ·N n 3k the total number ofmeasurements. The same bound holds when = ( )k k n as long as n e ( ) 0.

Proof. See appendix A.2.

As a side remarkwe note that projecting the LSE onto the space ofHermitianmatrices with trace 1, does not
change the rate of convergence fromproposition 1. The following proposition allows us to assume that, without
loss of generality, the LSE has also trace 1.

Proposition 2.Under the notation and assumptions in proposition 1, let

r t r= -
t t =

   ( )( )

( )

( )arg min . 3.2n
n

n
ls,

:tr 1

ls
2
2

Thenwith probability larger than e-1 we have r r n e-  ( )( ) 2 .n
nls,

Proof. See appendix A.3.

4. Rank-penalized and threshold projection estimator

In this sectionwe investigate twoways to improve the LSEs. Thefirstmethod is to project the LSE onto the space
offinite rankHermitianmatrices of an appropriate rank.We prove upper bounds for its riskwith respect to the
norm-two (Frobenius) distance squared. Building on the knowledge about the rank-penalized estimator, we
define the second estimator which is the projection of the LSE on the space of physical states whose eigenvalues
are larger than a certain positive noise threshold.We give an simple and fast algorithmproducing a proper
densitymatrix from the data, which also inherits the good theoretical properties of the rank-penalized estimator.

4.1. Rank-penalized estimator
We introduce here the rank-penalized nonlinear estimator, which can be computed from the LSE by truncation
to an appropriately chosen rank.

As noted earlier, while the LSE is unbiased, it has a large variance due to the fact that it does not take into
account the physical constraints encoded in the unknown parameter ρ. A possible remedy is to ‘project’ the LSE
onto the space of physical states, i.e. positive, trace-onematrices. Thismethodwill be discussed in the following
subsection. Another improvement can be obtained by taking into account the ‘sparsity’ properties of the
unknown state. For instance, inmany experimental situations the goal is to create a particular low rank, or even
pure state. The fact that such states can be characterizedwith a smaller number of parameters than a general
densitymatrix, has two important consequences. Firstly, they can be estimated bymeasuring an
‘informationally incomplete’ set of observables, as demonstrated in [25, 26]. Secondly, the prior information can
be used to design estimators with reduced estimation error comparedwith genericmethodswhich do not take
into account the structure of the state. Roughly speaking, this is because each unknownparameter brings its own
contribution to the overall error of the estimator.
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However, the downside of workingwith a lower dimensionalmodel is that it contains built-in assumptions
whichmay not be satisfied by the true (unknown) physical state. Preparing a pure state is strictly speaking rarely
achievable due to various experimental imperfections, so using a pure state statisticalmodel is in fact an
oversimplification and can lead to erroneous conclusions about the true state. On the other hand, one can argue
thatwhen the (small) experimental noises are taken into account, the actual state is ‘effectively’ low rank, i.e. it
has a small number of significant eigenvalues and a large number of eigenvalues which are so close to zero that
they cannot be distinguished from it. Then, the interesting question is how to decide onwhere tomake the cut-
off between statistically relevant eigenvalues and pure statistical noise. This is a commonproblem in statistics
which is closely related to that ofmodel selection [30]. Belowwe describe the rank-penalized estimator
addressing this problem, and show that its theoretical and practical performance is superior to the LSE, and is
close towhat onewould expect from an optimal estimator. In addition, its computation requires only the
diagonalization of the LSE.

Before presenting a simple algorithm for computing the estimator, we briefly discuss the idea behind its
definition. Let

år l y y= ñá
=

  ∣ ˆ ˆ ∣ ( )( ) . 4.1n
i

d

i i i
ls

1

Be the spectral decomposition of the LSE, with eigenvalues ordered such that  l l ∣ ∣ ∣ ∣... .d1 For each given
rank k Î { }d1 ,..., we can project r( )

n
ls onto the space ofmatrices of rankκ by computing thematrix which is the

closest to r( )
n

ls with respect to the norm-two distance

r k t r-
t t k=

  ( ) ≔
( )

( )arg min .n n
:rank

ls
2
2

Although the projection is not a linear operator, r k ( )n is easy to compute, and is obtained by truncating the
spectral decomposition (4.1) to themost significantκ eigenvalues

år k l y y= ñá
k

=

 ( ) ∣ ˆ ˆ ∣.n
i

i i i
1

The question is nowhow to choose the rankκ in order to obtain a good estimator. Infigure 2we illustrate the
dependence of the norm-two square error k r k r- ( ) ≔ ( )e n 2

2 on the rank, for a particular dataset generated
with a rank 6, 4-ions state. As the rank is increased starting with k = 1 (pure states), the error decreases steeply
as r k ( )n becomes less biased, it reaches aminimumclose to the true rank, and increases slowly as added
parameters increase the variance of the estimator. However, since the state ρ is unknown, the norm-two error
and optimal rank forwhich theminimum is achieved, are unknown. To go around this, we can estimate the
error k( )e from the data bymeans of e.g. cross-validation, as it will be described in section 6.However, in this
sectionwe follow a different path, andwe define the rank-penalized estimator [8, 35] as theminimizer overκ of
the following expression:

år k r n k l n k- + = +
k= +

   ( ) · ·( ) ,n n
i

d

i
ls

2
2 2

1

2 2

where ν is a constant whichwill be tuned appropriately. Thefirst termquantifies thefit of the truncated
estimator with respect to the LSE, while the second term is a penalty which increases with the complexity of the
model, i.e. the rank. The rank penalized estimator r( )

n
pen is thus the solution of the simple optimization problem

Figure 2.The norm-two square error r k r-  ( )n 2
2 of the truncated LSE as a function of rank, for a rank 6 state, k=4 (d = 16) and

n=500measurement repetitions.
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pen
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Thismeans that the eigenvalues below a certain noise threshold are set to zerowhile those above the threshold
remain unchanged. The following theorem is our firstmain result, and shows that the appropriate threshold is
given by the upper bound on the operator norm error of the LSE, as established in proposition 1.

Theorem1. Let q > 0 be an arbitrary constant, let q q+( ) ≔c 1 2 , and let e > 0 be a small parameter. Then
with probability larger than e-1 ,we have

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎫
⎬
⎭

 år r q l r q n e k- +
k k= ¼ >

  ( ) ( ) ( ) ( ) ( )( ) c cmin 2 , 4.3n
d j

j
pen

2
2

1, ,

2 2 2

where r( )
n

pen is the penalized estimator defined in (4.2)with threshold n e( )2 given by
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e e
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,
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2

1

which is assumed to be o(1)with increasing n and k.

Proof.The upper bound follows directly fromproposition 1 combinedwith the following oracle inequality
established in [8],

⎧⎨⎩
⎫⎬⎭r r q r q k n e- - +

k k= ¼ =
    ( ) ( ) · · ( )( )

( )
c R cmin min 2 ,n

d R R

pen
2
2

1, ,

2

:rank
2
2 2

which holds true provided that q r r n e+ - ( ) ( )( )1 .n
ls 2 2 This event occurs with probability larger

than e-1 . ,

Let usmake some explanatory remarks on the above result. Firstly, the bound (4.3) applies to all states ρ, not
only ‘small’ rank ones. Recall that d r, denotes the set of states of rank-r states on  .d In the special case when

r =( ) r drank , the theorem implies that, with probability larger than e-1 ,

r r q n e-  ( ) · · ( )( ) c r2 .n
pen

2
2 2

If the rank r ismuch smaller than d, this bound is a significant improvement to the corresponding upper bound
n e· ( )d 2 for the LSE, which can be derived by combining the operator normbound of proposition 1 and the

matrix norms inequality t t   d ,2
2 2 for t Î ( )M .d Moreover, up to a constant factor the rate n e( )2 is

equal to · ( )d r d Nlog which is essentially the ratio of the number of parameters and total number of
measurements. In section 5wewill show that apart from the log factor this rate is also optimal, and cannot be
improved even if the rank of the state is known, which indicates that the estimator adapts to the complexity of the
true parameter. Furthermore, we stress the fact that the bound (4.3) holds true for growing dimension =d 2k as
well as the number ofmeasurements n; the bound remainsmeaningful as far as d d Nlog 0.

The second observation is that our procedure selects the true rank consistently. Denote by k̂ the rank of the
resulting estimator r( ).n

pen Following [8]we can prove that, if there exists someκ such that

l r d n e> +k ( ) ( ) ( )1 and l r d n e< -k+ ( ) ( ) ( )11 for some d Î ( )0, 1 , then

  k k r r d n e= = - - ( ) ( )ˆ ( )( )1 .n
ls

This stresses the fact that the procedure detects the eigenvalues above a threshold related to the error of the LSE.
If the true rank of ρ is r and if k and n are such that ν tends to 0 (which always occurs for fixed number of ions k),
then l n>r asymptotically and the probability that k =ˆ r tends to 1.

We can also project r( )
n

pen on thematrices with trace 1, to get


r r= -

Î
   ( )( ) ( )Rarg min , 4.4n

n

R
n

pen, pen
2
2

where  is the set of all densitymatrices on  .d The following corollary shows that the key properties of the
estimator are preserved if we additionally normalize it to trace-one after thresholding.

Corollary 1.Under the notation and assumptions of theorem 1 if ρ is an arbitrary state in d r, and if k and n are such
that l n e> ( )r for some e Î ( )0, 1 , then, with probability larger than e-1 ,

r r q n e-  ( ) · · ( )( ) c r8 .n
npen,

2
2 2
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Moreover, there exists an absolute constant >C 0 such that

⎜ ⎟⎛
⎝

⎞
⎠

r r
e

-
r

r
Î

 ( )E C
rd

N

d
sup log

2
.n

npen,
2
2

d r,

Proof. See appendix A.4. ,

4.2. Physical threshold estimator
Although the rank-penalized estimator performswell in terms of its risk, it is not necessarily positive and trace-
one and therefore itmay not represent a physical state. In this sectionwe propose and analyse the following
‘physical estimator’


r s r= -

s nÎ
   ( )( )

( )
( )arg min , 4.5n n

phys ls
2
2

where r( )
n

ls is the ‘normalized LSE’ defined in (3.2), and  n( ) denotes the set of states at noise level ν

 Èn s l n= Î = ¼{ }( ) { } ( ] j ddensity matrix with eigenvalues 0 4 , 1 , 1, , .j

In particular, the space of all densitymatrices correspond to n = 0 and is denoted .The estimator r( )
n

phys is
therefore the physical state which is closest to the (normalized) LSE, andwhose non-zero eigenvalues are above
the threshold n4 .

Before analysing the performance of the estimator, we describe its numerical implementation through the
following simple iterative algorithm.

Let  l l ... d1 denote the eigenvalues of r̃( ).n
ls Let =ℓ 0, and define l l= ( )

j j
0

for =j d1 ,..., .
For = ¼ℓ d1, , , do

if l n>- +
-
ℓ

ℓ( )
4 ,d 1

1
STOP;

else, put l =- +


ℓ
ℓ( )

0d 1 and

⎛
⎝⎜

⎞
⎠⎟ål l l= +

-
- = ¼ -

-

=

- -  
ℓ

ℓ
ℓ ℓ ℓ ℓ( ) ( ) ( )

d
j d

1
1 , for 1, , ;j j

k

d

k
1

1

1

= +ℓ ℓ 1.
The algorithm checkswhether the smallest eigenvalue is larger than the noise level n4 and if it is not, then

sets its value to 0 and distributes themass of the erased eigenvalue in such away that they sum to 1. This
algorithm is similar to that proposed by Smolin et al [4], with the important difference that we do not keep all
positive eigenvalues but only significantly positive eigenvalues.Here, significantmeans larger than the noise
threshold of the order of the operator-norm error of the LSE. The reason for keeping only eigenvalues above the
threshold is similar to the case of the penalized estimator. By proposition 1, eigenvalues below the threshold are
of the order of the estimation error n ( ).Therefore, if the state is low rank, such eigenvalues are likely to
correspond to zero eigenvalues of the true state and keeping themunchangedwould induce significant statistical
noise.

If the total number of iterations is ^= -ℓ d r then the estimator r( )
n

phys has rank r̂ . Its eigenvalues are equal
to 0 for ^>j r ,while, for ^j r they are given by

^
^ ^

å ål l l l= + = = -
>

   ( ) L L
r

2
, where

2
1 .j j

k r
k

k r
k

phys

This implies that r( )
n

phys has decreasing eigenvalues and l n

( )

4 .r
phys

The following theorem shows that r( )
n

phys is

rank-consistent and itsMSEhas the same scaling as that of penalized estimator r( ).n
pen

Theorem2.Assume that the state ρ has rank r, i.e. belongs to  .d r, For small e > 0, let n n e= ( ) be defined as in
theorem 1, and assume that l n e> ( )8 .r Then, with r probability larger than e-1 we have^=r r and

r r n e-  · · ( )( ) r48 .n
phys

2
2 2

Moreover, there exists an absolute constant >C 0 such that

⎜ ⎟⎛
⎝

⎞
⎠

r r
e

-
r

r
Î

 ( )E C
rd

N

d
sup log

2
.n

phys
2
2

d r,

Proof. See appendix A.5.
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5. Lower bounds for rank-constrained estimation

The goal of this section is to investigate how the convergence rates of our estimators compare with that of an
‘optimal estimator’ for the statisticalmodel consisting of all states of rank up to r. For this wewill derive a lower
bound for themaximum risk of any estimator.

In this section rn will be an arbitrary estimator and the true state ρ is assumed to belong to the set d r, of
rank-r states. To quantify the overall performance of r ,n wedefine themaximum risk



r r r= -
r

r
Î

  ( )R r; sup .n nmax 2
2

d r,

In view of the previous upper bounds, we expect its asymptotic behaviour (in terms of the total number of
measurements, for a large number of repetitions n) to be

r = =( ) · ( ) ·R r
rd

N
O N n; 1 , 3 .n

k
max

Taking this into account we define the (appropriately rescaled)minimax risk as

r
r




( )( ) ≔ ( )R r k n NR r, ; inf ; , 5.1nminmax max
n

which describes the behaviour of the best estimator at the hardest to estimate state. The next theoremprovides
an asymptotic lower bound for theminimax risk. It shows that themaximumMSEof any estimator is al least of
the order of -( )r d r N , which for low rank states scales as# #parameters samples,which up to logarithmic
factors is the same as the upper bounds derived in theorems 1, corollary 1, and theorem2.

Theorem3.The following lower bound holds for the asymptotic minimax risk holds

 -
¥

( ) ( )R r k n r d rlim inf , ; 2 .
n

minmax

Proof.Theminimax risk captures theworst asymptotic behaviour of the rescaled risk, over all states of rank r. In
order to bound the risk from below, we construct a (lower dimensional) subfamily of states Ìd r d r, , such that
themaximum risk for this subfamily provides the lower bound. Let

⎜ ⎟⎛
⎝

⎞
⎠r ≔ ( )

r r
Diag

1
,...,

1
, 0 ,..., 0 5.20

be a diagonal state with respect to the standard basis B (consisting of tensor products of eigenvectors of the Pauli
sz operator), and defined r, to be the set ofmatrices obtained by rotating r0 with an arbitrary unitaryU, i.e.

* r r≔ { ≔ ∣ }U U U unitary .d r, 0 This is a smooth, compactmanifold of dimension -( )r d r2 known as a
(complex)Grassmannian [36]. For each point *r r= U U0 we consider theONB BU of eigenvectors of ρ, which
is obtained by rotating B by the unitaryU.With respect to this basis, we consider first the parametrization of an
arbitrary densitymatrix r¢ by itsmatrix elements,more precisely by the diagonal, real and imaginary parts of the
off-diagonalmatrix elements, such that r r¢ º q with

q q q q

r r r r r r

=

- -

( )
( )≔ ( )

( ) ( ) ( ), ,

,..., ; Re ,..., Re ; Im ,..., Im . 5.3

d r i

dd d d d d11 1,2 1, 1,2 1,

The norm-two distance is given by

r r q q q q q q q q q q- = - + - + - = - -q q        ( ) ( )G2 2 ,d d r r i i T
2
2

1 2
2

1 2
2

1 2
2

1 2 1 21 2

whereG is the constant diagonal weightmatrix = - -( · · )( ) ( )G Diag 1 , 2 1 , 2 1 .d d d d d1 2 1 2 However, this
parametrization does not take into account the prior information about the rank of the true state, andmoreover,
our key argument involves the even smaller familyd r, of states.Wewill now focus on providing a local
parametrization ofd r, around *r r= U U .0 With respect to the basis B ,U a state r¢ Î d r, in the
neighbourhood of ρ has the form

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟r r d¢ = + D + = +

D

D
+

D

D

 

 

( )
( )

( )
†

r
I O

O

1
0

0 0

0

0

0

0
, 5.4off

r
2

2

whereΔ is amatrix of free (complex) parameters, and the two D ( )O 2 blocks are r×r and respectively
- ´ -( ) ( )d r d r matrices whose elements scale quadratically inΔ nearD = 0.The intuition behind this

decomposition is that a small rotation of ρ produces off-diagonal blocks of the size of the ‘rotation angles’while
the change in the diagonal blocks are only quadratic in those angles. Sincewe are interested in the asymptotic
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behaviour of estimators, the local approach is justified, and the leading contribution to the norm-two
distance comes from the off-diagonal blocks.More precisely, if r r Î, d r1 2 , are in the neighbourhood of
ρ then

r r q q q q q q- = - + - +         ( )˜ ˜ ˜ ˜ ˜ ˜O2 2 , ,
r r i i

1 2
2

1 2
2

1 2
2

1
4

2
4

where q q˜ ˜,r i are the real and imaginary parts of the off-diagonal elements contained in the blockΔ, i.e. for
 <i r j. Locally, themanifoldd r, can be parametrized by q q q˜ ≔ (˜ ˜ ), .r i

Since Ìd r d r, , themaximum risk for themodel consisting of rank-r states is bounded frombelowby that
of the (smaller) rotationmodeld r,

 

  r r r r- -
r r

r
r r

r
Î Î

    
 

( )inf sup inf sup . 5.5n n2
2

2
2

n d r n d r, ,

Letπ be the ‘uniform’ distribution over .d r, Todraw a sample from this distribution, one can choose a
randomunitaryU from theHaarmeasure over unitaries, and defines *r r≔ U U .0 Then themaximum risk is
bounded frombelowby the Bayes risk

 
  òr r r r p r- -

r
r r

Î
     ( ) ( )sup d 5.6n n2

2
2
2

d r d r, ,

By applying the vanTrees inequality in [37] (see also [38])we get that

 
 ò òr r p r r r p r

a
- -r

-  ( )( ) ˜( ) ˜ ( ) ( ) ( )
n

G I
n

d
1

Tr d , 5.7n 2
2 1

2
d r d r, ,

where a > 0 is a constant which does not depend on n. Here, r˜( )I is the (classical) Fisher informationmatrix of
the the data obtained by performing onemeasurement for each setting, and r˜( )G is theweightmatrix
corresponding to the quadratic approximation of the norm-two distance squared, around ρ. Bothmatrices are
of dimensions - =( ) ( )r d r2 dim ,d r, anddepend on the chosen parametrization, but the trace is independent
of it. Inserting (5.6) and (5.7) into (5.5), we get

 
  òr r r r r p r

a
- -

r r
r

Î

- 


( )˜( ) ˜( ) ˜( ) ( )N
N

n
G I G

N

n
inf sup Tr d .n 2

2 1 2 1 1 2
2

n d r d r, ,

Since ta t−1 is an operator convex functionwe have

ò òr r r p r r r r p r- - -
-( )˜( ) ˜( ) ˜( ) ( ) ˜( ) ˜( ) ˜( ) ( )G I G G I Gd d1 2 1 1 2 1 2 1 2

1

and by taking the limit  ¥n we obtain the asymptoticminimax lower bound

⎜ ⎟⎛
⎝

⎞
⎠ ò r r r p r

¥

- -
-( )( ) ˜( ) ˜( ) ˜( ) ( ) ( )R r k G I Gliminf , 3 Tr d , 5.8

n

k
minmax

1 2 1 2
1

where ( )R r k n, ;minmax is theminimax risk defined in equation (5.1).
At this point we choose a convenient local parametrization around an arbitrary state r Î .d r, As discussed

in the beginning of the proof we showed that for this we can use the real and imaginary parts q q q=˜ (˜ ˜ ),r i of the
off-diagonal blockΔ, and that the correspondingweightmatrix is r = -˜( ) ( )G 21 .r d r2 The lower bound (5.8)
becomes

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟

 ò r p r
-

( ) · · ˜( ) ( )R r k I, 3 2 Tr d .k
minmax

1

d r,

Another consequence of (5.4) is that the Fisher informationmatrix r˜( )I is equal to the corresponding block
of the Fisher informationmatrix I of the full (d2-dimensional) unconstrainedmodel with parametrization θ
defined in (5.3).Wewill now compute the average over states of the Fisher informationwith respect to the Pauli
basesmeasurements, by showing that it is equal to the average Fisher information at r ,0 for the random basis
measurement. As the different settings aremeasured independently, the Fisher information r˜( )I is (and similarly
for I)


år r=
Î

˜( ) ˜( ∣ )I I s ,
s k

where r˜( ∣ )I s is the Fisher information corresponding to the vonNeumannmeasurement with respect to the
ONBdefined by setting s.More generally, with BU as defined above, we denote by r˜( ∣ )I BU the Fisher
information corresponding to this basis. Due to the rotation symmetry, we have

*r r=( )˜ ∣̃ ˜( ∣ )I U U IB BU
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so

*ò ò ò

ò

å åp r r p r r m r

m r

= =

= =

( )
( )

( ) ˜( ) ( ) ˜( ∣ ) ( ) ˜

( ) ˜ ˜̄

I I U I U U

U I I

s s

B

d d d

3 d 3 ,

d

k
U

k

s s
0

0

where m ( )Udd is the uniqueHaarmeasure on the unitary group on  .d

The average Fisher informationmatrix Ī (of the full, unconstrainedmodel) is computed in sectionA.6
wherewe show that the block corresponding to q̃ parameters has average = -˜̄ ( )I 12 r d r2 such that the lower
bound is

 -( ) ( )R r k r d r, 2 .minmax

6.Numerical results

In this sectionwe present the results of a simulation studywhich analyses the performance of the proposed
estimationmethods. The penalized and physical estimators discussed in the previous sections use a theoretical
penalization and respective threshold rates proportional to n .2 However in practice we found that the
performance of the estimators can be further improvedwhen the rates are adjusted bymultiplyingwith an
appropriate constant c—whose choice is informed by the data—from a grid over a small interval whichwas
chosen to be [ ]0, 3 .The last two estimators are such versions of the theoretical oneswith constant c chosen by
using cross-validationmethodswhich are explained in detail in section 6.1.Wewill compare the following 5
estimators described below.

(1)The LSE r( )
n

ls defined in (3.1).

(2)The oracle ‘estimator’ r( )
n

oracle defined below. This is strictly speaking not an estimator since it requires the
knowledge of the state ρ itself, and can be computed only in simulation studies.However, the oracle is a
useful benchmark for evaluating the performance of the other estimators.

(3)The cross-validated projection estimator r( ).n
cv Here we try to find the optimal truncation rank of the LSE, by

using the cross-validationmethod.

(4)The cross-validated penalized estimator r -( ).n
pen cv This is a modification of the penalized estimator r( )

n
pen

defined in (4.2), where the value of the penalization constant is adjusted by cross-validation.

(5)The cross-validated physical threshold estimator r -( ).n
phys cv This is a modification of the physical estimator

r( )
n

phys defined in (4.5), where the value of the threshold constant is adjusted by cross-validation.We explore
the estimators’ behaviour by simulating datasets from states with different ranks, andwith different number
ofmeasurement repetitions per setting. Themethodology is described in detail below.

6.1. Generation of random states and simulation of datasets
In order to generate a densitymatrix of rank r, we first create a rank r upper triangularmatrixT inwhich

(i) the off-diagonal elements of the first r rows are random complex numbers,

(ii) the diagonal elementsT T,..., rr22 are real, positive randomnumbers,

(iii) all elements of the rows +r d1 ,..., are zero.

ThematrixT is completed by settingT11 such that T 0,11 and = T 1.2
2 If these conditions cannot be

satisfiedwe repeat the procedure by generating a new set ofmatrix elements forT.When successful, we set
*r ≔ T T which by construction is a densitymatrix of rank r.We note that it is not our purpose to generate

matrices from a particular ‘uniform’ ensemble, butmerely to have a state with reasonably random eigenvectors,
andwhose r eigenvalues are not significantly smaller than r1 . Following this procedure we have generated 4
states of 4 ions ( =d 24)with ranks 1, 2, 6, 10.The rank 6 state for instance, has non-zero
eigenvalues ( )0.47, 0.19, 0.12, 0.11, 0.07, 0.04 .

For each state, we have then simulated a number of 100 independent datasets with a given number of
repetitions chosen from the range 20, 100, 500, and 2500. In this waywe can study the dependence of theMSE
of each estimator on state (or rank) and number of repetitions.
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6.2. Computation of estimators
Weconducted the following simulation study for all the possible combinations between the states and the total
number of cycles (i.e. ´ =4 4 16 different scenarios). Below,we denote by r the rank of the ‘true’ state ρ, from
which the data has been generated. The procedure has the following steps:

(1) For a given number of repetitions n, we simulate 5 independent datasets D D,..., ,1 5 eachwith n 5 repetitions.
By simply adding the number of counts for each setting and outcome, we obtain a datasetD of n repetitions.
However, as wewill see below, having 5 separate ‘smaller’ datasets is important for the purpose of applying
cross-validation. Note that such a procedure can be easily implemented in an experimental setting.

(2)Wecompute the LSE r( )
n

ls based on the full datasetDwith total number of cycles n.

(3)Wecompute the oracle ‘estimator’ as follows:

(a) We compute the spectral decomposition (4.1) of r( ),n
ls with the eigenvalues li arranged in decreasing

order of their absolute values. For each rank  k d1 wedefine the truncated (least squares)matrix

år k l y y= ñá
k

=

 ( ) ∣ ˆ ˆ ∣.n
i

i i i
1

(b) We then evaluate the norm-two distance squared k r r k- ( ) ≔ ( )e n 2
2 and define the oracle estimator

as the truncated estimator withminimal norm two error

r r k k k= =
k

  ( ) ( )( ) e, arg min .n n
oracle

0 0

Note that the oracle estimator relies on the knowledge of the true state ρwhich is not available in a real data
set-up. It is nevertheless useful as a benchmark for judging the performance of other estimators in
simulation studies. At the next point we define the cross-validation estimator which tries tofind the
‘optimal’ rank k0 by replacing the unknown state ρwith the LSE computed on a separate batch of data.

(4)Wecompute the cross validation estimator as follows.

(a) For each Î { }j 1 ,..., 5 we compute the following estimators. While holding the batch Dj out, we
compute the LSE r -

( )
n j;

ls for the dataset consisting of joining the remaining four batches together.

Similarly to the point above, we define the rankκ truncation of this estimator by r k- ( ).n j; We also

compute the LSE for the remaining batch j, denoted by r( ).n j;
ls

(b) For each rankκwe evaluate the ‘empirical discrepancy’

åk r k r= -
=

- ( ) ( ) ( )CV
1

5
.

i
n j n j

1

5

; ;
ls

2

2

Since r k- ( )n j; and r( )
n j;

ls are independent, and the LSE is unbiased  r r=( )( ) ,n j;
ls the expected value of ( )kCV

is

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ⎡
⎣⎢

⎤
⎦⎥

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

    

 



k r k r k r r

r k r k r r

r k r

= - +

= - + +

= - +

- - - -

- - - -

- - 

   

 



( )( )
( )

( ) ( )
( ) ( )

[ ( )] ( ) ( ) ·

( ) ( )

( )

( ) ( )

C

C

CV Tr 2 Tr Tr

Tr 2 Tr Tr

,

n n n n

n n

n

1 ; 1
2

1 ; 1 1 ;1
ls

1 ;1
ls 2

1 ; 1
2

1 ; 1
2

1 ; 1
2

wherewe denoted -1 and 1 the expectation over all batches except thefirst, and respectively over the first
batch. Therefore, the average of k( )CV is equal to theMSE of the truncated estimator r k- ( ),n; 1 up to a
constantCwhich is independent ofκ.

(c) Based on the above observation we use the the cross-validation method as a proxy for the oracle
estimator. Concretely, weminimize CV k( )with respect toκ

k k=ˆ ( )arg min CV ,
k

cv

and define the cross-validation estimator as the truncation to rank k̂cv of the full data LSE r r k ≔ ( ˆ )( ) .n n
cv

cv

(5)Wecompute the cross-validated rank-penalized estimator as follows.
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(a) Let c be a penalization constant chosen from a suitable set of discrete values in the interval [ ]0, 3 .
Similarly to the cross-validation procedure, we hold out batch j, andwe compute the rank-penalized
estimator (4.2), with penalty constant nc 2 for = ¼j 1, , 5.Wedenote these estimators by r - ( )( ) c .n j;

pen

Wewill also need the LSE r( )
n j;
ls for batch j computed above.

(b) For each value of cwe evaluate the empirical discrepancy

å r r= -
=

-( ) ( )( ) ( )c cCV
1

5 i
n j n j

1

5

;
pen

;
ls

2

2

andminimize ( )cCV with respect to the constant c

= ( )c carg min CV .
c

Finally we compute the cross-validated rank penalized estimator r -( )
n

rk cv which is defined as in (4.2), with
constant nc ,2 on thewhole datasetD.

(6)Wecompute the physical estimator as follows.

(a) As above we choose a constant c from a grid over the interval [ ]0, 3 . We hold out batch j, and we
compute the physical threshold estimator (4.5), using the algorithmbelow this equation, with
threshold n·c 4 .Wedenote the resulting estimators by r - ( )( ) c ,n j;

phys for = ¼j 1, , 5.

(b) For each value of cwe evaluate the empirical discrepancy

å r r= -
=

- ( ) ( )( ) ( )c cCV
1

5
.

i
n j n j

1

5

;
phys

;
ls

2

2

We thenminimize ( )cCV with respect to the constant c.

=ˆ ( )c carg min CV
c

Finally we compute the cross-validated physical estimator r -( )
n

phys cv which is defined as in (4.5), with
constant nˆ ·c 4 .

6.3. Simulation results
Wecollect here the results of the simulation study described in the previous section. As afigure ofmerit we focus
on theMSE  r r- ( )( n 2

2 of each estimator, which is estimated by averaging the square errors over the 100
independent repetitions of the procedure.We are also interested in how the differentmethods perform relative
to each other, andwhether the selected rank is consistent, i.e. it concentrates on the rank of the true state for large
number of repetitions.

The four panels infigure 3 represent the boxplots of the square errors r r- n 2
2 for the different estimators,

and different states, when the number of repetitions is n=20. Similarly,figure 4 shows the same boxplots at
n=100. As expected, in both cases the least squares performs significantly worse than the other estimators, and
the discrepancy is larger for small rank states. The remaining 4 estimators have similarMSE’s with the physical
one performing slightly better than the rest, followed by the oracle. Note also that the estimators’ variances
(indicated by the size of the boxes) are larger for the least squares than the other estimators. A similar behaviour
has been observed for =n 500, 2500 repetitions.

Figure 5 illustrates the dependence of theMSE of a given estimator, as a function of n, for the four different
states which have been analysed. Since theMSE decreases as -n 1wehave chosen to plot the ‘renormalized’MSE
given by  r r- ·n ,n 2

2 which converges to a constant value for large n. As expected the limiting value
increases with the rank of the state, as a proxy for the number of parameters to be estimated.

The histograms infigure 6 show the probability distributions for the chosen rank of each given estimator, as
a function of the number ofmeasurement repetitions n, for the state of rank 6.Wenote that in all cases the
proportion of times that the chosen rank is equal to the true rank of the state increases aswith the number of
repetitions. However, this convergence towards a ‘rank-consistent’ estimator is rather slow, as the proportion
surpasses 80%onlywhen n=2500. Another observation is that the penalty and threshold estimators appear to
have different behaviours: the former tends to underestimate the true rank, while the latter tends to overestimate
it. As expected, the oracle estimator ismore likely to choose the correct rank for large number of repetitions.
Perhaps slightlymore surprising, for small number of repetitions (n= 20), the oracle choose a pure state inmost
cases.
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7. Conclusions and outlook

Quantum state tomography, and in particularMIT is an important enabling component of quantum
engineering experiments. Since full quantum tomography becomes unfeasible for large dimensional systems, it
is useful to identify lower dimensionalmodels with good approximation properties for physically relevant states,
and to develop estimationmethods tailored for suchmodels. In particular, quantum states created in the lab are
often verywell approximated by low rank densitymatrices, which are characterized by a number of parameter
which is linear rather than quadratic in the space dimension.

In this workwe analysed several estimation algorithms targeted at estimating low rank states inMIT. The
procedure consists in computing the LSE, which is then diagonalized, truncated to an appropriate smaller rank
by setting eigenvalues below a ‘noise threshold’ to zero, and normalized. Among the several truncationmethods
proposed, the best performing one is the ‘physical estimator’; this chooses the densitymatrix whose non-zero
eigenvalues are above a certain threshold and is the closest to the LSE.We proved concentration bounds and
upper bounds for theMSE of the penalized and physical estimators, as well as a lower bound for the asymptotic
minimax rate forMIT. The results show that the proposedmethods have an optimal dependence on rank and
dimension, up to a logarithmic factor in dimension. In addition, the algorithms are easy to implement
numerically and their computational complexity is determined by that of the LSE.

An interesting future direction is to extend the spectral thresholdingmethodology to ameasurement setup
where a smaller number of settings ismeasured, which is however sufficient to identify the unknown low rank
state. Another direction involves the construction of confidence intervals / regions for such estimators, beyond
the concentration bounds established here. Since themain ingredients are the LSE and the spectral thresholding
algorithms, the proposed estimationmethods can be applied to any quantum tomography scenario with

Figure 3.Boxplots for the estimatedmean square error ( r r- n 2
2) for different ranks, k=4 (d = 16), with n=20 repetitions.
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informationally completemeasurements. It would be interesting to see how thesemethods perform in other
settings.
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AppendixA.

A.1. Proof of lemma1

Proof. Since thematrix elements of A are = ( ∣ )( ) AA o s ,b o s b, , the product * ·A A has elements

⎡⎣ ⎤⎦* åå=
¢

¢· ( ∣ ) ( ∣ )A AA A o s o s .
b b

s o
b b,

If = ¢b b it is easy to see that

⎡⎣ ⎤⎦* åå d= =
Î

· ( )A A 2 3 .
j E

s b
k d

b b
s o

b
,

,j j

b

If ¹ ¢b b ,wehave either = ¢E Eb b or = ¢E E .b b On the one hand, in case the sets Eb and ¢Eb are equal, we have

 d d=¢
Î

¢( ∣ ) ( ∣ ) ·A Ao s o s .
j E

s b s bb b , ,j j j j

b

Figure 4.Boxplots for the estimatedmean square error ( r r- n 2
2) for different ranks, k=4 (d = 16), with n=100 repetitions.
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For each s, the previous product is 0. Indeed, if different from0 then = ¢b bj j for all jnot in E .b As = =¢b b Ij j

for j in E ,b it implies that = ¢b b which contradicts the assumption here.
On the other hand, if the sets Eb and ¢Eb are different, there exists at least one coordinate j0 in the symmetric

difference D ¢E Ebb and the sumover outcomes o will split over values of o where =o 1j0
and valueswhere

= -o 1:j0
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d d d
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: 1
, , ,

: 1
, ,
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j j j j l l
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j j j j l l

b b

b b

0

0 0

0

0 0

Weassumed here that j0 belongs to ¢⧹E Eb b and the same holds for j0 in ¢⧹E E .b b ,

A.2. Proof of proposition 1

Proof of proposition 1. Formore clarity, in this proof wewill use the notation d= =( )I a b .a b, Note that

å= =( ∣ ) ( )f I Xo s o ,
n i is
1

, where the randomvariables X is, are independent for all settings s and all i from1 to

n. To estimate the risk of the linear estimator wewrite

Figure 5.RenormalizedMSEs  r r- ·n n 2
2 as a function of the number of repetitions for states with different ranks: 1(black), 2

(red), 6 (green), 10 (blue).
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s
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whereW is, are independent and centredHermitian randommatrices.Wewill apply the following extension of
the Bernsteinmatrix inequality [39] due to [40], see also [32, 33].

Proposition 3. (Bernstein inequality, [40].) Let ¼Y Y, , n1 be independent, centred, m×mHermitian random
matrices. Suppose that, for some constants >V W, 0 we have  Y V ,j for all j from 1 to n, and that

 å ( )Y W .
j j

2 Then, for all t 0,

⎛
⎝⎜

⎞
⎠⎟  + + -

+
 ( )Y Y t m

t

W tV
... 2 exp

2

3
.n1

2

In our setupwe bound  W Vis, for all s and i and * å ( )W W W ,i is s s, , whereV W, are evaluated

below.We have

Figure 6.Histograms of the empirical frequencies of the chosen rank for different estimators, as function of the number of repetitions
n, true rank r=6, k=4 (d = 16).
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The last inequality follows from the fact that the covariancematrix can bewritten as the difference of two positive
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A.3. Proof of proposition 1

Proof of proposition 1. Let us denote by  l l ( )... d1 the eigenvalues of r∣ ∣( )
n

ls and by l l¼ , , d1 the

eigenvalues of the resulting estimator r( ).n
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A.4. Proof of corollary 1

Proof of corollary 1.Weorder the eigenvalues of r( )
n

pen in decreasing order of absolute values

 l l (∣ ∣ ∣ ∣)... ,d1 and denote by l l¼ , , d1 the eigenvalues of r( ).n
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A.5. Proof upper boundphysical estimator

Proof of theorem2.We recall fromproposition 2 that with probability larger than e-1 ,we have
r r n e-  ( )( ) 2 .n

ls In particular, by using theWeyl inequality [41], this implies that l l n e-∣ ∣ ( )2k k for all

k from1 to d, where l l¼, , d1 are the eigenvalues of ρ arranged in decreasing order. After a total of = -ℓ̂ ˆd r
iterations the algorithm stops andwe have [42]

l l= = =+
 ˆ
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... 0r d1

phys phys
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>
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1
1 ,..., .j j j
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Fromnowonwe assume that r r n e-  ( )( ) 2n
ls whichholdswith probability larger than e-1 , see corollary

3.2.Wewill show that under this assumption =r̂ r. For thiswe consider the two cases >r̂ r and <r̂ r separately.
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A.6. The average Fisher informationmatrix for the full, unconstrainedmodel, with randommeasurement
design
In this sectionwe present a detailed calculation of the average quantumFisher information at a the rank r state r0

defined in (5.2), for randommeasurements with uniformdistribution over themeasurement basis.We consider
the full parametrization by q Î d2

given by equation (5.3). As explained in the proof, the Fisher information
matrix for the parametrization q̃ of the rotationmodeld r, is a particular block of the larger Fishermatrix
computed here.Wewill come back to this at the end of the computation.

Let
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The Fisher informationmatrix r( ∣ )I BU has the following block structure
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with superscripts indicating the type of parameter considered: diagonal, real or imaginary part of off-diagonal
element. The average Fisher information for a randomly chosen basis is

òr m r( )¯ ( ) ≔ ( )I U I Bd ,U

where m ( )Ud is theHaarmeasure over unitaries used for choosing the randombasis. Note that by symmetry
r¯ ( )I only depends on the spectrumof ρ.Wewill not compute r¯ ( )I for an arbitrary state ρ but only at r r= .0

The corresponding Fisher informationwill be denoted r=¯ ¯ ( )I I 0 and is a function of d and r. Belowwe compute
the different blocks of Ī . For thematrix elements wewill use a suggestive notation, e.g. Īii jk

d r
;
, denotes the element

corresponding to the diagonal parameter q r=ii
d

ii and the real part of the off-diagonal element r ,jk etc.
(A)Diagonal–diagonal block.

år = á ñ á ñ
r>r

( ) ( )( )
∣ ∣ ∣ ∣ ∣ ∣I

p
U i U jB

o B
o o

1
, , .U

ii jj

dd

p Uo o B
;

: 0

2 2

U

By integrating over unitaries we obtain the correspondingmatrix element of the average Fishermatrix Ī . Since
>r ( ∣ )p o B 0U

0
is true for all o,with probability onewith respect to m ( )Ud ,d we drop the condition from the

sum.At the state r r= 0 defined in (5.2), we have
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ò

ò

ò

å
å

å

å

m

m

y y
y

n y

=
á ñ á ñ

á ñ

=
á ñ á ñ

á ñ

=
á ñ á ñ

á ñ

=

=

=

¯ ∣ ∣ ∣ ∣ ∣ ∣
∣ ∣ ∣

( )

· ∣ ∣ ∣ ∣ ∣ ∣
∣ ∣ ∣

( )

· ∣ ∣ ∣ ∣ ∣ ∣
∣ ∣ ∣

( )

I r
U i U j

U k
U

r d
U i U j

U k
U

r d
i j

k

o o

o

1 1

1

, ,

,
d

, ,

,
d

d ,

ii jj
dd

k

r
d

k

r
d

k

r
d

o
;

2 2

1
2

2 2

1
2

2 2

1
2

where n y( )dd is the uniformmeasure over the projective space on  .d To compute the integral we decompose
yñ∣ as

y y yñ = ñ + - ñ∣ ∣ ∣q q11
2

2

with y ñ Î ñ ñ∣ ≔ {∣ ∣ }rSpan 1 ,...,r1 and y ñ Î ^∣ r2 normalized (orthogonal) vectors, and  q0 1.The
uniformmeasure can be expressed as

n y n y n y= ´ ´ -( ) ( )( ) ( )m qd d d d ,d d r r d r,
1 2

where ( )m qdd r, is the distribution of the length of the projection of a randomvector in d onto an r-dimensional
subspace.With this notationwe have

ò ò ò y y n y n y= á ñ á ñ -( ) ( )¯ · ∣ ∣ ∣ ∣ ∣ ∣ ( ) ( )I r d
q

i j m q
1

d d d . A.4ii jj
dd d r r d r
; 2

2 2 ,
1 2

Wedistinguish four sub-cases depending onwhether each of the indices i j, belongs to { }r1 ,...,
or +{ }r d1 ,..., .

Sub-case 1: i j r, . In this case (A.4) becomes

* *

ò ò

ò ò

y y n y

m

= ´ á ñ á ñ

= ´

( )¯ · ( ) ∣ ∣ ∣ ∣ ∣ ∣

· ( ) ( ) ( )

I r d
q

q m q i j

r d
q

q m q U U U U U

1
d d

1
d d . A.5

ii jj
dd d r r

d r
i i j j

r

; 2
4 ,

1
2

1
2

1

2
4 ,

1, ,1 1, ,1

In the last linewe have re-written y ñ∣ 1 as ñ∣U 1 in order to use the existing formulas for integrals ofmonomials
over the unitary group [43]. Sincewewill use these formulas repeatedly, we recall that

* *ò åm d d d d st=
s t

¢ ¢ ¢ ¢
Î

¢ ¢ ¢ ¢ -
s s t t ( )( ) ( )U U U U Ud Wg , A.6i j i j j i j i

l

S
i i i i j j j j

l
, , , ,

,
, , , ,

1
1 1 2 2 1 1 2 2

2

1 1 2 2 1 1 2 2

whereσ and τ are permutations in = {( ) ( )}S 1, 1 , 22 and ( · )Wgl is theWeingarten function over S2:

=
-

=
-

-( )( ) ( )
l l l

Wg 1, 1
1

1
, Wg 2

1

1
.l l

2 2

The integral over q can be easily evaluated as

ò òå y m y= á ñ =
=

( ) ∣ ∣ ∣ ( ) ( )q m q k
r

d
d d . A.7d r

k

r
d2 ,

1

2

By inserting (A.6) and (A.7) into (A.5)we get

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

=
-

-
-

=
+

¹

=
-

-
-

=
+

( )

( )

¯ · ·

¯ · · ·

I r d
r

d r r r

r

r
i j

I r d
r

d r r r

r

r

1

1

1

1 1
,

2
1

1

1

1

2

1
.

ii jj
dd

ii ii
dd

; 2 2

; 2 2

Sub-case 2: i rand >j r. From (A.4)we get

⎜ ⎟⎛
⎝

⎞
⎠

ò ò òy n y y n y= - ´ á ñ ´ á ñ

= -
-

=

-( ) ( ) ( )¯ · ( ) ∣ ∣ ∣ ∣ ∣ ∣

· · ·

I r d
q

q q m q i j

r d
r

d r d r

1
1 d d d

1
1 1

1.

ii jj
dd d r r d r
; 2

2 2 ,
1

2
1 2

2
2

23

New J. Phys. 17 (2015) 113050 CButucea et al



Sub-case 3: >i j r, . Similarly, in this case

* *

ò ò

ò ò

y y n y

m

= - ´ á ñ á ñ

= - ´

-

-

( ) ( )
( )

¯ · ( ) ∣ ∣ ∣ ∣ ∣ ∣

· ( ) ( ) ( )

I r d
q

q m q i j

r d
q

q m q U U U U U

1
1 d d

1
1 d d . A.8

ii jj
dd d r d r

d r
i i j j

d r

; 2
2 2 ,

2
2

2
2

2

2
2 2 ,

1, ,1 1, ,1

Wefirst simplify the integral on the right side

ò ò- = - +( ) ( ) ( ) ( )
q

q m q
q

m q
r

d

1
1 d

1
d 2 . A.9d r d r

2
2 2 ,

2
,

To evaluate the remaining integral, we consider amultivariateGaussian randomvariable
= ~( ) ( )c c c N I,..., 0, ,d d1 2 2 and denote by ( )g cdd2 its probability distribution. From this we construct the

complex vector with uniformdistribution over the unit ball in d

å åyñ + ñ =
=

+
= 

 ( )∣ ≔ ∣
c

c c i c c
1

i , .
i

d

i d
l

d

i
1

1
2

1

2
2

Wecannowwrite

ò ò ò

ò ò

å
å

å
å

= = +

= +

= + -
-

=
-
-

=

=

= +

=

- 
 ( ) ( )

( ) ( ) ( )

·

( ) · ( )

( )

q
m q g c

c

c
g c

c

c

c g c
c

g c

d r
r

d

r

1
d d 1 d

1 d
1

d

1 2
1

2 2

1

1
. A.10

d r d l

d
l

l

r
l

d l r

d
l

l

r
l

d r r

2
, 2 1

2 2

1

2 2
2 2 1

2 2

1

2 2

1 2 2 1
2 2

2 2

Abovewe used the fact that c2 2 is a c2 variable with r2 degrees of freedom, so the second integral is themean of
its inverse. By inserting (A.10) into (A.9)we obtain

ò - = - + +
-
-

=
- - +

-( ) ( ) ( )( )
( )

( )
q

q m q
r

d

d

r

d r d r

d r

1
1 d 2

1

1

1

1
. A.11d r

2
2 2 ,

Finally, by inserting (A.11) into (A.8) and applying (A.6)we obtain

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟=

- - +
- - -

-
- - -

=
-

¹

=
-

( )
¯ ˙ · ( )( )

( )
·

( ) ( ) ( )

¯

I rd
d r d r

d r d r d r d r

r

r
i j

I
r

r

1

1

1

1

1

1

1
,

2

1
.

ii jj
dd

ii ii
dd

; 2 2

;

Note that for r=1 thesematrix elements are infinite. This is due to large contributions frommeasurements
which have one basis vector close to being orthogonal to the one-dimensional vector state.. This is somewhat
akin towhat happens in the case of a Bernoulli variable (coin toss), in the case when the probability is close to
zero or one.While this phenomenon is interesting, it does not play any role in our analysis for which the diagonal
matrix elements are not relevant parameters.

(B)Diagonal-real block.

år = á ñ á ñá ñ
r>r

( ) ( )( )
∣ ∣ ∣ · ( ∣ ∣ )I

p
U i j U U kB

o B
o o o2

1
, Re , , .U

ii jk

dr

p Uo o B
;

: 0

2

U

As before, the corresponding entry of the average Fisher informationmatrix is

ò

òòò
å

y y y
y

n y

y y y n y n y

=
á ñ á ñá ñ

á ñ

= á ñ á ñá ñ

=

-( ) ( )

¯ · · ∣ ∣ ∣ · ( ∣ ∣ )
∣ ∣ ∣

( )

· · ∣ ∣ ∣ · ( ∣ ∣ ) ( )

I d r
i j k

k

d r
q

i j k m q

2
Re

d

2
1

Re d d d .

ii jk
dr

k

r
d

d r r d r

;

2

1
2

2
2 ,

1 2
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Sub-case 1: i j k r, , . In this case the integral is

* * *

ò ò
ò

y y y n y

m

=

= + =

( ) ( )
( )

¯ · · ( )

· · ( )

I d r q m q i j k

d r
r

d
U U U U U U U

2 d Re d

d 0,

ii jk
dr d r r

r
i i j k k j

;
2 ,

1
2

1 1 1

1 1 1 1 1 1

wherewe applied formula (A.6) for the integrals over the unitaries.
Sub-case 2: i j r, and >k r. In this case the integral is

ò
ò òy y n y y n y

= -

´ á ñ á ñ á ñ =-( ) ( )
¯ · · ( )

∣ ∣ ∣ ∣ ∣

I d r q q m q

i j k

2 1 d

Re d d 0.

ii jk
dr d r

r d r

;
2 ,

1
2

1 1 2 2

Sub-case 3: i r and >j k r, . In this case the integral is

ò
ò òy n y y y n y

= -

´ á ñ á ñá ñ =-

( )
( ) ( )

¯ · · ( )

∣ ∣ ∣ · ∣ ∣

I d r q m q

i j k

2 1 d

d Re d 0.

ii jk
dr d r

r d r

;
2 ,

1
2

1 2 2 2

Sub-case 4: >i r and j k r, . In this case the integral is

ò
ò òy n y y y n y

= -

´ á ñ á ñá ñ =-

( )
( ) ( )

¯ · · ( )

∣ ∣ ∣ · ∣ ∣

I d r q m q

i j k

2 1 d

d Re d 0.

ii jk
dr d r

d r r

;
2 ,

2
2

2 1 1 1

Sub-case 5: >i r and j k r, . In this case the integral is

ò
ò òy n y y y n y

= -

´ á ñ á ñá ñ =-

( )
( ) ( )

¯ · · ( )

∣ ∣ ∣ · ∣ ∣

I d r q m q

i j k

2 1 d

d Re d 0.

ii jk
dr d r

d r r

;
2 ,

2
2

2 1 1 1

Sub-case 6: >i k r, and j r. In this case the integral is

ò
ò òy y n y y n y

= -

´ á ñ á ñ á ñ =- ( ) ( )
¯ · · ( )

∣ ∣ ∣ ∣ · ∣

I d r q q m q

i k j

2 1 d

Re d d 0.

ii jk
dr d r

d r r

;
2 ,

2
2

2 2 1 1

Sub-case 7: >i j k r, , . In this case the integral is

ò

ò y y y n y

=
-

´ á ñ á ñá ñ =-

( )

( )

¯ · · ( )

∣ ∣ ∣ ∣ ∣

I d r
q

q
m q

i j k

2
1

d

Re d 0.

ii jk
dr d r

d r

;

2 2

2
,

2
2

2 2 2

The last integral is zero for the same reason as in sub-case 1.
In conclusion all diagonal-realmatrix elements are zero

 = = <Ī i j k0, for all 1 ,..., 2 , and 1 2 .ii j k
dr k k
; ,

(C)Diagonal-imaginary block.
Similarly to the case of diagonal-real elements, we obtain that all diagonal-imaginarymatrix elements are

zero

 = = <Ī i j k0, for all 1 ,..., 2 , and 1 2 .ii jk
di k k
;

(D)Real–real block.

år = á ñá ñ á ñá ñ
r>r

( ) ( )( )
( ∣ ∣ ) · ( ∣ ∣ )I

p
i U U j k U U lB

o B
o o o o4

1
Re , , Re , , .U

ij kl

rr

p Uo o B
;

: 0U
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As before the corresponding entry of the average Fisher informationmatrix is

ò

òòò

å

y y y y

y
n y

y y y y n y n y

=
á ñá ñ á ñá ñ

á ñ

= á ñá ñ á ñá ñ

=

-

( )

( ) ( )

¯ · ·
∣ ∣ ) · ( ∣ ∣

∣ ∣ ∣
( )

· · ( ∣ ∣ ) · ( ∣ ∣ ) ( )

I d r
i j k l

k

d r
q

i j k l m q

4
Re Re

d

4
1

Re Re d d d .

ij kl
rr

k

r
d

d r r d r

;

1

2

2
,

1 2

The same reasoning as before can be applied to transform the integral into a single integral, or a product of
integrals over unitaries. If a single index is larger than rwhile the other three are smaller, or conversely a single
index is smaller than rwhile the other are larger, thenwe have two integrals over unitaries which are zero since
themonomial is of odd order. Therefore the following cases remain to be analysed.

Sub-case 1: i j k l r, , , . In this case the integral is

* * * *

ò ò
ò

y y y y n y

m

=

= + +

( ) ( ) ( )
( )( )

¯ · · ( ) ·

· · · ( )

I d r q m q i j k l

d r
r

d
U U U U U U U U U

4 d Re Re d

d .

ij kl
rr d r r

r
i j j i k l l k

;
2 ,

1 1 1 1 1

1 1 1 1 1 1 1 1

Using formula (A.6)wefind that the integral over unitaries is zero unless we deal with a diagonalmatrix element
of I, i.e. i=k and j=l. For the latter we have

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

* * * *ò m= + +

=
-

-
-

=
+

( )( )

( )

¯ · · · ( )

· · ·

I d r
r

d
U U U U U U U U U

d r
r

d r r r

r

r

d

2
1

1

1

1

2

1
.

ij ij
rr r

i j j i i j j i; 1 1 1 1 1 1 1 1

2 2

Sub-case 2: >i j k l r, , , . In this case, the integral is

* * * *

ò ò

ò

y y y y n y

m

=
-

=
- - +

-
+ +

-

-

( ) ( )( ) ( )
( )( )

¯ · · ( ) ·

· · ( )( )
( )

· ( )

I d r
q

q
m q i j k l

d r
d r d r

d r
U U U U U U U U U

4
1

d Re Re d

1

1
d ,

ij kl
rr d r d r

d r
i j j i k l l k

;

2 2

2
,

2 2 2 2 2

1 1 1 1 1 1 1 1

wherewe have used formula (A.11) for the integral over q. A similar calculation as above shows that all off-
diagonal elements are zero and

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟=

- - +
- - -

-
- - -

=
-

( )
¯ · · ( )( )

( )
·

( ) ( ) ( )
I d r

d r d r

d r d r d r d r

r

r

2
1

1

1

1

1

1

2

1
.

ij ij
rr
; 2 2

Sub-case 3: ( i j r, and >k l r, ) or ( >i j r, and k l r, ). In this case we deal with a product of integrals
over unitaries of the form

*ò m =( )U U Ud 0.r
i j1 1

So allmatrix elements are zero.
Sub-case 4: i k r, and >j l r, .Again, the off-diagonal elements are zero and

⎜ ⎟⎛
⎝

⎞
⎠

ò ò y y y y n y n y== -

= -
-

=

( ) ( )( ) ( ) ( )¯ · · ( ) ·

· · ·

I d r q m q i j i j

d r
r

d r d r

4 1 d Re Re d d

2 1
1 1

2.

ij ij
rr d r r r
;

2 ,
1 2 1 2 1 2

In conclusion, the only non-zero elements of the real–real block are on the diagonal and are given by

 

 



=
+

<

= <

=
-

< <

¯

¯

¯

I
r

r
i j r

I i r r j

I
r

r
r i j

2

1
, 1 ,

2, and 2 ,

2

1
, 2 .

ij ij
rr

ij ij
rr k

ij ij
rr k

;

;

;
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(E) Imaginary–imaginary block.This block is similar to the real–real one. All off diagonal elements are zero,
and the diagonal ones are

 

 



=
+

<

= <

=
-

< <

¯

¯

¯

I
r

r
i j r

I i r r j

I
r

r
r i j

2

1
, 1 ,

2, and 2 ,

2

1
, 2 .

ij ij
ii

ij ij
ii k

ij ij
ii k

;

;

;

(F)Real-imaginary block.Nextwe show that all real-imaginary off-diagonal elements are equal to zero.

år = - á ñá ñ á ñá ñ
r>r

( ) ( ) ( )
( )

· ∣ ∣ ) ( ∣ ∣I
p

i U U j k U U lB
o B

o o o o4
1

Re , , Im , , .U
ij kl

ri

p Uo o B
;

: 0U

By integrationwe obtain the correspondingmatrix element of the average Fisher informationmatrix

ò

òòò
å

y y y y

y
n y

y y y y n y n y

=-
á ñá ñ á ñá ñ

á ñ

=- á ñá ñ á ñá ñ

=

-

( ) ( )

( ) ( ) ( ) ( )

¯ · ·
∣ ∣ · ∣ ∣

∣ ∣ ∣
( )

· · ∣ ∣ · ∣ ∣ ( )

I d r
i j k l

k

d r
q

i j k l m q

4
Re Im

d

4
1

Re Im d d d .

ij kl
rr

k

r
d

d r r d r

;

1
2

2
,

1 2

Again, if one index is smaller that rwhile the other three are larger, or otherwise, then thematrix element in zero.
We analyse the remaining cases.

Sub-case 1: i j k l r, , , . In this case the integral is

* * * *

ò ò
ò

y y y y n y

m

=-

= + -

( ) ( ) ( )
( )( )

¯ · · ( )

· · · ( )

I d r q m q i j k l

i d r
r

d
U U U U U U U U U

4 d Re Im d

d .

ij kl
ri d r r

r
i j j i k l l k

;
2 ,

1 1 1 1 1

1 1 1 1 1 1 1 1

Using formula (A.6)wefind that the integral over unitaries is zero unless i=k and j=l. However even in this
case, two of the four terms are zero, and the other two cancel each other.

Sub-case 2: >i j k l r, , , .Here the integrals over the unitaries are similar as in case 1 above, with the
difference that they takenwith respect to m - ( )Ud .d r Therefore thematrix elements are zero.

Sub-case 3: ( i j r, and >k l r, ) or ( >i j r k l r, , , ). In this case we deal with a product of integrals over
unitaries of the form

*ò m =( )U U Ud 0.r
i j1 1

so allmatrix elements are zero.
Sub-case 4: i k r, and >j l r, Again, the off-diagonal elements are zero and

⎜ ⎟⎛
⎝

⎞
⎠ * * * *

ò ò

ò ò

y y y y n y n y

m m

==- -

= - + -

=

-
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¯ · · ( ) ·

· · · ( ) ( )

I d r q m q i j i j

i d r
r

d
U V V U U V V U U V

4 1 d Re Im d d

1 d d

0.

ij ij
ri d r r r

i j j i i j j i
r d r

;
2 ,

1 2 1 2 1 2

1 1 1 1 1 1 1 1

In the last integral, two terms are zero and two have different signs and cancel each other. In conclusion all
elements of the real-imaginary block are equal to zero.

Summary of the computation of Ī .We found that all off-diagonal blocks of Ī are zero

= = = = = =¯ ¯ ¯ ¯ ¯ ¯I I I I I I 0.dr di ri rd id dr

Moreover the real and imaginary diagonal blocks are diagonal, equal to each other and have three distinct values
depending on the position of the indices <i j with respect to r:

⎧

⎨
⎪⎪
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⎪⎪⎪
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1
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rr ii
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rr ii k
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rr ii k

;

;

;
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Finally, the d×d block Ī dd is not diagonal but has a simple form

⎧
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⎪⎪⎪⎪⎪⎪⎪
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I
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r
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2

1
, 2

1
, , , a

1
, 1 a 2

1
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1
, , a .

ii jj
dd

ii ii
dd

ii ii
dd k

ii jj
dd

ii jj
dd k

ii jj
dd k

ii jj
dd

;

;

;

;

;

;

;

Themodeld r, can be seen (locally) as the restriction of the full unconstrainedmodel r d, parametrized by θ, to
the subset of parameters q̃ which are real and imaginary parts ofmatrix elements ri j, with  <i r j.Therefore

the corresponding average Fisher informationmatrix is equal to the corresponding block of Ī ,
i.e. = -˜̄ ( )I 21 .r d r2 ,
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[6] TeoY S, Stoklasa B, Englert B-G, Řeháček J andHradil Z ě 2012 Incomplete quantum state estimation: a comprehensive studyPhys.

Rev.A 85 042317
[7] GuţăM,Kypraios T andDryden I 2012Rank basedmodel selection formultiple ions quantum tomographyNew J. Phys. 14 105002
[8] Alquier P, Butucea C,HebiriM,Meziani K andMorimae T 2013Rank penalized estimation of a quantum systemPhys. Rev.A 88

032113
[9] SmithGA, SilberfarbA,Deutsch IH and Jessen P S 2006 Efficient quantum-state estimation by continuousweakmeasurement and

dynamical control Phys. Rev. Lett. 97 180403
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