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CORRIGENDUM

Corrigendum: Spectral thresholding quantum tomography for low
rank states (2015 New J. Phys. 17 113050)

Cristina Butucea', Madalin Guta® and Theodore Kypraios®

! Université Paris-Est Marne-la-Vallée, LAMA(UMR 8050), UPEMLV F-77454, Marne-la-Vallée, France
*> University of Nottingham, School of Mathematical Sciences, University Park, Nottingham NG7 2RD, UK

In this corrigendum to the paper Butucea et al (2015 New J. Phys. 17 113050) we point out an error in one of the
theoretical results describing the upper bound to the operator norm error of the least squares estimator. We
provide a corrected version of the upper bound with a new convergence rate, and discuss the implications for
other results which rely on the above upper bound.

Proposition 1 as stated in the paper is incorrect, in particular the dependence of the upper bound v (¢)? on
the number of atoms k is not valid. The error lies in the evaluation of the upper bound W of the variance term in
the concentration bound. Below we provide a new version of proposition 1 with a corrected rate v, (¢)? replacing
the rate v (¢)? stated in the paper. Ignoring the logarithmic factors, the new upper bound scales as 3 /N
compared to erroneous rate 2K /N, where k is the number of atoms and N = n3* is the total number of
measurements. We note that although the corrected bound is weaker that the one claimed in the paper, it is still
an improvement compared to the previously known bound [2] which scaled as 4°/N.

We will now discuss the implication of the correction to subsequent results in the paper. Proposition 2,
theorem 1, corollary 1, and theorem 2 establish error rates for estimators obtained by normalising, penalising or
thresholding the least square estimator. The proofs of these results use the operator norm error rate v (¢)* asa
generic expression, and are therefore not affected by its concrete dependence on the number of atoms k.
Therefore proposition 2, theorem 1, corollary 1, and theorem 2 hold true when the operator norm rate is taken
to have expression 1 (¢)? in proposition 1 below. In particular, the upper bounds on the Frobenius square norm
error in corollary 1 and theorem 2, will scale as 7 - 1,.(¢)> = r3*/N rather than rd/N = r2*/N.The remaining
results including the lower bound in theorem 3 and the simulation results are independent of proposition 1 and
do not require any correction.

Proposition 1. Let f),fls) be the linear estimator of p. Then, forany € > 0, the following operator norm inequality
holds, for n large enough, with probability larger than 1 — € under IP,

125 = pll < (o),

where

4.3k (2k*]
v (e)? = lo
o= (2

with N := n - 3% the total number of measurements. The same bound holds when k = k (n) aslongas v (¢) — 0.

Proof of proposition 1. Note that the empirical frequencies can written as f (o|s) = %Z ;I (X, = o), where the
random variables Xj ; are independent for all settings s and all i from 1 to n. To estimate the risk of the linear
estimator we write

A
A - r =L R 3l - plols) S

! A
=SS St = o)~ plei St

= ZWsz
s 1
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where W, ; are independent and centered Hermitian random matrices. We will apply the following extension of
the Bernstein matrix inequality [1] due to Tropp, see also [4, 6].

Proposition 2 (Bernstein inequality, Tropp). Let Y, ..., Y, be independent, centered, m x m Hermitian random
matrices. Suppose that, for some constants V, W > 0 wehave||Y;|| < V, forall j from I to n, and that
HZ]»E(Y]-Z)H < W. Then, forallt > 0

2
P(|Yi +..4 Y, || > 1) < 2mexp __t2 .
W+ tV/3

In our setup, W, ; play the role of Y;. Webound || W ;|| < V forall sandiand |3 ; B We |l <
where V, W are evaluated below. We have

1 Ap(o|s
el < L5 2| = o) — sl
b o

1 1
s ;ZW H By, DI (Xsi = 0) = p(ols)|

o

¥y :%i(k)izi(url)k:z X v

nzk,; 0 EjE=r3 o\ )3 n2t 3 n -3k
Now, denote by B(o|s) = >, 27%379® A, (o|s) oy, so that W, ; = 3° B(o|s)(I (Xs; = 0) — p(ols)). Then
’ WEW,) H
== 52 5 B ols) - Cov (s = 00,105 = 0) - BG@l9 ‘
_ % S S B¥ols) - Cov(I (Xg1 = 0), I(Xs, = 0))) - B(0/]s)
<% ESJ%ZP(OIS)B*(OIS) - B(ols) ‘ = %IITII- )

In the last inequality we used that

COV(s)o,o’ := Cov(I (Xs,l = 0), I(Xs,l = /)) = P(0|5)5o,o’ - P(Ols) . P(OIIS)

which implies the following inequality between 2¢ x 2% matrices: Cov(s) < p(s) where p(s) is the diagonal
matrix with elements p(8)o,0r = p(0[8)8o,0-
By expressing B (o[s) in terms of o}, as above, we get

1
=TIl =
n

Ap(ols) Ay (ols)
= 2k3d®) k3d®) b

Before giving the upper bound we introduce some combinatorial notations which will be used below. Let

b € {x, y, z, I} Fandrecall that Ey, := {i : b; = I} C {l,...,k}. Wesay that b agrees with a setting s if b; = s;for
all j € Ey. Inthis case b is completely determined by the set Ey,, for a fixed s. This fact will be used to replace the
sums over b and b’ with those over Ej, and E} in T. Indeed since Ay, (o|s) is proportional to ng B, 0p, s> the sums
over b and b’ in T'are restricted to sequences which agree with s. We denote by

Ey N Ey == (Ep \Ep) U (Ep \ Ep) and Ep M Epy the symmetric difference and respectively the intersection of E,
and Ey'. With these notations we have

Ap(0l$)Ap (ols)opor = ] 0/
jGEbAEb/

where g = g(s, Ep, AEy) is the sequence with Eg = (Ep AEy)¢, and it agrees with s. With these notations we
have
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In the last expression we rewrite the sum over settings s as a double sum over § and §° where § is the restriction of
s to Ep AEy, and §° is the restriction to (E, AEy,/)*. Note that g(s, Ep AEy) depends on s only through the
component §. Then

I1 i IT 0j
j€ Ep AEp! 7 j€ Ep AEy J
§ : § p(ols )7,( By AEy| (8 EpAEy) = § § § p(ols )7,c B by |78 EAE)

= Pes By Ay ) TeGEAE,) = > Y. Tr(pog)og
s g:Eg=(EpAEy)*

In the second equality we have used formulas (2.3) and (2.6) in the paper [3], to evaluate the interior sum as a
Fourier coefficient of p. In the third equality we replaced the sum over § with an equivalent sum over sequences
g such that E; = (Ep AEy ).

Note that any pair (E, E’) is uniquely determined by three disjoint subsets, (E\ E’, E'\E, E (N E’), or
equivalently by the symmetric difference D := EAE' together with F := E\E' C Dand M := E () E’. The sum
over E, E'in (2) is computed by summing over all triples D, F, M satisfying the above conditions:

k- IEAE]
22k Z [EITE] > Tr(pog)og
'3 g:E=(EAE')¢

3k7|D|
ZZkZZ > FIE] > Tr(pog)o
g:Eg=D°

D FCD M:MND=g

3k7|D|
2. 31Dl +2(M] D Tr(pog)ag
giEg—D*

M:MND=o

= sz

Indeed, the sum over F C D gives a factor 2/P! since the summands do not depend on F. Next, the sum over M is
performed by summing over the size m = |M|and the binomial coefficient represents the number of sets M of a
given size.

- s (F
i B

k — |D|) 3k 1Pl
)3|D|+2m Z Tr(pag)ag

4 9 9

g:Eg=D°
5\k 1\/P!
(2 Sz) 5 e
D g:Eg=D
5 k
- (g) 2Dk (). 3)

The final sum goes over subsets D and over sequences g such that Eg = D¢, and is similar to the Fourier
decomposition of p except that each terms is weighted by the factor 57P1. In fact, a closer inspection shows that
the weighted sum is nothing but the output state of a product of depolarising channels acting in parallel in the
state p, where an individual depolarising channel is defined by

1 1 T, 1, T,
D: 5(1 + 1o + 7y 0y + o) — E(I + ng'x + gygy + ;ZO'Z).

For an arbitrary quantum channel 7', let v, (T) := sup Tr(T (T)P)!/? beits p-norm, where the supremum is
taken over all input states 7; in particular for p — oo this becomes the 00-norm v (T') := sup, || T (7)||. For the
depolarising channel D defined above, the 00-norm can be computed easily by applying the channel to an
arbitrary pure state and is equal to v, (D) = 3/5. Moreover, it is known [5] that the depolarising channel has
multiplicative p-norm, i.e. v, (D®F) = Vp (D)X, which implies that || D®*(p)|| < (3/5). Together with (3) this
gives upper bound
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1 1(5)" 3\ 3k 3k
Lo<a3) 23 - - 0
n n\6 5 n-3 N

Putting together (1) and (4) we obtain

3k
||Z ZE(W:;VVS,I)” < n 3k = W.
s 1 .

We apply now the matrix Bernstein inequality in proposition 2 to get, forany ¢ > 0:

(1 n-t?/2
PR = pll = 1) < ZkHGXP(W .

We choose t > 0 such that

42
2k+1exp _n—t/z < &,
1+ t-(2/3)kt1

which leads, for n large enough, to t = v, (¢) such that

4.3k (2k+]
v (e)? = log| —|.
= 4 (2]
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Abstract

The estimation of high dimensional quantum states is an important statistical problem arising in current
quantum technology applications. A key example is the tomography of multiple ions states, employed in
the validation of state preparation in ion trap experiments (Héftner ef al 2005 Nature 438 643). Since full
tomography becomes unfeasible even for a small number of ions, there is a need to investigate lower
dimensional statistical models which capture prior information about the state, and to devise estimation
methods tailored to such models. In this paper we propose several new methods aimed at the efficient
estimation of low rank states and analyse their performance for multiple ions tomography. All methods
consist in first computing the least squares estimator, followed by its truncation to an appropriately
chosen smaller rank. The latter is done by setting eigenvalues below a certain ‘noise level’ to zero, while
keeping the rest unchanged, or normalizing them appropriately. We show that (up to logarithmic factors
in the space dimension) the mean square error of the resulting estimators scalesas r - d/N where ris the
rank, d = 2K is the dimension of the Hilbert space, and N is the number of quantum samples.
Furthermore we establish a lower bound for the asymptotic minimax risk which shows that the above
scaling is optimal. The performance of the estimators is analysed in an extensive simulations study, with
emphasis on the dependence on the state rank, and the number of measurement repetitions. We find
that all estimators perform significantly better than the least squares, with the ‘physical estimator’ (which
is abona fide density matrix) slightly outperforming the other estimators.

1. Introduction

Recent years have witnessed significant developments at the overlap between quantum theory and statistics:
from new state estimation (or tomography) methods [2—8], design of experiments [9—11], quantum process and
detector tomography [12, 13] construction of confidence regions (error bars) [14—16], quantum tests [17, 18]
entanglement estimation [19], asymptotic theory [20-23]. The importance of quantum state tomography, and
the challenges raised by the estimation of high dimensional systems were highlighted by the landmark
experiment [ 1] where entangled states of up to eight ions were created and fully characterized. However, as full
quantum state tomography of large systems becomes unfeasible [24], there is significant interest in identifying
physically relevant, lower dimensional models, and in devising efficient model selection and estimation methods
in such setups [7, 8, 25-28]. In this paper we reconsider the multiple ions tomography (MIT) problem by
proposing and analysing several new methods for estimating low rank states in a statistically efficient way. We
emphasize that, while the theoretical and simulations results are specific to the ion tomography setup, the
general methods based on combining linear (least squares) estimation with spectral thresholding (or eigenvalues
truncation) can be applied to any informationally complete tomography scenario. Below, we briefly review the
MIT setup, after which we proceed with presenting the key ideas and results of the paper.

In MIT [1], the goal is to statistically reconstruct the joint state of k ions (modelled as two-level systems), from
counts data generated by performing a large number of measurements on identically prepared systems. The
unknown state pisad x d density matrix (complex, positive trace-one matrix) where d = 2* is the dimension of

© 2015 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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Figure 1. Eigenvalues of the LSE (red) arranged in decreasing order, versus those of the true state of k = 4ions of rank r = 2 (blue), for
n = 20 measurement repetitions (left) and n = 100 measurement repetitions (right).

the Hilbert space of k ions. The experimenter can measure an arbitrary Pauli observable o, o, or o, of each ion,
simultaneously on all k ions. Thus, each measurement setting is labelled by a sequence s = (s; ..., s¢) € {x, y, z} ¥
out of 3 possible choices. The measurement produces an outcome 0 = (0 ,...,0x) € {+1, —1} % whose
probability is equal to the corresponding diagonal element of p with respect to the orthonormal basis (ONB)
determined by the measurement setting s. The measurement procedure and statistical model can be summarized as
follows. For each setting s the experimenter performs # repeated measurements and collects the counts of different
outcomes N (o|s), so that the total number of quantum samples usedis N := n x 3k, The resulting dataset is a

2k x 3k table whose columns are independent and contain all the counts in a given setting. A commonly used [1]
estimation method is maximum likelihood (ML) which selects the state for which the probability of the observed data
is the highest among all states. However, while this method seems to perform well in practice, and has efficient
numerical implementations [29], it does not provide confidence intervals (error bars) for finite samples, and it has
been criticized for its tendency to produce rank-deficientstates [2].

The goal of this paper is to find alternative estimators which can be efficiently computed, and work well for
low rank states. The reason for focusing on low rank states is that they form a realistic model for physical states
created in the lab, where experimentalists often aim at preparing a pure (rank-one) state. While this is generally
difficult, the realized states tend to have rapidly decaying eigenvalues, so that they can be well approximated by
low rank states. Our strategy is to combine an easy but ‘noisy’ estimation method—the least square estimator
(LSE)—with an appropriate spectral truncation (tuned using available data only) which involves setting certain
eigenvalues of the LSE to zero, while possibly adjusting the remaining ones. It turns out that this can lead to
significant reduction of the mean square error (MSE) of the estimator. We discuss some of the key results on the
LSE and the proposed truncation estimators below.

The LSE ﬁrgls) is obtained by inverting the linear map A : p — P, between the state and the probability
distribution of the data, where the unknown probabilities are replaced by the empirical (observed) frequencies of
the measurement data. The resulting estimator is unbiased, and is ‘optimal’ in the sense that it minimizes the
prediction error, i.e. the euclidian distance between the empirical frequencies and the predicted probabilities.
However, one of the disadvantages of the LSE is that it does not take into account the physical properties of the
state, 1.e. its positivity and trace-one property. More importantly, as we explain below, the LSE has a relatively large
estimation error for the class of low rank states, and performs well only on very mixed states. This is illustrated in
figure 1 where the eigenvalues of f),sls) are plotted (in decreasing order) against those of the true state p, the latter
being chosen to have rank r = 2. We see that while the non-zero eigenvalues of p are estimated reasonably well, the
LSE is poor in estimating the zero-eigenvalues, and as consequence, it has a large estimation variance.

Our goal is to design more precise estimators, which have the LSE as a starting point, but take into account
the ‘sparsity’ properties of the unknown state. Figure 1 suggests that the non-zero eigenvalues of the LSE which
are below a certain ‘statistical threshold’, can be considered as statistical noise and may be set to zero in order to
improve the estimation error. To find this noise level, we establish a concentration inequality (see proposition 1)
which shows that the operator-norm error ||ﬁ515) — p|[*is upper bounded by a rate /2 which (up to logarithmic
factors in d) is proportional to d/N.

The first estimator we propose, is a rank penalized one obtained by diagonalizing the LSE, arranging its
eigenvalues in decreasing order of their absolute values, and setting to zero all those eigenvalues whose absolute

2
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values are below the threshold v

A(ls)

Xﬁf

HM&

The same outcome can be obtained as solution of the following penalized estimation problem: amongall
selfadjoint matrices, choose the one that is close to the LSE but in the same time it has low rank, so that it
minimizes over 7 the norm-two (also known as Frobenius norm) distance squared, penalized by the rank

D(r) =7 = Pl + v? - rank(r).

In particular the estimator’s rank is determined by the data. In theorem 1 we show that if p is of unknown rank

r < d, then the MSE E||p®*™ — p|[3 is upper-bounded (up to logarithmic factors) by the rate (r - d)/N. This
captures the expected optimal dependence on the number of parameters for a state of rank r. Indeed, in section 5
we show that no estimator can improve the above rate for all states of rank r, see theorem 3 for the asymptotic
minimax lower bound.

The penalized estimator has however the drawback that it may not represent a physical state. To remedy this,
and further improve its statistical accuracy, we propose a physical estimator which is the solution of the following
optimization problem. We seek the density matrix which is closest to the LSE A(ls), and whose non-zero eigenvalues
are larger that the threshold 4v. It turns out that the solution can be found via a simple iterative algorithm whereby
at each step the eigevalues of ﬁrfls) below the threshold are set to zero, and the remaining eigenvalues are normalized
by shifting with a common constant, while the eigenvectors are not changed throughout the process. In theorem 2
we show that the physical estimator satisfies a similar upper bound to the penalized one.

In section 6 we present results of extensive numerical investigations of the two proposed estimators. In
addition we consider the oracle ‘estimator’ and the cross-validated estimator ﬁ}gcv) (see next paragraph for a brief
explanation of the cross-validation method). The oracle estimator is simply the spectral truncation of the LSE that
is closest to the true state p, and is obtained by setting to zero a number of eigenvalues with small magnitude. Itis
nota proper estimator since it uses the true unknown density matrix p, but itis very useful as a benchmark. The
cross-validated estimator is also a spectral truncation of the LSE which aims to find the optimal truncation rank
(i.e. rank of the truncated estimator) by minimizing an estimate of the norm-two square error over all ranks.

Cross-validation is a widely used collection of procedures for model validation and selection [30] which
involve splitting the data into different (independent) batches, some of which are used for estimation while the
others are used for testing the model. We found that cross-validation can help in better tuning the constant
factor of the threshold rate of the penalized and physical estimators. As expected from the theoretical results, we
find that all estimators perform significantly better than the LSE on low rank states; moreover the physical
estimator has slightly smaller estimation error than the others, including the oracle estimator. We also find that
all methods converge to the correct rank in the limit of large number of repetitions but through different routes:
the penalized estimator tends to underestimate, while the physical one tends to overestimate the rank, for small
number of samples.

Having discussed the upper bounds on the estimators’ MSE, we would like to know how they compare with
the best possible estimation procedure. For each estimation procedure p, one can consider its maximum MSE
over the class S , of rank r states

Rinax (ﬁ;ﬂ r) = sup E,[|p, — pllz-
PESu,r
Its minimum over all estimators is called the minimax risk Ryinmayx (7, 7). Asymptotic statistics theory [31]
shows that the limiting value of the minimax risk rescaled by the number of samples N = n - 3, satisfies the
following lower bound

lim inf NRuinmax (> 1) > sup Tr(I (p)'G( p)).
=00 PESa,r
The left side is the asymptotic minimax risk while on the right side I (p) is the Fisher information corresponding
to all measurement settings taken together, and G (p) is a positive matrix describing the quadratic approximation
of the norm-two (Frobenius) distance squared, around p. In theorem 3 we show that the above lower bound is
further bounded from below by 2r (d — r) which shows that (up to logarithmic factors) the upper bounds of the
penalized and physical estimators have the same scaling as the asymptotic minimax risk.

Recently, a number of papers discussed related aspects of quantum tomography problems. The idea of the
penalized estimator has been proposed in [8], which provided a weaker upper bound for its MSE. Here we
improve on the MSE upper bounds, provide minimax lower bounds, and propose and analyse new classes of
estimators, e.g. a ‘physical’ estimator with improved estimation performance. Reference [7] analyses model
selection methods for finite rank models and ML estimation. Reference [32] proposes a different estimator and
establishes a comparable upper bound for its MSE. The class of low rank states is also employed in compressed
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sensing quantum tomography [25, 28, 33], but their statistical model is based on expectations of Pauli
observables rather than measurement counts.

The paper is organized as follows. In section 2 we describe the measurement procedure and introduce the
statistical model of MIT. In section 3 we define the linear (least squares) estimator and derive an upper bound on
its operator norm error which improves on a previous bound of [8]. In section 4 we define the penalized and
threshold estimators and derive upper bounds for their MSEs with respect to the norm-two (Frobenius) distance
squared. The performance of the different methods is analysed in section 6. An asymptotic lower bound for the
minimax risk is derived in section 5, based on the Fisher information of the measurement data. The upper and
lower bounds match in the scaling with the number of parameters and number of total measurements, up to a
logarithmic factor. We give a detailed description of the numerical implementation of the algorithms, including
the cross-validation routines used for tuning the pre-factor of the penalty and threshold constants. We illustrate
the simulation results with box plots of the MSEs for the least squares, oracle, cross-validation, penalization and
threshold estimator, for states of ranks 1, 2, 6 and 10, and for different choices of measurement repetitions
n = 20, 100. Additionally, we plot the empirical distribution of the chosen rank for different estimators,
showing the concentration on the true rank as the number of repetitions increases.

2. Multiple ions tomography

This paper deals with the problem of estimating the joint quantum state of k two-dimensional systems (qubits),
as encountered in ion trap quantum tomography [1]. The two-dimensional system is determined by two energy
levels of an ion, while the remaining levels can be ignored as they remain unpopulated during the experiment.
The joint Hilbert space of the ions is therefore the tensor product (C?)®* =~ C¢ where d = 2*, and the stateisa
density matrix p on this space, i.e. a positive d X d matrix of trace one.

Our statistical model is derived from standard ion trap measurement procedures, and takes into account the
specific statistical uncertainty due to finite number of measurement repetitions. We consider that for each
individual qubit, the experimenter can measure one of the three Pauli observables oy, 0y, 0,. A measurement
set-up is then defined by a settings = (s;,...,5x) € Sk = {x, y, z} * which specifies which of the three Pauli
observables is measured for each ion. For each fixed setting, the measurement produces random outcomes
0 € O = {+1, —1}Fwith probability

p,(ols) = Tr(pPg) = (es|plesy, 2.1
where P; are the one-dimensional projections
Py =le,) (e, | @ ... @ legk) e,k (2.2)

and |e;) are the eigenvectors of the Pauli matrices, i.e. o; [el) = +£ |e}).

The measurement procedure consists of choosing a setting s, and performing n repeated measurements in
that setting, on identically prepared systems in state p. This provides information about the diagonal elements of
pwith respect to the chosen measurement basis, i.e. the probabilities p,(ols).In order to identify the other
elements, the procedure is then repeated for all 3% possible settings.

Before describing the statistical model of the measurement counts data, we start by discussing in more detail
the relation between the unknown parameter p and the probabilities p (o|s). Consider the ‘extended’ set of Pauli
operators {0, 0y, 03, 07 := 1} which form abasisin M (C?).We construct the tensor product basis in M (C%)

with elements op, = 03, ® ... ® oy, whereb € {x, y, z, I} k and note that the following orthogonality relations
hold Tr(oy0.) = ddp,. The state p can be expanded in this basis as

p= Z Pb0bs where py, = Tr(poyp)/d. (2.3)
be{I,x,y,z}"

Equation (2.1) can then be written as
p,(ols) = Z Pb Tr(Uij) = Z PrAp(0]s).
be {Ix,y,2}F be {Ix,y,2}F
The coefficients Ay, (o[s) can be computed explicitly as
Ap (0]s) = Tr(o—.,P;) =TI o 6b.s (2.4)
jZEp
where Ey, := {i : b; = I}.Letp € C* be the representation of p as a the vector of coefficients py, and let P, be

the corresponding vector of probabilities for all settings (pp (o]s) : (o, s) € O X Sk), with settings, and
outcomes within settings ordered in lexicographical order. The measurement is then described by the linear
map A : C¥ — € ® C? with matrix elements Ay (o) = Ap (0[s) defined in (2.4), such that

4
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p, = Ap. (2.5)
Thelinear map A is injective and we solve the previous equation via the optimization problem:

p = arg inf [Ip — A7|F,
FeC*

which comes down to multiplying equation (2.5) by the Moore—Penrose pseudoinverse of A and gives
p=(&- A A p,- The following lemma has appeared in [8] but for completeness we include its proof in
appendix A.1.

Lemma 1. Let A be the linear map defined in equation (2.5). Then A* - A is diagonal and its elements are

[A* . A]b v 2k3d®) s v, forall b € (I, x, y, 2}k,

where d (b) == |Ey | is the number of I’s in the sequence b.

From the decomposition (2.3) and lemma 1 we find
p= Zzzpp (Ol ) k d(b) ZPbUb (2.6)

The above formula allows to reconstruct the matrix elements from the measurement probabilities. However,
since the experiment only provides random counts from these probabilities, we need to construct a statistical
model for the measurement data. After n repetitions of the measurement with setting s, we collect independent,
identically distributed observations Xj; € O, forifrom 1 to n. The data can be summarized by the set of
counts {N (o|s) : 0 € O}, where N (o|s) = Zi 8,0 is the number of times that outcome 0 has occurred.
After repeating this for each setting s € Sy, we collect all the data in the counts data-
set D := {N (0]s): (0, s) € O x S}.

Since successive preparation-measurement cycles are independent of each other, the probability of a given
set of counts N (o|s) (obtained by repeating # times the measurement in setting s) is a multinomial distribution,

and the probability of a certain dataset D is the product of such multinomials over the different settings:

H p,(ols)N I (2.7)

P,(D) = ({N(o|s) (0, 8) € O x Sk}) ]‘[ '

H N ( s)!
The statistical problem is to estimate the state p from the measurement data summarized by the counts dataset
D. The most commonly used estimation method is ML. The ML estimator is defined by

ﬁ}gml) (D) := arg max B,(D),
o

where the maximum is taken over all density matrices T on C%, and can be computed by using standard
maximization routines, or the iterative algorithms proposed in [29, 34]. However, ML becomes impractical for
about k = 10ions, and the iterative algorithm has the drawback that it cannot be adapted to models where prior
information about the state is encoded in a lower dimensional parametrization of the relevant density matrices,
e.g. when the states are low rank. In the next section we discuss an alternative method, the LSE, and derive an
upper bound on its MSE. After this, we will show that by ‘post-processing’ the LSE using penalization and
thresholding methods, its performance can be considerably improved when the unknown state has low rank.

3. The LSE

Recall that the vectorized version p of the state p satisfies (2.5), it is therefore the solution of the optimization
p = arg inf [|p — A7|?,
rect
giving p = Zb Py - Obin (2.6). If the number of repetitions 7 is large compared with the dimension d, then the
outcomes’ empirical frequencies are good approximations of the corresponding probabilities, i.e.

f (o]s) := N (o|s)/n — p(o]|s) by the law of large numbers. Therefore, by replacing p by the vector of
frequencies f in in the previous display, we can define the linear estimator also known as the LSE of p

P = arg inf ||f — AF|?,
rech

which has the explicit expression
Ap (o] S)

A(1s>_ Zzzf( [s) 22 = d(b) 3.1
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Note that in this case it comes down to replacing the unknown probability p in equation (2.6) with the empirical
frequencies f (also known as the plug-in method).

In spite of this ‘optimality’ property and its computationally efficiency, the LSE has the disadvantage that in
general it is not a state, i.e. it is not trace-one and may have negative eigenvalues. A more serious disadvantage is
that its risk—measured for instance by the MSE E (| ﬁrgls) — pl5)—is large compared with other estimators such
as the ML estimator. This is due to the fact that the LSE does not use the physical properties of the unknown
parameter p, that is positivity and trace-one. As we will see below, the modified estimators proposed in section 4
outperform the LSE while adding only a small amount of computational complexity. Moreover, the second
estimator will be a density matrix.

In the remainder of this section we provide concentration bounds on the square error of the LSE, which will

later be used in obtaining the upper bounds of the improved estimators. The following proposition improves the
rate k (4/3)/n obtained in [8] to k (2/3) /n.

Proposition 1. Let ﬁyfls) be the LSE of p. Then, for any ¢ > 0 small enough the following operator norm inequality
holds with probability larger than 1 — € under IP,

12% = pll < v (o),

2_3(2)"1 20\ _ 24, (E)
v () n\3 o8 € N o8 €

with N := n - 3% the total number of measurements. The same bound holds when k = k (n) aslongasv (¢) — 0.

where

Proof. See appendix A.2.

As a side remark we note that projecting the LSE onto the space of Hermitian matrices with trace 1, does not
change the rate of convergence from proposition 1. The following proposition allows us to assume that, without
loss of generality, the LSE has also trace 1.

Proposition 2. Under the notation and assumptions in proposition 1, let

o = arg min |17 — oV 3. (2)

n
T:itr(7)=1

Then with probability larger than 1 — € we have ||p™™ — p|| < 2v (o).

n

Proof. See appendix A.3.

4. Rank-penalized and threshold projection estimator

In this section we investigate two ways to improve the LSEs. The first method is to project the LSE onto the space
of finite rank Hermitian matrices of an appropriate rank. We prove upper bounds for its risk with respect to the
norm-two (Frobenius) distance squared. Building on the knowledge about the rank-penalized estimator, we
define the second estimator which is the projection of the LSE on the space of physical states whose eigenvalues
are larger than a certain positive noise threshold. We give an simple and fast algorithm producing a proper
density matrix from the data, which also inherits the good theoretical properties of the rank-penalized estimator.

4.1. Rank-penalized estimator
We introduce here the rank-penalized nonlinear estimator, which can be computed from the LSE by truncation
to an appropriately chosen rank.

As noted earlier, while the LSE is unbiased, it has a large variance due to the fact that it does not take into
account the physical constraints encoded in the unknown parameter p. A possible remedy is to ‘project’ the LSE
onto the space of physical states, i.e. positive, trace-one matrices. This method will be discussed in the following
subsection. Another improvement can be obtained by taking into account the ‘sparsity’ properties of the
unknown state. For instance, in many experimental situations the goal is to create a particular low rank, or even
pure state. The fact that such states can be characterized with a smaller number of parameters than a general
density matrix, has two important consequences. Firstly, they can be estimated by measuring an
‘informationally incomplete’ set of observables, as demonstrated in [25, 26]. Secondly, the prior information can
be used to design estimators with reduced estimation error compared with generic methods which do not take
into account the structure of the state. Roughly speaking, this is because each unknown parameter brings its own
contribution to the overall error of the estimator.
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Figure 2. The norm-two square error || 9, (k) — p|3 of the truncated LSE as a function of rank, for a rank 6 state, k = 4 (d = 16) and
n = 500 measurement repetitions.

However, the downside of working with alower dimensional model is that it contains built-in assumptions
which may not be satisfied by the true (unknown) physical state. Preparing a pure state is strictly speaking rarely
achievable due to various experimental imperfections, so using a pure state statistical model is in fact an
oversimplification and can lead to erroneous conclusions about the true state. On the other hand, one can argue
that when the (small) experimental noises are taken into account, the actual state is ‘effectively’ low rank, i.e. it
has a small number of significant eigenvalues and a large number of eigenvalues which are so close to zero that
they cannot be distinguished from it. Then, the interesting question is how to decide on where to make the cut-
off between statistically relevant eigenvalues and pure statistical noise. This is a common problem in statistics
which is closely related to that of model selection [30]. Below we describe the rank-penalized estimator
addressing this problem, and show that its theoretical and practical performance is superior to the LSE, and is
close to what one would expect from an optimal estimator. In addition, its computation requires only the
diagonalization of the LSE.

Before presenting a simple algorithm for computing the estimator, we briefly discuss the idea behind its
definition. Let

A

d
Pl = ZX 1) ( (4.1)

Be the spectral decomposition of the LSE, with eigenvalues ordered such that | N | > ... > | N |. For each given
rank k € {1,...,d} we can project ﬁ’ﬁls) onto the space of matrices of rank x by computing the matrix which is the
closest to ﬁ( ) with respect to the norm-two distance

pu(r) = argmin | — 7|3

Tirank(T)=kK
Although the projection is not a linear operator, p, () is easy to compute, and is obtained by truncating the
spectral decomposition (4.1) to the most significant  eigenvalues

K
D) = S Nil ) (¢,
i=1
The question is now how to choose the rank « in order to obtain a good estimator. In figure 2 we illustrate the
dependence of the norm-two square error e (k) := ||p, (k) — p|fj on the rank, for a particular dataset generated
with arank 6, 4-ions state. As the rank is increased starting with x = 1 (pure states), the error decreases steeply
as p, (k) becomes less biased, it reaches a minimum close to the true rank, and increases slowly as added
parameters increase the variance of the estimator. However, since the state p is unknown, the norm-two error
and optimal rank for which the minimum is achieved, are unknown. To go around this, we can estimate the
error e (k) from the data by means of e.g. cross-validation, as it will be described in section 6. However, in this
section we follow a different path, and we define the rank-penalized estimator [8, 35] as the minimizer over x of
the following expression:

d
- ~(0s) |12 N
1, (5) = PO + 2 k= 3 N +1v2 &,
i=k+1
where vis a constant which will be tuned appropriately. The first term quantifies the fit of the truncated
estimator with respect to the LSE, while the second term is a penalty which increases with the complexity of the
model, i.e. the rank. The rank penalized estimator ﬁ(Pen) is thus the solution of the simple optimization problem

7
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d

plPem = ﬁn(/?;), where R = arg min{ > /\,»2 + 2. n} = max{ K )\j > 1/2}. (4.2)
k=1,..., d i=k+1

This means that the eigenvalues below a certain noise threshold are set to zero while those above the threshold

remain unchanged. The following theorem is our first main result, and shows that the appropriate threshold is

given by the upper bound on the operator norm error of the LSE, as established in proposition 1.

Theorem 1. Let 0 > 0 bean arbitrary constant, let c(0) := 1 + 2/0,andlet ¢ > 0 bea small parameter. Then
with probability larger than 1 — ¢, we have

1A% — | < min d{czw) SIX () + ZC(Q)V(E)ZK}, (4.3)

r=1,..., >k

where ﬁ;pen) is the penalized estimator defined in (4.2) with threshold v (€)? given by

2(2Y 2k+1 2d . 2d
v(e)? === log| =—— | = = log =,
© n(3) g( € ) N & €

which is assumed to be o(1) with increasing n and k.

Proof. The upper bound follows directly from proposition 1 combined with the following oracle inequality
established in [8],

[p®™ — pl3 < min {&(9) min  ||R — p|[5 + 2¢(0) - & - 1/(5)2,}
k=1,....,d R:rank(R)=k

which holds true provided that (1 + 6)||p{"® — p|P < v(¢)?. This event occurs with probability larger
thanl — €. O

Let us make some explanatory remarks on the above result. Firstly, the bound (4.3) applies to all states p, not
only ‘small’ rank ones. Recall that S; , denotes the set of states of rank-r states on C¢. In the special case when
rank(p) = r < d, the theorem implies that, with probability larger than1 — ¢,

[p% — pl < 2¢(0) - 7 - v (o)

If the rank r is much smaller than d, this bound is a significant improvement to the corresponding upper bound
d - v (g)? for the LSE, which can be derived by combining the operator norm bound of proposition 1 and the
matrix norms inequality || 7][3 < d||7|]?, for 7 € M (C). Moreover, up to a constant factor the rate v (¢)? is
equalto d - r log(d)/N which is essentially the ratio of the number of parameters and total number of
measurements. In section 5 we will show that apart from the log factor this rate is also optimal, and cannot be
improved even if the rank of the state is known, which indicates that the estimator adapts to the complexity of the
true parameter. Furthermore, we stress the fact that the bound (4.3) holds true for growing dimension d = 2* as
well as the number of measurements #; the bound remains meaningful as far as d log d/N — 0.

The second observation is that our procedure selects the true rank consistently. Denote by 4 the rank of the
resulting estimator ﬁ’fpe“). Following [8] we can prove that, if there exists some « such that

Ae(p) > (1 4+ 6)Jv(e)and A, 1(p) < (1 — &) /v (e) forsome § € (0, 1), then
P(h=r)=1-P(|2% - ol > 6{v ).

This stresses the fact that the procedure detects the eigenvalues above a threshold related to the error of the LSE.
Ifthe true rank of pis rand if k and n are such that v tends to 0 (which always occurs for fixed number of ions k),
then A\, > v asymptotically and the probability that & = r tendsto 1.

We can also project ﬁ}ipen) on the matrices with trace 1, to get

P — aro min ||[R — PP |2, 4.4
P, g min [ (2 (4.4)

where S is the set of all density matrices on C?. The following corollary shows that the key properties of the
estimator are preserved if we additionally normalize it to trace-one after thresholding.

Corollary 1. Under the notation and assumptions of theorem 1 if p is an arbitrary state in S, , and if k and n are such
that A\, > v (g) forsome e € (0, 1), then, with probability larger than1 — ¢,

PP — pl3 < 8c(B) - - v(e)
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Moreover, there exists an absolute constant C > 0 such that

N rd 2d
sup £, 170"~ plf < ' tog (21
PESar N €

Proof. See appendix A.4. O

4.2. Physical threshold estimator

Although the rank-penalized estimator performs well in terms of its risk, it is not necessarily positive and trace-
one and therefore it may not represent a physical state. In this section we propose and analyse the following
‘physical estimator’

~

PP = arg min |lo — 2|3, (4.5)
oeSwv)

where ﬁ}?s) is the ‘normalized LSE’ defined in (3.2), and S(v) denotes the set of states at noise level v
S) = { o density matrix with eigenvalues \; € {0} | J (4v, 1], =1, ..., d}.

In particular, the space of all density matrices correspond to v = 0 and is denoted S. The estimator ﬁf’ bys) js
therefore the physical state which is closest to the (normalized) LSE, and whose non-zero eigenvalues are above
the threshold4v.

Before analysing the performance of the estimator, we describe its numerical implementation through the
following simple iterative algorithm.

Let N > ... > )\;denote the eigenvalues of ,5,515). Let £ = 0, and define Xj(o) = X]- forj=1,..,d.

For# =1, ...,d,do

@D

if \j_,. > 4v,STOP;

~(
else, put )\d(,)fﬂ = O0and

d—¢

RO 3¢ dif[l - zx,:f-“), forj = 1 o d — £
k=1

=7+ 1.

The algorithm checks whether the smallest eigenvalue is larger than the noise level 4 and if it is not, then
sets its value to 0 and distributes the mass of the erased eigenvalue in such a way that they sum to 1. This
algorithm is similar to that proposed by Smolin et al [4], with the important difference that we do not keep all
positive eigenvalues but only significantly positive eigenvalues. Here, significant means larger than the noise
threshold of the order of the operator-norm error of the LSE. The reason for keeping only eigenvalues above the
threshold is similar to the case of the penalized estimator. By proposition 1, eigenvalues below the threshold are
of the order of the estimation error v (¢). Therefore, if the state is low rank, such eigenvalues are likely to
correspond to zero eigenvalues of the true state and keeping them unchanged would induce significant statistical
noise.

If the total number of iterationsis # = d — 7 then the estimator ﬁ}gphys) has rank 7. Its eigenvalues are equal
to0for j > 7, while, for j < 7 theyare given by

~(ph ~ L
)\j(p ™ _ A+ =, where
2

?ZZXkZI—ZXk.

k>7 k<?

o |

.. . ~ . . < (ph . ~ .
This implies that p*™* has decreasing eigenvalues and /\f( MY > 4u. The following theorem shows that pP™ is
rank-consistent and its MSE has the same scaling as that of penalized estimator ,6’?’6“).

Theorem 2. Assume that the state p has rank, i.e. belongsto S; ;. For small € > 0, let v = v (¢) be defined as in
theorem 1, and assume that A, > 8v (¢). Then, with B, probability larger than 1 — € wehave? = r and

IPE™ = pll < 48 - - v(e).

Moreover, there exists an absolute constant C > 0 such that

sup E,70 ~ ol < C1% tog 22},

PESd,r

Proof. See appendix A.5.
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5. Lower bounds for rank-constrained estimation

The goal of this section is to investigate how the convergence rates of our estimators compare with that of an
‘optimal estimator’ for the statistical model consisting of all states of rank up to r. For this we will derive a lower
bound for the maximum risk of any estimator.

In this section p, will be an arbitrary estimator and the true state p is assumed to belong to the set S . of
rank-r states. To quantify the overall performance of p,, we define the maximum risk

~ . _ ~ 2
Rmax (Pn: T’) = Ssup Ep”pn - p||2 .
PESa,

In view of the previous upper bounds, we expect its asymptotic behaviour (in terms of the total number of
measurements, for a large number of repetitions 1) to be

rd
Rmax/\n;r:_'01), N=n3k
(P r) =3 - O
Taking this into account we define the (appropriately rescaled) minimax risk as

Rininmax (1 k; n) = ll;lf NRmax(ﬁn; 1‘), 5.D
P

which describes the behaviour of the best estimator at the hardest to estimate state. The next theorem provides
an asymptotic lower bound for the minimax risk. It shows that the maximum MSE of any estimator is al least of
the order of r (d — r)/N, which for low rank states scales as #parameters/#samples, which up to logarithmic
factors is the same as the upper bounds derived in theorems 1, corollary 1, and theorem 2.

Theorem 3. The following lower bound holds for the asymptotic minimax risk holds

lim inf Rinmax (1, k3 1) > 2r(d — 1).
n—oo
Proof. The minimax risk captures the worst asymptotic behaviour of the rescaled risk, over all states of rank r. In
order to bound the risk from below, we construct a (lower dimensional) subfamily of states Rz, C S, such that
the maximum risk for this subfamily provides the lower bound. Let

(1 1
Po = Dlag(— yeeor = 0,...,0) (5.2)
T r

be a diagonal state with respect to the standard basis B (consisting of tensor products of eigenvectors of the Pauli
0, operator), and define R, to be the set of matrices obtained by rotating p, with an arbitrary unitary U, i.e.
Ra,r = {p = Up,U* | U unitary}. This is a smooth, compact manifold of dimension 2r (d — r)knownasa
(complex) Grassmannian [36]. For each point p = Up, U™ we consider the ONB By, of eigenvectors of p, which
is obtained by rotating B by the unitary U. With respect to this basis, we consider first the parametrization of an
arbitrary density matrix p’ by its matrix elements, more precisely by the diagonal, real and imaginary parts of the
off-diagonal matrix elements, such that p’ = p, with

§ = (9<d>, o), 9<i>)
= (Pn yeees Pag> R pposey Repy ) 55 Impy 55, Im pd—l,d)' (5.3)
The norm-two distance is given by
r r i i T
log, = polB = 1161 = 03P + 20167 — 3I> + 21|65} — O)P = (61— 6:) G (61 — 02),

where G is the constant diagonal weight matrix G = Diag(1y, 2 - ly@—1)/2> 2 * l4d—1y/2)- However, this
parametrization does not take into account the prior information about the rank of the true state, and moreover,
our key argument involves the even smaller family R, of states. We will now focus on providing a local
parametrization of R, around p = Up, U*. With respect to the basis By, astate p’ € R, in the
neighbourhood of p has the form

oo o ay [o(lar) 0
pl=p+Apg+6=|r + . + , (5.4)
o o B0 0 o(lIalp)

where A is a matrix of free (complex) parameters, and the two O (]| A|[?) blocks are r x rand respectively

(d — r) x (d — r)matrices whose elements scale quadratically in A near A = 0. The intuition behind this
decomposition is that a small rotation of p produces off-diagonal blocks of the size of the ‘rotation angles’ while
the change in the diagonal blocks are only quadratic in those angles. Since we are interested in the asymptotic

10
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behaviour of estimators, the local approach is justified, and the leading contribution to the norm-two
distance comes from the off-diagonal blocks. More precisely, if p;, p, € R, are in the neighbourhood of
pthen

oy = palP = 2018 = B3 + 2118 — B, + o (181, 1182]1*),

where #', 8 are the real and imaginary parts of the off-diagonal elements contained in the block A, i.e. for
i < r < j. Locally, the manifold R, can be parametrized by § := (0", 8").

Since Ry, C Sa, the maximum risk for the model consisting of rank-r states is bounded from below by that
of the (smaller) rotation model R ,

inf sup B,[|p, — pl; > inf sup B,|p, — pl3- (5.5)
Pu pESd,, Pu pE'Rd,,

Let 7 be the ‘uniform’ distribution over R ,. To draw a sample from this distribution, one can choose a
random unitary U from the Haar measure over unitaries, and defines p := Up, U*. Then the maximum risk is
bounded from below by the Bayes risk

sup B, 17, — ol > [ B,llp, = pl} 7(dp) (5.6)
PER4r Rar

By applying the van Trees inequality in [37] (see also [38]) we get that
~ 2 1 ST ! «
fR By 9, = olf 7 (dp) > — fR Tr(G(p)T ' (p) ) (dp) — = (5.7)

where o > 01is a constant which does not depend on . Here, I(p) is the (classical) Fisher information matrix of
the the data obtained by performing one measurement for each setting, and G(p) is the weight matrix
corresponding to the quadratic approximation of the norm-two distance squared, around p. Both matrices are
of dimensions 2r (d — r) = dim(R,,,), and depend on the chosen parametrization, but the trace is independent
of it. Inserting (5.6) and (5.7) into (5.5), we get

. R N ~ Ny aN
inf sup NE,|p, — olls = —f Tr(G(p)l/ZI(p) 1G(p)1/2)7'((dp) - =
P peSy, n JRa,r n

Since t+— ¢ is an operator convex function we have

~ . - ~ - - —1
f G(p)'*1(p)"'G(p)"/*m (dp) > ( f G(p) 21 (p)G(p)™/ 27r(dp))

and by taking the limit # — 00 we obtain the asymptotic minimax lower bound

liminf Ruinmax (r; k) = 3 Tr ( ( f G(p)~ ' 1(p)G(p)~/ zﬂ(dp))_l), (5.8)

n—oo

where R inmax (7, k; 1) is the minimax risk defined in equation (5.1).

At this point we choose a convenient local parametrization around an arbitrary state p € R ,. As discussed
in the beginning of the proof we showed that for this we can use the real and imaginary parts § = (6", 0') of the
off-diagonal block A, and that the corresponding weight matrix is G(p) = 2 Ly —r- Thelower bound (5.8)
becomes

Rd,r

-1
Rininmax (1 k) = 3k.2. Tr((f f(ﬂ)ﬂ(dp)) ]

Another consequence of (5.4) is that the Fisher information matrix (p) is equal to the corresponding block
of the Fisher information matrix I of the full (4>-dimensional) unconstrained model with parametrization @
defined in (5.3). We will now compute the average over states of the Fisher information with respect to the Pauli
bases measurements, by showing that it is equal to the average Fisher information at p,, for the random basis
measurement. As the different settings are measured independently, the Fisher information I(p) is (and similarly
forI)

I(p) = Y 1(pls),
sESk
where I(p|s) is the Fisher information corresponding to the von Neumann measurement with respect to the
ONB defined by setting s. More generally, with By as defined above, we denote by I(p|By ) the Fisher
information corresponding to this basis. Due to the rotation symmetry, we have

I(UpU* TBy) = I(p|B)

11
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N
[ 7@l =3 [ x@nils) = 3 [ n'@i(Up,u*|s)
:3kfu(dU)I~(p0‘BU) — 34,

where 114 (dU) is the unique Haar measure on the unitary group on C¢.

The average Fisher information matrix I (of the full, unconstrained model) is computed in section A.6
where we show that the block corresponding to § parameters has average I = 21,, (d-ry such that the lower
bound is

Rminmax(r: k) 2 zr(d - 7‘).

6. Numerical results

In this section we present the results of a simulation study which analyses the performance of the proposed
estimation methods. The penalized and physical estimators discussed in the previous sections use a theoretical
penalization and respective threshold rates proportional to 2. However in practice we found that the
performance of the estimators can be further improved when the rates are adjusted by multiplying with an
appropriate constant c—whose choice is informed by the data—from a grid over a small interval which was
chosen to be [0, 3]. The last two estimators are such versions of the theoretical ones with constant c chosen by
using cross-validation methods which are explained in detail in section 6.1. We will compare the following 5
estimators described below.

(1) The LSE p* defined in (3.1).

(2) The oracle ‘estimator’ ﬁrf"mle) defined below. This is strictly speaking not an estimator since it requires the
knowledge of the state pitself, and can be computed only in simulation studies. However, the oracleisa
useful benchmark for evaluating the performance of the other estimators.

(3) The cross-validated projection estimator ﬁf"). Here we try to find the optimal truncation rank of the LSE, by
using the cross-validation method.

(4) The cross-validated penalized estimator ﬁrfpe“’”). This is a modification of the penalized estimator ﬁrfpe“)
defined in (4.2), where the value of the penalization constant is adjusted by cross-validation.

(5) The cross-validated physical threshold estimator p(nphys’“). This is a modification of the physical estimator
ﬁrjphys) defined in (4.5), where the value of the threshold constant is adjusted by cross-validation.We explore
the estimators’ behaviour by simulating datasets from states with different ranks, and with different number
of measurement repetitions per setting. The methodology is described in detail below.

6.1. Generation of random states and simulation of datasets
In order to generate a density matrix of rank r, we first create a rank r upper triangular matrix T'in which

(i) the off-diagonal elements of the first r rows are random complex numbers,
(ii) the diagonal elements T5; ,..., T, are real, positive random numbers,

(iii) all elements oftherowsr + 1,...,d are zero.

The matrix T'is completed by setting T} such that T;; > 0,and || T|[; = 1.Ifthese conditions cannot be
satisfied we repeat the procedure by generating a new set of matrix elements for 7. When successful, we set
p = T*T which by construction is a density matrix of rank . We note that it is not our purpose to generate
matrices from a particular ‘uniform’ ensemble, but merely to have a state with reasonably random eigenvectors,
and whose r eigenvalues are not significantly smaller than 1 /r. Following this procedure we have generated 4
states of 4ions (d = 2*) withranks 1, 2, 6, 10. The rank 6 state for instance, has non-zero
eigenvalues (0.47, 0.19, 0.12, 0.11, 0.07, 0.04).

For each state, we have then simulated a number of 100 independent datasets with a given number of
repetitions chosen from the range 20, 100, 500, and 2500. In this way we can study the dependence of the MSE
of each estimator on state (or rank) and number of repetitions.

12
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6.2. Computation of estimators

We conducted the following simulation study for all the possible combinations between the states and the total
number of cycles (i.e. 4 x 4 = 16 different scenarios). Below, we denote by r the rank of the ‘true’ state p, from
which the data has been generated. The procedure has the following steps:

(1) For a given number of repetitions n, we simulate 5 independent datasets D; ,..., Ds, each with n/5 repetitions.
By simply adding the number of counts for each setting and outcome, we obtain a dataset D of n repetitions.
However, as we will see below, having 5 separate ‘smaller’ datasets is important for the purpose of applying
cross-validation. Note that such a procedure can be easily implemented in an experimental setting.

(2) We compute the LSE ﬁrgls) based on the full dataset D with total number of cycles n.
(3) We compute the oracle ‘estimator’ as follows:

(a) We compute the spectral decomposition (4.1) of ﬁfs), with the eigenvalues i arranged in decreasing
order of their absolute values. For eachrank 1 < k < d we define the truncated (least squares) matrix

D, (1) = S Nili) (il
izl

(b) We then evaluate the norm-two distance squared e (k) = ||p — 7, (%)|[> and define the oracle estimator
as the truncated estimator with minimal norm two error

ﬁéoracle) — ﬁn(ﬁo)’ Ko = arg min e (k).
K

Note that the oracle estimator relies on the knowledge of the true state p which is not available in a real data
set-up. Itis nevertheless useful as a benchmark for judging the performance of other estimators in
simulation studies. At the next point we define the cross-validation estimator which tries to find the
‘optimal’ rank k by replacing the unknown state p with the LSE computed on a separate batch of data.

(4) We compute the cross validation estimator as follows.

(a) For each j € {I,..,5} we compute the following estimators. While holding the batch D; out, we
compute the LSE ﬁ,gsjj for the dataset consisting of joining the remaining four batches together.
Similarly to the point above, we define the rank « truncation of this estimator by p,,_; (x). Wealso

compute the LSE for the remaining batch j, denoted by ﬁ}?}s)

(b) For each rank x we evaluate the ‘empirical discrepancy’

S oy S0P
pn;—](ﬁ) pn;j 5

1 5
CV(k) = EE‘
i=1

Since p,,_;(x)and ﬁr?]s) are independent, and the LSE is unbiased E(ﬁr(l_l]?)) = p, the expected value of CV (k)
is

E[CV(k)]= E,I[Tr (ﬁn;,l(n)z)] —2Tr (E,l[ﬁn;il(,ﬁ)] . E1[,5,flsl)]) n El[Tr ((@??)2)]
_ ]E_I[Tr (ﬁnﬁl(,{y)] —Tr (E_l[ﬁn;,l(n)]p) +Te(p?) + C
= B[ 1o, 1(®) = plP] + €,

where we denoted [E_; and [E; the expectation over all batches except the first, and respectively over the first
batch. Therefore, the average of CV (k) is equal to the MSE of the truncated estimator p,. (%), uptoa
constant Cwhich is independent of .

(c) Based on the above observation we use the the cross-validation method as a proxy for the oracle
estimator. Concretely, we minimize CV () with respect to

Rey = arg min CV(k),
k

and define the cross-validation estimator as the truncation to rank &, of the full data LSE ﬁfgc") = 0, (Rey).

(5) We compute the cross-validated rank-penalized estimator as follows.

13
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(a) Let ¢ be a penalization constant chosen from a suitable set of discrete values in the interval [0, 3].
Similarly to the cross-validation procedure, we hold out batch j, and we compute the rank-penalized
estimator (4.2), with penalty constant cv? for j = 1, ..., 5. We denote these estimators by ﬁ}i,pf‘j‘) ().

We will also need the LSE pg_sj) for batch j computed above.

(b) For each value of c we evaluate the empirical discrepancy

~ 19) |12
pED () — ply)

nj

1 5
cwo=§2|
i=1

.

and minimize CV (¢) with respect to the constant ¢

¢ = arg min CV(¢).

c

Finally we compute the cross-validated rank penalized estimator ﬁ;rk— ) which is defined as in (4.2), with
constant ¢v/2, on the whole dataset D.

(6) We compute the physical estimator as follows.

(a) As above we choose a constant ¢ from a grid over the interval [0, 3]. We hold out batch j, and we
compute the physical threshold estimator (4.5), using the algorithm below this equation, with
threshold ¢ - 4v. We denote the resulting estimators by f)fi‘jys)(c), forj=1, ..., 5.

(b) For each value of c we evaluate the empirical discrepancy

‘2

~(ph (1.
pEMI(e) — B

3]

1 5
CWO:§Z|
i=1

We then minimize CV (¢) with respect to the constant c.

¢ = arg min CV(c)

Finally we compute the cross-validated physical estimator ﬁéphys’c") which is defined as in (4.5), with
constant ¢ - 4v.

6.3. Simulation results

We collect here the results of the simulation study described in the previous section. As a figure of merit we focus
onthe MSE E ( g, — »l \%) of each estimator, which is estimated by averaging the square errors over the 100
independent repetitions of the procedure. We are also interested in how the different methods perform relative
to each other, and whether the selected rank is consistent, i.e. it concentrates on the rank of the true state for large
number of repetitions.

The four panels in figure 3 represent the boxplots of the square errors ||, — p|[3 for the different estimators,
and different states, when the number of repetitions is # = 20. Similarly, figure 4 shows the same boxplots at
n = 100. As expected, in both cases the least squares performs significantly worse than the other estimators, and
the discrepancy is larger for small rank states. The remaining 4 estimators have similar MSE’s with the physical
one performing slightly better than the rest, followed by the oracle. Note also that the estimators’ variances
(indicated by the size of the boxes) are larger for the least squares than the other estimators. A similar behaviour
has been observed for n = 500, 2500 repetitions.

Figure 5 illustrates the dependence of the MSE of a given estimator, as a function of #, for the four different
states which have been analysed. Since the MSE decreases as n~! we have chosen to plot the ‘renormalized’ MSE
givenby n - ||, — pl[3, which converges to a constant value for large 1. As expected the limiting value
increases with the rank of the state, as a proxy for the number of parameters to be estimated.

The histograms in figure 6 show the probability distributions for the chosen rank of each given estimator, as
a function of the number of measurement repetitions , for the state of rank 6. We note that in all cases the
proportion of times that the chosen rank is equal to the true rank of the state increases as with the number of
repetitions. However, this convergence towards a ‘rank-consistent’ estimator is rather slow, as the proportion
surpasses 80% only when n = 2500. Another observation is that the penalty and threshold estimators appear to
have different behaviours: the former tends to underestimate the true rank, while the latter tends to overestimate
it. As expected, the oracle estimator is more likely to choose the correct rank for large number of repetitions.
Perhaps slightly more surprising, for small number of repetitions (n = 20), the oracle choose a pure state in most
cases.

14
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Figure 3. Boxplots for the estimated mean square error (B||, — p|[3) for different ranks, k = 4 (d = 16), with n = 20 repetitions.

7. Conclusions and outlook

Quantum state tomography, and in particular MIT is an important enabling component of quantum
engineering experiments. Since full quantum tomography becomes unfeasible for large dimensional systems, it
is useful to identify lower dimensional models with good approximation properties for physically relevant states,
and to develop estimation methods tailored for such models. In particular, quantum states created in the lab are
often very well approximated by low rank density matrices, which are characterized by a number of parameter
which is linear rather than quadratic in the space dimension.

In this work we analysed several estimation algorithms targeted at estimating low rank states in MIT. The
procedure consists in computing the LSE, which is then diagonalized, truncated to an appropriate smaller rank
by setting eigenvalues below a ‘noise threshold’ to zero, and normalized. Among the several truncation methods
proposed, the best performing one is the ‘physical estimator’; this chooses the density matrix whose non-zero
eigenvalues are above a certain threshold and is the closest to the LSE. We proved concentration bounds and
upper bounds for the MSE of the penalized and physical estimators, as well as a lower bound for the asymptotic
minimax rate for MIT. The results show that the proposed methods have an optimal dependence on rank and
dimension, up to alogarithmic factor in dimension. In addition, the algorithms are easy to implement
numerically and their computational complexity is determined by that of the LSE.

An interesting future direction is to extend the spectral thresholding methodology to a measurement setup
where a smaller number of settings is measured, which is however sufficient to identify the unknown low rank
state. Another direction involves the construction of confidence intervals / regions for such estimators, beyond
the concentration bounds established here. Since the main ingredients are the LSE and the spectral thresholding
algorithms, the proposed estimation methods can be applied to any quantum tomography scenario with
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Figure 4. Boxplots for the estimated mean square error (E||, — p|j3) for different ranks, k = 4 (d = 16), with n = 100 repetitions.

informationally complete measurements. It would be interesting to see how these methods perform in other

settings.
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Appendix A.

A.1.Proof oflemma 1

Proof. Since the matrix elements of A are Ap, 0,5y = Ap(0]$), the product A* - A has elements

[a- Al =22 A 0l9)A, 0s).

Ifb = b itis easyto see that

* _ _ ykad(b
[4A],, =SS IT = 2900
s o jZE
Ifb = b/, wehaveeither E, = Ey or E, > Ey. On the one hand, in case the sets E, and Ey, are equal, we have

Ab(ols)Ab/(ols) = H 6Sj,b]‘ ' 65]', j/'
J#Ep
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For each s, the previous product is 0. Indeed, if different from 0 then b; = bj’ foralljnotin Ey. Asb; = b p=1

forjin Ey, itimplies that b = b which contradicts the assumption here.
On the other hand, if the sets E}, and Ey, are different, there exists at least one coordinate j, in the symmetric
difference E, AE, and the sum over outcomes 0 will split over values of 0 where 0; = 1and values where

0, = —1:
> Ap(o]s)Ay (o]s)
o
- Z 651()’171'() H 0j65j>b1 ’ H 016%}71’
0:0j,=1 J#ZEy IZEy
- Z 55j0’bio H ojésj:bi ' H Oléslabzl = 0.
o:o]-O:fl JZEp ZEEb’
We assumed here that j, belongs to Ey, \ Ey; and the same holds for jy in Ey \ Ep. O

A.2.Proof of proposition 1

Proof of proposition 1. For more clarity, in this proof we will use the notation I (a = b) = §, ;. Note that
f(o|s) = % Zi I (Xs; = o), where the random variables X ; are independent for all settings s and all i from 1 to
n. To estimate the risk of the linear estimator we write
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Y —p= ZZZ(]‘(OIS)) ~ p(ols)) 2llz(d(lb))
B ;ZZZ ;(I(Xs,i =o) - p(ols))%:’(':))gb
= ZZW;,I‘,

where W ; are independent and centred Hermitian random matrices. We will apply the following extension of
the Bernstein matrix inequality [39] due to [40], see also [32, 33].

Proposition 3. (Bernstein inequality, [40].) Let Y;, ..., Y, beindependent, centred, m x m Hermitian random
matrices. Suppose that, for some constants V, W > 0 we have||Yj|| < V, foralljfrom 1 ton, and that
||ZjE(Yj2)” < W. Then, forallt > 0

2
t

In our setup we bound || W, ;|| < V forall sandiand ||Z E(WJ;W,;)|| < W, where V, W are evaluated
below. We have
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Ap(0]s)

I < - 5| S
1 1
S ;ZW H 1(b = 5]’) ZlI(Xs,i =0) — p(ols)|

S SR I B OO

ok P2 k
”2 £=0 bid (b)=¢ n2 n2 n

|1(Xsi = o) = plols)]| - [low]

Let us denote B(ols) = ) 27k3-d®) A, (0]s) op. Then
HZZE( W )|
= —HZZZB*(OlS) Cov( ( o = o), I(XS,i = o’)) . B(o’|s)||

100

< ;HZZZB%@ - B(ols)]. (A1)

The last inequality follows from the fact that the covariance matrix can be written as the difference of two positive
matrices Cov, ¢ := Cov(I (X;; = 0), [ (X,; = 0)) = p(0]s)8e4 — p(0|s)p(d'|s) and since p(o|s) < 1, we
get Cov < 1.

We replace B(o|s) in (A.1) and use lemma 1 to get

HZZE( W)l

1
— §§ ———  Ap(0]s)Ay (o]s) - opoy
n zs:obb’22k3d(b)+d () e OISl - vy
k k
1 1(2
< — > = E: =—|Z] =w.
T2k S e f3f n2k ( ) n(3)

Apply the matrix Bernstein inequality in proposition 3 to get, forany t > 0:

2 3 k
~(s) _ >1t) < 2k+1 expl — ¢ _E(_) .
(H pH/)\ P+ 23202

We choose t > 0 such that

2 k
e = 2k+1exp _ti . ﬁ(i) ,
1+4+2t/3 2\2

12 2(2Y 2k+1 3
_— = —(—) log = —v(e).
1+ 2t/3 n\3 € 2
Then the convenient choice of tis v (¢) = v(s)/Z + \/vz (e)/2 + 3/2-wv(e),whichisequivalentto
\/3/2 - v(¢) when this last term tends to 0. O

which leads to ¢ such that

A.3.Proof of proposition 1

Proof of proposition 1. Let us denote by (N > ... > ;) the eigenvalues of | ﬁéls) landby X, ..., A4 the

eigenvalues of the resulting estimator ﬁ’?s’”). Itis easy to see that the latter has the same eigenvectors as ﬁrfls).
Therefore

(Xl, o Xd) = A;gmiril ijl()‘j _ /\j)z.

This optimization has the explicit solution
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Note that

L 1
Z=—du(p—-p™) < p® - pl|.
5 (0= 2") < 12 = pl

Therefore, |[p’>" — p®|| = L/2 < ||A(ls) p|land thus

||A(ls 1) P||< HA(ls) P” + ||A(ls M) A;SIS)H < 2v(e).

A.4.Proof of corollary 1

Proof of corollary 1. We order the eigenvalues of ,ﬁépe“) in decreasing order of absolute values

( Xl | > .. > Xd |), and denote by X ... Agthe eigenvalues of ﬁépen’”). Asin the previous proof, we can see that
both matrices will share the same eigenvectors and that the relation between the eigenvalues is

XN=X\+=, where—d*le/\
2 j=1
Thus
[P~ EnE = A2 < TR(F — p) fd < ™ ~ ol

Wededucethath _ ﬁ(pen n)HF < HA(pen) A(pen n)” 4 HA(pen) _ P”F < ZHA(pen) _ PHF
Therefore

([0 = pllr > 8c(O)rv (=) < e
and the previous inequality remains true forall 0 < e < € < 1. Let us denote by
x(e) = 8rv2(e) = 16ﬂ lo (Zed)’
which is a decreasing function of e. This implies that e = 2d exp ( — 1\172—:;)) Thus
B9 = plp = [ B(I7F = plf > x)ax

x( ) ~(pen,n) 2 o A(pen n) _ 2
= [ Bl = ol > x)ax + [ B (I = ol > x)ds
x(g)

< x(e) + oo 2d exp(f Nx )dx
x(e) 6rd
rd 2d rd N
<l1l6—1lo 2d - 16— e
N ( 5 )+ N exp( 16rdx(€))

) <ol 2)
N € N €

A.5.Proof upper bound physical estimator

Proof of theorem 2. We recall from proposition 2 that with probability larger than 1 — ¢, we have
H~(ls) — pll < 2v(e). Inparticular, by using the Weyl inequality [41], this implies that |\ — \¢| < 2v(¢) forall

kfrom 1to d, where ), ..., \;are the eigenvalues of p arranged in decreasing order. After a total of f=d—+
iterations the algorithm stops and we have [42]

3 (phys) (phys)

il ==X =0

and

~(phys) (7 ~ 1 «—~ . A

A= )\].():,\].4_72)\,< Jj= 1,7
T k>t

From now on we assume that || 5} 7% — p|| < 2v/(¢) which holds with probability larger than 1 — ¢, see corollary

3.2. Wewill show that under this assumption 7 = r. For this we consider the two cases # > rand 7 < r separately.
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Suppose 7 > r.For j < 7 wehave

< (phys)
|/\]- — )\j| =

- 1 N
)\j>‘j+7(1 E )\k]
r

k<?

= Xj—)\j—F%Z()\k_Xk)

k<?

<IN = A SR — Ml < 20+ 20 = 4w

k<?
.. . < (ph . A . .
This implies that /\;( P <\ + 4v = dusince 7 > r. However, as discussed above, by the definition of the
. < (ph .
threshold estimator, /\;( PAYS) > 4v. Therefore 7 cannot be larger than r.

~ (ph « (ph . _—
Suppose 7 < r.Then )\r(P v > A\ - |)\r(p o Ar| > 8v — 4v = 4v. However this is not possible since

< (ph . A ~ . .

)\,(P ") = 0 under the assumption 7 < r.Thus, 7 = r with probability larger than1 — ¢.

. . <~(ph
We consider now the MSE of the estimator. As shown above, we have | )\j(p o Ail < 4v.Letp = UDU*
be the diagonalization of p, where U'is unitary and D is the diagonal matrix of eigenvalues. Similarly, let

—~

p% = U,D» ﬁ: and p*PM?) = T, D ﬁ: be the decompositions of the least squares and the physical

n
threshold estimator, where we take into account that the latter two have the same eigenbasis. Then

15 — pl = | T,DFP T, — UDU*|,
<||0,D¢™ T, ~ 0,00, |, + |0,DT, — UDU*|,
<||ID®™ — D, + ||U,DU, — UDU*||, (A.2)

The first norm on the right-hand side of the previous inequality is bounded as

~(ph 2
IDE™ — DI; = Z(A;P - )\j> < 162 (A.3)

<P
For the second norm we use a similar triangle inequality for the operator norm

|0, — UDU*| < ||0,DU, — U,D®T|| + ||U,DP T — UDU¥|
=D~ DIl + Y = pll S v+ v =20

The first term is smaller than vsince | A; — Xi(ls) | < vasitfollows from proposition 1, and the Weyl inequality
[41]. The second term is also bounded by v, by proposition 1. Therefore, since U, D lA]n* and UDU* are rank r

matrices, the difference is at most rank 2r and || @Dﬁ: — UDU*||, < 2v+/2r.Byplugging this together with
(A.3)into the right side of (A.2) we get

1™ — plp < (292 + 4)'n,

with probabilitylarger than1 — e.
Moreover, the previous inequality remains trueforall 0 < e < € < 1. Letus denote by

x(e) = 48rv%(e) = 96ﬁ log(ﬁ),
N e

which is a decreasing function of e. This implies that e = 2d exp ( — Nx_(@) Thus

. 96rd
B, — ol = [ B(I7" — ol > x)ds

x () 0o
= [ B — ol > x)dxt [ B(I  pl > x)ax

o0 Nx
<x@+ [ 2 (f )dx
*(©) x(e) xp 96rd
< 96ﬂ log(ﬁ) 2d - 96ﬂ exp(—lx(s))
N 5 N 96rd
< 96ﬂ(log(g) + 5)) < CE log(ﬁ).
N e N 15
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A.6. The average Fisher information matrix for the full, unconstrained model, with random measurement
design
In this section we present a detailed calculation of the average quantum Fisher information at a the rank r state p,,
defined in (5.2), for random measurements with uniform distribution over the measurement basis. We consider
the full parametrization by € R?’ given by equation (5.3). As explained in the proof, the Fisher information
matrix for the parametrization @ of the rotation model R4, is a particular block of the larger Fisher matrix
computed here. We will come back to this at the end of the computation.

Let

By = {lo; U)="Ulo): o= 1,...,2"}

denote the ONB obtained by rotating the standard basis by the unitary U.
The Fisher info I (p|By) associated to the measurement with ONB By, is given by the matrix

1 8pp(°‘BU) app(°|BU)

I(P|BU)u,b:O:QJ((%UMP/J(O‘BU) 00, a0,

where p,(o |By) is the probability of the outcome o

pp( ‘BU) (0, Ulplo, U Zpii|<0’ Uli)|?
+2)  Re(p;)Re({ilo, U) (o, Ulj)) + 23 Im(p; )Im((ilo, U) (o, Ulj))
i<j i<j

and the partial derivatives are given by

. g:‘BU) =l{o, UI)P

Jp, (o|By ' '
M) st vy 001
op,(o|By _ .
5I(T‘%) =2 Im(<l|o, U) (o, U|]>)‘

The Fisher information matrix I (p|By ) has the following block structure

1(o[Be) 14 (o[c) 14(o[B0)
)| ) i

14(ome) 1(o[B0) 14(o|m0)

with superscripts indicating the type of parameter considered: diagonal, real or imaginary part of off-diagonal
element. The average Fisher information for a randomly chosen basis is

I(p) = fu(dU)I(p‘BU),

where 1 (dU) is the Haar measure over unitaries used for choosing the random basis. Note that by symmetry
I (p) only depends on the spectrum of p. We will not compute I (p) for an arbitrary state pbut onlyat p = p,,.
The corresponding Fisher information will be denoted I = I (p,) and is a function of d and r. Below we compute

the different blocks of I. For the matrix elements we will use a suggestive notation, e.g. I ij’;’ﬁ( denotes the element
corresponding to the diagonal parameter 6% = p;; and the real part of the off-diagonal element p, etc.
(A) Diagonal-diagonal block.

1
By) = > ——=I{o, Uli)[*|{o, UIj)I*.
( ‘ )11]] » (o|Bu)>0P,,(0‘BU)

By integrating over unitaries we obtain the corresponding matrix element of the average Fisher matrix I. Since
Py, (o|By) > 0istrue forall o, with probability one with respect to u4 (dU'), we drop the condition from the
sum. Atthe state p = p, defined in (5.2), we have
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, Uli) I2 (o, UIj)
=y [ 1O 1dv)
3] Z Zk X U|k |2 ®

(L, Uli) |2 L UE
-d dU
f S L U P p(dU)
I RI) P
=g [[DEWTIOWIT, g gy,
' f2k1|<¢|k>|2”(w

where 1% (dv) is the uniform measure over the projective space on C¢. To compute the integral we decompose

[¥) as
[Y) = qlvn) + 1 — g% |¢)

with [¢,) € H, = Span{|1),...,|r) }and |¢,) € H; normalized (orthogonal) vectors,and 0 < g < 1.The
uniform measure can be expressed as

v (dp) = m®r(dg) x yf(d¢1) X yd*r(dwz),

where m®7 (dq) is the distribution of the length of the projection of a random vector in C? onto an r-dimensional
subspace. With this notation we have

=rdff %|<w|i>|2|<w|j>|2md’f<dq>w(dwl)ud-f(dwz). (A.4)

We distinguish four sub-cases depending on whether each of the indices i, j belongsto {1,...,7}
or{r+ 1,..,d}.
Sub-case 1: i, j < r.Inthis case (A.4) becomes

= [ Tqtmtecda) x [ 101 o (a0)

—r-d f —a*m®(dg) x [ UU U5 Ui @U). (AS)

In the last line we have re-written |1);) as U | 1) in order to use the existing formulas for integrals of monomials
over the unitary group [43]. Since we will use these formulas repeatedly, we recall that

f Ui, Unj, Uf U i (dU) = 30 51'1,1';15:'2,1';251'1,]‘,_']512,1,_’2W8’(UT‘1), (A.6)
o, TES,

where o and T are permutationsin S, = {(1, 1), (2) } and Wg/( - ) is the Weingarten function over S,:

Wel(l, ) = ——,  wgl@) =

-t
2—1 1(12—1)'

The integral over g can be easily evaluated as
Jamirdg) = 32 1k Pyt ) = . (A7)
k=1

By inserting (A.6) and (A.7) into (A.5) we get

-
[o—
—_
-

Idd reod-— . _ , P
iisjj al 2 -1 T(rz— 1) 1 J
d r 1 1 2r

11?11_ cd-—-2 ) - =

d r-—1 r(rZ_l) r+1

Sub-case2: i < randj > r.From (A.4) we get

= [ 2 (1 g)mircan 100 P (d0n) [ 1P (av)

:r-d(l—i)-l- L o_
d) r d-—r
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Sub-case 3: 1, j > r.Similarly, in this case
y=rd [ (0= @) mbda x f 110l Plwali Pt (d)
—r-d f (1~ g2)’'m? (dg) f U Uy U Uy 7 (dU). (A8)
We first simplify the integral on the right side

| %(1 ) mir(dg = [ %md”(dq) —2+ L (A.9)

To evaluate the remaining integral, we consider a multivariate Gaussian random variable
¢ = (G50 g) ~ N (0, Ly), and denote by g2 (dc) its probability distribution. From this we construct the
complex vector with uniform distribution over the unit ball in C¢

d

) ' ' 2d
[y == — (Ci + 1Cd+1)|1>> ||C||2 = Zciz'
I=1

llell 3=

We can now write

Z l Zl l
_mdr(d ) zd(dc) 1=1 =14+ 2d(d ) 2r+1
[ man- [t iy

2
l l 1

=1 Cl
1
_ 12 2(d7r) 1) . 2r 2
=1+ [ el g2 (ac!) f||52||2g (%)

1 d-1

= . A.10
2r — 2 r—1 ( )

=14+2d-r)-

Above we used the fact that ||c?|* isa 2 variable with 2r degrees of freedom, so the second integral is the mean of
its inverse. By inserting (A.10) into (A.9) we obtain

LN, _ T dflz(dfr)(dfrJrl)
fqz(l g2) mer (dg) 242+ o pIET— (A.11)

Finally, by inserting (A.11) into (A.8) and applying (A.6) we obtain

Idd d (d—r)(d—r—|-1) 1 1
iisjj ’ ’ 2 -
d(r—1) (d—r?—1 (d—r)((d—r)z—l)
-7 E
r—l’ /
A
151 r—l

Note that for r = 1 these matrix elements are infinite. This is due to large contributions from measurements
which have one basis vector close to being orthogonal to the one-dimensional vector state.. This is somewhat
akin to what happens in the case of a Bernoulli variable (coin toss), in the case when the probability is close to
zero or one. While this phenomenon is interesting, it does not play any role in our analysis for which the diagonal
matrix elements are not relevant parameters.

(B) Diagonal-real block.

1olpo), =2 1

S L o, U - Re((jlo, U)o, UIK)).
1,(oT50)>08, (o[ Bu)

As before, the corresponding entry of the average Fisher information matrix is

o g [P Re(I) (WIK)
Izz]k 2 f Z;:1|<¢Ik>|2

=2-d- rfff%|<¢|i> P - Re((il) (1K) m” (dgyv” (dui vt (dos ).

) (d)
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Sub-case 1: 1, j, k < r.Inthis case the integral is

Hi=2-der [ qtmie@q) [ |(nli)]"Re( (i) (vr]&) v (avr)
=d-r- 2 [ @UUE(UU + UaUf) =0,

where we applied formula (A.6) for the integrals over the unitaries.
Sub-case2: 1, j < rand k > r.Inthis case the integral is

11]k72 d- rfq\ll -9 mdr(dQ)
xRe [ 1ali) P Glunvr (dun) [ (alkyrd(duz) = 0

Sub-case3:i < rand j, k > r.Inthis case the integral is

I,,]ku d- rf(l - qz)md”(dq)
x [ 1@ty Prr(dun) - Re [ Gl (alkj vt (avs) = o.

Sub-case4: i > rand j, k < r.In this case the integral is
=24 rf (1 — qz)md”(dq)
< [l et (av) - Re [ Glo) (ilkpvr(di) = 0

Sub-case5:i > rand j, k < r.Inthis case the integral is

Il,]k =2-d- rf (1 — qz)md’r(dq)
x [ 1l Prir(avs) - Re [ Glo (uilk)vr (dun) =

Sub-case6: i, k > rand j < r.In this case the integral is

If;k =2-d- rfq\/l——qzmd’r(dq)
xRe [ 1Wali) P (alk)vtr (dva) - [ Glunv (dun) =0

Sub-case 7: i, j, k > r.In this case the integral is

2
Il]k72 d- rf%md”(dq)

X 1ali) P Reilees) (walkyvd = (dus) =

The last integral is zero for the same reason as in sub-case 1.
In conclusion all diagonal-real matrix elements are zero

I =0, foralli=1,..,25 and 1 <j < k < 2

(C) Diagonal-imaginary block.
Similarly to the case of diagonal-real elements, we obtain that all diagonal-imaginary matrix elements are
Zero

I =0, foralli=1,..,2%k and1 <j< k <2

(D) Real—real block.

1(o[Bo), =4 1

> ——Re((ilo, U) {0, ULj)) - Re({klo, U) (o, UI}).
o (o182)-0, ([ Bu)
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As before the corresponding entry of the average Fisher information matrix is
Re((il0) (1)) - Re((k|w) (11) )
1j;kl:4'd'rf r

lwlkP

k=1

v?(dy)

—4-d-r[[f qi Re({il) (1017)) - Re((k|) (w|1))m" (dq)v" (dvy )= (dis,).

The same reasoning as before can be applied to transform the integral into a single integral, or a product of
integrals over unitaries. If a single index is larger than r while the other three are smaller, or conversely a single
index is smaller than r while the other are larger, then we have two integrals over unitaries which are zero since
the monomial is of odd order. Therefore the following cases remain to be analysed.

Sub-case I: 1, j, k, | < r.Inthis case the integral is

e i | v (i) [} e {113 () o a)
=d-r- g : fﬂr(dU)(UilUf; + (']lel*;)(UklUl*l + U11U1>|I<<)-

Using formula (A.6) we find that the integral over unitaries is zero unless we deal with a diagonal matrix element
of[,i.e.i = kandj = I. For the latter we have

—r r .
I —d.r.g.fu @U)(Ua U + Un Uf)(UnUfs + U U

R/

1 1 2r

,
dl - r(rz—l) r+1

Sub-case 2: i, j, k, | > r.Inthis case, the integral is

= f LD e [ e (i) e (5 oo ()

_ d—-—nrd-r+1) d—r o % * *
=dor ST [ dU)(UnUfs + U U3 ) (U Uf + UnUT),

where we have used formula (A.11) for the integral over q. A similar calculation as above shows that all oft-
diagonal elements are zero and

I,;f,j:2d-r-(d_r)(d_r+l)- 12 _ 1
d(r—1) (d—r?*—1 (d—r)((d—r)Z—l)

Sub-case3: (i, j < rand k, I > r)or(i, j > rand k, I < r). In this case we deal with a product of integrals
over unitaries of the form

fuf(dU) UnUf: = 0.

So all matrix elements are zero.
Sub-case4: i, k < rand j, | > r. Again, the off-diagonal elements are zero and

Fim=t-der [ (1= @)ty [ Re((ifun) (wa]i}) - Re({i[wn) (vals) o (dvn)or (aw2)

:2d~r-(1—1)~l L )
d rd—r

In conclusion, the only non-zero elements of the real-real block are on the diagonal and are given by

- 2r . .
Iiz;rif:—r+1’ 1<i<j<r,
Ti;;’ijzz, i<rand r<j<2k
_ 2r

”Z"J'*ﬁ’ r<i<j<2h
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(E) Imaginary—imaginary block. This block is similar to the real-real one. All off diagonal elements are zero,
and the diagonal ones are

2r .
I;tl] m, 1<i<y<r,
Iii=2, i<rand r<j<2k
2r
— H H k
11;11] ﬁ’ r<i<j<2t

(F) Real-imaginary block. Next we show that all real-imaginary off-diagonal elements are equal to zero.

ri 1 . .
I(p|Bu)ij;kl - _4.0:Pp(§l])>om Re((ilo, U) {0, U|j)Im((klo, U} (0, UID).

By integration we obtain the corresponding matrix element of the average Fisher information matrix

(Gl o)) - tm((kle) 1D )
mo=—4-d-
= f S @Ik P
——4-d- rfff%Re«uw (617)) - o (kT (0 11) ) (@dgyw (duin )t (dgs ).

v (dy)

Again, if one index is smaller that r while the other three are larger, or otherwise, then the matrix element in zero.
We analyse the remaining cases.
Sub-case 1: 1, j, k, | < r.In this case the integral is

Tua=—4-d-r [[amir@p [ Re((ilun) (unlj) Jim( (k] o) {wn[ ) ) ()

. r
—i-d-r- Efur(du)(UﬂU{; + UﬂUﬁ)(UklU]*l )

Using formula (A.6) we find that the integral over unitaries is zero unless i = kandj = . However even in this
case, two of the four terms are zero, and the other two cancel each other.

Sub-case2: 1, j, k, | > r.Here the integrals over the unitaries are similar as in case I above, with the
difference that they taken with respect to =" (dU). Therefore the matrix elements are zero.

Sub-case3: (i, j < rand k, I > r)or(i, j > r, k, | < r). Inthis case we deal with a product of integrals over
unitaries of the form

fuf(dU) UnUf: = 0.

so all matrix elements are zero.
Sub-case4: i, k < rand j, [ > r Again, the off-diagonal elements are zero and

Ig==—4-d-r [ (1= @)mird [ Re((iwn) (vaj)) - 1m((i]en) (wals) Jor (dun)or (dwz)
:i-d-r~(1 - é)ff(u-lvm ViU (UnVis = VUit )i @) dv)
=0.

In the last integral, two terms are zero and two have different signs and cancel each other. In conclusion all
elements of the real-imaginary block are equal to zero.
Summary of the computation of . We found that all off-diagonal blocks of I are zero

I_dr — Tdi — Tri — Trd — Tid — Tdr = 0.

Moreover the real and imaginary diagonal blocks are diagonal, equal to each other and have three distinct values
depending on the position of the indices i < j with respecttor:

2r
Ilrr/u —_ , 1 g Z,] g r
i if
r+1
I"/i = Diagq I0" = 2, 1<i<r, and r<j<2
2r .
11%” = r<i<j
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Finally, thed x dblock I% is not diagonal but has a simple form

-

- 2r .

I = P Isisr

- 2r .

o — r<i<g2k

ad r . S
» I = pa— Lj<r, and i=]
IS TR——
iisfj

cad r . S ok

L = —p isisradr<j<?2

- r . .

I = 1,1<]<randr<z<2k

ro o+
- r .. . .
Ii‘ii;?j = = r<i,j, and i=]j.

The model R, can be seen (locally) as the restriction of the full unconstrained model S, ; parametrized by 6, to
the subset of parameters @ which are real and imaginary parts of matrix elements pjwithi < r < j. Therefore
the corresponding average Fisher information matrix is equal to the corresponding block of I,

ie. ] = 2L, n. 0

References

[1] Hiftner H et al 2005 Scalable multiparticle entanglement of trapped ions Nature 438 643
[2] Blume-Kohout R 2010 Optimal, reliable estimation of quantum states New J. Phys. 12 043034
[3] Khoon H and Englert Ngand B-G 2012 A simple minimax estimator for quantum states Int. J. Quantum Inf. 10 1250038
[4] Smolin] A, Gambetta ] M and Smith G 2012 Efficient method for computing the maximum-likelihood quantum state from
measurements with additive gaussian noise Phys. Rev. Lett. 108 070502
[5] Heinosaari T, Mazzarella L and Wolf M M 2013 Quantum tomography under prior information Commun. Math. Phys. 318 35574
[6] TeoY S, Stoklasa B, Englert B-G, Rehatek J and Hradil Z & 2012 Incomplete quantum state estimation: a comprehensive study Phys.
Rev. A85 042317
[7] Gutd M, Kypraios T and Dryden 12012 Rank based model selection for multiple ions quantum tomography New J. Phys. 14 105002
[8] Alquier P, Butucea C, Hebiri M, Meziani K and Morimae T 2013 Rank penalized estimation of a quantum system Phys. Rev. A 88
032113
[9] Smith G A, Silberfarb A, Deutsch I H and Jessen P S 2006 Efficient quantum-state estimation by continuous weak measurement and
dynamical control Phys. Rev. Lett. 97 180403
[10] Merkel ST, Riofrio C A, Flammia $ T and Deutsch I H 2010 Random unitary maps for quantum state reconstruction Phys. Rev. A 81
032126
[11] NunnJ, Smith B, Puentes G, Walmsley I A and Lundeen ] $ 2010 Optimal experiment design for quantum state tomography: fair,
precise, and minimal tomography Phys. Rev. A 81 042109
[12] Rahimi-Keshari§, Scherer A, Mann A, Rezakhani A T, Lvovsky A and Sanders B C 2011 Process tomography of ion trap quantum gates
New]. Phys. 13 013006
[13] Lundeen]J S, Feito A, Coldenstrodt-Ronge H, Pregnell K L, Silberhorn C, Ralph T C, Eisert J, Plenio M B and Walmsley I A 2010
Random unitary maps for quantum state reconstruction Phys. Rev. A 81 032126
[14] Blume-KohoutR 2012 Robust error bars for quantum tomography arXiv:1202.5270
[15] Audenaert KM R and Scheel S 2009 Quantum tomographic reconstruction with error bars: a Kalman filter approach New J. Phys. 11
023028
[16] Christandl M and Renner R 2012 Reliable quantum state tomography Phys. Rev. Lett. 109 120403
[17] Jupp PE,Kim P T, Koo J-Y and Pasieka A 2012 Testing quantum states for purity J. R. Stat. Soc. Ser. C61 753763
[18] Temme K and Verstraete F 2015 Quantum chi-squared and goodness of fit testing J. Math. Phys. 56 012202
[19] Landon-Cardinal O and Poulin D 2012 Practical learning method for multi-scale entangled states New J. Phys. 14 085004
[20] Kahn]Jand Gutd M 2009 Local asymptotic normality for finite dimensional quantum systems Commun. Math. Phys. 289 597—652
[21] Hayashi M and Matsumoto K 2008 Asymptotic performance of optimal state estimation in qubit system J. Math. Phys. 49 102101
[22] Audenaert KM R, Nussbaum M, Szkola A and Verstraete F 2008 Asymptotic error rates in quantum hypothesis testing Commun. Math.
Phys. 279251283
[23] Gutd M and Kiukas J 2015 Equivalence classes and local asymptotic normality in system identification for quantum Markov chains
Commun. Math. Phys. 335 1397-428
[24] Monz T, Schindler P, Barreiro J T, Chwalla M, Nigg D, Coish W A, Harlander W, Haensel M, Hennrich M and Blatt R 2011 14-qubit
entanglement: creation and coherence Phys. Rev. Lett. 106 130506
[25] Gross D, Liu Y-K, Flammia S T, Becker S and Eisert ] 2010 Quantum state tomography via compressed sensing Phys. Rev. Lett. 105
150401
[26] Flammia ST, Gross D, Liu Y-K and Eisert ] 2012 Quantum tomography via compressed sensing: error bounds, sample complexity, and
efficient estimators New. J. Phys. 14 095022
[27] Cramer M, Plenio M B, Flammia S T, Gross D, Bartlett S D, Somma R, Landon-Cardinal O, Liu Y-K and Poulin D 2010 Efficient
quantum state tomography Nat. Commun. 1 149
[28] Carpentier A, Eisert ], Gross D and Nickl R 2015 Uncertainty quantification for matrix compressed sensing and quantum tomography
problems arXiv:1504.03234v1
[29] Hradil Z, Rehagek J, Fiurasek ] and Jezek M 2004 Maximum-likelihood methods in quantum mechanics Quantum State Estimation ed
M G A Paris and ] Rehécek vol 649 (Berlin: Springer) pp 59-112
[30] Claeskens G and Hjort N L2008 Model Selection and Model Averaging (Cambridge: Cambridge University Press)

28


http://dx.doi.org/10.1038/nature04279
http://dx.doi.org/10.1088/1367-2630/12/4/043034
http://dx.doi.org/10.1142/S0219749912500384
http://dx.doi.org/10.1103/PhysRevLett.108.070502
http://dx.doi.org/10.1007/s00220-013-1671-8
http://dx.doi.org/10.1007/s00220-013-1671-8
http://dx.doi.org/10.1007/s00220-013-1671-8
http://dx.doi.org/10.1103/PhysRevA.85.042317
http://dx.doi.org/10.1088/1367-2630/14/10/105002
http://dx.doi.org/10.1103/PhysRevA.88.032113
http://dx.doi.org/10.1103/PhysRevA.88.032113
http://dx.doi.org/10.1103/PhysRevLett.97.180403
http://dx.doi.org/10.1103/PhysRevA.81.032126
http://dx.doi.org/10.1103/PhysRevA.81.032126
http://dx.doi.org/10.1103/PhysRevA.81.042109
http://dx.doi.org/10.1088/1367-2630/13/1/013006
http://dx.doi.org/10.1103/PhysRevA.81.032126
http://arXiv.org/abs/1202.5270
http://dx.doi.org/10.1088/1367-2630/11/2/023028
http://dx.doi.org/10.1088/1367-2630/11/2/023028
http://dx.doi.org/10.1103/PhysRevLett.109.120403
http://dx.doi.org/10.1111/j.1467-9876.2012.01040.x
http://dx.doi.org/10.1063/1.4905843
http://dx.doi.org/10.1088/1367-2630/14/8/085004
http://dx.doi.org/10.1007/s00220-009-0787-3
http://dx.doi.org/10.1007/s00220-009-0787-3
http://dx.doi.org/10.1007/s00220-009-0787-3
http://dx.doi.org/10.1063/1.2988130
http://dx.doi.org/10.1007/s00220-008-0417-5
http://dx.doi.org/10.1007/s00220-014-2253-0
http://dx.doi.org/10.1007/s00220-014-2253-0
http://dx.doi.org/10.1007/s00220-014-2253-0
http://dx.doi.org/10.1103/PhysRevLett.106.130506
http://dx.doi.org/10.1103/PhysRevLett.105.150401
http://dx.doi.org/10.1103/PhysRevLett.105.150401
http://dx.doi.org/10.1088/1367-2630/14/9/095022
http://dx.doi.org/10.1038/ncomms1147
http://arXiv.org/abs/1504.03234v1

10P Publishing

NewJ. Phys. 17 (2015) 113050 CButuceaetal

[31] vander Vaart AW 1998 Asymptotic Statistics (Cambridge: Cambridge University Press)

[32] Koltchinskii V 2013 A remark on low rank matrix recovery and noncommutative bersntein type inequalities IMS Collect. 9 213-26

[33] Gross D 2011 Recovering low-rank matrices from few coefficients in any basis IEEE Trans. Inf. Theory 57 1548-66

[34] Rehacek], Hradil Z, Knill E and Lvovsky A 12007 Diluted maximum-likelihood algorithm for quantum tomography Phys. Rev. A75
042108

[35] BuneaF, She Y and Wegkamp M H 2011 Optimal selection of reduced rank estimators of high-dimensional matrices Ann. Stat. 39
1282-309

[36] Harris] 1995 Algebraic Geometry: A First Course (Berlin: Springer)

[37] GillRD and Levit BY 1995 Applications of the van trees inequality: a bayesian Cramér—Rao bound Bernoulli 1 5979

[38] GillRDand Massar S 2000 State estimation for large ensembles Phys. Rev. A 61 042312

[39] Ahlswede R and Winter A 2002 Strong converse for indentification via quantum channels IEEE Trans. Inf. Theory 48 569-79

[40] Tropp]J A 2012 User-friendly tail bounds for sums of random matrices Found. Comput. Math. 12 389434

[41] Horn R A and Johnson C R 1985 Matrix Analysis (Cambridge: Cambridge University Press)

[42] Smolin] A, Gambetta ] M and Smith G 2012 Efficient method for computing the maximum-likelihood quantum state from
measurements with additive Gaussian noise Phys. Rev. Lett. 108 070502

[43] Collins B and Sniady P 2006 Integration with respect to the haar measure on unitary, orthogonal and symplectic group Commun. Math.
Phys. 264 773-95

29


http://dx.doi.org/10.1109/TIT.2011.2104999
http://dx.doi.org/10.1109/TIT.2011.2104999
http://dx.doi.org/10.1109/TIT.2011.2104999
http://dx.doi.org/10.1103/PhysRevA.75.042108
http://dx.doi.org/10.1103/PhysRevA.75.042108
http://dx.doi.org/10.1214/11-AOS876
http://dx.doi.org/10.1214/11-AOS876
http://dx.doi.org/10.1214/11-AOS876
http://dx.doi.org/10.1214/11-AOS876
http://dx.doi.org/10.2307/3318681
http://dx.doi.org/10.2307/3318681
http://dx.doi.org/10.2307/3318681
http://dx.doi.org/10.1103/PhysRevA.61.042312
http://dx.doi.org/10.1109/18.985947
http://dx.doi.org/10.1109/18.985947
http://dx.doi.org/10.1109/18.985947
http://dx.doi.org/10.1007/s10208-011-9099-z
http://dx.doi.org/10.1007/s10208-011-9099-z
http://dx.doi.org/10.1007/s10208-011-9099-z
http://dx.doi.org/10.1103/PhysRevLett.108.070502
http://dx.doi.org/10.1007/s00220-006-1554-3
http://dx.doi.org/10.1007/s00220-006-1554-3
http://dx.doi.org/10.1007/s00220-006-1554-3

	1. Introduction
	2. Multiple ions tomography
	3. The LSE
	4. Rank-penalized and threshold projection estimator
	4.1. Rank-penalized estimator
	4.2. Physical threshold estimator

	5. Lower bounds for rank-constrained estimation
	6. Numerical results
	6.1. Generation of random states and simulation of datasets
	6.2. Computation of estimators
	6.3. Simulation results

	7. Conclusions and outlook
	Acknowledgments
	Appendix A.
	A.1. Proof of lemma 1
	A.2. Proof of proposition 1
	A.3. Proof of proposition 1
	A.4. Proof of corollary 1
	A.5. Proof upper bound physical estimator
	A.6. The average Fisher information matrix for the full, unconstrained model, with random measurement design

	References
	njp_18_6_069501.pdf
	Acknowledgments
	References




