
Subscriber access provided by MONASH UNIVERSITY

Journal of Medicinal Chemistry is published by the American Chemical Society. 1155
Sixteenth Street N.W., Washington, DC 20036
Published by American Chemical Society. Copyright © American Chemical Society.
However, no copyright claim is made to original U.S. Government works, or works
produced by employees of any Commonwealth realm Crown government in the course
of their duties.

Article

4-Phenylpyridin-2-one Derivatives: A Novel Class of Positive
Allosteric Modulator of the M

1

 Muscarinic Acetylcholine Receptor
Shailesh N. Mistry, Manuela Jörg, Herman Lim, Natalie B. Vinh, Patrick M. Sexton,

Ben Capuano, Arthur Christopoulos, J. Robert Lane, and Peter J. Scammells
J. Med. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.jmedchem.5b01562 • Publication Date (Web): 01 Dec 2015

Downloaded from http://pubs.acs.org on December 10, 2015

Just Accepted

“Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted
online prior to technical editing, formatting for publication and author proofing. The American Chemical
Society provides “Just Accepted” as a free service to the research community to expedite the
dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts
appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been
fully peer reviewed, but should not be considered the official version of record. They are accessible to all
readers and citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered
to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published
in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just
Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor
changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers
and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors
or consequences arising from the use of information contained in these “Just Accepted” manuscripts.



 

 

4-Phenylpyridin-2-one Derivatives: A Novel Class of Positive 

Allosteric Modulator of the M1 Muscarinic Acetylcholine 

Receptor 

 

Shailesh N. Mistry,
†,§,#

 Manuela Jörg,
†,§ 

Herman Lim,
‡
 Natalie B. Vinh,

†
 Patrick M. 

Sexton,
‡
 Ben Capuano,

†
 Arthur Christopoulos,

‡
 J. Robert Lane,

‡,*
 and Peter J. 

Scammells
†,* 

 

† 
Medicinal Chemistry and 

‡
Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, 

Monash University, Parkville 3052, Victoria, Australia. 

 

ABSTRACT: Positive allosteric modulators (PAMs) of the M1 muscarinic acetylcholine receptor 

(M1 mAChR) are a promising strategy for the treatment of the cognitive deficits associated with 

diseases including Alzheimer’s and schizophrenia. Herein, we report the design, synthesis and 

characterization of a novel family of M1 mAChR PAMs. The most active compounds of the 4-

phenylpyridin-2-one series exhibited comparable binding affinity to the reference compound, 1-(4-

methoxybenzyl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid (BQCA) (1), but markedly 

improved positive cooperativity with acetylcholine, and retained exquisite selectivity for the M1 

mAChR. Furthermore, our pharmacological characterization revealed ligands with a diverse range 

of activities, including modulators that displayed both high intrinsic efficacy and PAM activity, 

those that showed no detectable agonism but robust PAM activity, and ligands that displayed robust 

allosteric agonism but little modulatory activity. Thus the 4-phenylpyridin-2-one scaffold offers an 

attractive starting point for further lead optimization. 
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�   INTRODUCTION 

Selective activation of the M1 mAChR may provide a useful approach for the treatment of the 

cognitive deficits associated with Alzheimer’s disease (AD) and schizophrenia (SZ).
1,2

 Evidence of 

cholinergic loss in the cortex of AD patients and in the striatum of SZ patients suggested a link 

between mAChR function and disease pathology.
3-5

 The M1 mAChR has received particular 

attention for its role in cognition. It is expressed predominantly in the hippocampus, striatum and 

cortex, and activation of the receptor causes cognition-enhancing effects in animal models and M1 

mAChR knock-out mice display a range of cognitive deficits.
6-15

 In addition, both 

acetylcholinesterase (AChE) inhibitors and the M1/M4 mAChR preferring agonist, xanomeline, 

improved cognitive function and/or have antipsychotic efficacy in human patients of AD and SZ.
16-

18
 Unfortunately, both AChE inhibitors and xanomeline display limiting gastrointestinal side 

effects, likely due to their lack of selectivity across the muscarinic receptor subtype family and, in 

particular, action at the M2 and M3 mAChRs, which are widely expressed in the periphery.  

 Unfortunately, the development of subtype-selective drugs that target the orthosteric site (i.e. 

the ACh binding site) remains challenging because this site is highly conserved across the mAChR 

receptor family. Therefore, considerable research efforts have focused upon targeting less 

conserved and spatially distinct allosteric sites with allosteric modulators, allosteric agonists and 

bitopic ligands.
7-9, 14, 19-21

 1-(4-Methoxybenzyl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid 

(BQCA) (1) is a prototypical example of a highly selective positive allosteric modulator (PAM) for 

the M1 mAChR.
9, 22, 23

 Although 1 has a low affinity for the allosteric site on the M1 mAChR, it 

nonetheless displays in vivo activity in animal models of cognitive deficits, an action most likely 

driven by very high positive cooperativity with ACh when both molecules are co-bound on the 

receptor. We have recently published a SAR study of 1 that incorporated analytical modeling into 

our pharmacological analysis to relate PAM structural features to changes in allosteric ligand 

binding affinity (pKB), intrinsic efficacy (τB), cooperativity with ACh binding (α) and/or modulatory 
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effects upon ACh efficacy (β). The standout analogue of this series, 5,8-difluoro-N-((1S,2S)-2-

hydroxycyclohexyl)-1-(4-methoxybenzyl)-4-oxo-1,4-dihydroquinoline-3-carboxamide (2), 

demonstrated higher affinity, intrinsic efficacy and functional cooperativity with ACh, compared to 

1.
20

 Furthermore, the studies revealed a strong correlation between the intrinsic efficacy and 

cooperativity of this series of ligands, whereby the greater the level of allosteric agonism displayed 

by the modulator, the greater the level of observed cooperativity when combined with ACh. 

 The findings with 1 and the aforementioned analogues adhere to the classic Monod-Wyman-

Changeux (MWC) two-state model of allostery, which predicts a correlation between allosteric 

agonism and allosteric modulation.
22

 As with orthosteric agonists, the degree of allosteric agonism 

can also be dependent upon the pathway stimulus-response coupling efficiency and/or receptor 

density. However, in order to truly understand the relationship between in vitro measures of 

allosteric ligand behaviour and the actual in vivo efficacy of such modulators, one needs a broader 

suite of M1 mAChR PAMs that display a range of different allosteric behaviours. Indeed, a recent 

study revealed that two selective M1 mAChR agonists could differentially regulate coupling of the 

M1 mAChR to specific signalling pathways and lead to selective actions on some, but not all, M1 

mAChR mediated responses in brain circuits important for memory, learning and psychosis – a 

property not consistent with the MWC model and instead suggestive of pathway-biased allosteric 

modulation.
14

 Such region-specific effects may be therapeutically advantageous. 

 We have recently combined site-directed mutagenesis and molecular modelling/docking 

experiments to infer the structural nature of the M1 mAChR allosteric binding site to which 

compound 1 binds.
24

 In particular, our results highlighted the role of Tyr179 within the second 

extracellular loop (ECL2) of the M1 mAChR for binding via formation of hydrophobic/edge-to-face 

π-π interactions with both the bicyclic 4-oxo-1,2-dihydroquinoline core and the benzylic pendant 

moiety of 1. Similarly, Trp400 at the top of transmembrane domain 7 (TM7) was predicted to make 

a π-π interaction with the benzylic pendant. Herein, we report the design, synthesis and detailed 

pharmacological characterization of a novel family of positive allosteric modulators at the M1 
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mAChR. The compound design was based on the desire to explore simpler heterocyclic cores that 

can maintain the key receptor-ligand interactions described above, in combination with formalizing 

the presence of the pseudo third ring present in 1 (due to intramolecular hydrogen bonding between 

the carboxylic acid and ketone moieties).
25

 Accordingly we devised the general scaffold depicted in 

Figure 1. 

 

 

Figure 1. Conceptual development of the novel M1 mAChR PAM scaffold starting from 1
9,22,23

 via 

5,8-difluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(4-methoxybenzyl)-4-oxo-1,4-dihydroquinoline-3-

carboxamide (2)
20
 to evolve to the general structure of the novel 4-phenylpyridin-2-one based 

compounds reported herein. 
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�   RESULTS AND DISCUSSION 

Chemistry. The commercial availability of both 4-bromo-2-hydroxypyridine (3) and 1,2-

cyclohexene oxide allowed easy access to both the pyridine derivative 4a and the pyridin-2-one 4b 

(Scheme 1). Initially, we adapted a literature procedure that reported alkylation of 3 in the presence 

of K2CO3 in DMF giving a mixture of the O- and N-alkyl products.
26

 More specifically, heating 

compound 3 in a 2.5-fold excess of both K2CO3 and 1,2-cyclohexene oxide in DMF at 120 °C 

overnight gave a mixture of the 2-alkoxypyridine (4a) and the N-alkylpyridin-2-one (4b). These 

isomers were easily separated based on their contrasting solubility profiles in EtOAc and the ability 

to remove remaining impurities through aqueous washing. Whilst the overall yield was good, no 

selectivity was observed in terms of the site of alkylation with 4a and 4b being formed in a ~1:1 

ratio. In each case only the trans-isomer was observed as a racemic mixture. The target alkylation 

products arose from the tautomeric nature of compound 3, with the ability to exist in both the 2-

hydroxypyridine (3a) and pyridin-2(1H)-one (3b) forms. Although crystallization studies on 2-

pyridone have demonstrated the amide tautomer to predominate in the solid state,
27,28

 tautomerism 

in solution is heavily dependent on solvent nature.
29,30

 As a consequence, a solvent screen was 

performed to evaluate the preferred product formation (4a versus 4b) after addition of 1,2-

cyclohexene oxide. The non-polar solvent toluene formed exclusively the 2-alkoxypyridine 4a 

within 1 hour at reflux. Polar solvents including DMF, ethanol, DME, DMSO exhibited ratios 

between 30:70 to 70:30 of compounds 4a and 4b and reaction times were generally about 1 day (as 

assessed by LC-MS). In water, no reaction was observed, while under neat conditions (using 10 

equivalents of reagent) after 1 hour reaction time at 120 °C a product ratio of ~30:70 of compound 

4a versus 4b was obtained. Hence, when the reaction was performed under neat conditions using 5 

equivalents of 1,2-cyclohexene oxide the N-alkylpyridin-2-one (4b) was obtained in an improved 

isolated yield of 77%. 
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 With the aim of identifying a tractable scaffold, we elected to first synthesize comparable 

examples incorporating the scaffold of molecules 4a and 4b, before embarking on a more in-depth 

SAR campaign. Initially, we carried out parallel Suzuki coupling of both 4a and 4b with 2-

hydroxyphenylboronic acid, in the presence of 10% PdCl2(PPh3)2 in 1 M Na2CO3(aq)/THF at 

100 °C, giving the 2-arylphenol derivatives 5 and 7 in excellent yield after flash column 

chromatography. A 4-phenylbenzylic pendant was attached to the phenolic group of compounds 5 

and 7, on the basis of such a moiety imparting improvements in affinity (KB) and binding 

cooperativity (α) with ACh in our previously reported enriched SAR study of 1.
20

 This was 

achieved using Finkelstein-type modification of standard alkylation conditions, with catalytic KI, 4-

(bromomethyl)biphenyl and K2CO3 in DMF at room temperature, to give the desired ethers 6 and 

8a. 

 Subsequent analogues 8b-t were synthesised as a parallel series in the same manner as 

compound 8a, by varying the nature of the alkyl halide used to alkylate phenol 7. The methyl 

benzoate compounds 8o and 8p offered an ideal starting point to generate the corresponding 

benzoic acid (9a and 9b) and benzamide (9c and 9d) analogues, through basic hydrolysis and direct 

aminolysis with NH4OH, respectively. 

 Whilst the 4-bromobenzyl derivative 8t, was of interest in building SAR around this series in its 

own right, it was also an attractive moiety to further elaborate the core structure. This was achieved 

through a second series of Suzuki couplings, with selected boronic acids and boronate esters, to 

give 4-arylbenzyl ether compounds 10a-d. 

 Finally, a focussed selection of aniline derivatives 13a-e was also synthesised, to compare 

directly to the corresponding phenol analogue 8a as well as 10a-d and investigate activity in 

relation to the nature of atom used to link the benzylic pendant to the parent core. Installation of the 

aniline moiety was carried out using Suzuki chemistry as before, coupling 4-bromo-1-(2-

hydroxycyclohexyl)pyridin-2(1H)-one (4b) with 2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yl)aniline. Selective monoalkylation of the free aniline was achieved through established reductive 
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alkylation methodology reported by Abdel-Magid et al.,
31

 employing 4-bromobenzaldehyde to 

introduce the benzylic pendant, giving 4-bromobenzylamino derivative 12. Suzuki coupling of 

compound 12 with the previously selected group of boronic acids and boronate esters gave the 

desired analogues 13a-e. 

 

Scheme 1.  Synthesis of initial series of 4-phenylpyridin-2-one derivatives
 a 

 

 

a
Reagents and conditions: (a) 1,2-cyclohexene oxide, K2CO3, 120 °C, 77% (rac-trans); (b) 2-

hydroxyphenylboronic acid or 2-(4,4,5,5-tetramethyl-1,2,3-dioxaborolan-2-yl)aniline, cat. 

PdCl2(PPh3)2, 1 M Na2CO3(aq)/THF degassed, 100 °C, 83-100%; (c) substituted benzyl halide, 

K2CO3, cat. KI, DMF, rt, 18-93%; (d) NaOH, EtOH/H2O, 50 °C, 82-93%; (e) NH4OH/MeOH, rt, 

14-52%; (f) boronic acid or boronate ester, cat. PdCl2(PPh3)2, 1 M Na2CO3(aq)/THF degassed, 100 

°C, 29-77%; (g) 4-bromobenzaldehyde, AcOH, NaB(OAc)3H, 1,2-dichloroethane, rt, 50%. 

 

 A smaller second series of compounds was synthesized to investigate changes to the pyrazole 

moiety of compound 10d (Scheme 2). Therefore, the unsubstituted pyrazole derivative 14 was 

obtained via Suzuki reaction of intermediate 8t with the N-Boc protected pyrazole boronic ester. 
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These reaction conditions afforded the Boc deprotected product 14, circumventing the need for an 

additional acid-mediated cleavage procedure to remove the Boc group. It is worth noting that 

compound 14 could not be synthesized efficiently when using (1H-pyrazol-4-yl)boronic acid hence 

the use of the N-Boc protected pyrazole boronate ester. In the next step, alkylation of compound 14 

afforded analogues 15a-j in yields varying from 6-82%. Depending on the steric bulk of the alkyl 

halide the alkylation reactions proceeded at room temperature or at elevated temperatures of up to 

100 °C. The alkylation with bromocyclobutane was unsuccessful even at elevated temperature and 

extended reaction time. 

 

Scheme 2. Synthesis of a series of N-substituted pyrazole derivatives
a
  

 

 

a
Reagents and conditions: (a) 1-(tert-butoxycarbonyl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yl)-1H-pyrazole, cat. PdCl2(PPh3)2, 1 M Na2CO3(aq)/THF degassed, 100 °C, 77%; (b) alkyl halide, 

K2CO3, cat. KI, DMF, rt to 100 °C, 6-82%. 

 

 We subsequently synthesized two additional compounds, 17 and 19, incorporating modifications 

to the benzyl component of the 1-methylpyrazol-4-yl)benzyl pendant of 10d (Scheme 3). This was 

achieved through initial alkylation of intermediate 7 with 2-chloro-5-(chloromethyl)pyridine or 4-

bromo-1-(bromomethyl)-2-fluorobenzene, giving 16 and 18 respectively. The desired analogues 17 

and 19 were subsequently obtained via Suzuki coupling of 16 and 18 with 1-methyl-4-(4,4,5,5-

tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole. 
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Scheme 3.  Synthesis of analogues with modifications to the 4-(1-methylpyrazol-4-yl)benzyl 

pendant
 a

 

 

 
 
a 

Reagents and conditions: (a) substituted benzyl halide, K2CO3, cat. KI, DMF, rt, 63% for 16, 62% 

for 18; (b) boronic acid / boronate ester, cat. PdCl2(PPh3)2, 1 M Na2CO3(aq), THF degassed, 100 °C, 

32% for 17, 30% for 19. 

 

 Next, we synthesized analogue 23 (Scheme 4), incorporating fluoro substituents in analogous 

positions to those present in 2 (Figure 1), which were previously shown to influence intrinsic 

efficacy in compounds of the 4-oxo-1,4-dihydroquinoline class.
20

 The intermediate 4b was coupled 

with the commercially available (3,6-difluoro-2-methoxyphenyl)boronic acid to afford a 1:1 

mixture of 20 and an unidentified side product in an overall yield of 23% (Scheme 4). O-

Demethylation of intermediate 20 was achieved with BBr3, to afford the corresponding phenol (21), 

in good yield. Purification of 21 via flash column chromatography (FCC) permitted separation of 

the unidentified side product from the previous step. Alkylation with 1-bromo-4-

(bromomethyl)benzene was performed at room temperature to give ether 22, followed by a Suzuki 

coupling reaction with 1-methyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole at 

100 °C to give 23 in modest yield. 
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Scheme 4.  Synthesis of difluoro-substituted 4-phenylpyridin-2-one 23
 a
 

 

 
 
a
Reagents and conditions: (a) boronate ester, cat. PdCl2(PPh3)2, 1 M Na2CO3(aq)/THF degassed, 

100 °C, 23% for 20, 31% for 23; (b) 1 M BBr3 in hexane, DCM, 0 °C to rt, 72%; (c) 4-bromobenzyl 

bromide, K2CO3, cat. KI, DMF, rt, 73%. 

 

 Finally, we synthesized the 6-phenylpyrimidin-4-one analogue 29 (Scheme 5). This analogue 

allowed us to probe if further interaction with the allosteric pocket of the M1 mAChR can be 

achieved through the introduction of an additional hydrogen bond acceptor (tertiary nitrogen) to the 

scaffold. In the case of 29 the order of the reaction steps was altered, since the epoxide ring opening 

reaction with 1,2-cyclohexene oxide and 6-chloropyrimidin-4(3H)-one (24) did not afford the 

desired intermediate. The failure of this reaction may be explained by the preference for 

polymerization through the 6-chloro group over the epoxide ring opening reaction with 1,2-

cyclohexene oxide. As a consequence, starting material 24 was first coupled with (2-

methoxyphenyl)boronic acid to afford intermediate 25 in modest yield (20%), before subsequent 

reaction with 1,2-cyclohexene oxide to give compound 26. LC-MS indicated the formation of the 4-

alkoxypyrimidine and N-alkylpyrimidin-4-one (26) in an approximately 1:3 ratio. Nonetheless, only 

the N-alkylpyrimidin-4-one (26) could be isolated after FCC due to side products interfering with 

the 4-alkoxypyrimidine product. We then converted the 2-methoxyphenyl moiety to a phenol using 

boron tribromide to give intermediate 27 in good yield (87%). The last two steps involved 

alkylation with 1-bromo-4-(bromomethyl)benzene and Suzuki coupling with 1-methyl-4-(4,4,5,5-

tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole under the same conditions as reported for the 

pyridinone analogues, to give the desired 6-phenylpyrimidin-2-one 29. 
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Scheme 5.  Synthesis of the 6-phenylpyrimidin-4-one analogue 29
 a
 

 

 
 
a
Reagents and conditions: (a) (2-methoxyphenyl)boronic acid, cat. PdCl2(PPh3)2, 1 M Na2CO3(aq), 

THF degassed, 100 °C, 20%; (b) 1,2-cyclohexene oxide, K2CO3, 120 °C, 38%; (c) 1 M BBr3 in 

hexane, DCM, 0 °C to rt, 87%; (d) 4-bromobenzyl halide, K2CO3, cat. KI, DMF, rt, 55%; (e) 

boronate ester, cat. PdCl2(PPh3)2, 1 M Na2CO3(aq), THF degassed, 100 °C, 11%. 

 

Pharmacology. Our recent SAR study of 1 allowed us to correlate chemical modifications to 

changes in parameters that describe allosteric action at the M1 mAChR. We applied the same 

approach in this study for selected intermediates and all final compounds. Competition binding 

studies between ACh and the radiolabelled antagonist [
3
H]NMS at the M1 mAChR expressed in 

FlpIN CHO cells were performed in the absence and presence of increasing concentrations of test 

compound, and data were analysed with an allosteric ternary complex model to determine the 

binding affinity of the test compound (KB) for the unoccupied M1 mAChR and its cooperativity 

with ACh (α). To assess the ability of our test compounds to modulate ACh function, we used myo-

inositol 1 phosphate (IP1) accumulation as a measure of M1 mAChR activation resulting from 

preferential activation of canonical Gq proteins. Concentration response curves of ACh were 

generated in the presence of increasing concentrations of test compound, and an operational model 

of allostery was applied to the data, with the KB parameter fixed to that determined in the binding 
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studies, thus allowing an overall estimate of functional cooperativity with ACh (αβ, where β 

describes the modulatory effect upon ACh efficacy) and any intrinsic efficacy (τB) of the allosteric 

ligand. Values of α or β > 1 describe a positive modulatory effect upon ACh, whereas values < 1 

(but greater than 0) describe a negative allosteric effect. Since it is well established that the 

logarithms of affinity and cooperativity values are normally distributed, whereas their absolute 

values (antilogarithms) are not
32

, all statistical comparisons for interpretation of the SAR described 

below (Tables 1-3) were performed on the logarithmic values.  For ease of interpretation, however, 

allosteric parameter antilogarithms are also highlighted in the main text for selected key derivatives. 

 As described in Figure 1, we devised a general molecular scaffold, distinct from that of 1, that 

we hypothesized would maintain key receptor-ligand interactions. As a starting point, we compared 

the ether analogue 6 with the pyridinone analogue 8a (both of which incorporate the 4-

phenylbenzylic pendant). Compound 8a displayed an affinity for the M1 mAChR of approximately 

10 µM and positive cooperativity with ACh binding and function. The affinity and cooperativity 

displayed by 8a (Table 1) were not significantly different from that of 1 (p > 0.05, one way 

ANOVA), while the intrinsic efficacy of 8a (τB = 1.38) was superior to that of 1 (τB = 0.22). In 

contrast analogue 6 was inactive. As a consequence, compounds based on the 1-(2-

hydroxycyclohexyl)pyridin-2(1H)-one moiety were further investigated (Table 1), whereas the 

development of analogues containing a 2-(pyridin-2-yloxy)cyclohexan-1-ol moiety was 

discontinued. 

Intermediate 7 exhibited a binding affinity not significantly different from that of 1 but 

essentially neutral binding cooperativity with ACh (α = 0.91), demonstrating that the 4-

phenylbenzylic pendant is important for the positive cooperativity of compound 8a with ACh.  

Interestingly, analogue 8b, with an unsubstituted benzylic pendant (i.e. lacking the additional 4-

phenyl group), maintained binding affinity and positive cooperativity with ACh comparable to that 

displayed by compound 8a. Therefore, we investigated the effect of incorporating a range of 
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substituted monocyclic ligands (compounds 8c-p and 9a-d) instead of the 4-phenylbenzylic pendant 

present in compound 8a. 

 While affinity was unchanged across these compounds, phenyl rings substituted at the ortho-

position with methoxy, trifluoromethyl or nitrile groups  (8f, 8i and 8l, respectively) exhibited lower 

binding (α) and functional (αβ) cooperativity compared to the respective meta- and para-substituted 

analogues (8g-h, 8j-k and 8m-n). While a similar trend was observed for the fluoro-substituted 

analogues (8c-e), this change was not significant. However, for the ester and carboxylic acid 

analogues (8o-p and 9a-b) the meta-substituted analogue displayed similar activity to the 

corresponding para-substituted compound. The stand out compound of this series was the para-

substituted carboxamide 9d, which exhibited a binding affinity comparable to 1, but significantly 

improved binding (α = 320) and functional (αβ = 230) cooperativity with ACh. The observed 

intrinsic efficacy (τB) of compound 9d was 4-fold greater than that of 1. While the meta-substituted 

carboxamide analogue 9c displayed binding and functional cooperativity with ACh comparable to 

that of 1, it did not display any detectable allosteric agonism. Due to the promising properties of the 

carboxamide analogue 9d, the structurally related oxazole 8q and thiazole 8r were also synthesized. 

However, both bioisosteres (8q and 8r) displayed a significant reduction in binding cooperativity 

with ACh (α = 27 and α = 25 respectively) as compared to 9d. 

Next, we investigated the effect of replacing the distal phenyl ring of the 4-phenylbenzyl moiety 

present on 8a, with a variety of bioisosteres. These included 6-membered heterocycles (10a-c), a 5-

membered heterocycle (10d), and a simple bromo substituent (8t) that has previously been used as a 

phenyl isostere. All the compounds displayed a binding affinity not significantly different from that 

of 1 and comparable binding and functional cooperativity with ACh and intrinsic efficacy, with the 

notable exception of the pyrazole analogue 10d, which displayed significantly improved binding 

cooperativity (α = 370) as compared to that of 1.  Incorporation of an oxygen atom between the two 

ring systems, as for the phenoxy analogue 8s, resulted in total loss of the binding cooperativity with 

ACh but maintenance of affinity for the M1 mAChR. 
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We next investigated modification of the linker atom between the benzylic pendant and the 

parent core. A comparison of aniline analogues 12 and 13a-e with the corresponding ether 

analogues 8t, 10a-d and 8a, respectively, revealed that this modification resulted in a reduction in 

binding and functional cooperativity with ACh but no change in affinity for the M1 mAChR. The 

unsubstituted aniline intermediate 11 exhibited both an 8-fold reduction in binding affinity to that of 

1 and neutral binding cooperativity (α = 0.98) with ACh, demonstrating the importance of the 

presence of the benzylic pendant linked to the parent core for the allosteric action of this series. 

Furthermore, in terms of binding cooperativity with ACh, the trend seen for the different ligands of 

the aniline series (13d > 13a = 13c = 13b >13e = 12) is similar to the trend observed for the ether 

analogues (10d > 10a = 10c = 10b = 8a = 8t), whereby the 4-(1-methylpyrazol-4-yl) analogue was 

the most active compound in both series. 

None of the compounds in Table 1 showed a significant improvement in intrinsic efficacy 

compared to 1. However, it is interesting to note that both 8j and 8k, which display neutral 

functional cooperativity with ACh, still displayed robust allosteric agonism comparable to that of 1 

(τB = 1.02 and 0.77, respectively). Taking compound 10d as the most active from this initial series, 

we then tested whether the novel compound displayed selectivity towards the M1 mAChR. As 

shown in Figure 2, while both 1 and 10d display robust modulatory activity at the M1 mAChR in a 

[
3
H]NMS binding assay, they exhibit no activity up to a concentration of 10 µM at the other 

mAChR subtypes. As such, the novel 4-phenylpyridin-2-one scaffold appears to share the same 

exquisite selectivity for the M1 mAChR as the benzyl-4-oxo-1,4-dihydroquinoline scaffold. 
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Figure 2. (a-d) (a-d) Pharmacological characterization of 1 and 10d in binding and function at the 

mAChRs. (a-b) Radioligand binding experiments were performed using FlpIn-CHO cells 

expressing the M1 mAChR, 0.1 nM of the radiolabeled antagonist [
3
H]NMS, increasing 

concentrations of ACh, with or without increasing concentrations of either 1 (a) or 10d (b). (c-d) 

IP1 accumulation experiments were performed using FlpIn-CHO cells expressing the M1 mAChR 

and increasing concentrations of ACh with or without increasing concentrations of either compound 

1 (c) or 10d (d). 100% represents the maximal stimulation of ACh in the absence of test compound.  

(e-h) Activity of 1 and 10d at the human M2-5 mAChRs in a [
3
H]NMS binding assay. No detectable 

effect of these compounds was observed at the other mAChR subtypes up to a concentration of 10 

µM. 
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Table 1: Binding and functional parameters of 4-phenylpyridin-2-one analogues
 
7-13e at the M1 mAChR. 

  
 

   Radioligand binding ([
3
H]NMS)  IP1 accumulation 

 X R pKB 

(KB, µM) 

Logα´
a 

 

Logα 

(α)
b 

Logαβ 

(αβ)
c 

LogτB 

(τB)
d 

1 - - 4.78 ± 0.06 (17) -3 1.77 ± 0.13 (58) 1.84 ± 0.08 (69) -0.60 ± 0.10 (0.22) 

7 OH - 4.10 ± 0.08 (79)* -3 -0.04 ± 0.11 

(0.91)* 

n.d.  

8a O 4-Ph 4.99 ± 0.10 (10) -0.27 ± 0.06 1.22 ± 0.07 (17) 1.09 ± 0.15 (12) 0.14 ± 0.04 (1.38) 

8b O H 4.55 ± 0.10 (28) -3 1.20 ± 0.08 (15) 0.94 ± 0.21 (9) -0.24 ± 0.13 (0.58) 

8c O 2-F 4.52 ± 0.07 (30) -3 1.30 ± 0.10 (20) 0.62 ± 0.26 (4)* -0.36 ± 0.16 (0.44) 

8d O 3-F 4.38 ± 0.07 (41) -3 1.50 ± 0.07 (31) 0.85 ± 0.26 (7) -0.11 ± 0.12 (0.78) 

8e O 4-F 4.22 ± 0.01 (60) -3 1.63 ± 0.07 (43) 1.15 ± 0.10 (14) 0.00 ± 0.24 (1) 

8f O 2-OMe 4.53 ± 0.15 (30) -3 0.53 ± 0.14 (3) n.d.  

8g O 3-OMe 4.19 ± 0.02 (65) -3 1.37 ± 0.05 (23) 0.84 ± 0.14 (7) 0.16 ± 0.04 (1.45) 

8h O 4-OMe 4.28 ± 0.10 (52) -3 1.67 ± 0.09 (47) 0.80 ± 0.06 (6) -1.10 ± 0.17 (0.08) 

8i O 2-CF3 4.48 ± 0.12 (33) -3 -0.07 ± 0.22 (1)* n.d.  

8j O 3-CF3 4.53 ± 0.17 (30) -3 0.90 ± 0.10 (7.9)* = 0 0.01 ± 0.12 (1.02) 

8k O 4-CF3 4.44 ± 0.10 (36) -3 1.36 ± 0.11 (23) 0.40 ± 0.31 (2.5)* -0.11 ± 0.18 (0.77) 

8l O 2-CN 4.38 ± 0.07 (42) -0.65 ± 0.04 0.59 ± 0.08 (3.8)* n.d.  

8m O 3-CN 4.06 ± 0.14 (87)* -3 1.55 ± 0.11 (35) 0.88 ± 0.35 (8) -0.59 ± 0.35(0.25) 

8n O 4-CN 4.85 ± 0.13 (14)* -0.29 ± 0.05 0.84 ± 0.09 (7)* 0.49 ± 0.16 (3)* -0.73 ± 0.16 (0.19) 

8o O 3-CO2Me 3.99 ± 0.08 (100)* -3 1.49 ± 0.10 (31) 0.52 ± 0.22 (3)* -0.82 ± 0.28 (0.15) 

Page 16 of 74

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

 

8p O 4-CO2Me 4.06 ± 0.14 (87)* -3 1.32 ± 0.09 (21) 0.96 ± 0.28 (9) -0.26 ± 0.18 (0.54) 

8q O 4-(oxazol-2-yl) 4.56 ± 0.08 (28) -0.68 ± 0.06 1.43 ± 0.09 (27) 1.61 ± 0.18 (41) -0.24 ± 0.24 (0.57) 

8r O 4-(thiazol-2-yl) 4.96 ± 0.05 (11) -0.45 ± 0.09 1.40 ± 0.08 (25) 0.80 ± 0.19 (6) -0.35 ± 0.13 (0.45) 

8s O 4-O-Ph 4.71 ± 0.08 (19) -0.30 ± 0.02 0.08 ± 0.10 (1)* n.d.  

8t O 4-Br 4.24 ± 0.11 (58) -3 1.26 ± 0.15 (18) n.d.  

9a O 3-COOH 4.04 ± 0.10 (91)* -3 1.38 ± 0.11(24) 1.08 ± 0.06 (12) -0.69 ± 0.09 (0.20) 

9b O 4-COOH 3.88 ± 0.06 (130)* -3 1.31 ± 0.09 (20) 0.92 ± 0.08 (8) -1.24 ± 0.34 

9c O 3-CONH2 4.04 ± 0.05 (91)* -3 1.46 ± 0.11 (29) 0.87 ± 0.09 (7)  -3 

9d O 4-CONH2 4.66 ± 0.12 (22) -0.86 ± 0.15 2.51 ± 0.10 (320)* 2.36 ± 0.08 (230) 0.05 ± 0.08 (0.89) 

10a O 4-(pyrid-3-yl) 4.72 ± 0.09 (19) -3 1.76 ± 0.11 (58) 1.29 ± 0.12 (19) -0.42 ± 0.37 (0.38) 

10b O 4-(pyrid-4-yl) 4.95 ± 0.14 (11) -0.76 ± 0.07 1.49 ± 0.09 (31) 1.01 ± 0.29 (10) -0.37 ± 0.19 (0.43) 

10c O 4-(pyrimid-5-yl) 4.45 ± 0.09 (35) -0.37 ± 0.05 1.56 ± 0.07 (36) 1.34 ± 0.28 (22) -0.80 ± 0.35 (0.16) 

10d O 4-(1-methyl 

pyrazol-4-yl) 

4.37 ± 0.07 (43) -3 2.57 ± 0.17 (370)* 2.30 ± 0.08 (200) -0.68 ± 0.15 (0.21) 

11 NH2 - 3.86 ± 0.06 (138)* -3 -0.01 ± 0.14 (1)* n.d.  

12 NH 4-Br 4.35 ± 0.10 (45) -3 0.33 ± 0.08 (2)* n.d.  

13a NH 4-(pyrid-3-yl) 4.67 ± 0.04 (21) -0.57 ± 0.02 1.08 ± 0.05 (12) 0.47  ± 0.11 (3)* -0.13 ± 0.04 (0.74) 

13b NH 4-(pyrid-4-yl) 5.03 ± 0.02 (9.3) -0.69 ± 0.05 0.90 ± 0.08 (8)* n.d.  

13c NH 4-(pyrimid-5-yl) 3.86 ± 0.10 (138)* -3 0.97 ± 0.19 (9)* 0.68 ± 0.16 (5)* 0.04 ± 0.05 (1.10) 

13d NH 4-(1-methyl 

pyrazol-4-yl) 

4.18 ± 0.07 (66) -0.58 ± 0.14 1.97 ± 0.04 (93) 1.44 ± 0.09 (28) -0.36 ± 0.08 (0.44) 

13e NH 4-Ph 4.16 ± 0.15 (69) -0.30 ± 0.04 0.44 ± 0.11 (2.8)* n.d.  

a 
Binding

 
cooperativity with [

3
H]NMS;  for instances where a complete inhibition of [

3
H]NMS binding by the allosteric modulator was observed 

(consistent with a high level of negative cooperativity), logα´ was fixed to -3; 
b
binding cooperativity with ACh; 

c
functional cooperativity with 

ACh; 
d
intrinsic efficacy of the modulator; for instances where no intrinsic efficacy was observed, LogτB was fixed to -3. * = significant 

difference (p < 0.05) relative to same parameter determined for 1, one-way ANOVA with Dunnett’s post-test.  
 
n.d. = inactive at concentrations 

up to 30 µM; values represent the mean ± SEM from at least three experiments performed in duplicate. 
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Further studies were performed around the 4-(1-methylpyrazol-4-yl) analogue 10d, which, 

together with carboxamide analogue 9d, displayed the greatest level of positive cooperativity with 

ACh of the first series of compounds in both binding and function. We initially investigated the 

exchange of the methyl group with a hydrogen atom (14), linear and branched aliphatic carbon 

chains (15a-e) as well as cyclic unsaturated and aromatic substituents (15f-15j) (Scheme 2, Table 

2). The removal of the methyl group (compound 14) caused a 120-fold loss in positive binding 

cooperativity with ACh in comparison to the methylpyrazole analogue 10d. This dramatic effect 

could potentially be explained by the loss of an important hydrophobic interaction within the 

allosteric binding pocket or the change of the tautomeric properties of the pyrazole moiety. Of 

interest, this loss of binding and functional cooperativity was accompanied by a significant 5-fold 

increase in intrinsic efficacy (τB = 1.10). Elongation of the chain length from the methyl (10d) to the 

ethyl (15a) derivative had no effect upon affinity or cooperativity with ACh. However, a loss in 

binding cooperativity was observed with further extension to the propyl (15c, α = 40; 10-fold loss) 

and isopropyl (15d, α = 120; 3-fold loss) and, most dramatically, the n-butyl derivate (15e, α = 6; 

120-fold loss). In contrast, no significant change in intrinsic efficacy was observed. The 

hydroxethyl derivative 15b showed comparable cooperativity with ACh compared to that of the 

methyl and ethyl pyrazole (10d and 15a). The incorporation of cyclic unsaturated and aromatic 

substituents (15f-15j) caused a decrease in binding cooperativity with ACh as compared to 10d 

with the most dramatic effect being the 170-fold decrease observed upon incorporation of a benzyl 

group (15j). Interestingly, compounds with larger cyclic aliphatic substituents attached to the 

pyrazole moiety, such as compounds 15f and 15g, exhibited higher ligand binding affinity (KB < 10 

µM), but with no improvement of binding and functional cooperativity. In the case of 15h, the lack 

of intrinsic efficacy was also noteworthy.  

We subsequently investigated compounds with small changes to the parent core of the 4-(1-

methylpyrazol-4-yl) analogue 10d (Scheme 3, Table 3). Compound 17, which incorporates a 2-(1-

methylpyrazol-4-yl)pyridinyl moiety, exhibited comparable binding cooperativity with ACh as 

Page 18 of 74

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

 

compared to that of 10d but, of particular interest, displayed no detectable intrinsic efficacy. The 2-

fluorobenzyl analogue 19 did not exhibit a change in binding cooperativity or intrinsic efficacy as 

compared to compound 10d. Intermediate 18 displayed a substantial reduction in binding 

cooperativity as compared to 10d, demonstrating the importance of the 4-(1-methylpyrazol-4-yl) 

substituent of compound 19. In comparison, the introduction of fluoro groups to analogues of 1 at 

the corresponding positions to those in compound 2 (see Figure 1), translated to a small 

improvement of potency.
33

 Our earlier work demonstrated that the introduction of 5,8-difluoro 

groups to the 4-oxo-1,4-dihydroquinoline core of 1 increased intrinsic activity.
20

 The introduction 

of the corresponding 3,6-difluoro groups to our novel 4-phenylpyridin-2-one scaffold (compound 

23) caused a 60-fold decrease in binding cooperativity (α = 6) but a significant 6-fold increase in 

intrinsic efficacy (τB = 1.34). Finally, we investigated the effect of adding an additional nitrogen 

atom, therefore changing the pyridine-2(1H)-one core to a pyrimidin-4(3H)-one core. Although no 

gain in affinity for the M1 mAChR was observed, 29 was the standout compound of the series 

displaying a 4-fold increase in binding cooperativity with ACh and a 11-fold increase in intrinsic 

efficacy as compared to 10d (Figure 3). Furthermore, compound 29 displays a similar affinity as 

reference compound 1, but a significant 24-fold increase in binding cooperativity with ACh and a 

11-fold increase in intrinsic activity. 
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Table 2: Binding and functional allosteric parameters of pyrazole analogues
 
14-15j at the M1 mAChR. 

  

  Radioligand binding ([
3
H]NMS) IP1 accumulation 

 R pKB (KB, µM) Logα’
a
 Logα (α)

b
 Logαβ (αβ)

c
 LogτB  (τB)

d
 

10d -CH3 4.37 ± 0.07 (43) -3 2.57 ± 0.17 (370) 2.30 ± 0.08 (200) -0.68 ± 0.15 (0.21) 

14 -H 4.56 ± 0.26 (28) -0.10 ± 0.11 0.53 ± 0.22 (3.4)* 0.68 ± 0.16 (4.8)*  0.04 ± 0.05 (1.1)* 

15a -CH2CH3 4.38 ± 0.15 (41)  0.03 ± 0.07 2.47 ± 0.12 (295) 2.26 ± 0.11 (181) -0.05 ± 0.08 (0.89)*  

15b -(CH2)2OH 4.43 ± 0.09 (37) -3 2.76 ± 0.13 (575) 2.49 ± 0.11 (310) -0.11 ± 0.06 (0.77)*  

15c -(CH2)2CH3 4.64 ± 0.12 (23) -0.18 ± 0.07 1.60 ± 0.25 (40)*  1.78 ± 0.08 (60) -0.52 ± 0.09 (0.3)  

15d -CH(CH3)2 4.57 ± 0.21 (27) -0.41 ± 0.21 2.08 ± 0.10 (120)  1.93 ± 0.11 (85)  -0.33 ± 0.07 (0.47)  

15e -(CH2)3CH3 4.86 ± 0.11 (14)  -0.10 ± 0.06 0.78 ± 0.23 (6)*  0.75 ± 0.13 (6)*  -0.30 ± 0.08 (0.50)  

15f -cyclopentyl 5.45 ± 0.03 (4)  -0.50 ± 0.02 1.08 ± 0.04 (12)*  1.92 ± 0.10 (83)  -0.42 ± 0.07 (0.38)  

15g -cyclohexyl 5.67 ± 0.07 (2)*  -0.50 ± 0.02 1.05 ± 0.09 (11)*  0.63 ± 0.17 (4)*  -0.29 ± 0.09 (0.51)  

15h 
 

5.13 ± 0.05 (7) -0.39 ± 0.04 1.38 ± 0.15 (24)* 0.58 ± 0.12 (3.8)*  -3  

15i 
 

4.52 ± 0.31 (30) -0.19 ± 0.05 0.21 ± 0.10 (1.6)*  n.d.  

15j -CH2Ph 4.68 ± 0.49 (21)  -0.12 ± 0.03 0.33 ± 0.04 (2.1)*  n.d.  

a
Binding

 
cooperativity with [

3
H]NMS;  for instances where a complete inhibition of [

3
H]NMS binding by the allosteric modulator was 

observed (consistent with a high level of negative cooperativity), logα´ was fixed to -3; 
b
binding cooperativity with ACh; 

c
functional 

cooperativity with ACh;
 d

intrinsic efficacy of the modulator; for instances where no intrinsic efficacy of the modulator was observed LogτB 

was fixed to -3. * = significant difference (p < 0.05) relative to same parameter determined for 10d, one-way ANOVA with Dunnett’s post-

test.  
 
n.d. = inactive at concentrations up to 30 µM; values represent the mean ± SEM from at least three experiments performed in duplicate. 

-CH2

-CH2
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Figure 3. Pharmacological characterization of 29 in binding and function at the mAChRs. (a) 

Radioligand binding experiments were performed using FlpIn-CHO cells stably expressing the M1 

mAChR, 0.1 nM of the radiolabeled antagonist [
3
H]NMS, increasing concentrations of ACh, with 

or without increasing concentrations of 29.  (b) IP1 accumulation experiments were performed 

using FlpIn-CHO cells stably expressing the M1 mAChR, increasing concentrations of ACh with or 

without increasing concentrations of 29. 100% represents the maximal stimulation of ACh in the 

absence of 29. 

 

It is interesting to note that compound 1 exhibited equivalent values for both binding (α = 60) and 

functional (αβ = 62) cooperativity, suggesting that it is the allosteric effect on ACh binding affinity 

that underlies the cooperativity measured in our functional assay. Similarly, there was no significant 

difference between values of binding (α) and functional (αβ) cooperativity determined for any 

compound in this novel series based around the 4-phenylpyridin-2-one scaffold (Tables 1-3, 

Student’s t-test, p < 0.05). Indeed, we observed a strong correlation between Logαβ and Logα 

(Figure 4a), demonstrating that binding cooperativity mediates the modulatory effect upon ACh in 

the functional assay observed for the compounds in this series. Another key observation from our 

characterization the compounds based around the 4-phenylpyridin-2-one scaffold was the apparent 

“uncoupling” of the correlation between positive cooperativity with ACh and allosteric ligand 

intrinsic efficacy, in contrast to our previous SAR study of compound 1 (Figure 4b & c). Although 

the most active compound of the current series (29) displayed both the largest positive cooperativity 

with ACh and the largest intrinsic efficacy (Figure 4), we also identified analogues ranging from 17, 

which displayed no intrinsic efficacy but robust positive cooperativity with ACh (α = 125, Figure 
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4e), to 14 , which displayed intrinsic efficacy comparable to that of 1 (τB = 1.1, Figure 4d) but only 

very weak positive cooperativity with ACh (α = 3). This range of different ligand activities suggests 

that the action of some ligands within the current series no longer adhere to a simple two-state 

allosteric model of action. Further evidence of this is provided by our binding assay. In the majority 

of cases, a robust inhibition of the orthosteric antagonist, [
3
H]NMS, by increasing concentrations of 

test compound was observed, consistent with these ligands displaying positive cooperativity with 

agonists but high negative cooperativity with the binding of antagonists.  This is consistent with a 

two-state mode of action and our previous observations of the action of 1 or analogues.
20,22

 

However, in the present series we observed a number of compounds (for example 15a, 15c-e) that 

displayed neutral cooperativity with [
3
H]NMS but robust positive cooperativity with the agonist 

ACh. As such, these observations suggest that a simple two-state model can no longer 

accommodate the action of these ligands. 

 

Figure 4. (a) Correlation between binding and functional cooperativity for 4-phenylpyridin-2-one 

derivatives generated in the present study (Pearson’s test, r = 0.84, p < 0.05, slope = 1.00 ± 0.01.  

(b) Plots of functional cooperativity (Logαβ) versus intrinsic efficacy (LogτB) for derivatives of 1 

generated and characterized in our previous study reveal a positive correlation (Pearson’s test, r = 

0.65, p < 0.05) between these two parameters. (c) A similar plot for 4-phenylpyridin-2-one 
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derivatives generated in the present study reveals no such correlation. (d & e) IP1 accumulation 

experiments were performed using FlpIn-CHO cells stably expressing the M1 mAChR, increasing 

concentrations of ACh with or without increasing concentrations of 14 (d) and 17 (e). (d) 14 

displays intrinsic activity comparable to that of 1, but very weak positive cooperativity with ACh 

(e) 17 displays no intrinsic activity but robust positive cooperativity with ACh. 100% represents the 

maximal stimulation of ACh in the absence of test compound. 
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Table 3: Binding and functional allosteric parameters at the M1 mAChR of 4-(1-methylpyrazol-4-yl) analogues. 

 

     Radioligand binding ([
3
H]NMS) IP1 accumulation 

 W X Y Z 
pKB 

(KB, µM) 

Logα’
a 

 

Logα  

(α)
b 

Logαβ  

(αβ)
c 

LogτB  

(τB)
d 

10d CH H H CH 4.37 ± 0.07 (43) -3 2.57 ± 0.17 (370) 2.30 ± 0.08 (200) -0.68 ± 0.15 (0.21) 

14 CH H H CH 4.45 ± 0.26 (35) -0.09 ± 0.11 0.48 ± 0.19 (3)* 0.68 ± 0.16*(5) 0.04 ± 0.05(1.09)* 

17 CH H H N 4.50 ± 0.04 (32)  -3 2.10 ± 0.02 (125)  2.15 ± 0.09 (141)  = -3  

18 CH H F CH 4.75 ± 0.10 (18)  -3 0.75 ± 0.14 (6)*  n.d.  

19 CH H F CH 4.51 ± 0.08 (31)  -3 2.24 ± 0.17 (174)  1.93 ± 0.11 (85)  -0.37 ± 0.14 (0.43) 

23 CH F H CH 4.38 ± 0.12 (42)  -3 0.76 ± 0.30 (6)*  -0.41 ± 0.43 (0.39)* 0.13 ± 0.03 (1.34)* 

29 N H H CH 4.88 ± 0.04 (13)  -3 3.14 ± 0.09 (1380)  2.75 ± 0.15 (562)  0.40 ± 0.15 (2.51)*  

a
 Binding

 
cooperativity with [

3
H]NMS;  for instances where a complete inhibition of [

3
H]NMS binding by the allosteric modulator was 

observed (consistent with a high level of negative cooperativity), logα´ was fixed to -3; 
b
binding cooperativity with ACh; 

c
functional 

cooperativity with ACh;
 d

intrinsic efficacy of the modulator; for instances where no intrinsic efficacy of the modulator was observed 

LogτB was fixed to -3.  * = significant difference (p < 0.05) relative to same parameter determined for 10d, one-way ANOVA with 

Dunnett’s post-test.
 
n.d. = inactive at concentrations up to 30 µM; values represent the mean ± SEM from at least three experiments 

performed in duplicate.  
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�   CONCLUSIONS 

In this study, we report the design and characterization of a structurally novel series of M1 mAChR 

PAMs based on the novel 4-phenylpyridin-2-one scaffold, that offer potentially greater scope for 

future development than the extensively investigated BQCA core. Our previous studies have 

revealed that, while 1 displays low affinity for the M1 mAChR, it displays high positive 

cooperativity with agonist binding and has exquisite subtype selectivity.
22

 However, BQCA does 

contain a carboxylic acid group that is often associated with poor permeability.
34-36

 

 The majority of active compounds displayed both comparable binding affinities and intrinsic 

efficacy to those of 1. Indeed, the lack of significant gains in affinity may be due to the nature of the 

binding pocket, which if it is indeed the same as that of 1, lies at the extracellular interface of the 

M1 mAChR and is largely defined by aromatic residues. However, we also generated a number of 

compounds that displayed markedly higher binding and functional cooperativity with ACh than 1. 

Furthermore, compound 10d displayed high selectivity towards the M1 mAChR over other mAChR 

subtypes (Figure 1). Bioisosteric replacement of the carboxamide functionality of compound 9d 

with an oxazole (8q) or thiazole (8r) was not well tolerated, whereas small changes to the pyrazole 

moiety of compound 10d were generally better accommodated. However, replacement of the N-

methyl group (compound 14) with longer chains and bulkier alkyl as well as aromatic-bearing 

groups (compounds 15e, 15i and 15j) had a detrimental effect on the cooperativity with ACh in 

comparison to the N-methylpyrazole analogue 10d. The standout PAM in terms of binding 

cooperativity with ACh was the 6-phenylpyrimid-4-one analogue 29 with an α value of 1380, i.e., a 

1380-fold potentiation of ACh affinity. Consequently, compound 29 represents a promising lead for 

future investigations of the previously unreported 6-phenylpyrimidin-4-one scaffold. 

 We have previously shown that 1 adheres to a two-state mode of action, whereby the degree of 

agonism of 1 is dependent upon the pathway stimulus-response coupling efficiency and/or receptor 

density.
22

 Furthermore, in an SAR exploration of analogues of 1, we have shown a strong positive 

correlation between the degree of cooperativity and the level of allosteric agonism.
20

 We have also 
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made similar observations in an SAR study of M4 mAChR allosteric modulators.
37

 However, in the 

case of the present series of 6-phenylpyrimidin-4-one derivatives we observe no such correlation. 

Instead, our characterization revealed a range of behaviours from ligands that displayed little or 

weak positive cooperativity with ACh but robust allosteric agonism to those that displayed no 

agonism but a high level of positive cooperativity with ACh (Tables 1-3, Figure 3). This range of 

behaviours may, in the future, allow us to explore the relationship between in vivo efficacy and in 

vitro parameters that describe the functional cooperativity and intrinsic efficacy of allosteric M1 

mAChR ligands. This is particularly relevant given recent observations of M1 mAChR agonists 

displaying signalling-pathway and brain-region specific effects that may be of therapeutic 

relevance.
14
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�   EXPERIMENTAL SECTION 

Chemistry. Chemicals and solvents were purchased from standard suppliers and used without 

further purification.  Davisil
®

 silica gel (40-63 µm) for flash column chromatography was supplied 

by Grace Davison Discovery Sciences (Victoria, Australia) and deuterated solvents were purchased 

from Cambridge Isotope Laboratories, Inc. (USA, distributed by Novachem PTY. Ltd, Victoria, 

Australia). 

Unless otherwise stated, reactions were carried out at ambient temperature. Reactions were 

monitored by thin layer chromatography on commercially available pre-coated aluminium-backed 

plates (Merck Kieselgel 60 F254). Visualisation was by examination under UV light (254 and 366 

nm).  General staining was carried out with KMnO4 or phosphomolybdic acid. A solution of 

ninhydrin (in ethanol) was used to visualize primary and secondary amines.  All organic extracts 

collected after aqueous work-up procedures were dried over anhydrous MgSO4 or Na2SO4 before 

gravity filtering and evaporation to dryness. Organic solvents were evaporated in vacuo at ≤ 40°C 

(water bath temperature). Purification using preparative layer chromatography (PLC) was carried 

out on Analtech preparative TLC plates (200 mm × 200 mm × 2 mm). 

1
H NMR and 

13
C NMR spectra were recorded on a Bruker Avance Nanobay III 400MHz 

Ultrashield Plus spectrometer at 400.13 MHz and 100.62 MHz respectively.  Chemical shifts (δ) are 

recorded in parts per million (ppm) with reference to the chemical shift of the deuterated solvent.  

Coupling constants (J) and carbon-fluorine coupling constants (JCF) are recorded in Hz and the 

significant multiplicities described by singlet (s), doublet (d), triplet (t), quadruplet (q), broad (br), 

multiplet (m), doublet of doublets (dd), doublet of triplets (dt).  Spectra were assigned using 

appropriate COSY, distortionless enhanced polarisation transfer (DEPT), HSQC and HMBC 

sequences. 

LCMS were run to verify reaction outcome and purity using an Agilent 6120 Series Single Quad 

coupled to an Agilent 1260 Series HPLC. The following buffers were used; buffer A: 0.1% formic 
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acid in H2O; buffer B: 0.1% formic acid in MeCN. The following gradient was used with a 

Poroshell 120 EC-C18 50 × 3.0 mm 2.7 micron column, and a flow rate of 0.5 mL/min and total run 

time of 5 min; 0–1 min 95% buffer A and 5% buffer B, from 1-2.5 min up to 0% buffer A and 

100% buffer B, held at this composition until 3.8 min, 3.8–4 min 95% buffer A and 5% buffer B, 

held until 5 min at this composition. Mass spectra were acquired in positive and negative ion mode 

with a scan range of 100–1000 m/z.  UV detection was carried out at 214 and 254 nm. All retention 

times (tR) are quoted in minutes. 

Preparative HPLC was performed using an Agilent 1260 infinity coupled with a binary 

preparative pump and Agilent 1260 FC-PS fraction collector, using Agilent OpenLAB CDS 

software (Rev C.01.04), and an Altima 5µM C8 22 × 250 mm column.  The following buffers were 

used; buffer A: H2O; buffer B: MeCN, with sample being run at a gradient of 5% buffer B to 100% 

buffer B over 20 min, at a flow rate of 20 mL/min.  All screening compounds were of > 95% purity 

unless specified in the individual monologue. 

All NMR experiments were performed in d6-DMSO allowing comparison of the spectra of the 

various analogues.  It is important to point out that the 
13

C NMR signals of the hydroxycyclohexane 

moiety were often difficult to be obtained in d6-DMSO.  Especially one tertiary carbon of the 

hydroxycyclohexane moiety was not observed in the 
13

C NMR spectra of all the respective 

analogues even with extended relaxation time and another tertiary aromatic carbon was only ever 

observed by using HSQC experiments.  However, additional experiments were performed on 

selected compounds to confirm the integrity of the presented NMR data.  These results have shown 

that the all the signals can be observed when the NMR solvent was changed to CDCl3.
38

  

Furthermore, the quaternary carbon of the pyrazole moiety was not always observed depending on 

individual analogue.   

General Procedure A: Suzuki coupling of aryl halides and boronic acids.  A mixture of the 

aryl halide (1.0 eq) and boronic acid (1.5 eq) in degassed (by sonication followed by a stream of 
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nitrogen) THF/1 M Na2CO3(aq) (3:1 4 mL/100 mg) was evacuated and flushed with nitrogen.  

PdCl2(PPh3)2 (0.1 eq) was added and the reaction mixture boiled under reflux for 3 h.  THF was 

evaporated under reduced pressure.  The mixture was diluted with water (20 mL) and extracted with 

EtOAc (3 × 20 mL).  The combined organic layers were washed with brine (20 mL), dried over 

anhydrous MgSO4 and filtered, before concentration under reduced pressure.  The crude product 

was purified by flash column chromatography. 

General Procedure B: O-Alkylation of 1-(2-hydroxycyclohexyl)-4-(2-

hydroxyphenyl)pyridin-2(1H)-one (7). 1-(2-Hydroxycyclohexyl)-4-(2-hydroxy-phenyl)pyridin-

2(1H)-one (7) (1.0 eq), K2CO3 (1.1 eq), KI (0.1 eq) and the appropriately substituted benzyl halide 

(1.1 eq) were stirred in DMF (2 mL/100 mg) at rt overnight.  Reaction progress was monitored 

through TLC analysis, with further addition of K2CO3 (0.5 eq) and substituted benzyl halide (0.5 

eq) every 24 h until the reaction appeared complete.  The reaction mixture was poured onto 

ice/water and stirred for 30 min, before extraction with EtOAc (3 × 20 mL).  The combined organic 

layers were washed with 2 M NaOH(aq) (20 mL), water (20 mL) and brine (20 mL), before 

concentration under reduced pressure. The resulting crude product was purified by flash column 

chromatography. 

General Procedure C: Ester hydrolysis with NaOH. To a solution of the ester (1.0 eq) in 

EtOH/H2O (1:1, 2 mL/0.1 mmol) was added NaOH (4.0 eq).  The reaction mixture was heated at 

50 °C for 2 h.  EtOH was evaporated under reduced pressure, before acidifying with 1 M HCl(aq) to 

pH 2.  The resulting precipitate was filtered (vacuum) to give the desired product as the free acid. 

General Procedure D: Ester aminolysis with ammonium hydroxide. A mixture of ester 

(1.0 eq) in MeOH/NH4OH (1:1, 1.0 mL/100 mg) in a sealed tube was stirred at rt for 3 d.  The 

resulting precipitate was collected by filtration (vacuum) and washed with EtOAc to give the 

desired carboxamide product. 
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General Procedure E: N-Alkylation of 4-(2-((4-(1H-pyrazol-4-yl)benzyl)oxy)phenyl)-1-(2-

hydroxycyclohexyl)pyridin-2(1H)-one (14). 4-(2-((4-(1H-Pyrazol-4-yl)benzyl)oxy)phenyl)-1-(2-

hydroxycyclohexyl)pyridin-2(1H)-one (1.0 eq), K2CO3 (1.1 eq), KI (0.1 eq) and the appropriate 

organohalide (1.1 eq) were stirred in DMF (2 mL/100 mg) at the indicated temperature.  Reaction 

progress was monitored through TLC analysis, with further addition of K2CO3 and organohalide 

until the reaction appeared complete or conversion remained stagnant.  The reaction mixture was 

poured onto ice/water and stirred for 30 min, before extraction with EtOAc (3 × 20 mL).  The 

combined organic layers were washed with 2 M NaOH(aq) (20 mL), water (20 mL) and brine 

(20 mL), before concentration under reduced pressure.  The resulting crude product was purified by 

flash column chromatography. 

(±)-trans-2-((4-Bromopyridin-2-yl)oxy)cyclohexan-1-ol (4a) and (±)-trans-4-bromo-1-(2-

hydroxycyclohexyl)pyridin-2(1H)-one (4b). A mixture of 4-bromo-2-hydroxypyridine (1) (10.0 g, 

57.5 mmol), 1,2-cyclohexene oxide (29.1 mL, 287 mmol, 5.0 eq) and K2CO3 (19.9 g, 144 mmol, 

2.5 eq) was heated at 120 °C for 4 h.  The reaction mixture was cooled to rt and concentrated to 

dryness under reduced pressure.  The remaining residue was diluted with EtOAc (50 mL) and 

sonicated for 15 min at rt before the resulting suspension was collected by filtration (vacuum), and 

washed with EtOAc (filter cake 1).  The EtOAc washings were concentrated under reduced 

pressure, then taken up in DCM (15 mL) and sonicated for 15 min at rt before the resulting 

suspension was collected by filtration (vacuum) (filter cake 2).  Filter cake 2 was washed with 

further DCM, to give 2-((4-bromopyridin-2-yl)oxy)cyclohexan-1-ol (4a) as 1.11 g of a beige solid 

(7%). 
1
H NMR δ 8.15–7.89 (m, 1H), 7.17 (dd, J = 5.5/1.7 Hz, 1H), 7.10–6.93 (m, 1H), 4.93–4.66 

(m, 2H), 3.67–3.42 (m, 1H), 2.11–1.94 (m, 1H), 1.94–1.75 (m, 1H), 1.74–1.47 (m, 2H), 1.44–1.07 

(m, 4H); 
13

C NMR δ 164.2, 147.9, 133.3, 119.8, 114.0, 78.6, 70.5, 33.1, 29.2, 23.3, 23.2; m/z MS 

(TOF ES
+
) C11H15BrNO2 [M+H]

+
 calcd 272.0; found 272.1; LC-MS tR: 3.72 min. 
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Filter cake 1, was taken up in water (70 mL) and stirred for 15 min at rt.  Any remaining solid 

was collected by filtration (vacuum) and washed with water to give 4-bromo-1-(2-

hydroxycyclohexyl)pyridin-2(1H)-one (4b) as 12.1 g of a white solid (77%).  
1
H NMR δ 7.68 (d, J 

= 7.4 Hz, 1H), 6.67 (d, J = 2.2 Hz, 1H), 6.44 (dd, J = 7.4/2.3 Hz, 1H), 4.79 (d, J = 5.8 Hz, 1H), 4.44 

(br s, 1H), 3.74 (br s, 1H), 2.04–1.88 (m, 1H), 1.76–1.60 (m, 3H), 1.51 (m, 1H), 1.40–1.18 (m, 3H); 

13
C NMR δ 160.8, 136.6, 134.1, 121.0, 108.9, 69.1, 35.2, 30.8, 24.9, 23.9; resonance at δ 136.6 ppm 

was taken from the HSQC experiment; m/z MS (TOF ES
+
) C11H15BrNO2 [M+H]

+
 calcd 272.0; 

found 272.1; LC-MS tR: 3.33 min. 

2-(2-((2-Hydroxycyclohexyl)oxy)pyridin-4-yl)phenol (5). 2-((4-Bromopyridin-2-

yl)oxy)cyclohexan-1-ol (4a) (500 mg, 1.84 mmol) and 2-hydroxyphenylboronic acid (380 mg, 2.76 

mmol, 1.5 eq) were dispersed in 1 M Na2CO3(aq) (5 mL) and THF (10 mL) in a 30 mL microwave 

vial.  The mixture was sonicated at rt, then degassed with a stream of nitrogen for 10 min.  

PdCl2(PPh3)2 (129 mg, 0.18 mmol, 0.1 eq) was added and the vial sealed, before heating at 100 °C 

for 2.5 h.  The mixture was cooled, before adding water (30 mL) and extracting with EtOAc (3 × 30 

mL).  The combined organic layers were washed with brine (30 mL) before concentration under 

reduced pressure.  The resulting residue was purified by FCC (eluent EtOAc/PE 10:90 to 100:0, wet 

load in DCM), to give 609 mg of a pale yellow solid (quantitative).  
1
H NMR δ 9.80 (s, 1H), 8.11 

(dd, J = 5.4/0.5 Hz, 1H), 7.33 (dd, J = 7.7/1.7 Hz, 1H), 7.23 (ddd, J = 8.2/7.4/1.7 Hz, 1H), 7.12 (dd, 

J = 5.4/1.5 Hz, 1H), 6.97 (dd, J = 8.2/1.0 Hz, 1H), 6.94 (d, J = 0.8 Hz, 1H), 6.90 (ddd, J = 

7.5/7.5/1.1 Hz, 1H), 4.83 (td, J = 8.5/4.6 Hz, 1H), 3.56 (td, J = 9.0/4.2 Hz, 1H), 2.19–2.01 (m, 1H), 

1.96–1.83 (m, 1H), 1.70–1.50 (m, 2H), 1.43–1.20 (m, 4H); 
13

C NMR (101 MHz, DMSO) δ 163.5, 

154.7, 149.0, 146.0, 129.9, 129.9, 124.8, 119.6, 117.2, 116.3, 110.8, 77.6, 70.6, 33.2, 29.3, 23.3, 

23.2; m/z MS (TOF ES
+
) C17H20NO3 [MH]

+
 calcd 286.1; found 286.2; LC-MS tR: 3.23 min. 

2-((4-(2-([1,1'-Biphenyl]-4-ylmethoxy)phenyl)pyridin-2-yl)oxy)cyclohexan-1-ol (6). 2-(2-((2-

Hydroxycyclohexyl)oxy)pyridin-4-yl)phenol (5) (100 mg, 0.35 mmol), K2CO3 (53 mg, 0.39 mmol, 
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1.1 eq), KI (7 mg, 0.04 mmol, 0.1 eq) and 4-(bromomethyl)biphenyl (95 mg, 0.39 mmol, 1.1 eq) 

were dispersed in DMF (2 mL).  The mixture was stirred at rt overnight. The mixture was diluted 

with water/ice and stirred for 10 min, before collecting the resulting precipitate by filtration 

(vacuum) and washing with water.  The crude solid product was further purified by FCC (eluent 

MeOH/DCM 0:100 to 10:90, with a plateau at 5:95).  Mixed fractions were combined and 

repurified by FCC (eluent EtOAc/PE 0:100 to 30:70).  A combined total of 87 mg of glassy solid 

(55%) was obtained.  
1
H NMR (CDCl3) δ 8.11 (d, J = 5.4 Hz, 1H), 7.69–7.51 (m, 4H), 7.51–7.29 

(m, 7H), 7.19 (dd, J = 5.4/1.3 Hz, 1H), 7.13–6.99 (m, 3H), 5.16 (s, 2H), 4.78 (ddd, J = 10.9/8.9/4.7 

Hz, 1H), 3.70 (ddd, J = 11.0/8.9/4.7 Hz, 1H), 2.24–2.08 (m, 2H), 1.85–1.62 (m, 2H), 1.59–1.14 (m, 

4H); 
13

C NMR (CDCl3) δ 164.1, 155.8, 150.6, 144.8, 141.0, 140.8, 135.8, 130.6, 130.5, 128.9, 

128.1, 127.6, 127.5, 127.4, 127.2, 121.7, 118.8, 113.5, 112.6, 81.5, 74.2, 70.5, 33.7, 31.0, 24.3, 

24.0; m/z MS (TOF ES
+
) C30H30NO3 [MH]

+
 calcd 452.2; found 452.3; LC-MS tR: 4.18 min. 

1-(2-Hydroxycyclohexyl)-4-(2-hydroxyphenyl)pyridin-2(1H)-one (7). 4-Bromo-1-(2-

hydroxycyclohexyl)pyridin-2(1H)-one (4b) (2.00 g, 7.35 mmol) was coupled to 2-hydroxyphenyl 

boronic acid (1.52 g, 11.0 mmol) according to General Procedure A.  After the THF was evaporated 

under reduced pressure, the resulting brown precipitate was filtered (vacuum).  The precipitate was 

taken up in MeOH and adsorbed onto Telos bulk sorbent and dry loaded onto the column (no 

extractive workup was necessary).  FCC purification (eluent MeOH/DCM 0:100 to 20:80) gave 

1.75 g of a white solid (83%).  
1
H NMR δ 9.84 (s, 1H), 7.65 (d, J = 7.3 Hz, 1H), 7.30 (dd, J = 

7.7/1.7 Hz, 1H), 7.22 (ddd, J = 8.2/7.4/1.7 Hz, 1H), 6.94 (dd, J = 8.1/1.0 Hz, 1H), 6.87 (td, J = 

7.5/1.1 Hz, 1H), 6.52 (d, J = 1.9 Hz, 1H), 6.45 (dd, J = 7.2/2.0 Hz, 1H), 4.75 (d, J = 6.0 Hz, 1H), 

4.54 (br s, 1H), 3.79 (br s, 1H), 2.07–1.93 (m, 1H), 1.80–1.63 (m, 3H), 1.53 (br s, 1H), 1.44–1.22 

(m, 3H); 
13

C NMR δ 161.9, 154.8, 148.5, 134.0, 130.0, 129.6, 124.5, 119.5, 118.0, 116.3, 106.8, 

69.2, 35.4, 31.1, 25.0, 24.0; resonance at δ 134.0 ppm was taken from the HSQC experiment; m/z 

MS (TOF ES
+
) C17H20NO3 [M+H]

+
 calcd 286.1; found 286.2; LC-MS tR: 3.33 min. 
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4-(2-([1,1'-Biphenyl]-4-ylmethoxy)phenyl)-1-(2-hydroxycyclohexyl)pyridin-2(1H)-one (8a). 

1-(2-Hydroxycyclohexyl)-4-(2-hydroxyphenyl)pyridin-2(1H)-one (7) (100 mg, 0.35 mmol) was 

alkylated with 4-(bromomethyl)biphenyl (95 mg, 0.39 mmol) according to General Procedure B.  A 

precipitate formed after pouring the reaction mixture into ice/water.  The precipitate was collected 

by filtration (vacuum), then purified by FCC (eluent EtOAc/PE 30:70 to 100:0, wet load in DCM) 

to give 97 mg of a white solid (61%).  
1
H NMR δ 7.74–7.60 (m, 5H), 7.58–7.43 (m, 4H), 7.43–7.31 

(m, 3H), 7.22 (d, J = 8.2 Hz, 1H), 7.11–6.99 (m, 1H), 6.52 (d, J = 1.9 Hz, 1H), 6.46 (dd, J = 7.2/2.0 

Hz, 1H), 5.25 (s, 2H), 4.75 (d, J = 6.0 Hz, 1H), 4.54 (s, 1H), 3.80 (s, 1H), 2.09–1.87 (m, 1H), 1.85–

1.43 (m, 4H), 1.43–1.21 (m, 3H); 13
C NMR δ 161.8, 155.3, 148.3, 139.8, 139.6, 136.2, 134.3, 130.3, 

129.9, 129.0, 127.9, 127.5, 127.2, 126.8, 126.7, 121.2, 118.5, 113.4, 107.0, 69.3, 69.2, 35.4, 31.1, 

25.0, 24.0; m/z MS (TOF ES
+
) C30H30NO3 [MH]

+
 calcd 452.2; found 452.30; LC-MS tR: 3.60 min. 

4-(2-(Benzyloxy)phenyl)-1-(2-hydroxycyclohexyl)pyridin-2(1H)-one (8b). 1-(2-

Hydroxycyclohexyl)-4-(2-hydroxyphenyl)pyridin-2(1H)-one (7) (80 mg, 0.28 mmol) was alkylated 

with benzyl bromide (37 µL, 0.31 mmol) according to General Procedure B.  After a total of 72 h of 

stirring with two further additions of K2CO3 and benzyl bromide, the mixture was heated at 90 °C 

for 2 h, cooled then worked up.  The crude product was purified by FCC (eluent EtOAc/PE 50:50 to 

100:0) to give 19.4 mg of a colourless oil (18%). 
 1

H NMR δ 7.67 (d, J = 7.2 Hz, 11H), 7.47–7.26 

(m, 7H), 7.19 (d, J = 8.3 Hz, 1H), 7.04 (ddd, J = 7.6/7.6/0.7 Hz, 1H), 6.50 (d, J = 1.9 Hz, 1H), 6.44 

(dd, J = 7.2/2.0 Hz, 1H), 5.19 (s, 2H), 4.53 (br s, 1H), 3.79 (br s, 1H), 2.08–1.91 (m, 1H), 1.81–1.62 

(m, 3H), 1.53 (m, 1H), 1.43–1.11 (m, 3H); 
13

C NMR δ 161.8, 155.3, 148.3, 137.0, 134.1, 130.3, 

129.9, 128.5, 127.7, 127.3, 127.1, 121.2, 118.5, 113.4, 107.0, 69.6, 69.2, 35.4, 31.1, 25.0, 24.0; 

resonance at δ 134.1 ppm was taken from the HSQC experiment; m/z MS (TOF ES
+
) C17H20NO3 

[M+H]
+
 calcd 376.2; found 376.2; LC-MS tR: 3.74 min. 

4-(2-((2-Fluorobenzyl)oxy)phenyl)-1-(2-hydroxycyclohexyl)pyridin-2(1H)-one (8c). 1-(2-

Hydroxycyclohexyl)-4-(2-hydroxyphenyl)pyridin-2(1H)-one (7) (80 mg, 0.28 mmol) was alkylated 
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with 2-fluorobenzyl bromide (37 µL, 0.31 mmol) according to General Procedure B.  After a total 

of 72 h of stirring with two further additions of K2CO3 and 2-fluorobenzyl bromide, the mixture 

was heated at 90 °C for 2 h, cooled then worked up.  The crude product was purified by FCC 

(eluent EtOAc/PE 30:70 to 100:0) to give 47 mg of a pale yellow solid (43%).  
1
H NMR δ 7.64 (d, J 

= 7.3 Hz, 1H), 7.50 (ddd, J = 7.6/7.6/1.7 Hz, 1H), 7.44–7.35 (m, 3H), 7.28–7.17 (m, 3H), 7.06 (ddd, 

J = 7.5/7.5/0.9 Hz, 1H), 6.47 (d, J = 1.9 Hz, 1H), 6.40 (dd, J = 7.2/2.0 Hz, 1H), 5.22 (s, 2H), 4.52 

(br s, 1H), 3.79 (br s, 1H), 2.06–1.92 (m, 1H), 1.80–1.61 (m, 3H), 1.54 (m, 1H), 1.41–1.20 (m, 3H); 

13
C NMR δ 161.8, 160.2 (d, JCF = 245.9 Hz), 155.1, 148.2, 134.1, 130.4, 130.3 (d, JCF = 6.2 Hz), 

130.3 (d, JCF = 6.0 Hz), 129.9, 127.1, 124.6 (d, JCF = 3.4 Hz), 123.7 (d, JCF = 14.4 Hz), 121.4, 

118.4, 115.4 (d, JCF = 20.9 Hz), 113.3, 106.8, 69.2, 64.1 (d, JCF = 3.8 Hz), 35.4, 31.0, 25.0, 24.0; 

resonance at δ 134.1 ppm was taken from the HSQC experiment; m/z MS (TOF ES
+
) C24H25FNO3 

[M+H]
+
 calcd 394.2; found 394.2; LC-MS tR: 3.73 min. 

4-(2-((3-Fluorobenzyl)oxy)phenyl)-1-(2-hydroxycyclohexyl)pyridin-2(1H)-one (8d). 1-(2-

Hydroxycyclohexyl)-4-(2-hydroxyphenyl)pyridin-2(1H)-one (7) (80 mg, 0.28 mmol) was alkylated 

with 3-fluorobenzyl bromide (38 µL, 0.31 mmol) according to General Procedure B.  The crude 

product was purified by FCC (eluent EtOAc/PE 50:50 to 100:0) to give 82 mg of a yellow oil 

(74%).
 1

H NMR δ 7.68 (d, J = 7.2 Hz, 2H), 7.46–7.34 (m, 3H), 7.28–7.10 (m, 4H), 7.09–7.02 (m, 

1H), 6.50 (d, J = 1.9 Hz, 1H), 6.44 (dd, J = 7.2/2.0 Hz, 1H), 5.21 (s, 2H), 4.74 (br s, 1H), 4.54 (br s, 

1H), 3.80 (br s, 1H), 2.07–1.92 (m, 1H), 1.82–1.62 (m, 3H), 1.54 (m, 1H), 1.43–1.12 (m, 3H); 
13

C 

NMR δ 162.2 (d, JCF = 243.7 Hz), 161.8, 155.1, 148.3, 139.9 (d, JCF = 7.4 Hz), 134.2, 130.5 (d, JCF 

= 8.3 Hz), 130.3, 129.9, 127.2, 123.1 (d, JCF = 2.7 Hz), 121.3, 118.5, 114.5 (d, JCF = 20.9 Hz), 113.9 

(d, JCF = 22.0 Hz), 113.4, 107.0, 69.2, 68.8 (d, JCF = 1.4 Hz), 35.4, 31.1, 25.0, 24.0; resonance at δ 

134.2 ppm was taken from the HSQC experiment; m/z MS (TOF ES
+
) C24H25FNO3 [M+H]

+
 calcd 

394.2; found 394.2; LC-MS tR: 3.75 min. 
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4-(2-((4-Fluorobenzyl)oxy)phenyl)-1-(2-hydroxycyclohexyl)pyridin-2(1H)-one (8e). 1-(2-

Hydroxycyclohexyl)-4-(2-hydroxyphenyl)pyridin-2(1H)-one (7) (100 mg, 0.35 mmol) was 

alkylated with 4-fluorobenzyl chloride (46 µL, 0.39 mmol) according to General Procedure B, with 

the reaction temperature changed to 90 °C.  Purification by FCC (eluent EtOAc/PE 50:50 to 100:0) 

gave 90 mg of a yellow solid (65%).  
1
H NMR δ 7.66 (d, J = 7.3 Hz, 1H), 7.49–7.42 (m, 2H), 7.42–

7.34 (m, 2H), 7.23–7.15 (m, 3H), 7.08–7.01 (m, 1H), 6.47 (d, J = 1.7 Hz, 1H), 6.42 (dd, J = 7.2/1.8 

Hz, 1H), 5.16 (s, 2H), 4.75 (d, J = 6.0 Hz, 1H), 4.52 (br s, 1H), 3.79 (br s, 1H), 2.06–1.93 (s, 1H), 

1.79–1.62 (m, 3H), 1.53 (m, 1H), 1.42–1.23 (m, 3H); 
13

C NMR δ 161.7 (d, JCF = 243.4 Hz), 161.8, 

155.2, 148.3, 134.1, 133.1 (d, JCF = 3.0 Hz), 130.3, 129.8, 129.6 (d, JCF = 8.3 Hz), 127.2, 121.2, 

118.4, 115.3 (d, JCF = 21.4 Hz), 113.5, 107.0, 69.2, 69.0, 35.4, 30.8, 25.0, 24.0; resonances at δ 

134.1 and 30.8 ppm were taken from the HSQC experiment; m/z MS (TOF ES
+
) C24H25FNO3 

[M+H]
+
 calcd 394.2; found 394.2; LC-MS tR: 3.73 min. 

1-(2-Hydroxycyclohexyl)-4-(2-((2-methoxybenzyl)oxy)phenyl)pyridin-2(1H)-one (8f). 1-(2-

Hydroxycyclohexyl)-4-(2-hydroxyphenyl)pyridin-2(1H)-one (7) (80 mg, 0.28 mmol) was 

alkylated with 2-methoxybenzyl chloride (43 µL, 0.31 mmol) according to General Procedure B. 

After a total of 48 h of stirring with one further addition of K2CO3 and 2-methoxybenzyl chloride, 

the mixture was worked up. Purification by FCC (eluent EtOAc/PE 30:70 to 80:20) gave 66 mg of a 

white solid (58%). 
 1

H NMR δ 7.64 (d, J = 7.1 Hz, 1H), 7.43–7.28 (m, 4H), 7.18 (d, J = 8.1 Hz, 

1H), 7.09–6.99 (m, 2H), 6.93 (t, J = 7.3 Hz, 1H), 6.52 (s, 1H), 6.44 (d, J = 6.9 Hz, 1H), 5.12 (s, 

2H), 4.73 (d, J = 5.7 Hz, 1H), 4.52 (br s, 1H), 3.84 (s, 3H), 3.80 (br s, 1H), 1.98 (br s, 1H), 1.80–

1.61 (m, 3H), 1.54 (m, 1H), 1.42–1.18 (m, 3H); 
13

C NMR δ 161.8, 157.0, 155.5, 148.2, 134.0, 

130.3, 129.8, 129.4, 129.0, 127.0, 124.3, 121.0, 120.2, 118.5, 113.2, 110.9, 106.9, 69.2, 65.4, 55.4, 

35.4, 31.1, 25.0, 24.0; resonance at δ 134.0 ppm was taken from the HSQC experiment; m/z MS 

(TOF ES
+
) C25H28NO4 [M+H]

+
 calcd 406.2; found 406.2; LC-MS tR: 3.76 min. 

Page 35 of 74

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

 

1-(2-Hydroxycyclohexyl)-4-(2-((3-methoxybenzyl)oxy)phenyl)pyridin-2(1H)-one (8g). 1-(2-

Hydroxycyclohexyl)-4-(2-hydroxyphenyl)pyridin-2(1H)-one (7) (100 mg, 0.35 mmol) was 

alkylated with 3-methoxybenzyl chloride (56 µL, 0.39 mmol) according to General Procedure B 

with the reaction temperature changed to 90 °C.  Purification by FCC (eluent EtOAc/PE 50:50 to 

100:0) gave 110 mg of a yellow oil (77%). 
1
H NMR δ 7.68 (d, J = 7.2 Hz, 1H), 7.41–7.35 (m, 2H), 

7.27 (t, J = 7.9 Hz, 1H), 7.21–7.17 (m, 1H), 7.04 (ddd, J = 7.6/7.6/0.9 Hz, 1H), 7.01–6.94 (m, 2H), 

6.88–6.83 (m, 1H), 6.53 (d, J = 1.9 Hz, 1H), 6.45 (dd, J = 7.2/2.0 Hz, 1H), 5.17 (s, 2H), 4.54 (br s, 

1H), 3.77 (br s, 1H), 3.74 (s, 3H), 2.05–1.94 (m, 1H), 1.79–1.63 (m, 3H), 1.54 (m, 1H), 1.41–1.23 

(m, 3H); 
13

C NMR δ 161.8, 159.4, 155.2, 148.3, 138.6, 134.2, 130.3, 129.9, 129.5, 127.1, 121.1, 

119.1, 118.5, 113.7, 113.3, 112.0, 107.0, 69.4, 69.2, 55.0, 35.4, 31.1, 25.0, 24.0; resonance at δ 

134.2 ppm was taken from the HSQC experiment; m/z MS (TOF ES
+
) C25H28NO4 [M+H]

+
 calcd 

406.2; found 406.3; LC-MS tR: 3.72 min. 

1-(2-Hydroxycyclohexyl)-4-(2-((4-methoxybenzyl)oxy)phenyl)pyridin-2(1H)-one (8h). 1-(2-

Hydroxycyclohexyl)-4-(2-hydroxyphenyl)pyridin-2(1H)-one (7) (80 mg, 0.28 mmol) was alkylated 

with 4-methoxybenzyl chloride (42 µL, 0.31 mmol) according to General Procedure B.  Purification 

by FCC (eluent EtOAc/PE 50:50 to 100:0) gave 66 mg of a beige solid (58%).  
1
H NMR δ 7.65 (d, 

J = 7.2 Hz, 1H), 7.40–7.31 (m, 4H), 7.21 (d, J = 8.0 Hz, 1H), 7.06–7.00 (m, 1H), 6.95–6.8 (m, 2H), 

6.48 (d, J = 1.9 Hz, 1H), 6.41 (dd, J = 7.2/2.0 Hz, 1H), 5.10 (s, 2H), 4.74 (d, J = 5.9 Hz, 1H), 4.52 

(br s, 1H), 3.79 (br s, 1H), 3.74 (s, 3H), 2.05–1.92 (m, 1H), 1.78–1.52 (m, 3H), 1.54 (m, 1H), 1.41–

1.20 (m, 3H); 
13

C NMR δ 161.8, 158.9, 155.4, 148.3, 134.1, 130.3, 129.9, 129.2, 128.7, 127.1, 

121.1, 118.4, 113.8, 113.5, 106.9, 69.4, 69.2, 55.1, 35.4, 31.1, 25.0, 24.0; resonance at δ 134.1 ppm 

was taken from the HSQC experiment; m/z MS (TOF ES
+
) C25H28NO4 [M+H]

+
 calcd 406.2; found 

406.2; LC-MS tR: 3.74 min. 

1-(2-Hydroxycyclohexyl)-4-(2-((2-(trifluoromethyl)benzyl)oxy)phenyl)pyridin-2(1H)-one 

(8i). 1-(2-Hydroxycyclohexyl)-4-(2-hydroxyphenyl)pyridin-2(1H)-one (7) (80 mg, 0.28 mmol) was 
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alkylated with 2-(trifluoromethyl)benzyl chloride (45 µL, 0.31 mmol) according to General 

Procedure B.  After a total of 48 h of stirring with one further addition of K2CO3 and 2-

(trifluoromethyl)benzyl chloride, the mixture was worked up.  Purification by FCC (eluent 

EtOAc/PE 50:50 to 100:0) gave 85 mg of a white solid (68%).  
1
H NMR δ 7.78 (d, J = 7.8 Hz, 1H), 

7.73–7.62 (m, 3H), 7.60–7.52 (m, 1H), 7.45–7.36 (m, 2H), 7.15 (d, J = 8.0 Hz, 1H), 7.11–7.06 (m, 

1H), 6.48 (d, J = 1.9 Hz, 7H), 6.41 (dd, J = 7.2/2.0 Hz, 7H), 5.30 (s, 2H), 4.74 (d, J = 5.7 Hz, 1H), 

4.53 (br s, 1H), 3.79 (br s, 1H), 2.04–1.93 (m, 1H), 1.78–1.62 (m, 3H), 1.53 (m, 1H), 1.41–1.20 (m, 

3H); 
13

C NMR δ 161.8, 155.0, 148.2, 134.9 (app. d, JCF = 1.5 Hz), 134.2, 132.9, 130.4, 130.0, 

129.6, 128.5, 127.3, 126.3 (q, JCF = 30.4 Hz), 126.1 (q, JCF = 5.6 Hz), 124.3 (q, JCF = 274.0 Hz), 

121.6, 118.5, 113.2, 106.9, 69.2, 66.5 (d, JCF = 2.6 Hz), 35.4, 31.0, 25.0, 24.0; resonance at δ 134.2 

ppm was taken from the HSQC experiment; m/z MS (TOF ES
+
) C25H25F3NO3 [M+H]

+
 calcd 444.2; 

found 444.3; LC-MS tR: 3.89 min. 

1-(2-Hydroxycyclohexyl)-4-(2-((3-(trifluoromethyl)benzyl)oxy)phenyl)pyridin-2(1H)-one 

(8j). 1-(2-Hydroxycyclohexyl)-4-(2-hydroxyphenyl)pyridin-2(1H)-one (7) (80 mg, 0.28 mmol) was 

alkylated with 3-(trifluoromethyl)benzyl bromide (47 µL, 0.31 mmol) according to General 

Procedure B.  After a total of 72 h of stirring with two further additions of K2CO3 and 3-

(trifluoromethyl)benzyl bromide, the mixture was worked up.  Purification by FCC (eluent 

EtOAc/PE 50:50 to 100:0) gave 79 mg of a yellow solid (64%).  
1
H NMR δ 7.77 (s, 1H), 7.73–7.58 

(m, 4H), 7.45–7.35 (m, 2H), 7.20 (d, J = 7.9 Hz, 1H), 7.07 (ddd, J = 7.5/7.5/0.8 Hz, 1H), 6.48 (d, J 

= 1.8 Hz, 1H), 6.45 (dd, J = 7.1/2.0 Hz, 1H), 5.30 (s, 2H), 4.54 (br s, 1H), 3.79 (br s, 1H), 3.38 (br 

s, 1H), 2.05–1.94 (m, 1H), 1.79–1.64 (m, 3H), 1.53 (m, 1H), 1.41–1.20 (m, 3H); 
13

C NMR δ 161.8, 

155.0, 148.3, 138.6, 134.2, 131.1, 130.4, 129.9, 129.6, 129.2 (app. d, JCF = 31.6 Hz), 127.3, 124.4 

(q, JCF = 3.8 Hz), 124.2 (q, JCF = 272.3 Hz), 123.5 (q, JCF = 3.9 Hz), 121.4, 118.5, 113.4, 107.0, 

69.3, 68.8, 35.4, 31.0, 25.0, 24.0; resonance at δ 134.2 ppm was taken from the HSQC experiment; 

m/z MS (TOF ES
+
) C25H25F3NO3 [M+H]

+
 calcd 444.2; found 444.3; LC-MS tR: 3.82 min. 
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1-(2-Hydroxycyclohexyl)-4-(2-((4-(trifluoromethyl)benzyl)oxy)phenyl)pyridin-2(1H)-one 

(8k). 1-(2-Hydroxycyclohexyl)-4-(2-hydroxyphenyl)pyridin-2(1H)-one (7) (80 mg, 0.28 mmol) was 

alkylated with 4-(trifluoromethyl)benzyl bromide (48 µL, 0.31 mmol) according to General 

Procedure B.  After a total of 48 h of stirring with one further addition of K2CO3 and 4-

(trifluoromethyl)benzyl chloride, the mixture was worked up.  Purification by FCC (eluent 

EtOAc/PE 50:50 to 100:0) gave 41 mg of a white solid (33%).  
1
H NMR δ 7.74 (d, J = 8.2 Hz, 2H), 

7.69 (d, J = 7.2 Hz, 1H), 7.62 (d, J = 8.1 Hz, 2H), 7.42–7.35 (m, 2H), 7.19–7.15 (m, 1H), 7.06 (ddd, 

J = 7.5/7.5/0.8 Hz, 1H), 6.50 (d, J = 1.9 Hz, 1H), 6.45 (dd, J = 7.2/2.0 Hz, 1H), 5.31 (s, 2H), 4.54 

(br s, 1H), 3.81 (br s, 1H), 3.43 (br s, 1H), 2.06–1.94 (m, 1H), 1.80–1.64 (m, 3H), 1.54 (m, 1H), 

1.42–1.12 (m, 3H); 
13

C NMR δ 161.8, 155.0, 148.3, 141.9, 134.2, 130.3, 129.9, 128.2 (app. d, JCF = 

31.7 Hz), 127.6, 127.2, 125.3 (q, JCF = 3.7 Hz), 124.2 (q, JCF = 271.9 Hz), 121.4, 118.5, 113.4, 

107.0, 69.2, 68.8, 35.4, 29.0, 25.0, 24.0; m/z MS (TOF ES
+
) C25H25F3NO3 [M+H]

+
 calcd 444.2; 

found 444.2; LC-MS tR: 3.83 min. 

2-((2-(1-(2-Hydroxycyclohexyl)-2-oxo-1,2-dihydropyridin-4-yl)phenoxy)methyl) 

benzonitrile (8l). 1-(2-Hydroxycyclohexyl)-4-(2-hydroxyphenyl)pyridin-2(1H)-one (7) (100 mg, 

0.35 mmol) was alkylated with 2-(bromomethyl)benzonitrile (76 mg, 0.39 mmol) according to 

General Procedure B.  A precipitate formed after pouring the reaction mixture into ice/water.  The 

precipitate was collected by filtration (vacuum) to give 125 mg of beige solid (89%). 
1
H NMR δ 

7.91 (dd, J = 7.7/0.8 Hz, 1H), 7.73 (ddd, J = 7.6/7.6/1.2 Hz, 1H), 7.69–7.61 (m, 2H), 7.57 (ddd, J = 

7.6/7.6/1.2 Hz, 1H), 7.47–7.37 (m, 2H), 7.26 (d, J = 8.1 Hz, 1H), 7.13–7.08 (m, 1H), 6.47 (d, J = 

1.8 Hz, 1H), 6.45 (dd, J = 7.1/2.0 Hz, 1H), 5.32 (s, 2H), 4.73 (d, J = 6.0 Hz, 1H), 4.52 (br s, 1H), 

3.79 (br s, 1H), 2.06–1.92 (m, 1H), 1.8–1.62 (m, 3H), 1.53 (m, 1H), 1.42–1.22 (m, 3H); 
13

C NMR δ 

161.7, 155.0, 148.1, 139.9, 134.1, 133.5, 133.2, 130.4, 130.0, 129.3, 129.1, 127.3, 121.7, 118.5, 

117.2, 113.4, 111.0, 106.9, 69.2, 68.1, 35.4, 31.0, 25.0, 24.0; resonance at δ 134.1 ppm was taken 
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from the HSQC experiment; m/z MS (TOF ES
+
) C25H25N2O3 [M+H]

+
 calcd 401.2; found 401.2; 

LC-MS tR: 3.60 min. 

3-((2-(1-(2-Hydroxycyclohexyl)-2-oxo-1,2-dihydropyridin-4-yl)phenoxy)methyl) 

benzonitrile (8m). 1-(2-Hydroxycyclohexyl)-4-(2-hydroxyphenyl)pyridin-2(1H)-one (7) (100 mg, 

0.35 mmol) was alkylated with 3-(bromomethyl)benzonitrile (76 mg, 0.39 mmol) according to 

General Procedure B.  Purification by FCC (eluent EtOAc/PE 50:50 to 100:0) gave 130 mg of a 

white foam (93%).  
1
H NMR δ 7.88–7.85 (m, 1H), 7.80 (ddd, J = 7.7/1.3/1.3 Hz, 1H), 7.77–7.73 

(m, 1H), 7.68 (d, J = 7.2 Hz, 1H), 7.60 (dd, J = 7.7/7.7 Hz, 1H), 7.45–7.36 (m, 2H), 7.19 (d, J = 7.9 

Hz, 1H), 7.08 (ddd, J = 7.5/7.5/0.9 Hz, 1H), 6.49 (d, J = 1.8 Hz, 1H), 6.45 (dd, J = 7.2/2.0 Hz, 1H), 

5.25 (s, 2H), 4.75 (d, J = 6.0 Hz, 1H), 4.55 (br s, 1H), 3.80 (br s, 1H), 2.10–1.93 (m, 1H), 1.85–1.63 

(m, 3H), 1.54 (m, 1H), 1.44–1.22 (m, 3H); 
13

C NMR δ 161.8, 155.0, 148.2, 138.7, 134.1, 132.0, 

131.6, 130.7, 130.4, 129.9, 129.8, 127.3, 121.5, 118.7, 118.5, 113.4, 111.4, 107.0, 69.2, 68.6, 35.4, 

31.1, 25.0, 24.0; resonance at δ 134.1 ppm was taken from the HSQC experiment; m/z MS (TOF 

ES
+
) C25H25N2O3 [M+H]

+
 calcd 401.2; found 401.2; LC-MS tR: 3.64 min. 

4-((2-(1-(2-Hydroxycyclohexyl)-2-oxo-1,2-dihydropyridin-4-yl)phenoxy)methyl) 

benzonitrile (8n). 1-(2-Hydroxycyclohexyl)-4-(2-hydroxyphenyl)pyridin-2(1H)-one (7) (100 mg, 

0.35 mmol) was alkylated with 4-(bromomethyl)benzonitrile (76 mg, 0.39 mmol) according to 

General Procedure B.  A precipitate formed after pouring the reaction mixture into ice/water.  

Filtration (vacuum) of the precipitate gave 122 mg of a beige solid (87%).  
1
H NMR δ 7.87–7.81 

(m, 2H), 7.68 (d, J = 7.2 Hz, 1H), 7.58 (d, J = 8.5 Hz, 1H), 7.44–7.34 (m, 2H), 7.15 (dd, J = 8.8/0.8 

Hz, 1H), 7.06 (ddd, J = 7.5/7.5/0.9 Hz, 1H), 6.48 (d, J = 1.8 Hz, 1H), 6.44 (dd, J = 7.2/2.0 Hz, 1H), 

5.30 (s, 2H), 4.77 (br s, 1H), 4.54 (br s, 1H), 3.80 (br s, 1H), 2.07–1.95 (m, 1H), 1.80–1.63 (m, 3H), 

1.55 (m, 1H), 1.43–1.24 (m, 3H); 
13

C NMR δ 161.8, 154.9, 148.3, 142.9, 134.2, 132.4, 130.3, 

129.9, 127.7, 127.3, 121.5, 118.8, 118.5, 113.4, 110.4, 107.0, 69.3, 68.8, 35.4, 31.1, 25.0, 24.0; 
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resonance at δ 134.2 ppm was taken from the HSQC experiment; m/z MS (TOF ES
+
) C25H25N2O3 

[M+H]
+
 calcd 401.2; found 401.3; LC-MS tR: 3.63 min. 

Methyl 3-((2-(1-(2-hydroxycyclohexyl)-2-oxo-1,2-dihydropyridin-4-

yl)phenoxy)methyl)benzoate (8o). 1-(2-Hydroxycyclohexyl)-4-(2-hydroxyphenyl)pyridin-2(1H)-

one (7) (200 mg, 0.70 mmol) was alkylated with methyl 3-(bromomethyl)benzoate (177 mg, 0.77 

mmol) according to General Procedure B.  Purification by FCC (eluent EtOAc/PE 50:50 to 100:0) 

gave 256 mg of a white foam (84%).  
1
H NMR δ 8.03–8.01 (m, 1H), 7.92–7.87 (m, 1H), 7.71–7.64 

(m, 2H), 7.53 (dd, J = 7.7/7.7 Hz, 1H), 7.42–7.35 (m, 2H), 7.19 (dd, J = 8.8/0.7 Hz, 1H), 7.05 (ddd, 

J = 7.5/7.5/0.9 Hz, 1H), 6.49 (d, J = 1.9 Hz, 1H), 6.45 (dd, J = 7.2/2.0 Hz, 1H), 5.28 (s, 2H), 4.75 

(d, J = 6.0 Hz, 1H), 4.54 (br s, 1H), 3.85 (s, 3H), 3.80 (br s, 1H), 2.06–1.92 (m, 1H), 1.79–1.64 (m, 

3H), 1.54 (m, 1H), 1.42–1.21 (m, 3H); 
13

C NMR δ 166.1, 161.8, 155.1, 148.3, 137.9, 134.1, 131.9, 

130.3, 129.9, 129.8, 129.0, 128.4, 127.7, 127.3, 121.3, 118.5, 113.5, 107.0, 69.2, 69.0, 52.2, 35.4, 

31.1, 25.0, 24.0; resonance at δ 134.1 ppm was taken from the HSQC experiment; m/z MS (TOF 

ES
+
) C26H28NO5 [M+H]

+
 calcd 434.2; found 434.2; LC-MS tR: 3.73 min. 

Methyl 4-((2-(1-(2-hydroxycyclohexyl)-2-oxo-1,2-dihydropyridin-4-yl)phenoxy) 

methyl)benzoate (8p). 1-(2-Hydroxycyclohexyl)-4-(2-hydroxyphenyl)pyridin-2(1H)-one (7) (400 

mg, 1.40 mmol) was alkylated with methyl 4-(bromomethyl)benzoate (354 mg, 1.54 mmol) 

according to General Procedure B.  Purification by FCC (eluent EtOAc/PE 50:50 to 100:0) gave 

329 mg of a white foam (54%).  
1
H NMR δ 8.00–7.93 (m, 1H), 7.69 (d, J = 7.2 Hz, 1H), 7.55 (d, J 

= 8.5 Hz, 2H), 7.41–7.36 (m, 2H), 7.17 (dd, J = 8.7/0.8 Hz, 1H), 7.06 (ddd, J = 7.5/7.5/0.9 Hz, 1H), 

5.28 (s, 1H), 4.76 (d, J = 6.1 Hz, 1H), 4.54 (br s, 1H), 3.85 (s, 3H), 3.81 (br s, 1H), 2.06–1.95 (m, 

1H), 1.80–1.63 (m, 3H), 1.55 (m, 1H), 1.42–1.23 (m, 3H); 
13

C NMR δ 166.0, 161.8, 155.1, 148.2, 

142.6, 134.2, 130.3, 129.9, 129.3, 128.9, 127.2, 127.2, 121.4, 118.5, 113.3, 107.0, 69.2, 69.0, 52.2, 

35.4, 31.1, 25.0, 24.0; resonance at δ 134.2 ppm was taken from the HSQC experiment; m/z MS 

(TOF ES
+
) C26H28NO5 [M+H]

+
 calcd 434.2; found 434.3; LC-MS tR: 3.72 min. 
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1-(2-Hydroxycyclohexyl)-4-(2-((4-(oxazol-2-yl)benzyl)oxy)phenyl)pyridin-2(1H)-one (8q). 

1-(2-Hydroxycyclohexyl)-4-(2-hydroxyphenyl)pyridin-2(1H)-one (7) (100 mg, 0.35 mmol) was 

alkylated with 2-(4-(bromomethyl)phenyl)oxazole (92 mg, 0.39 mmol) according to General 

Procedure B.  Purification by FCC (eluent MeOH/DCM 0:100 to 10:90) gave 69 mg of a white 

solid (45%).  
1
H NMR δ 8.23 (d, J = 0.8 Hz, 1H), 8.02–7.96 (m, 2H), 7.69 (d, J = 7.2 Hz, 1H), 7.58 

(d, J = 8.5 Hz, 2H), 7.43–7.36 (m, 3H), 7.23–7.16 (m, 1H), 7.06 (td, J = 7.5/0.9 Hz, 1H), 6.53 (d, J 

= 1.9 Hz, 1H), 6.48 (dd, J = 7.2/2.0 Hz, 1H), 5.27 (s, 2H), 4.78 (d, J = 6.1 Hz, 1H), 4.55 (br s, 1H), 

3.83 (br s, 1H), 2.07–1.95 (m, 1H), 1.80–1.64 (m, 3H), 1.62–1.44 (m, 1H), 1.43–1.24 (m, 3H); 
13

C 

NMR δ 162.3, 161.1, 155.6, 148.8, 140.6, 140.0, 134.7, 130.8, 130.3, 129.0, 128.3, 127.6, 126.8, 

126.5, 121.8, 119.0, 113.8, 107.5, 69.7, 69.6, 35.9, 31.5, 25.5, 24.5; resonance at δ 134.7 ppm was 

taken from the HSQC experiment; m/z MS (TOF ES
+
) C27H27N2O4 [M+H]

+
 calcd 443.2; found 

443.3; LC-MS tR: 3.58 min. 

1-(2-Hydroxycyclohexyl)-4-(2-((4-(thiazol-2-yl)benzyl)oxy)phenyl)pyridin-2(1H)-one (8r). 

1-(2-Hydroxycyclohexyl)-4-(2-hydroxyphenyl)pyridin-2(1H)-one (7) (100 mg, 0.35 mmol) was 

alkylated with 2-(4-(chloromethyl)phenyl)thiazole (81 mg, 0.39 mmol) according to General 

Procedure B.  Purification by FCC (eluent MeOH/DCM 0:100 to 10:90) gave 154 mg of a white 

solid (96%).  
1
H NMR δ 8.02–7.90 (m, 3H), 7.80 (d, J = 3.2 Hz, 1H), 7.70 (d, J = 7.2 Hz, 1H), 7.55 

(d, J = 8.4 Hz, 2H), 7.46–7.34 (m, 2H), 7.21 (dd, J = 8.8/0.7 Hz, 1H), 7.06 (td, J = 7.5/0.9 Hz, 1H), 

6.52 (d, J = 1.9 Hz, 1H), 6.47 (dd, J = 7.2/2.0 Hz, 1H), 5.26 (s, 2H), 4.77 (d, J = 6.0 Hz, 1H), 4.56 

(s, 1H), 3.81 (s, 1H), 2.07–1.94 (m, 1H), 1.84–1.64 (m, 3H), 1.61–1.47 (m, 1H), 1.42–1.22 (m, 3H); 

13
C NMR δ 167.2, 162.3, 155.7, 148.8, 144.3, 139.6, 132.9, 130.8, 130.4, 128.5, 127.6, 126.8, 

121.7, 121.0, 118.9, 113.9, 107.5, 69.6, 69.5, 35.9, 31.3, 25.5, 24.5; resonances at δ 134.7, 69.5 and 

31.3 ppm were taken from the HSQC experiment; m/z MS (TOF ES
+
) C27H27N2O3S [M+H]

+
 calcd 

459.2; found 459.3; LC-MS tR: 3.66 min. 

1-(2-Hydroxycyclohexyl)-4-(2-((4-phenoxybenzyl)oxy)phenyl)pyridin-2(1H)-one (8s). 1-(2-

Hydroxycyclohexyl)-4-(2-hydroxyphenyl)pyridin-2(1H)-one (7) (60 mg, 0.21 mmol) was alkylated 
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with 1-(bromomethyl)-4-phenoxybenzene (61 mg, 0.23 mmol) according to General Procedure B.  

After a total of 4 d of stirring with one further addition of K2CO3 and 1-(bromomethyl)-4-

phenoxybenzene, the mixture was worked up.  Purification by FCC (eluent MeOH/DCM 0:100 to 

8:92) gave 43 mg of a white solid (43%). 
1
H NMR δ 7.67 (d, J = 7.2 Hz, 1H), 7.47–7.34 (m, 6H), 

7.22 (d, J = 8.2 Hz, 1H), 7.15 (t, J = 7.4 Hz, 1H), 7.09–6.96 (m, 5H), 6.50 (d, J = 1.1 Hz, 1H), 6.45 

(d, J = 7.1 Hz, 1H), 5.16 (s, 2H), 4.77 (d, J = 5.9 Hz, 1H), 4.54 (br s, 1H), 3.80 (br s, 1H), 2.06–1.94 

(m, 1H), 1.80–1.64 (m, 3H), 1.62–1.43 (m, 1H), 1.42–1.24 (m, 3H); 
13

C NMR δ 162.3, 156.9, 

156.7, 155.8, 148.8, 134.7, 132.3, 130.8, 130.5, 130.3, 129.8, 127.7, 124.0 (2×), 121.7, 119.2, 

118.9, 114.0, 107.5, 69.7, 69.7, 35.9, 31.5, 25.5, 24.5; resonance at δ 134.7 ppm was taken from the 

HSQC experiment; m/z MS (TOF ES
+
) C30H30NO4 [M+H]

+
 calcd 468.2; found 468.3; LC-MS tR: 

3.87 min. 

4-(2-((4-Bromobenzyl)oxy)phenyl)-1-(2-hydroxycyclohexyl)pyridin-2(1H)-one (8t). 1-(2-

hydroxycyclohexyl)-4-(2-hydroxyphenyl)pyridin-2(1H)-one (7) (759 mg, 2.66 mmol) was alkylated 

with 4-bromobenzyl bromide (731 mg, 2.93 mmol) according to General Procedure B. A precipitate 

formed after pouring the reaction mixture into ice/water, with 2 M NaOH (aq) (15 mL) being added. 

This was stirred at room temperature for 10 min, before collecting the precipitate by filtration 

(vacuum).  Further purification by FCC (eluent EtOAc/PE 10:90 to 100:0) gave 1.12 g of a white 

solid (93%). 
1
H NMR δ 7.67 (d, J = 7.2 Hz, 1H), 7.59–7.54 (m, 2H), 7.41–7.34 (m, 4H), 7.17 (d, J 

= 8.1 Hz, 1H), 7.05 (ddd, J = 7.6/7.6/0.9 Hz, 1H), 6.48 (d, J = 1.9 Hz, 1H), 6.43 (dd, J = 7.2/2.0 Hz, 

1H), 5.16 (s, 2H), 4.76 (d, J = 6.0 Hz, 1H), 4.54 (br s, 1H), 3.80 (br s, 1H), 2.08–1.93 (m, 1H), 

1.81–1.62 (m, 3H), 1.54 (m, 1H), 1.43–1.23 (m, 3H); 
13

C NMR δ 161.8, 155.1, 148.3, 136.4, 134.1, 

131.4, 130.3, 129.9, 129.5, 127.2, 121.3, 120.8, 118.5, 113.4, 107.0, 69.2, 68.9, 35.4, 31.0, 25.0, 

24.0; resonance at δ 134.1 ppm was taken from the HSQC experiment; m/z MS (TOF ES
+
) 

C24H25BrNO3 [M+H]
+
 calcd 454.1; found 454.2; LC-MS tR: 3.84 min. 
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3-((2-(1-(2-Hydroxycyclohexyl)-2-oxo-1,2-dihydropyridin-4-yl)phenoxy)methyl)benzoic 

acid (9a). Methyl 3-((2-(1-(2-hydroxycyclohexyl)-2-oxo-1,2-dihydropyridin-4-yl)phenoxy) 

methyl)benzoate (8o) (92 mg, 0.21 mmol) was hydrolysed according to General Procedure C to 

give 73 mg of a white solid (82%).  
1
H NMR δ 13.04 (br s, 1H), 8.01 (s, 1H), 7.88 (d, J = 7.7 Hz, 

1H), 7.65 (d, J = 7.3 Hz, 2H), 7.50 (t, J = 7.7 Hz, 1H), 7.43–7.34 (m, 2H), 7.19 (d, J = 8.6 Hz, 1H), 

7.05 (t, J = 7.4 Hz, 1H), 6.51–6.44 (m, 2H), 5.27 (s, 2H), 4.54 (br s, 1H), 3.79 (br s, 1H), 3.60 (s, 

6H), 2.04–1.93 (m, 1H), 1.80–1.63 (m, 3H), 1.55 (m, 1H), 1.42–1.20 (m, 3H); 
13

C NMR δ 167.1, 

161.8, 155.2, 148.4, 137.6, 134.0, 131.5, 131.0, 130.4, 129.9, 128.8, 128.6, 127.9, 127.2, 121.3, 

118.4, 113.4, 107.1, 69.2, 69.1, 35.4, 31.0, 25.0, 24.0; resonance at δ 134.1 ppm was taken from the 

HSQC experiment; m/z MS (TOF ES
+
) C25H26NO5 [M+H]

+
 calcd 420.2; found 420.3; LC-MS tR: 

3.54 min. 

4-((2-(1-(2-Hydroxycyclohexyl)-2-oxo-1,2-dihydropyridin-4-yl)phenoxy)methyl)benzoic 

acid (9b). Methyl 4-((2-(1-(2-hydroxycyclohexyl)-2-oxo-1,2-dihydropyridin-4-yl)phenoxy) 

methyl)benzoate (8p) (100 mg, 0.23 mmol) was hydrolysed according to General Procedure C to 

give 90 mg of a white solid (93%).  
1
H NMR δ 12.98 (br s, 1H), 7.94 (d, J = 8.3 Hz, 2H), 7.69 (d, J 

= 7.2 Hz, 1H), 7.52 (d, J = 8.4 Hz, 2H), 7.45–7.34 (m, 2H), 7.18 (d, J = 8.1 Hz, 1H), 7.06 (ddd, J = 

7.5/7.5/0.8 Hz, 1H), 6.51 (d, J = 1.9 Hz, 1H), 6.46 (dd, J = 7.2/2.0 Hz, 1H), 5.28 (s, 2H), 4.54 (br s, 

1H), 3.80 (br s, 1H), 2.06–1.93 (m, 1H), 1.81–1.63 (m, 3H), 1.55 (m, 1H), 1.43–1.21 (m, 3H); 
13

C 

NMR δ 167.1, 161.8, 155.1, 148.3, 142.1, 134.2, 130.3, 130.1, 129.9, 129.5, 127.2, 127.0, 121.3, 

118.5, 113.3, 107.0, 69.2, 69.1, 35.4, 31.1, 25.0, 24.0; resonance at δ 134.2 ppm was taken from the 

HSQC experiment; m/z MS (TOF ES
+
) C25H26NO5 [M+H]

+
 calcd 420.2; found 420.3; LC-MS tR: 

3.50 min. 

3-((2-(1-(2-Hydroxycyclohexyl)-2-oxo-1,2-dihydropyridin-4-yl)phenoxy)methyl) benzamide 

(9c). Methyl 3-((2-(1-(2-hydroxycyclohexyl)-2-oxo-1,2-dihydropyridin-4-

yl)phenoxy)methyl)benzoate (8o) (90 mg, 0.21 mmol) was treated with ammonium hydroxide 
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according to General Procedure D to give 45 mg of a white solid (52%). 
1
H NMR δ 7.98 (s, 1H), 

7.94 (s, 1H), 7.81 (d, J = 7.8 Hz, 1H), 7.67 (d, J = 7.2 Hz, 1H), 7.56 (d, J = 7.7 Hz, 1H), 7.46 (dd, J 

= 7.7/7.7 Hz, 1H), 7.43–7.35 (m, 3H), 7.23–7.17 (m, 1H), 7.06 (ddd, J = 7.5/7.5/0.8 Hz, 1H), 6.52 

(d, J = 1.9 Hz, 1H), 6.47 (dd, J = 7.2/2.0 Hz, 1H), 5.24 (s, 2H), 4.77 (d, J = 6.0 Hz, 1H), 4.54 (br s, 

1H), 3.80 (br s, 1H), 2.07–1.94 (m, 1H), 1.81–1.64 (m, 3H), 1.54 (m, 1H), 1.42–1.21 (m, 3H); 
13

C 

NMR δ 167.8, 161.8, 155.3, 148.3, 137.1, 134.6, 134.1, 130.4, 130.0, 129.9, 128.5, 127.1, 126.8, 

126.5, 121.3, 118.5, 113.4, 107.0, 69.5, 69.2, 35.4, 31.0, 25.0, 24.0; resonance at δ 134.1 ppm was 

taken from the HSQC experiment; m/z MS (TOF ES
+
) C25H27N2O4 [M+H]

+
 calcd 419.2; found 

419.3; LC-MS tR: 3.44 min. 

4-((2-(1-(2-Hydroxycyclohexyl)-2-oxo-1,2-dihydropyridin-4-yl)phenoxy)methyl)benzamide 

(9d). Methyl 4-((2-(1-(2-hydroxycyclohexyl)-2-oxo-1,2-dihydropyridin-4-

yl)phenoxy)methyl)benzoate (8p) (105 mg, 0.24 mmol) was treated with ammonium hydroxide 

according to General Procedure D to give 15 mg of a white solid (14%).  
1
H NMR δ 7.97 (s, 1H), 

7.86 (d, J = 8.3 Hz, 2H), 7.68 (d, J = 7.2 Hz, 1H), 7.47 (d, J = 8.3 Hz, 2H), 7.42–7.33 (m, 3H), 

7.20–7.15 (m, 1H), 7.05 (ddd, J = 7.5/7.5/0.8 Hz, 1H), 6.51 (d, J = 1.9 Hz, 1H), 6.45 (dd, J = 

7.2/2.0 Hz, 1H), 5.25 (s, 2H), 4.76 (d, J = 6.0 Hz, 1H), 4.54 (br s, 1H), 3.80 (br s, 1H), 2.05–1.94 

(m, 1H), 1.80–1.63 (m, 3H), 1.55 (m, 1H), 1.42–1.25 (m, 3H); 
13

C NMR δ 167.6, 161.8, 155.2, 

148.3, 140.2, 134.2, 133.6, 130.3, 129.9, 127.7, 127.1, 126.9, 121.3, 118.5, 113.4, 107.0, 69.2, 69.1, 

35.4, 31.1, 25.0, 24.0; resonance at δ 134.1 ppm was taken from the HSQC experiment; m/z MS 

(TOF ES
+
) C25H27N2O4 [M+H]

+
 calcd 419.2; found 419.3; LC-MS tR: 3.40 min. 

1-(2-Hydroxycyclohexyl)-4-(2-((4-(pyridin-3-yl)benzyl)oxy)phenyl)pyridin-2(1H)-one (10a). 

4-(2-((4-Bromobenzyl)oxy)phenyl)-1-(2-hydroxycyclohexyl)pyridin-2(1H)-one (8t) (100 mg, 0.22 

mmol) was coupled to pyridine-3-boronic acid (41 mg, 0.33 mmol) according to General Procedure 

A.  Purification by FCC (eluent MeOH/DCM 0:100 to 7.5:92.5) gave 48 mg of a white solid (48%).  

1
H NMR δ 8.90 (d, J = 2.1 Hz, 1H), 8.57 (dd, J = 4.7/1.5 Hz, 1H), 8.10–8.05 (m, 1H), 7.74 (d, J = 
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8.2 Hz, 2H), 7.68 (d, J = 7.2 Hz, 1H), 7.54 (d, J = 8.2 Hz, 2H), 7.49 (dd, J = 7.9/4.8 Hz, 1H), 7.43–

7.94 (m, 2H), 7.22 (d, J = 8.2 Hz, 1H), 7.05 (t, J = 7.4 Hz, 1H), 6.51 (d, J = 1.9 Hz, 1H), 6.46 (dd, J 

= 7.2/1.9 Hz, 1H), 5.26 (s, 2H), 4.77 (d, J = 6.0 Hz, 1H), 4.54 (br s, 1H), 3.80 (br s, 1H), 2.05–1.93 

(m, 1H), 1.81–1.61 (m, 3H), 1.53 (m, 1H), 1.41–1.25 (m, 3H); 
13

C NMR δ 161.8, 155.3, 148.6, 

148.4, 147.7, 137.0, 136.5, 135.2, 134.2, 134.1, 130.3, 129.9, 128.1, 127.2, 127.0, 123.9, 121.2, 

118.5, 113.5, 107.0, 69.2, 69.0, 35.4, 31.1, 25.0, 24.0; resonances at δ 134.2 and 69.0 ppm were 

taken from the HSQC experiment; m/z MS (TOF ES
+
) C29H29N2O3 [M+H]

+
 calcd 453.2; found 

453.3; LC-MS tR: 3.39 min. 

1-(2-Hydroxycyclohexyl)-4-(2-((4-(pyridin-4-yl)benzyl)oxy)phenyl)pyridin-2(1H)-one (10b). 

4-(2-((4-Bromobenzyl)oxy)phenyl)-1-(2-hydroxycyclohexyl)pyridin-2(1H)-one (8t) (100 mg, 0.22 

mmol) was coupled to pyridine-4-boronic acid (41 mg, 0.33 mmol) according to General Procedure 

A.  Purification by FCC (eluent MeOH/DCM 0:100 to 7.5:92.5) gave 43 mg of a white solid (43%).  

1
H NMR δ 8.63 (d, J = 5.5 Hz, 2H), 7.81 (d, J = 8.1 Hz, 2H), 7.75–7.65 (m, 3H), 7.56 (d, J = 8.1 

Hz, 2H), 7.43–7.34 (m, 2H), 7.21 (d, J = 8.5 Hz, 1H), 7.05 (t, J = 7.4 Hz, 1H), 6.53–6.50 (m, 1H), 

6.46 (dd, J = 7.1/1.3 Hz, 1H), 5.27 (s, 2H), 4.77 (d, J = 5.9 Hz, 1H), 4.54 (br s, 1H), 3.80 (br s, 1H), 

2.05–1.93 (m, 1H), 1.81–1.62 (m, 3H), 1.54 (m, 1H), 1.42–1.24 (m, 3H); 
13

C NMR δ 161.8, 155.2, 

150.3, 148.4, 146.6, 138.2, 136.5, 134.2, 130.3, 129.9, 128.0, 127.2, 127.0, 121.3, 121.2, 118.5, 

113.4, 107.0, 69.2, 69.2, 35.4, 31.1, 25.0, 24.0; resonance at δ 134.2 was taken from the HSQC 

experiment; m/z MS (TOF ES
+
) C29H29N2O3 [M+H]

+
 calcd 453.2; found 453.3; LC-MS tR: 3.31 

min. 

1-(2-Hydroxycyclohexyl)-4-(2-((4-(pyrimidin-5-yl)benzyl)oxy)phenyl)pyridin-2(1H)-one 

(10c). 4-(2-((4-Bromobenzyl)oxy)phenyl)-1-(2-hydroxycyclohexyl)pyridin-2(1H)-one (8t) 

(100 mg, 0.22 mmol) was coupled to pyrimidine-5-boronic acid (41 mg, 0.33 mmol) according to 

General Procedure A.  Purification by FCC (eluent MeOH/DCM 0:100 to 5:95) gave 38 mg of a 

white solid (38%).  
1
H NMR δ 9.19 (s, 1H), 9.15 (s, 2H), 7.85–7.79 (m, 2H), 7.68 (d, J = 7.2 Hz, 
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1H), 7.57 (d, J = 8.3 Hz, 2H), 7.42–7.35 (m, 2H), 7.21 (d, J = 8.0 Hz, 1H), 7.05 (ddd, J = 

7.6/7.6/0.9 Hz, 1H), 6.51 (d, J = 1.9 Hz, 1H), 6.46 (dd, J = 7.2/2.0 Hz, 1H), 5.28 (s, 2H), 4.77 (d, J 

= 5.9 Hz, 1H), 4.54 (br s, 1H), 3.80 (br s, 1H), 2.05–1.94 (m, 1H), 1.80–1.62 (m, 3H), 1.54 (m, 1H), 

1.42–1.24 (m, 3H); 
13

C NMR δ 161.8, 157.3, 155.2, 155.2, 148.3, 137.8, 134.2, 133.1, 132.9, 130.3, 

129.9, 128.1, 127.2, 127.1, 121.3, 118.5, 113.5, 107.0, 69.2, 69.1, 35.4, 31.1, 25.0, 24.0; resonance 

at δ 134.2 ppm was taken from the HSQC experiment; m/z MS (TOF ES
+
) C28H28N3O3 [M+H]

+
 

calcd 454.2; found 454.3; LC-MS tR: 3.56 min. 

1-(2-Hydroxycyclohexyl)-4-(2-((4-(1-methyl-1H-pyrazol-4-yl)benzyl)oxy)phenyl)pyridin-

2(1H)-one (10d). 4-(2-((4-Bromobenzyl)oxy)phenyl)-1-(2-hydroxycyclohexyl)pyridin-2(1H)-one 

(8t) (100 mg, 0.22 mmol) was coupled to 1-methyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-

1H-pyrazole (69 mg, 0.33 mmol) according to General Procedure A.  Purification by FCC (eluent 

MeOH/DCM 0:100 to 5:95) gave 43 mg of a white solid (43%). 
1
H NMR δ 8.12 (s, 1H), 7.85 (s, 

1H), 7.67 (d, J = 7.2 Hz, 1H), 7.55 (d, J = 8.1 Hz, 2H), 7.42–7.34 (m, 2H), 7.21 (d, J = 8.3 Hz, 1H), 

7.04 (t, J = 7.5 Hz, 1H), 6.51 (d, J = 1.9 Hz, 1H), 6.44 (dd, J = 7.2/1.9 Hz, 1H), 5.16 (s, 2H), 4.75 

(d, J = 6.0 Hz, 1H), 4.53 (br s, 1H), 3.85 (s, 3H), 3.80 (br s, 1H), 2.04–1.94 (m, 1H), 1.82–1.67 (m, 

3H), 1.54 (m, 1H), 1.41–1.25 (m, 3H); 
13

C NMR δ 161.8, 155.4, 148.3, 136.1, 134.4, 134.2, 132.2, 

130.3, 129.9, 128.1, 127.9, 127.1, 125.0, 121.5, 121.1, 118.5, 113.4, 107.0, 69.5, 69.2, 38.9, 35.4, 

31.1, 25.0, 24.0; resonance at δ 134.2 ppm was taken from the HSQC experiment; m/z MS (TOF 

ES
+
) C28H30N3O3 [M+H]

+
 calcd 456.2; found 456.3; LC-MS tR: 3.61 min. 

4-(2-Aminophenyl)-1-(2-hydroxycyclohexyl)pyridin-2(1H)-one (11). 4-Bromo-1-(2-

hydroxycyclohexyl)pyridin-2(1H)-one (4b) (200 mg, 0.73 mmol) was coupled to 2-(4,4,5,5-

tetramethyl-1,3,2-dioxaborolan-2-yl)aniline (244 g, 1.10 mmol) according to General Procedure  A.  

Purification by FCC (eluent MeOH/DCM 0:100 to 20:80) gave 181 mg of a brown solid (87%).  
1
H 

NMR δ 7.71 (d, J = 7.2 Hz, 1H), 7.11–7.00 (m, 2H), 6.75 (dd, J = 8.1/0.9 Hz, 1H), 6.62 (td, J = 

7.5/1.1 Hz, 1H), 6.37 (d, J = 1.8 Hz, 1H), 6.30 (dd, J = 7.1/2.0 Hz, 1H), 4.98 (s, 2H), 4.73 (d, J = 
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5.6 Hz, 1H), 4.54 (br s, 1H), 3.80 (br s, 1H), 2.05–1.94 (m, 1H), 1.80–1.65 (m, 3H), 1.55 (m, 1H), 

1.42–1.24 (m, 3H); 
13

C NMR δ 162.0, 150.0, 145.2, 135.2, 129.4, 129.0, 122.5, 117.5, 116.6, 115.6, 

106.2, 69.3, 35.3, 31.0, 25.0, 24.0; resonance at δ 135.2 ppm was taken from HSQC experiment; 

m/z MS (TOF ES
+
) C17H21N2O2 [M+H]

+
 calcd 285.2; found 285.2; LC-MS tR: 3.35 min. 

4-(2-((4-Bromobenzyl)amino)phenyl)-1-(2-hydroxycyclohexyl)pyridin-2(1H)-one (12). To a 

mixture of 4-(2-aminophenyl)-1-(2-hydroxycyclohexyl)pyridin-2(1H)-one (11) (100 mg, 

0.35 mmol) and 4-bromobenzaldehyde (65 mg, 0.35 mmol, 1.0 eq) in 1,2-dichloroethane (3.5 mL) 

was added AcOH (0.20 mL) and NaB(OAc)3H (149 mg, 0.70 mmol, 2.0 eq).  After 2 h, the reaction 

mixture was diluted with DCM (20 mL) washed with 10% K2CO3(aq)
 
(20 mL) and brine (20 mL).  

The organic layer was dried over MgSO4, filtered and concentrated under reduced pressure.  

Purification by FCC (eluent EtOAc/PE 50:50 to 100:0) gave 81 mg of a yellow oil (50%). 
1
H NMR 

δ 7.75 (d, J = 7.2 Hz, 1H), 7.53–7.47 (m, 2H), 7.30 (d, J = 8.4 Hz, 2H), 7.11–7.01 (m, 2H), 6.63 

(ddd, J = 7.4/7.4/0.9 Hz, 1H), 6.46–6.40 (m, 2H), 6.31 (dd, J = 7.1/2.0 Hz, 1H), 5.72 (t, J = 5.9 Hz, 

1H), 4.73 (d, J = 5.6 Hz, 1H), 4.56 (br s, 1H), 4.30 (d, J = 5.9 Hz, 2H), 3.82 (br s, 1H), 2.05–1.96 

(m, 1H), 1.82–1.65 (m, 3H), 1.56 (m, 1H), 1.43–1.25 (m, 3H); 
13

C NMR δ 162.0, 149.7, 144.4, 

139.7, 135.4, 131.2, 129.5, 129.1, 129.1, 123.9, 119.5, 118.2, 116.4, 111.0, 106.6, 69.3, 45.8, 35.3, 

30.7, 25.1, 24.0; resonances at δ 135.4 and 30.7 ppm were taken from HSQC experiment; m/z MS 

(TOF ES
+
) C24H26BrN2O2 [M+H]

+
 calcd 453.1; found 453.2; LC-MS tR: 3.89. 

1-(2-Hydroxycyclohexyl)-4-(2-((4-(pyridin-3-yl)benzyl)amino)phenyl)pyridin-2(1H)-one 

(13a). 4-(2-((4-Bromobenzyl)amino)phenyl)-1-(2-hydroxycyclohexyl)pyridin-2(1H)-one (12) (80 

mg, 0.18 mmol) was coupled to pyridine-3-boronic acid (33 mg, 0.26 mmol) according to General 

Procedure A.  Purification by FCC (eluent MeOH/DCM 0:100 to 5:95) gave 33 mg of a yellow oil 

(41%).  
1
H NMR δ 8.87 (d, J = 1.8 Hz, 1H), 8.55 (dd, J = 4.7/1.5 Hz, 1H), 8.05 (ddd, J = 8.0/2.4/1.6 

Hz, 1H), 7.77 (d, J = 7.2 Hz, 1H), 7.69 (d, J = 8.3 Hz, 2H), 7.50–7.44 (m, 3H), 7.12–7.06 (m, 1H), 

7.05 (dd, J = 7.5/1.5 Hz, 1H), 6.63 (ddd, J = 7.4/7.4/0.9 Hz, 1H), 6.52 (d, J = 8.2 Hz, 1H), 6.45 (d, J 
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= 1.9 Hz, 1H), 6.34 (dd, J = 7.1/2.0 Hz, 1H), 5.74 (t, J = 6.0 Hz, 1H), 4.74 (d, J = 5.6 Hz, 1H), 4.57 

(br s, 1H), 4.40 (d, J = 5.9 Hz, 2H), 3.83 (br s, 1H), 2.07–1.95 (m, 1H), 1.84–1.65 (m, 3H), 1.57 (m, 

1H), 1.44–1.26 (m, 3H); 
13

C NMR δ 162.0, 149.8, 148.3, 147.6, 144.6, 140.3, 135.4, 135.4, 134.0, 

129.5, 129.1, 127.6, 126.9, 123.9, 123.9, 118.1, 116.3, 111.1, 106.6, 69.3, 46.0, 35.3, 31.1, 25.0, 

24.0; resonance at δ 135.4 ppm was taken from HSQC experiment.  Missing an aromatic quaternary 

carbon resonance not observed in 2D NMR experiments; m/z MS (TOF ES
+
) C29H30N3O2 [M+H]

+
 

calcd 452.2; found 452.3; LC-MS tR: 3.44 min. 

1-(2-Hydroxycyclohexyl)-4-(2-((4-(pyridin-4-yl)benzyl)amino)phenyl)pyridin-2(1H)-one 

(13b). 4-(2-((4-Bromobenzyl)amino)phenyl)-1-(2-hydroxycyclohexyl)pyridin-2(1H)-one (12) (80 

mg, 0.18 mmol) was coupled to pyridine-4-boronic acid (33 mg, 0.26 mmol) according to General 

Procedure A.  Purification by FCC (eluent MeOH/DCM 0:100 to 5:95) followed by preparative 

HPLC (30% to 100% buffer B, 20 minutes) gave 19 mg of a yellow oil (29%).  
1
H NMR δ 8.63–

8.59 (m, 2H), 7.77 (d, J = 8.2 Hz, 3H), 7.69 (dd, J = 4.6/1.6 Hz, 2H), 7.49 (d, J = 8.3 Hz, 1H), 7.11–

7.02 (m, 2H), 6.63 (ddd, J = 7.4/7.4/0.8 Hz, 1H), 6.50 (d, J = 8.2 Hz, 1H), 6.45 (d, J = 1.9 Hz, 1H), 

6.34 (dd, J = 7.1/2.0 Hz, 1H), 5.76 (t, J = 5.9 Hz, 1H), 4.74 (d, J = 5.6 Hz, 1H), 4.57 (br s, 1H), 4.41 

(d, J = 5.9 Hz, 2H), 3.83 (br s, 1H), 2.06–1.95 (m, 1H), 1.84–1.66 (m, 3H), 1.57 (m, 1H), 1.43–1.26 

(m, 3H); 
13

C NMR δ 162.0, 150.2, 149.8, 146.8, 144.5, 141.6, 135.5, 135.4, 129.5, 129.1, 127.6, 

126.9, 123.9, 121.1, 118.1, 116.3, 111.1, 106.6, 69.3, 46.1, 35.3, 31.1, 25.1, 24.0; resonance at δ 

135.5 ppm was taken from HSQC experiment; m/z MS (TOF ES
+
) C29H30N3O2 [M+H]

+
 calcd 

452.2; found 452.3; LC-MS tR: 3.33 min. 

1-(2-Hydroxycyclohexyl)-4-(2-((4-(pyrimidin-5-yl)benzyl)amino)phenyl)pyridin-2(1H)-one 

(13c). 4-(2-((4-Bromobenzyl)amino)phenyl)-1-(2-hydroxycyclohexyl)pyridin-2(1H)-one (12) (80 

mg, 0.18 mmol) was coupled to pyrimidine-5-boronic acid (33 mg, 0.26 mmol) according to 

General Procedure A.  Purification by FCC (eluent MeOH/DCM 0:100 to 5:95) followed by 

preparative HPLC (MeCN:H2O 40:60 to 100:0) gave 28 mg of a yellow oil (35%).  
1
H NMR δ 9.16 

Page 48 of 74

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

 

(s, 1H), 9.12 (s, 2H), 7.77 (d, J = 8.2 Hz, 3H), 7.51 (d, J = 8.3 Hz, 2H), 7.11–7.02 (m, 2H), 6.63 

(ddd, J = 7.4/7.4/0.9 Hz, 1H), 6.51 (d, J = 8.0 Hz, 1H), 6.45 (d, J = 1.9 Hz, 1H), 6.34 (dd, J = 

7.1/2.0 Hz, 1H), 5.77 (t, J = 5.9 Hz, 1H), 4.74 (d, J = 5.6 Hz, 1H), 4.57 (br s, 1H), 4.41 (d, J = 5.9 

Hz, 2H), 3.82 (br s, 1H), 2.06–1.96 (m, 1H), 1.83–1.65 (m, 3H), 1.58 (m, 1H), 1.44–1.25 (m, 3H); 

13
C NMR δ 162.0, 157.1, 154.6, 149.8, 144.5, 141.3, 135.6, 133.1, 132.1, 129.5, 129.1, 127.7, 

127.0, 123.9, 118.1, 116.3, 111.1, 106.6, 69.3, 46.0, 35.3, 31.1, 25.1, 24.0; resonance at δ 135.6 

ppm was taken from HSQC experiment; m/z MS (TOF ES
+
) C28H29N4O2 [M+H]

+
 calcd 453.2; 

found 453.3; LC-MS tR: 3.55 min. 

1-(2-Hydroxycyclohexyl)-4-(2-((4-(1-methyl-1H-pyrazol-4-yl)benzyl)amino)phenyl)pyridin-

2(1H)-one (13d). 4-(2-((4-Bromobenzyl)amino)phenyl)-1-(2-hydroxycyclohexyl)pyridin-2(1H)-

one (12) (80 mg, 0.18 mmol) was coupled to 1-methyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yl)-1H-pyrazole (55 mg, 0.26 mmol) according to General Procedure A.  Purification by FCC 

(eluent MeOH/DCM 0:100 to 5:95) followed by preparative HPLC (40% to 100% buffer B, 20 

minutes) gave 30 mg of a yellow oil (37%).  
1
H NMR δ 8.07 (s, 1H), 7.80 (d, J = 0.7 Hz, 1H), 7.75 

(d, J = 7.2 Hz, 1H), 7.49 (d, J = 8.3 Hz, 2H), 7.31 (d, J = 8.3 Hz, 2H), 7.11–7.05 (m, 1H), 7.03 (dd, 

J = 7.5/1.6 Hz, 1H), 6.62 (ddd, J = 7.4/7.4/0.9 Hz, 1H), 6.52 (d, J = 8.2 Hz, 1H), 6.43 (d, J = 1.9 

Hz, 1H), 6.33 (dd, J = 7.1/2.0 Hz, 1H), 5.62 (t, J = 5.9 Hz, 1H), 4.73 (d, J = 5.6 Hz, 1H), 4.56 (br s, 

1H), 4.31 (d, J = 5.8 Hz, 2H), 3.90–3.76 (m, 4H), 2.06–1.95 (m, 1H), 1.83–1.64 (m, 3H), 1.56 (br s, 

1H), 1.43–1.25 (m, 3H); 
13

C NMR δ 162.0, 149.8, 144.7, 137.7, 135.9, 135.5, 131.0, 129.5, 129.1, 

127.6, 127.3, 125.0, 123.9, 121.8, 118.1, 116.2, 111.1, 106.5, 69.1, 46.2, 38.6, 35.3, 31.1, 25.0, 

24.0; resonances at δ 135.5 and 69.1 ppm were taken from HSQC experiment; m/z MS (TOF ES
+
) 

C28H31N4O2 [M+H]
+
 calcd 455.2; found 455.3; LC-MS tR: 3.22 min. 

4-(2-(([1,1'-Biphenyl]-4-ylmethyl)amino)phenyl)-1-(2-hydroxycyclohexyl)pyridin-2(1H)-one 

(13e). 4-(2-((4-Bromobenzyl)amino)phenyl)-1-(2-hydroxycyclohexyl)pyridin-2(1H)-one (12) (80 

mg, 0.18 mmol) was coupled to phenylboronic acid (32 mg, 0.26 mmol) according to General 
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Procedure A.  Purification by FCC (eluent MeOH/DCM 0:100 to 5:95) followed by preparative 

HPLC (40% to 100% buffer B, 20 minutes) gave 36 mg of a yellow oil (46%).  
1
H NMR δ 7.76 (d, 

J = 7.2 Hz, 1H), 7.68–7.58 (m, 4H), 7.49–7.40 (m, 4H), 7.34 (ddd, J = 8.5/4.5/1.2 Hz, 1H), 7.12–

7.06 (m, 1H), 7.04 (dd, J = 7.5/1.5 Hz, 1H), 6.63 (ddd, J = 7.4/7.4/0.9 Hz, 1H), 6.53 (d, J = 8.1 Hz, 

1H), 6.44 (d, J = 1.9 Hz, 1H), 6.34 (dd, J = 7.1/2.0 Hz, 1H), 5.71 (t, J = 5.9 Hz, 1H), 4.74 (d, J = 

5.6 Hz, 1H), 4.57 (br s, 1H), 4.38 (d, J = 5.9 Hz, 2H), 3.82 (br s, 1H), 2.06–1.96 (m, 1H), 1.83–1.65 

(m, 3H), 1.57 (m, 1H), 1.43–1.25 (m, 3H); 
13

C NMR δ 162.0, 149.8, 144.6, 140.0, 139.5, 138.6, 

135.5, 129.6, 129.1, 128.9, 127.4, 127.3, 126.7, 126.6, 123.9, 118.1, 116.3, 111.1, 106.6, 69.1, 46.1, 

35.3, 30.8, 25.1, 24.0; resonances at δ 135.5, 69.1 and 30.8 ppm were taken from HSQC 

experiment; m/z MS (TOF ES
+
) C30H31N2O2 [M+H]

+
 calcd 451.2; found 451.3; LC-MS tR: 4.00 

min. 

4-(2-((4-(1H-pyrazol-4-yl)benzyl)oxy)phenyl)-1-(2-hydroxycyclohexyl)pyridin-2(1H)-one 

(14). 4-(2-((4-Bromobenzyl)oxy)phenyl)-1-(2-hydroxycyclohexyl)pyridin-2(1H)-one (8t) (200 mg, 

0.44 mmol) was coupled to 1-(tert-butoxycarbonyl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yl)-1H-pyrazole (194 mg, 0.66 mmol) according to General Procedure A.  LCMS analysis of the 

crude residue indicated loss of the Boc group during the reaction.  Purification by FCC (eluent 

MeOH/DCM 0:100 to 10:90), gave 150 mg of a white solid (77%). 
1
H NMR δ 12.94 (s, 1H), 8.19 

(s, 1H), 7.92 (s, 1H), 7.67 (d, J = 7.3 Hz, 1H), 7.63–7.53 (m, 2H), 7.47–7.33 (m, 4H), 7.21 (d, J = 

8.2 Hz, 1H), 7.04 (ddd, J = 7.6/7.6/0.9 Hz, 1H), 6.51 (d, J = 1.9 Hz, 1H), 6.44 (dd, J = 7.2, 2.0 Hz, 

1H), 5.17 (s, 2H), 4.75 (d, J = 6.0 Hz, 1H), 4.53 (s, 1H), 3.80 (s, 1H), 1.99 (s, 1H), 1.81–1.62 (m, 

3H), 1.61–1.42 (m, 1H), 1.42–1.22 (m, 3H); 
13

C NMR δ 161.8, 155.3, 148.3, 136.2, 134.6, 134.3, 

132.5, 130.3, 129.9, 128.0, 127.1, 125.5, 125.1, 121.1, 120.8, 118.5, 113.5, 106.9, 69.5, 69.2, 35.4, 

31.0, 25.0, 24.0; m/z MS (TOF ES
+
) C27H28N3O3 [MH]

+
 calcd 442.2; found 442.3; LC-MS tR: 3.47 

min. 
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4-(2-((4-(1-Ethyl-1H-pyrazol-4-yl)benzyl)oxy)phenyl)-1-(2-hydroxycyclohexyl)pyridin-

2(1H)-one (15a). 14-(2-((4-(1H-Pyrazol-4-yl)benzyl)oxy)phenyl)-1-(2-hydroxycyclohexyl)pyridin-

2(1H)-one (14) (65mg, 147 µmol) was alkylated with 1-bromoethane (12 µL, 161 µmol) according 

to General Procedure B.  Reaction progress was monitored via LC-MS analysis, additional K2CO3 

(22 mg, 162 µmol) and 1-bromoethane (61 µL, 805 µmol) was added over 44 h at rt until the 

reaction appeared complete.  The crude product was dried on the freeze dryer to give 57 mg of 

white solid (82%).  No further purification was required.  
1
H NMR δ 8.19 (d, J = 0.5 Hz, 1H), 7.87 

(d, J = 0.7 Hz, 1H), 7.67 (d, J = 7.2 Hz, 1H), 7.59–7.55 (m, 2H), 7.42–7.36 (m, 4H), 7.24–7.19 (m, 

1H), 7.05 (td, J = 7.6/0.9 Hz, 1H), 6.52 (d, J = 1.9 Hz, 1H), 6.45 (dd, J = 7.2/2.0 Hz, 1H), 5.17 (s, 

2H), 4.75 (d, J = 5.9 Hz, 1H), 4.54 (br s, 1H), 4.15 (q, J = 7.3 Hz, 2H), 3.81 (br s, 1H), 2.05–1.95 

(m, 1H), 1.80–1.65 (m, 3H), 1.65–1.45 (m, 1H), 1.40 (t, J = 7.3 Hz, 3H), 1.33–1.22 (m, 3H); 
13

C 

NMR δ 162.3, 155.8, 148.8, 136.4, 134.8, 134.8, 132.7, 130.8, 130.3, 128.5, 127.5, 126.8, 125.4, 

121.8, 121.6, 118.9, 113.9, 107.4, 70.0, 69.6, 46.8, 35.9, 31.5, 25.5, 24.5, 15.9; resonance at δ 134.8 

ppm was taken from the HSQC experiment; m/z MS (TOF ES
+
) C29H32N3O3 [M+H]

+
 calcd 470.2; 

found 470.3; LC-MS tR: 3.58 min. 

1-(2-Hydroxycyclohexyl)-4-(2-((4-(1-(2-hydroxyethyl)-1H-pyrazol-4-

yl)benzyl)oxy)phenyl)pyridin-2(1H)-one (15b). 14-(2-((4-(1H-Pyrazol-4-yl)benzyl)oxy)phenyl)-

1-(2-hydroxycyclohexyl)pyridin-2(1H)-one (14) (80 mg, 181 µmol) was alkylated with 

bromoethanol (14 µL, 199 µmol) according to General Procedure B.  Reaction progress was 

monitored via LC-MS analysis, the reaction was stopped after 10 d at 100 °C.  Purification by FCC 

(eluent MeOH/DCM 0:100 to 10:90) gave 19 mg of a white solid (22%).  
1
H NMR δ 8.15 (s, 1H), 

7.88 (d, J = 0.5 Hz, 1H), 7.67 (d, J = 7.2 Hz, 1H), 7.57 (d, J = 8.2 Hz, 2H), 7.43–7.35 (m, 4H), 7.22 

(d, J = 8.2 Hz, 1H), 7.08–7.01 (m, 1H), 6.52 (d, J = 1.9 Hz, 1H), 6.45 (dd, J = 7.2/2.0 Hz, 1H), 5.17 

(s, 2H), 4.94 (t, J = 5.3 Hz, 1H), 4.76 (d, J = 6.0 Hz, 1H), 4.55 (br s, 1H), 4.16 (t, J = 5.6 Hz, 2H), 

3.86–3.72 (m, 3H), 2.05–1.96 (m, 1H), 1.78–1.65 (m, 3H), 1.62–1.45 (m, 1H), 1.40–1.26 (m, 3H). 
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13
C NMR δ 162.3, 155.8, 148.8, 136.5, 134.8, 134.6, 132.7, 130.7, 130.3, 128.5, 128.1, 127.5, 

125.4, 121.6, 121.6, 118.9, 113.9, 107.4, 70.0, 69.7, 60.5, 55.4, 35.9, 31.5, 25.5, 24.5; resonance at 

δ 134.6 ppm was taken from the HSQC experiment; m/z MS (TOF ES
+
) C29H32N3O4 [M+H]

+
 calcd 

486.2; found 486.3; LC-MS tR: 3.42 min. 

1-(2-Hydroxycyclohexyl)-4-(2-((4-(1-propyl-1H-pyrazol-4-yl)benzyl)oxy)phenyl)pyridin-

2(1H)-one (15c). 14-(2-((4-(1H-Pyrazol-4-yl)benzyl)oxy)phenyl)-1-(2-hydroxycyclohexyl)pyridin-

2(1H)-one (14) (60 mg, 136 µmol) was alkylated with 1-bromopropane (14 µL, 149 µmol) 

according to General Procedure B.  Reaction progress was monitored via LC-MS analysis, 

additional 1-bromopropane (54 µL, 596 µmol) was added over 48 h at rt until the reaction appeared 

complete.  The crude product was dried on the freeze dryer to give 51 mg of the desired product as 

of a white solid (77%).  No further purification was required.  
1
H NMR δ 8.18 (d, J = 0.5 Hz, 1H), 

7.87 (d, J = 0.6 Hz, 1H), 7.67 (d, J = 7.3 Hz, 1H), 7.57 (d, J = 8.3 Hz, 2H), 7.43–7.35 (m, 4H), 7.22 

(d, J = 8.2 Hz, 1H), 7.05 (td, J = 7.6/0.8 Hz, 1H), 6.52 (d, J = 1.9 Hz, 1H), 6.45 (dd, J = 7.2/2.0 Hz, 

1H), 5.17 (s, 2H), 4.76 (d, J = 6.0 Hz, 1H), 4.54 (br s, 1H), 4.07 (t, J = 7.0 Hz, 2H), 3.80 (br s, 1H), 

2.05–1.95 (m, 1H), 1.85–1.73 (m, 2H), 1.76–1.65 (m, 3H), 1.60–1.48 (m, 1H), 1.41–1.19 (m, 3H), 

0.85 (t, J = 7.4 Hz, 3H). 
13

C NMR δ 162.2, 155.8, 148.8, 136.4, 134.7, 134.8, 132.7, 130.8, 130.3, 

128.5, 127.5, 125.4, 121.6, 121.6, 118.9, 113.9, 107.4, 70.0, 69.6, 53.5, 35.9, 31.5, 25.5, 24.5, 23.7, 

11.4; resonance at δ 134.7 ppm was taken from the HSQC experiment; m/z MS (TOF ES
+
) 

C30H34N3O3 [M+H]
+
 calcd 484.3; found 484.3; LC-MS tR: 3.67 min. 

1-(2-Hydroxycyclohexyl)-4-(2-((4-(1-isopropyl-1H-pyrazol-4-yl)benzyl)oxy)phenyl)pyridin-

2(1H)-one (15d). 14-(2-((4-(1H-Pyrazol-4-yl)benzyl)oxy)phenyl)-1-(2-hydroxycyclohexyl)pyridin-

2(1H)-one (14) (60 mg, 136 µmol) was alkylated with 2-bromopropane (14 µL, 149 µmol) 

according to General Procedure B.  Reaction progress was monitored via LC-MS analysis, 

additional K2CO3 (21 mg, 149 µmol) and 2-bromopropane (56 µL, 596 µmol) was added over 48 h 

at rt, then the reaction mixture was heated to 40 °C for another 5 d until the reaction appeared 
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complete.  Purification by FCC (eluent MeOH/DCM 0:100 to 8:92) gave 28 mg of a white solid 

(42%). 
1
H NMR δ 8.22 (d, J = 0.5 Hz, 1H), 7.87 (d, J = 0.6 Hz, 1H), 7.67 (d, J = 7.3 Hz, 1H), 7.59 

(d, J = 8.3 Hz, 2H), 7.44–7.33 (m, 4H), 7.26–7.18 (m, 1H), 7.05 (td, J = 7.5/0.8 Hz, 1H), 6.54 (d, J 

= 1.9 Hz, 1H), 6.46 (dd, J = 7.2/2.0 Hz, 1H), 5.17 (s, 2H), 4.78 (d, J = 6.0 Hz, 1H), 4.63–4.43 (m, 

2H), 3.80 (br s, 1H), 2.05–1.95 (m, 1H), 1.78–1.65 (m, 3H), 1.62–1.50 (m, 1H), 1.45 (d, J = 6.7 Hz, 

6H), 1.39–1.25 (m, 3H); 
13

C NMR δ 162.3, 155.8, 148.8, 136.0, 134.7, 134.7, 132.8, 130.8, 130.3, 

128.5, 127.5, 125.4, 125.2, 121.6, 121.5, 119.0, 113.9, 107.4, 70.0, 69.7, 53.6, 35.9, 31.6, 25.5, 

24.5, 23.1; resonance at δ 134.7 ppm was taken from the HSQC experiment; m/z MS (TOF ES
+
) 

C30H34N3O3 [M+H]
+
 calcd 484.3; found 484.3; LC-MS tR: 3.63 min. 

4-(2-((4-(1-Butyl-1H-pyrazol-4-yl)benzyl)oxy)phenyl)-1-(2-hydroxycyclohexyl)pyridin-

2(1H)-one (15e). 14-(2-((4-(1H-Pyrazol-4-yl)benzyl)oxy)phenyl)-1-(2-hydroxycyclohexyl)pyridin-

2(1H)-one (14) (60 mg, 136 µmol) was alkylated with 1-bromobutane (16 µL, 149 µmol) according 

to General Procedure B.  Reaction progress was monitored via LC-MS analysis, additional K2CO3 

(21 mg, 149 µmol) and 1-bromobutane (54 µL, 600 µmol) was added over 72 h at rt, then the 

reaction mixture was heated to 40 °C for another 4 d until the reaction appeared complete.  

Purification by FCC (eluent MeOH/DCM 0:100 to 8:92) gave 42 mg of a white solid (63%).  
1
H 

NMR δ 8.18 (d, J = 0.5 Hz, 1H), 7.87 (d, J = 0.7 Hz, 1H), 7.67 (d, J = 7.3 Hz, 1H), 7.57 (d, J = 8.3 

Hz, 2H), 7.44–7.34 (m, 4H), 7.25–7.19 (m, 1H), 7.04 (td, J = 7.5/0.8 Hz, 1H), 6.54 (d, J = 1.9 Hz, 

1H), 6.46 (dd, J = 7.2/2.0 Hz, 1H), 5.17 (s, 2H), 4.78 (d, J = 6.0 Hz, 1H), 4.55 (br s, 1H), 4.11 (t, J 

= 7.0 Hz, 2H), 3.81 (br s, 1H), 2.05–1.96 (m, 1H), 1.83–1.64 (m, 5H), 1.61–1.45 (m, 1H), 1.41–

1.19 (m, 5H), 0.89 (t, J = 7.4 Hz, 3H); 
13

C NMR δ 162.3, 155.8, 148.8, 136.4, 134.8, 134.7, 132.7, 

130.7, 130.3, 128.5, 127.5, 127.5, 125.4, 121.7, 121.6, 118.9, 113.9, 107.4, 70.0, 69.7, 51.5, 35.9, 

32.3, 31.5, 25.5, 24.5, 19.7, 13.9; resonance at δ 134.7 ppm was taken from the HSQC experiment; 

m/z MS (TOF ES
+
) C31H36N3O3 [M+H]

+
 calcd 498.3; found 498.4; LC-MS tR: 3.73 min. 
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4-(2-((4-(1-Cyclopentyl-1H-pyrazol-4-yl)benzyl)oxy)phenyl)-1-(2-

hydroxycyclohexyl)pyridin-2(1H)-one (15f). 14-(2-((4-(1H-Pyrazol-4-yl)benzyl)oxy)phenyl)-1-

(2-hydroxycyclohexyl)pyridin-2(1H)-one (14) (72 mg, 163 µmol) was alkylated with 

bromocyclopentane (19 µL, 179 µmol) according to General Procedure B.  Reaction progress was 

monitored via LC-MS analysis, additional K2CO3 (25 mg, 179 µmol) and bromocyclopentane 

(58 µL, 537 µmol) was added over 24 h at rt, then the reaction mixture was heated to 40 °C for 

another 5 d until the reaction appeared complete.  Purification by FCC (eluent MeOH/DCM 0:100 

to 8:92) gave 33 mg of a white solid (40%). 
1
H NMR δ 8.22 (d, J = 0.5 Hz, 1H), 7.87 (d, J = 0.6 Hz, 

1H), 7.67 (d, J = 7.3 Hz, 1H), 7.58 (d, J = 8.3 Hz, 2H), 7.45–7.33 (m, 4H), 7.28–7.18 (m, 1H), 7.05 

(td, J = 7.5/0.8 Hz, 1H), 6.53 (d, J = 1.9 Hz, 1H), 6.45 (dd, J = 7.2/2.0 Hz, 1H), 5.17 (s, 2H), 4.77 

(d, J = 6.0 Hz, 1H), 4.73–4.62 (m, 1H), 4.55 (br s, 1H), 3.82 (br s, 1H), 2.16–2.05 (m, 2H), 2.04–

1.89 (m, 3H), 1.88–1.44 (m, 8H), 1.41–1.23 (m, 3H); 
13

C NMR δ 162.2, 155.8, 148.8, 136.3, 

134.74, 134.7, 132.8, 130.7, 130.3, 128.5, 127.5, 126.2, 125.4, 121.6, 118.9, 113.9, 107.4, 70.0, 

69.6, 62.7, 35.9, 33.1, 31.5, 25.5, 24.5, 24.2; resonance at δ 134.7 ppm was taken from the HSQC 

experiment; m/z MS (TOF ES
+
) C32H36N3O3 [M+H]

+
 calcd 510.3; found 510.4; LC-MS tR: 3.80 

min. 

4-(2-((4-(1-Cyclohexyl-1H-pyrazol-4-yl)benzyl)oxy)phenyl)-1-(2-

hydroxycyclohexyl)pyridin-2(1H)-one (15g). 14-(2-((4-(1H-Pyrazol-4-yl)benzyl)oxy)phenyl)-1-

(2-hydroxycyclohexyl)pyridin-2(1H)-one (14) (72 mg, 163 µmol) was alkylated with 

bromocyclohexane (22 µL, 179 µmol) according to General Procedure B.  Reaction progress was 

monitored via LC-MS analysis, additional K2CO3 (25 mg, 179 µmol), KI (3 mg, 16 µmol) and 

bromocyclohexane (22 µL, 179 µmol) was added over 24 h at rt, then the reaction mixture was 

heated to 40 °C for another 5 d, then to 60 °C for 24 h, and 80 °C for another 24 h until the reaction 

appeared complete.  Purification by FCC (eluent MeOH/DCM 0:100 to 8:92) gave 6 mg of a white 

solid (6%).  
1
H NMR δ 8.22 (s, 1H), 7.86 (d, J = 0.6 Hz, 1H), 7.67 (d, J = 7.2 Hz, 1H), 7.58 (d, J = 
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8.3 Hz, 2H), 7.38 (dd, J = 10.4/4.5 Hz, 4H), 7.22 (d, J = 8.2 Hz, 1H), 7.05 (td, J = 7.6/0.8 Hz, 1H), 

6.52 (d, J = 1.9 Hz, 1H), 6.45 (dd, J = 7.2/2.0 Hz, 1H), 5.17 (s, 2H), 4.75 (d, J = 6.0 Hz, 1H), 4.54 

(br s, 1H), 4.20–4.05 (m, 1H), 3.82 (br s, 1H), 2.08–1.96 (m, 3H), 1.86–1.66 (m, 7H), 1.64–1.48 (m, 

1H), 1.47–1.16 (m, 7H); 
13

C NMR δ 162.2, 155.8, 148.7, 135.9, 134.7, 132.8, 130.7, 130.3, 128.5, 

127.5, 125.4, 125.3, 121.6, 118.9, 113.9, 107.4, 70.0, 69.8, 60.7, 35.9, 33.4, 25.5, 25.4, 25.3, 24.5; 

resonances at δ 134.7, 69.8 and 31.7 ppm were taken from the HSQC experiment; m/z MS (TOF 

ES
+
) C33H38N3O3 [M+H]

+
 calcd 524.3; found 524.4; LC-MS tR: 3.89 min. 

4-(2-((4-(1-(Cyclopropylmethyl)-1H-pyrazol-4-yl)benzyl)oxy)phenyl)-1-(2-

hydroxycyclohexyl)pyridin-2(1H)-one (15h). Compound (15h) was the main “side” product when 

alkylating 14-(2-((4-(1H-pyrazol-4-yl)benzyl)oxy)phenyl)-1-(2-hydroxycyclohexyl)pyridin-2(1H)-

one (14) with bromocyclobutane. The titled product was synthesized and isolated when the reaction 

was performed at rt or at 40 °C. Purification by FCC (eluent MeOH/DCM 0:100 to 8:92) gave 

10 mg of the titled compound as a white solid (12%). 
1
H NMR δ 8.21 (d, J = 0.6 Hz, 1H), 7.87 (d, J 

= 0.7 Hz, 1H), 7.67 (d, J = 7.3 Hz, 1H), 7.61–7.55 (m, 2H), 7.47–7.33 (m, 4H), 7.26–7.18 (m, 1H), 

7.05 (td, J = 7.5/0.9 Hz, 1H), 6.53 (d, J = 1.9 Hz, 1H), 6.45 (dd, J = 7.2/2.0 Hz, 1H), 5.18 (s, 2H), 

4.76 (d, J = 6.0 Hz, 1H), 4.54 (br s, 1H), 3.98 (d, J = 7.1 Hz, 2H), 3.82 (br s, 1H), 2.06–1.96 (m, 

1H), 1.81–1.65 (m, 3H), 1.63–1.45 (m, 1H), 1.42–1.19 (m, 4H), 0.62–0.49 (m, 2H), 0.45–0.35 (m, 

2H); 
13

C NMR δ 162.2, 155.8, 148.8, 136.3, 134.8, 134.8, 132.7, 130.8, 130.3, 128.5, 127.5, 127.1, 

125.4, 121.8, 121.6, 118.9, 113.9, 107.4, 70.0, 69.6, 56.3, 35.9, 31.4, 25.5, 24.5, 12.0, 4.1; 

resonances at δ 134.8 and 31.4 ppm were taken from the HSQC experiment; m/z MS (TOF ES
+
) 

C31H34N3O3 [M+H]
+
 calcd 496.3; found 496.3; LC-MS tR: 3.70 min. 

4-(2-((4-(1-(Cyclohexylmethyl)-1H-pyrazol-4-yl)benzyl)oxy)phenyl)-1-(2-

hydroxycyclohexyl)pyridin-2(1H)-one (15i). 14-(2-((4-(1H-Pyrazol-4-yl)benzyl)oxy)phenyl)-1-

(2-hydroxycyclohexyl)pyridin-2(1H)-one (14) (80 mg, 181 µmol) was alkylated with 

bromomethylcyclohexane (29 µL, 199 µmol) according to General Procedure B.  Reaction progress 
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was monitored via LC-MS analysis, additional bromocyclopentane (199 µL, 597 µmol) was added 

over 4 days at rt, then the reaction mixture was heated to 40 °C for another 2 d until the reaction 

appeared complete.  Purification by FCC (eluent MeOH/DCM 0:100 to 8:92) gave 65 mg of a white 

solid (67%).  
1
H NMR δ 8.14 (s, 1H), 7.87 (s, 1H), 7.67 (d, J = 7.3 Hz, 1H), 7.57 (d, J = 8.2 Hz, 

2H), 7.45–7.33 (m, 4H), 7.25–7.17 (m, 1H), 7.04 (dd, J = 10.9/4.1 Hz, 1H), 6.53 (d, J = 1.9 Hz, 

1H), 6.45 (dd, J = 7.2/2.0 Hz, 1H), 5.17 (s, 2H), 4.76 (d, J = 6.0 Hz, 1H), 4.54 (s, 1H), 3.95 (d, J = 

7.2 Hz, 2H), 3.88–3.74 (m, 1H), 2.06–1.95 (m, 1H), 1.90–1.78 (m, 1H), 1.77–1.47 (m, 9H), 1.41–

1.26 (m, 3H), 1.26–1.05 (m, 3H), 1.03–0.87 (m, 2H); 
13

C NMR δ 162.2, 155.8, 148.8, 136.5, 134.8, 

134.7, 132.7, 130.7, 130.3, 128.5, 128.0, 127.5, 125.4, 121.6, 121.5, 118.9, 113.9, 107.4, 70.0, 69.7, 

58.0, 38.7, 35.9, 31.5, 30.4, 26.4, 25.6, 25.5, 24.5; resonance at δ 134.7 ppm was taken from the 

HSQC experiment; m/z MS (TOF ES
+
) C34H40N3O3 [M+H]

+
 calcd 538.4; found 538.3; LC-MS tR: 

4.31 min. 

4-(2-((4-(1-Benzyl-1H-pyrazol-4-yl)benzyl)oxy)phenyl)-1-(2-hydroxycyclohexyl)pyridin-

2(1H)-one (15j). 14-(2-((4-(1H-Pyrazol-4-yl)benzyl)oxy)phenyl)-1-(2-hydroxycyclohexyl)pyridin-

2(1H)-one (14) (80 mg, 181 µmol) was alkylated with benzyl bromide (24 µL, 199 µmol) according 

to General Procedure B. Reaction progress was monitored via LC-MS analysis, after 21 h at rt the 

reaction appeared complete.  Purification by FCC (eluent MeOH/DCM 0:100 to 8:92) gave 61 mg 

of a white solid (63%). 
1
H NMR δ 8.30 (d, J = 0.5 Hz, 1H), 7.93 (d, J = 0.6 Hz, 1H), 7.67 (d, J = 

7.3 Hz, 1H), 7.58 (d, J = 8.3 Hz, 2H), 7.43–7.25 (m, 9H), 7.21 (d, J = 8.2 Hz, 1H), 7.09–7.01 (m, 

1H), 6.52 (d, J = 1.9 Hz, 1H), 6.45 (dd, J = 7.2/2.0 Hz, 1H), 5.35 (s, 2H), 5.17 (s, 2H), 4.75 (d, J = 

6.0 Hz, 1H), 4.54 (br s, 1H), 3.80 (br s, 1H), 2.04–1.96 (m, 1H), 1.79–1.65 (m, 3H), 1.62–1.44 (m, 

1H), 1.41–1.25 (m, 3H); 
13

C NMR δ 162.2, 155.8, 148.8, 138.0, 137.1, 135.0, 134.7, 132.5, 130.7, 

130.3, 129.0, 128.5, 128.1, 128.0, 127.9, 127.5, 125.5, 122.3, 121.6, 118.9, 113.9, 107.4, 70.0, 69.6, 

55.5, 35.9, 31.5, 25.5, 24.5; resonance at δ 134.7 ppm was taken from the HSQC experiment; m/z 

MS (TOF ES
+
) C34H34N3O3 [M+H]

+
 calcd 532.3; found 532.4; LC-MS tR: 3.74 min. 
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4-(2-((6-Chloropyridin-3-yl)methoxy)phenyl)-1-(2-hydroxycyclohexyl)pyridin-2(1H)-one 

(16). 1-(2-Hydroxycyclohexyl)-4-(2-hydroxyphenyl)pyridin-2(1H)-one (7) (200 mg, 0.70 mmol) 

was alkylated with 2-chloro-5-(chloromethyl)pyridine (125 mg, 0.77 mmol) according to General 

Procedure B.  After a total of 40 h of stirring the mixture was worked up.  Purification by FCC 

(eluent MeOH/DCM 0:100 to 8:92) gave 181 mg of a yellow oil (63%).  
1
H NMR δ 8.48 (d, J = 1.9 

Hz, 1H), 7.89 (dd, J = 8.2/2.5 Hz, 1H), 7.67 (d, J = 7.2 Hz, 1H), 7.54 (dd, J = 8.2/0.6 Hz, 1H), 

7.46–7.35 (m, 2H), 7.23 (d, J = 7.7 Hz, 1H), 7.08 (td, J = 7.5/0.9 Hz, 1H), 6.48 (d, J = 1.9 Hz, 1H), 

6.43 (dd, J = 7.2/2.0 Hz, 1H), 5.23 (s, 2H), 4.77 (d, J = 6.0 Hz, 1H), 4.54 (br s, 1H), 3.82 (br s, 1H), 

2.10–1.92 (m, 1H), 1.83–1.64 (m, 3H), 1.61–1.46 (m, 1H), 1.44–1.24 (m, 3H); 
13

C NMR δ 162.2, 

155.4, 150.1, 149.4, 148.6, 139.5, 132.6, 134.7, 130.8, 130.4, 127.7, 124.7, 122.0, 118.9, 113.9, 

107.4, 69.7, 67.1, 35.9, 31.5, 25.5, 24.5; resonance at δ 134.7 ppm was taken from the HSQC 

experiment; m/z MS (TOF ES
+
) C23H24ClN2O3 [M+H]

+
 calcd 411.1; found 411.2; LC-MS tR: 3.74 

min. 

1-(2-Hydroxycyclohexyl)-4-(2-((6-(1-methyl-1H-pyrazol-4-yl)pyridin-3-

yl)methoxy)phenyl)pyridin-2(1H)-one (17). 4-(2-((6-Chloropyridin-3-yl)methoxy)phenyl)-1-(2-

hydroxycyclohexyl)pyridin-2(1H)-one (16) (145 mg, 353 µmol) was coupled to 1-methyl-4-

(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole (110 mg, 529 µmol) according to 

General Procedure A.  Purification by FCC (eluent MeOH/DCM 0:100 to 8:92) gave 51 mg of a 

white solid (32%).  
1
H NMR δ 8.56 (d, J = 1.7 Hz, 1H), 8.28 (s, 1H), 8.00 (d, J = 0.6 Hz, 1H), 7.79 

(dd, J = 8.2/2.3 Hz, 1H), 7.71–7.61 (m, 2H), 7.44–7.35 (m, 2H), 7.26 (d, J = 7.9 Hz, 1H), 7.07 (td, J 

= 7.5/0.8 Hz, 1H), 6.52 (d, J = 1.9 Hz, 1H), 6.44 (dd, J = 7.2/2.0 Hz, 1H), 5.19 (s, 2H), 4.78 (d, J = 

6.0 Hz, 1H), 4.55 (br s, 1H), 3.89 (s, 3H), 3.80 (br s, 1H), 2.06–1.96 (m, 1H), 1.79–1.64 (m, 3H), 

1.63–1.41 (m, 1H), 1.41–1.22 (m, 3H); 
13

C NMR δ 162.2, 155.6, 151.8, 149.2, 148.7, 137.6, 136.9, 

134.7, 130.8, 130.4, 130.1, 129.8, 127.6, 123.0, 121.8, 119.4, 118.9, 114.0, 107.3, 69.7, 68.0, 39.2, 
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35.9, 31.5, 25.5, 24.5; resonance at δ 134.7 ppm was taken from the HSQC experiment; m/z MS 

(TOF ES
+
)  C27H29N4O3 [M+H]

+
 calcd 457.2; found 457.3; LC-MS tR: 3.34 min. 

4-(2-((4-Bromo-2-fluorobenzyl)oxy)phenyl)-1-(2-hydroxycyclohexyl)pyridin-2(1H)-one 

(18). 1-(2-Hydroxycyclohexyl)-4-(2-hydroxyphenyl)pyridin-2(1H)-one (7) (300 mg, 1.05 mmol) 

was alkylated with 4-bromo-1-(bromomethyl)-2-fluorobenzene (310 mg, 1.16 mmol) according to 

General Procedure B.  After a total of 64 h of stirring the mixture was worked up.  Purification by 

FCC (eluent MeOH/DCM 0:100 to 6:94) gave 310 mg of a yellow oil (62%).  
1
H NMR δ 7.65 (d, J 

= 7.2 Hz, 1H), 7.63–7.57 (m, 1H), 7.49–7.36 (m, 4H), 7.24 (d, J = 7.8 Hz, 1H), 7.08 (td, J = 7.5/0.9 

Hz, 1H), 6.47 (d, J = 1.9 Hz, 1H), 6.40 (dd, J = 7.2/2.0 Hz, 1H), 5.19 (s, 2H), 4.76 (d, J = 5.9 Hz, 

1H), 4.53 (br s, 1H), 3.84 (br s, 1H), 2.06–1.94 (m, 1H), 1.78–1.64 (m, 3H), 1.62–1.43 (m, 1H), 

1.41–1.24 (m, 3H); 
13

C NMR δ 162.2, 161.8, 160.5 (d, JCF = 252 Hz), 148.6, 134.8, 132.2 (d, JCF = 

4.7 Hz), 130.8, 130.4, 128.2 (d, JCF = 3.5 Hz), 127.6, 127.6, 123.9 (d, JCF = 14.5 Hz), 122.1, 122.0, 

119.3 (d, JCF = 24.7 Hz), 118.9, 113.8, 107.3, 69.6, 64.1 (d, JCF = 3.1 Hz), 35.9, 31.5, 25.5, 24.5; 

resonance at δ 134.8 ppm was taken from the HSQC experiment; m/z MS (TOF ES
+
) 

C24H24BrFNO3 [M+H]
+
 calcd 472.1; found 472.2; LC-MS tR: 3.79 min. 

4-(2-((2-Fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)oxy)phenyl)-1-(2-

hydroxycyclohexyl)pyridin-2(1H)-one (19). 4-(2-((4-Bromo-2-fluorobenzyl)oxy)phenyl)-1-(2-

hydroxycyclohexyl)pyridin-2(1H)-one (18) (150 mg, 318 µmol) was coupled to 1-methyl-4-

(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole (99 mg, 476 µmol) according to General 

Procedure A.  Purification by FCC (eluent MeOH/DCM 0:100 to 8:92), followed freeze drying of 

the combined product fractions to remove the remaining pinacol, gave 45 mg of a white solid 

(30%).  
1
H NMR δ 8.22 (s, 1H), 7.94 (s, 1H), 7.64 (d, J = 7.2 Hz, 1H), 7.51–7.36 (m, 5H), 7.27 (d, J 

= 8.2 Hz, 1H), 7.07 (t, J = 7.4 Hz, 1H), 6.49 (d, J = 1.6 Hz, 1H), 6.41 (dd, J = 7.2/1.8 Hz, 1H), 5.19 

(s, 2H), 4.74 (d, J = 6.0 Hz, 1H), 4.52 (br s, 1H), 3.87 (s, 3H), 3.78 (br s, 1H), 2.04–1.92 (m, 1H), 

1.79–1.62 (m, 3H), 1.60–1.39 (m, 1H), 1.39–1.19 (m, 3H);
 13

C NMR δ 162.2, 161.3 (d, JCF = 246 
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Hz), 155.7, 148.6, 136.9, 135.6 (d, JCF = 10.0 Hz), 134.6, 131.4 (d, JCF = 4.7 Hz), 130.8, 130.4, 

128.9, 121.8, 121.2, 121.1, 121.0 (d, JCF = 2.2 Hz), 118.9, 113.8, 112.0 (d, JCF = 4.7 Hz), 107.2, 

69.6, 64.5, 39.2, 35.9, 31.3, 25.5, 24.4; resonances at δ 134.6 ppm and 31.3 ppm were taken from 

the HSQC experiment; m/z MS (TOF ES
+
) C28H29FN3O3 [M+H]

+
 calcd 474.2; found 474.3; LC-MS 

tR: 3.55 min. 

4-(3,6-Difluoro-2-methoxyphenyl)-1-(2-hydroxycyclohexyl)pyridin-2(1H)-one (20). 4-

Bromo-1-(2-hydroxycyclohexyl)pyridin-2(1H)-one (4b) (1.00 g, 3.67 mmol) was coupled to (3,6-

difluoro-2-methoxyphenyl)boronic acid (1.04 g, 5.51 mmol) according to General Procedure A.  

The reaction was stirred for 5 h before work up.  Purification by FCC (eluent MeOH/DCM 0:100 to 

10:90) and (eluent EtOAC 100%) gave 285 mg of the desired compound as a white solid (23%) in a 

1:1 mixture of the desired product and an unidentified impurity.  
1
H NMR δ 7.77 (d, J = 7.2 Hz, 

1H), 7.41 (ddd, J = 11.3/9.3/5.3 Hz, 1H), 7.11 (td, J = 9.2/3.9 Hz, 1H), 6.39 (s, 1H), 6.26–6.20 (m, 

1H), 4.82 (d, J = 6.1 Hz, 1H), 4.55 (br s, 1H), 3.82 (d, J = 1.9 Hz, 3H), 3.75 (br s, 1H), 2.06–1.90 

(m, 1H), 1.81–1.64 (m, 3H), 1.62–1.46 (m, 1H), 1.42–1.21 (m, 3H). 

4-(3,6-Difluoro-2-hydroxyphenyl)-1-(2-hydroxycyclohexyl)pyridin-2(1H)-one (21). Boron 

tribromide in hexane (1 M, 3.88 mL, 3.88 mmol) was added at 0 °C to a solution of 4-(3,6-difluoro-

2-methoxyphenyl)-1-(2-hydroxycyclohexyl)pyridin-2(1H)-one (20) (260 mg, 775 µmol) (1:1 

mixture with unidentified impurity) in dichloromethane (8 mL).  The mixture was stirred at rt under 

N2 for 1 h, and then poured into ice-water. The pH of the solution was adjusted to pH 6 by addition 

of sat. NaHCO3.  Dichloromethane (20 mL) was added and the layers were separated.  The organic 

layer was washed with water (2 × 20 mL) and brine (20 mL) and then dried with Na2SO4, filtered 

and the solvent was evaporated under reduced pressure.  The desired compound was obtained as a 

white solid (89 mg, 72%).  No further purification was required.  
1
H NMR δ 10.33 (br s, 1H), 7.73 

(d, J = 7.2 Hz, 1H), 7.27 (ddd, J = 10.4/9.2/5.3 Hz, 1H), 6.78 (td, J = 9.3/3.8 Hz, 1H), 6.38 (s, 1H), 

6.27–6.20 (m, 1H), 4.80 (d, J = 6.0 Hz, 1H), 4.51 (br s, 1H), 3.81 (br s, 1H), 2.07–1.95 (m, 1H), 
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1.82–1.66 (m, 3H), 1.63–1.45 (m, 1H), 1.43–1.25 (m, 3H); 
13

C NMR δ 162.0, 155.8 (dd, JCF = 

240.9/1.6 Hz), 148.8 (dd, JCF = 234.9/2.7 Hz), 143.6 (dd, JCF = 17.1/7.0 Hz), 142.0 (d, JCF = 2.1 

Hz), 135.1, 121.1, 117.0 (dd, JCF = 19.0/2.8 Hz), 116.4 (dd, JCF = 21.1/11.0 Hz), 107.9, 106.2 (dd, 

JCF = 25.5/7.3 Hz), 69.6, 35.9, 31.5, 25.5, 24.5; resonance at δ 135.1 ppm was taken from the 

HSQC experiment; m/z MS (TOF ES
+
) C17H18F2NO3 [M+H]

+
 calcd 322.1; found 322.1; LC-MS 

tR: 3.35 min. 

4-(2-((4-Bromobenzyl)oxy)-3,6-difluorophenyl)-1-(2-hydroxycyclohexyl)pyridin-2(1H)-one 

(22). 4-(3,6-Difluoro-2-hydroxyphenyl)-1-(2-hydroxycyclohexyl)pyridin-2(1H)-one (21) (75 mg, 

233 µmol, 1.0 eq), K2CO3 (36 mg, 257 µmol, 1.1 eq), KI (4 mg, 23 µmol, 0.1 eq) and 1-bromo-4-

(bromomethyl)benzene (64 mg, 257 mmol, 1.1 eq) were stirred in DMF (3 mL) at rt for 3 h.  The 

reaction mixture was poured onto water and stirred for 30 min, before extraction with EtOAc (2 × 

20 mL).  The combined organic layers were washed with water (20 mL) and brine (20 mL), dried 

with Na2SO4, filtered and the solvent was removed under reduced pressure.  Purification by FCC 

(eluent MeOH/DCM 0:100 to 10:90) gave 83 mg of the desired product as a white solid (73%).  
1
H 

NMR δ 7.75 (d, J = 7.2 Hz, 1H), 7.51–7.46 (m, 2H), 7.46–7.39 (m, 1H), 7.18–7.10 (m, 3H), 6.40–

6.30 (m, 1H), 6.24–6.16 (m, 1H), 4.96 (s, 2H), 4.83 (d, J = 6.0 Hz, 1H), 4.56 (br s, 1H), 3.86 (br s, 

1H), 2.11 – 1.97 (m, 1H), 1.83–1.67 (m, 3H), 1.67–1.48 (m, 1H), 1.44–1.29 (m, 3H); 
13

C NMR 

(101 MHz, DMSO) δ 161.7, 155.2 (dd, JCF = 242.8/1.9 Hz), 152.4 (dd, JCF = 242.1/3.0 Hz), 144.1 

(dd, JCF = 13.4/5.8 Hz), 141.5 (d, JCF = 2.0 Hz), 135.9, 135.5, 131.7, 130.8, 122.7 (dd, JCF = 

18.5/2.3 Hz), 122.0, 121.1, 117.8 (dd, JCF = 21.8/10.6 Hz), 112.0 (dd, JCF = 25.1/8.1 Hz), 107.6, 

75.3 (d, J = 5.3 Hz), 69.7, 35.8, 31.5, 25.5, 24.5; resonance at δ 135.5 ppm was taken from the 

HSQC experiment; m/z MS (TOF ES
+
) C24H23BrF2NO3 [M+H]

+
 calcd 490.1; found 490.2; LC-MS 

tR: 3.79 min. 

4-(3,6-Difluoro-2-((4-(1-methyl-1H-pyrazol-4-yl)benzyl)oxy)phenyl)-1-(2-

hydroxycyclohexyl)pyridin-2(1H)-one (23). 4-(2-((4-Bromobenzyl)oxy)-3,6-difluorophenyl)-1-
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(2-hydroxycyclohexyl)pyridin-2(1H)-one (22) (77 mg, 157 µmol) was coupled to 1-methyl-4-

(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole (49 mg, 236 µmol) according to General 

Procedure A.  The reaction was stirred at reflux for 2 h before work up.  Purification by FCC 

(eluent MeOH/DCM 0:100 to 10:90) gave 24 mg of a white solid (31%).  
1
H NMR δ 8.11 (s, 1H), 

7.83 (d, J = 0.6 Hz, 1H), 7.74 (d, J = 7.2 Hz, 1H), 7.50–7.45 (m, 2H), 7.45–7.39 (m, 1H), 7.18–7.11 

(m, 3H), 6.37 (d, J = 1.6 Hz, 1H), 6.26–6.15 (m, 1H), 4.94 (s, 2H), 4.83 (d, J = 6.0 Hz, 1H), 4.60 

(br s, 1H), 3.86 (s, 3H), 3.81 (br s, 1H), 2.11–1.99 (m, 1H), 1.86–1.68 (m, 3H), 1.65–1.47 (m, 1H), 

1.45–1.28 (m, 3H); 
13

C NMR δ 161.7, 155.2 (dd, JCF = 243.1/2.0 Hz), 152.5 (dd, JCF = 242.0/2.9 

Hz), 144.2 (dd, JCF = 13.6/5.9 Hz), 141.6, 136.5, 135.4, 133.9, 133.1, 129.5, 128.4, 125.2, 122.8 

(dd, JCF = 18.2/2.2 Hz), 121.9, 121.1, 117.7 (dd, JCF = 21.8/10.3 Hz), 111.9 (dd, JCF = 25.1/8.1 Hz), 

107.6, 76.0 (d, JCF = 5.0 Hz), 69.7, 39.1, 35.9, 31.6, 25.5, 24.5; resonance at δ 135.4 ppm was taken 

from the HSQC experiment; m/z MS (TOF ES
+
) C28H28F2N3O3 [M+H]

+
 calcd 492.2; found 492.3; 

LC-MS tR: 3.59 min. 

6-(2-Methoxyphenyl)pyrimidin-4(3H)-one (25). 6-Chloropyrimidin-4(3H)-one (24) (1.00 g, 

7.66 mmol) was coupled to (2-methoxyphenyl)boronic acid (1.85 g, 11.5 mmol) according to 

General Procedure A.  The reaction was stirred for 48 h before work up.  Purification by FCC 

(eluent MeOH/DCM 0:100 to 10:90) gave 315 mg of a white solid (20%).  
1
H NMR δ 12.48 (br s, 

1H), 8.24 (d, J = 1.0 Hz, 1H), 7.92 (dd, J = 7.8/1.8 Hz, 1H), 7.50–7.40 (m, 1H), 7.21–7.13 (m, 1H), 

7.06 (td, J = 7.7/1.0 Hz, 1H), 6.90 (d, J = 1.0 Hz, 1H), 3.87 (s, 3H); 
13

C NMR δ 162.0, 159.1, 158.1, 

149.6, 131.9, 130.7, 125.4, 120.9, 115.0, 112.5, 56.1; m/z MS (TOF ES
+
) C11H11N2O2 [M+H]

+
 calcd 

203.2; found 203.1; LC-MS tR: 3.25 min. 

3-(2-Hydroxycyclohexyl)-6-(2-methoxyphenyl)pyrimidin-4(3H)-one (26). A mixture of 6-(2-

methoxyphenyl)pyrimidin-4(3H)-one (25) (274 mg, 1.36 mmol, 1.0 eq), 1,2-cyclohexene oxide 

(686 µL, 6.78 mmol, 5.0 eq), K2CO3 (468 mg, 3.39 mmol, 2.5 eq) was heated at 120 °C for 5 h.  

The reaction mixture was cooled to rt and concentrated to dryness under reduced pressure.  The 
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remaining residue was taken up in EtOAc (50 mL) and washed with water.  The organic layer was 

dried with Na2SO4, filtered and the solvent was removed under reduced pressure.  Purification by 

FCC (eluent MeOH/DCM 0:100 to 10:90) and FCC eluent MeOH/DCM 0:100 to 6:94) yielded 

153 mg of the desired compound as a colourless oil (38%).  
1
H NMR δ 8.54 (br s, 1H), 7.95 (dd, J = 

7.8/1.8 Hz, 1H), 7.68–7.53 (m, 1H), 7.16 (dd, J = 8.4/0.7 Hz, 1H), 7.07 (td, J = 7.7/1.0 Hz, 1H), 

6.96 (d, J = 0.4 Hz, 1H), 4.98 (d, J = 5.7 Hz, 1H), 4.33 (br s, 1H), 3.97 (br s, 1H), 3.88 (s, 3H), 

2.08–1.97 (m, 1H), 1.84–1.61 (m, 4H), 1.40–1.22 (m, 3H); 
13

C NMR δ 161.5, 158.1, 157.0, 150.1, 

131.8, 130.6, 125.2, 120.9, 113.9, 112.5, 69.2, 56.1, 35.7, 31.0, 25.4, 24.4; resonances at δ 150.1 

and 31.0 ppm were taken from the HSQC experiment; m/z MS (TOF ES
+
) C17H21N2O3 [M+H]

+
 

calcd 301.2; found 301.2; LC-MS tR: 3.42 min. 

3-(2-Hydroxycyclohexyl)-6-(2-hydroxyphenyl)pyrimidin-4(3H)-one (27). A 1 M solution 

boron tribromide in hexane (2.37 mL, 2.37 mmol, 5.0 eq) was added at 0 °C to a solution of 3-(2-

hydroxycyclohexyl)-6-(2-methoxyphenyl)pyrimidin-4(3H)-one (26) (90 mg, 475 µmol, 1.0 eq) in 

dichloromethane (4 mL).  The mixture was stirred at rt under N2 for 30 min, and then poured into 

ice-water.  The pH of the solution was adjusted to pH 6 by addition of sat. NaHCO3. 

Dichloromethane (20 mL) was added and the layers were separated.  The organic layer was washed 

with water (2 × 20 mL) and brine (20 mL) and then dried with Na2SO4, filtered and the solvent was 

evaporated under reduced pressure.  The desired compound was obtained as a white solid (75 mg, 

87%).  No further purification was required.  
1
H NMR δ 12.80–10.80 (br s, 1H), 8.61 (br s, 1H), 

7.84 (dd, J = 7.9/1.6 Hz, 1H), 7.24 (ddd, J = 8.5/7.2/1.6 Hz, 1H), 6.99 (s, 1H), 6.87–6.77 (m, 2H), 

4.78 (s, 1H), 4.25 (br s, 1H), 3.92–3.77 (br s, 1H), 1.96–1.88 (m, 1H), 1.79–1.53 (m, 4H), 1.31–1.16 

(m, 3H); 
13

C NMR δ 161.1, 158.8, 158.5, 150.4, 132.8, 128.8, 119.8, 118.2, 118.2, 109.3, 69.2, 

35.6, 30.8, 25.4, 24.4; resonances at δ 150.4, 69.2 and 30.8 ppm were taken from the HSQC 

experiment; m/z MS (TOF ES
+
) C16H19N2O3 [M+H]

+
 calcd 287.1; found 287.2; LC-MS tR: 3.46 

min. 

Page 62 of 74

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

 

6-(2-((4-Bromobenzyl)oxy)phenyl)-3-(2-hydroxycyclohexyl)pyrimidin-4(3H)-one (28). 3-(2-

Hydroxycyclohexyl)-6-(2-hydroxyphenyl)pyrimidin-4(3H)-one (27) (76 mg, 265 µmol, 1.0 eq), 

K2CO3 (40 mg, 292 µmol, 1.1 eq), KI (4 mg, 27 µmol, 0.1 eq) and 1-bromo-4-

(bromomethyl)benzene (73 mg, 292 mmol, 1.1 eq) were stirred in DMF (3 mL) at rt for 4 h.  The 

reaction mixture was poured onto water and stirred for 30 min, before extraction with EtOAc (2 × 

20 mL).  The combined organic layers were washed with water (20 mL) and brine (20 mL), dried 

with Na2SO4, filtered and the solvent was removed under reduced pressure.  Purification by FCC 

(eluent MeOH/DCM 0:100 to 10:90) gave 66 mg of the desired product as a beige solid (55%).  
1
H 

NMR δ 8.54 (s, 1H), 7.96 (dd, J = 7.8/1.8 Hz, 1H), 7.62–7.58 (m, 2H), 7.47–7.39 (m, 3H), 7.21 (d, 

J = 7.7 Hz, 1H), 7.12–7.06 (m, 1H), 6.98 (d, J = 0.6 Hz, 1H), 5.24 (s, 2H), 4.96 (d, J = 5.8 Hz, 1H), 

4.27 (br s, 1H), 3.95 (br s, 1H), 2.06–1.95 (m, 1H), 1.85–1.62 (m, 4H), 1.40–1.23 (m, 3H); 

13
C NMR δ 161.4, 157.0, 156.9, 150.1, 136.7, 131.9, 131.4, 130.8, 130.2, 125.6, 121.5, 121.3, 

114.0, 113.9, 69.5, 69.1, 35.7, 31.0, 25.4, 24.4; resonances at δ 150.1, 69.1 and 31.0 ppm were 

taken from the HSQC experiment; m/z MS (TOF ES
+
) C23H24BrN2O3 [M+H]

+
 calcd 455.1; found 

455.2; LC-MS tR: 3.77 min. 

3-(2-Hydroxycyclohexyl)-6-(2-((4-(1-methyl-1H-pyrazol-4-yl)benzyl)oxy)phenyl)pyrimidin-

4(3H)-one (29). 6-(2-((4-Bromobenzyl)oxy)phenyl)-3-(2-hydroxycyclohexyl)pyrimidin-4(3H)-one 

(28) (66 mg, 145 µmol) was coupled to 1-methyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-

1H-pyrazole (45 mg, 217 µmol) according to General Procedure A.  The reaction was stirred at 

reflux for 25 h before the work up.  Purification by FCC (eluent MeOH/DCM 0:100 to 8:92) gave 7 

mg of a white solid (11%).  
1
H NMR δ 8.54 (br s, 1H), 8.15 (s, 1H), 7.99 (dd, J = 7.8/1.8 Hz, 1H), 

7.87 (d, J = 0.7 Hz, 1H), 7.61–7.56 (m, 2H), 7.48–7.40 (m, 3H), 7.26 (d, J = 7.8 Hz, 1H), 7.13–7.06 

(m, 1H), 7.05 (t, J = 3.1 Hz, 1H), 5.24 (s, 2H), 4.95 (d, J = 5.7 Hz, 1H), 4.39–4.22 (m, 1H), 3.99–

3.91 (m, 1H), 3.87 (br s, 3H), 2.06–2.00 (m, 1H), 1.88–1.63 (m, 4H), 1.37–1.28 (m, 3H); 
13

C NMR 

δ 161.4, 157.2, 156.9, 150.1, 136.5, 134.6, 132.8, 131.7, 130.8, 128.7, 128.3, 125.5, 122.0, 121.2, 
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120.8, 114.0, 113.9, 68.9, 39.1, 35.7, 29.4, 25.4, 21.2; resonances at δ 150.1, 114.0 and 69.9 ppm 

were taken from the HSQC experiment; m/z MS (TOF ES
+
) C27H29N4O3 [M+H]

+
 calcd 457.2; 

found 457.3; LC-MS tR: 3.53 min. 

 

Pharmacology.  Intact cell radioligand binding assays. Flp-In
TM

 Chinese hamster ovary (CHO) 

cells expressing the human muscarinic acetylcholine M1-5 receptor (hM1-5 mAChR) were grown in 

Dulbecco’s modified Eagle’s medium (DMEM) (Invitrogen, Carlsbad, CA) supplemented with 

foetal bovine serum (FBS) (ThermoTrace (Melbourne, Australia) and 0.2 mg/mL hygromycin-B 

(Roche, Mannheim, Germany). The cells were plated at 10
4
 cells per well in 96-well Isoplates 

(Perkin Elmer). Prior to assay the growth medium was removed and the attached cells were used to 

perform radioligand binding studies in the presence of 0.2 nM [
3
H]NMS and varying concentrations 

of acetylcholine (Sigma, St. Loius, MI) and PAMs in a total volume of 200 µL of binding buffer (10 

mM HEPES, 145 mM NaCl, 1 mM MgSO4·7H2O, 10 mM glucose, 5 mM KCl, 2 mM CaCl2, 1.5 

mM NaHCO3, pH 7.4). The binding reaction mixtures were incubated for 1 h at 37°C, in a 

humidified incubator and terminated by rapid removal of radioligand followed by two 100 µL-

washes with ice-cold 0.9% NaCl buffer. Radioactivity was determined by addition of 100 µL 

Microscint scintillation liquid (PerkinElmer Life Sciences) to each well and counting in a 

MicroBeta plate reader (PerkinElmer Life Sciences).  

IP-One accumulation assays. The IP-One assay kit (Cisbio, France) was used for the direct 

quantitative measurement of myo-Inositol 1 phosphate (IP1) in FlpIn CHO cells stably expressing 

the hM1 mAChR. The cells were detached and resuspended in IP1 stimulation buffer (10 mM 

Hepes, 1 mM CaCl2, 0.5 mM MgCl2, 4.2 mM KCl, 146 mM NaCl, 5.5 mM glucose, 50 mM LiCl, 

pH 7.4). The stimulations were performed in 384-well Proxy-plates (PerkinElmer) in a total volume 

of 14 µL, in the absence or presence of increasing concentrations of ACh and the PAMs, at cell 

density of 10
6
 million cells/ml for 1 h at 37 °C, 5% CO2. The reactions were terminated by addition 
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of 6 µL lysis buffer containing HTRF reagents (the anti-IP1 Tb cryptate conjugate and the IP1-D2 

conjugate), followed by incubation for 1 h at room temperature. The emission signals were 

measured at 590 and 665 nm after excitation at 340 nm using an Envision multi-label plate reader 

(PerkinElmer) and the signal was expressed as the HTRF ratio: F= ((fluorescence665 

nm/fluorescence590 nm) ×10
4
).  

Data Analysis. All data were analyzed using Prism 6.01 (GraphPad Software, San Diego, CA). 

Binding-interaction studies with allosteric ligands were fitted to the following allosteric ternary 

complex model (equation 1):
39
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       (1) 

Where Y is percentage (vehicle control) binding, Bmax is the total number of receptors, [A], [B] 

and [I] are the concentrations of radioligand, allosteric modulator and the orthosteric ligand, 

respectively, KA and KB and KI are the equilibrium dissociation constants of the radioligand, 

allosteric modulator orthosteric ligand, respectively. α’ and α are the binding cooperativities 

between the allosteric ligand and [
3
H]NMS and the allosteric modulator and the agonist 

acetylcholine, respectively. Saturation binding experiments were used to determine the value of 

pKA for [
3
H]NMS (pKA  = 9.70 ± 0.01, KA =0.2 nM).Values of α (or α’) > 1 denote positive 

cooperativity; values < 1 (but > 0) denote negative cooperativity, and value = 1 denotes neutral 

cooperativity. For the majority of compounds an unlimited displacement of [
3
H]NMS by the 

allosteric modulator was observed consistent with a high level of negative cooperativity. In these 

cases to allow fitting of the data logα’ was fixed to -3 to reflect this high negative cooperativity. 

The dissociation constant of ACh (KI) was not fixed in these analyses but rather determined for 

each separate experiment. No difference was observed in the value of KI between experiments 

(mean pKI = 4.56 ± 0.02, KI = 28 µM). 
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Concentration-response curves for the interaction between the allosteric ligand and the 

orthosteric ligand in the IP-One accumulation assays were globally fitted to the following 

operational model of allosterism and agonism (equation 2):
40

  

� = ��(����	(��
����	)
����	��)�
(��	��
����
��	��
���	��	)�
	(����	(��
����	)
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Where Em is the maximum possible cellular response, [A] and [B] are the concentrations of 

orthosteric and allosteric ligands, respectively, KA and KB are the equilibrium dissociation constant 

of the orthosteric and allosteric ligands, respectively, τA and τB are operational measures of 

orthosteric and allosteric ligand efficacy, respectively, α is the binding cooperativity parameter 

between the orthosteric and allosteric ligand, β denotes the magnitude of the allosteric effect of the 

modulator on the efficacy of the orthosteric agonist and n denotes the transducer slope that 

describes the underlying stimulus-response coupling of the ligand-occupied receptor to the signal 

pathway.  This parameter was constrained to be shared between all curves within a fitted dataset for 

each interaction study, and in all instances was not significantly different from unity (average across 

entire series, n = 1.04 ± 0.04). In many instances, the individual model parameters of equation 2 

could not be directly estimated via the nonlinear regression algorithm by analysis of the functional 

data alone due to parameter redundancy. To facilitate model convergence, therefore, we fixed the 

equilibrium dissociation constant of each ligand to that determined from the whole cell binding 

assays. For compounds 9c, 15h and 17, no agonism was observed and therefore logτB was fixed to -

3. 

All affinity, potency, and cooperativity values were estimated as logarithms and statistical 

comparisons between values were by one-way analysis of variance using a Dunnett’s multiple 

comparison post test to determine significant differences between mutant receptors and the WT M1 

mAChR. A value of p < 0.05 was considered statistically significant. 
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