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Abstract – The reconstruction of 3D models of plant shoots is a 

challenging problem central to the emerging discipline of plant 

phenomics – the quantitative measurement of plant structure and 

function. Current approaches are, however, often limited by the use 

of static cameras.  We propose an automated active phenotyping 

cell to reconstruct plant shoots from multiple images using a 

turntable capable of rotating 360 degrees and camera mounted robot 

arm. To overcome the problem of static camera positions we 

develop an algorithm capable of analysing the environment and 

determining viewpoints from which to capture initial images 

suitable for use by a structure from motion technique. 

 

I. BACKGROUND AND MOTIVATION 

The global population is expected to reach 9 billion by 

2050 and the spread of prosperity throughout the world is 

increasing the food intake per capita, driving the demand for 

a richer, more varied diet. At the same time, changes in 

climate are causing more frequent and severe flooding, 

destroying crop yields and shortage of arable land constitutes 

an additional challenge. It has been widely predicted that 

without crop climate adaption the production of food will 

deteriorate [1], [2]. The long-term goal of this work is to 

provide the innovative approach to sustainable agriculture 

necessary to adapt to the fluctuating environment and 

increased demand for food.  

The identification of more productive and/or resilient crop 

species requires connections to be made between the genetic 

and physical structures of the plant. While significant 

progress has been made in the study of the genome in recent 

years, the creation and quantitative analysis of plant 

phenotypes (structures) has become a major bottleneck. 

Though some plant traits (e.g. leaf area) can be estimated 

using a single carefully placed camera and 2D image analysis 

methods, the ability to produce accurate 3D models of plants 

would support a wide variety of phenotyping tasks. 

Image-based reconstruction methods are attractive in this 

context. Plants are easily disturbed; non-invasive sensing 

techniques capable of capturing information across the whole 

object are required. Plant shoots are, however, a challenging 

target for image-based reconstruction. Individual variation 

within species is often large, making it difficult to predict 

structures a priori. Individual leaves can be very similar in 

appearance, and densely-packed, occluding each other from 

many viewpoints: plants can be very crowded scenes. The 

leaves of many species are quite highly reflective, and often 

lack the strong texture needed by some techniques.  

The starting point for the work described here is the 

hypothesis that active vision can aid in the generation of 

high-quality plant models by providing improved, and 

responsive, image acquisition strategies. Active vision 

systems automatically control and manipulate camera 

viewpoints to provide images which best support the task at 

hand. Active methods have played a role in other plant-

related tasks. For example, [3] attach a camera to a robot arm 

in order to identify peppers to be collected. The effect of 

camera placement on fruit picking has been investigated [4], 

and active vision used to address the problem of occlusion. 

The large-scale phenotyping systems now finding application 

in plant and crop science, however, typically rely on fixed 

viewpoints that are not adapted to the specific plant being 

modelled. Some systems rotate the plant during imaging, but 

still use static camera positions. This means that, in many 

cases, the images captured are far from optimal, adversely 

affecting the results obtained. The ability to adjust sensors in 

response to emerging plant properties (e.g. size) is vital if 

accurate representations are to be obtained of a wide variety 

of plant species, ages and conditions.  

We aim to produce a fully automated, active system that is 

capable of manipulating a camera’s viewpoint to produce 

high quality 3D models of a wide range of plants by adapting 

to the visual information available, without user interaction, 

with the longer-term goal of improved plant phenotyping. 

The approach proposed here offers more flexibility than 

existing large scale phenotyping systems by adapting to the 

natural variation of individual plants in order to obtain 

optimal data.  

 The remainder of the paper is organized as follows; we 

first introduce the reader to 3D plant reconstruction, 

discussing current approaches and the challenges they face. 

We then provide a concise overview of active vision and the 

various components that are necessary, before discussing the 

approach used in this work. Results obtained from real and 

artificial plants are presented. Finally, we conclude with a 

summary of progress and plans for future work. 

II. 3D PLANT RECONSTRUCTION 

Until the late 1960s botanical drawings were the primary 

means of capturing plant architecture. Today a variety of 

approaches are available. Rule-based methods use a set of 

rules to define the structure of a particular species or class of 

plant. Varying the parameters of these systems produces 

models of single plants, but rule-based approaches cannot 

easily be used to produce the descriptions of specific, 

existing plants needed to support phenotyping. 

 Image based approaches seek plant geometry directly, 

analysing a set of images to reconstruct representations of 

actual plants. Image based models can be used to support 

simulations and enable the extraction of trait measurements. 

 Some approaches, such as Light Detection and Ranging 

(LiDAR) [5], custom illuminate the target object by emitting 
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radiation into the scene. LIDAR is commonly used in the 

airborne reconstruction of field based plants, trees in 

particular. For example, [6] describe the forest canopy as a 

series of cones fitted to a raw LiDAR point cloud, then apply 

simple geometric operations to adjust and correct its height. 

Similar methods can be applied to smaller plants; [7] model 

rice plants using a three-dimensional sonic digitiser to 

capture a 3D point cloud. The digitisation process is reported 

to take up to an hour to complete, and [8] note that the 

digitisation process for their approach to reconstruct White 

Clover canopies required between 3 to 7 hours. They used 

electromagnetic digitising apparatus with corner flags to aid 

calibration, applying a destructive approach and pruning the 

canopy from the top downwards. 

The recovery of 3D descriptions from images captured 

under natural illumination is a longstanding research topic in 

the computer vision community. A range of approaches such 

as structure from motion, shape-from-silhouette and space 

carving, have been developed and can be used for plant 

reconstruction. For example [9] combine a volumetric 

opacity estimate with view-dependent texturing and 

successfully model trees from a series of images whilst [10] 

use a space carving approach with particle flows to estimate 

tree volume.  [13] use a stereovision approach to reconstruct 

plant models using automated segmentation. User input is, 

however, often required. [11] adopt the less common 

approach of sketching to create plant models. Other 

interactive approaches construct models directly from 

images. [12] obtain a point cloud from 35 images of a plant, 

though user input is required in the form of segmentation to 

separate leaves, and the image acquisition process is manual.  

 Fully automatic reconstruction of plants from natural 

images is challenging due to the intricate phyllotaxis (leaf 

structure) and continuous reorganization of plant foliage. 

Many problems arise during the image acquisition and 

reconstruction processes. Determining the number of images 

required, and their viewpoints, such that all the required plant 

features are visible remains difficult. Too few or poorly 

chosen images results in the loss of data, whilst too many 

results in increased computational requirements. 

 Occlusions are a common side effect of complex 

structures such as plants and can be overcome by capturing 

an increased number of images, though in some cases 

approximation techniques must be used. Some approaches 

rely on intrusive/destructive approaches to obtain more 

information, however this means the plant cannot return to 

its original configuration, preventing the comparison of 

descriptions obtained at different times. Invasive methods 

can also increase reconstruction time and encourage 

irreversible errors. Multiple side image methods also exist 

but often don’t support 3D modelling as there is no overlap 

between images. 

 An active vision approach can alleviate the problems 

associated with plant modelling. By manipulating the 

camera(s) to optimise image number and viewpoint it can 

help overcome occlusion. By analysing a developing point 

cloud and moving to view a region that has been identified as 

unexpectedly sparse, it can help to obtain missing data. 

Selecting camera positions on the basis of emerging data can 

also prevent multiple, unnecessary views of the same regions 

being collected, both reducing the computational 

requirements and explicitly reacting to natural variation. 

    

III. AN ACTIVE PHENOTYPING CELL 

A. Hardware and Calibration  

 We present a nonintrusive and nondestructive active 

vision approach to 3D plant modelling using a camera 

mounted robot arm and a turntable. The approach is based on 

a structure from motion method that derives 3D descriptions 

of the plant surface from sets of colour images. Our active 

phenotyping cell comprises a Universal Robot 5 (UR5), with 

a standard handheld camera, Canon 650D, and a high 

precision turntable, the LT360 EX. The UR5 offers 6 degrees 

of freedom whilst the turntable enables a full 360 degrees of 

rotation ensuring it is possible to see the entire plant, both of 

which are necessary as it is not always possible for the robot 

arm to move around the entire plant, for example a large rice 

plant. Our setup is illustrated in Figure 1. 

 

 

 
 

FIGURE 1. HARDWARE SETUP OF ROBOT, TURNTABLE AND CAMERA 

We calibrate the camera using a checkerboard approach 

[14], in which 15 arbitrary images of the checkerboard are 

captured. We calculate the forward kinematics using Denavit 

Hartenberg (DH) parameters [15] with joint angles obtained 

directly from the robot. The remaining transformations are 

calculated using a simultaneous closed-form quaternion 

approach [16].  

 In order to use the turntable with our fully calibrated 

system we need to take into consideration the rotations 

performed by the turntable. To achieve this we project to the 

centre of the turntable, which is known from our calibration 

process. From this we can calculate 𝑌𝑗 where 𝑌𝑟, the rotation 

of 𝑌, is calculated using Eq. 1, 𝑗 is the number of degrees that 

the turntable has rotated and function RotZ is a rotation 

around the Z axis. 

 
YRj= (Y'RotZ(j))

'

 
 

(Eq. 1) 

The translation, 𝑌𝑡, requires that the difference between 

the rotation matrix before and after a rotation is known; Eq. 



  

2, where c⃗ is the homogeneous position of the centre of the 

turntable. Finally, we multiply 𝑥’ and 𝑦’ by 𝑌𝑟 with its 

original translation from Y0 to obtain Yj 

 

 

p⃗⃗= c⃗-(RotZ(j)c⃗ ) 

x'= -cx⃗⃗⃗⃗ +(-px⃗⃗ ⃗⃗ ) 

y'= -cy⃗⃗⃗⃗ +(py⃗⃗ ⃗⃗ ) 

Ytj
⃗⃗⃗⃗⃗⃗ =[x'y'0 1]' 

 

 

 

 

 

 

(Eq. 2) 

Yj can then be calculated as 

 Yj=[YRjYt0
⃗⃗⃗⃗⃗⃗⃗]*Ytj

⃗⃗⃗⃗⃗⃗  (Eq. 3) 

Once we have a fully calibrated system we are able to 

remove the checkerboard from the scene and calculate our 

camera position from the remaining variables.  

B. Image acquisition strategies 

 To obtain accurate 3D models via structure from motion 

the camera needs to be in a position to collect an optimal 

number of images of the highest quality. This is a 

challenging problem due to the vast number of possible 

viewpoints and the lack of prior knowledge of the shape and 

size of the object. We have developed a proof-of-concept 

image acquisition strategy that uses a simple threshold-based 

method to identify the plant in order to calculate initial 

camera positions. There are two primary constraints; 1. The 

camera must be facing the plant in the robot’s starting 

position, approximately placing the plant in the centre of the 

view. 2. A white background must be used with no other 

colour visible, which allows us to calculate the position of 

any given plant. These constraints are commonly satisfied 

and/or are easily achievable in controlled phenotyping 

environments. More powerful segmentation methods could 

be used in less constrained environments. 

The role of image analysis in the proposed system is to 

identify four points on the boundary of the plant region; 

those nearest the four edges of the image. The coordinates of 

these points provide measures, TX, BX, LX, RX, of the 

shortest distances from the plant region to top, bottom left 

and right edges respectively. A user-defined threshold is 

applied to separate plant from (white) background, and plant 

pixels with the highest and lowest x and y coordinates are 

identified. To reduce the likelihood of selecting a noise-

generated false-positive plant pixel we examine 400 pixels 

around each candidate (approximately 0.01% of the total 

pixels). Only if 75% or more are of those pixels are above 

threshold is the pixel accepted as lying on and near the 

boundary of the plant (Figure 2). This heuristic is simple, but 

effective and computationally efficient.  

To initialise and parameterise the system the camera is 

first moved to a start position facing the turntable. It is then 

moved in a plane normal to the image plane to define four 

points. These points define the corners of a quadrilateral 

normal to the image and passing through the start position. 

The points are chosen to be the furthest from the start point 

in each direction from which the turntable remains visible. 

Throughout image acquisition all translational movements of 

the camera take place within the plane defined by this 

quadrilateral. Camera rotations may take it outside the plane, 

but it remains close to it at all times.  

 

 
 FIGURE 2. TOP LEFT: ORIGINAL IMAGE, TOP RIGHT: IMAGE SEPARATED 

FROM BACKGROUND WITH DISCARDED OUTLIERS, BOTTOM LEFT: 

EVALUATION OF A PIXEL, BOTTOM RIGHT: THE RESULTING BORDER 

DEFINING VALUES RX, LX, TX, BX 

The centre of the quadrilateral is used to define a set of n 

initial points from which the search for suitable viewpoints 

begins. These are evenly spaced along a vertical line through 

the quadrilateral centre; the image acquisition process is run 

from these points in fixed (lowest to highest) order, 

providing n images for each turntable position. The 

dimensions of the quadrilateral determine the size of the 

camera translations made during image acquisition. Large 

translations towards (forward) or away from the plant 

(backwards) are 30% of the width of the quadrilateral, small 

movements 10%. Camera rotations (up, down, left, right) are 

of a small, fixed size (typically 2 deg.) set by the user. 

 Active image acquisition begins with the camera in one of 

the initial positions described above. Images are repeatedly 

captured, thresholded, plant boundary points identified, and 

the camera moved under the control of a set of heuristic rules 

until the plant is either fully enclosed by the image boundary 

but without excess space or the arm is at its maximum reach. 

 The rules employed are intuitive, but effective: 

 

 If there are 50 or more pixels of white space 

surrounding the plant (TX, LX, BX, RX all > 50) a 

forward movement is made. 

 If the plant region is close to the boundary at either 

the top and bottom or left and right a backward 

movement is made. 

 Forward and backwards movements are large unless 

a movement in the opposite direction has just been 

made, in which case they are small. This introduces 

a degree of fine-tuning and prevents oscillation. 



  

 If LX is large and RX is small, rotate left. 

 If RX is large and LX is large, rotate right. 

 If TX is large and BX is small, rotate upwards. 

 If TB is large and TX is small, rotate downwards. 

 

 These rules are applied to each of the vertical stack of 

initial points. Once an improved camera position has been 

identified for each such point, images are captured and the 

turntable is rotated.  The size of the rotation is set to ensure 

that at least 60 images are captured in total. In a typical 

experiment 6 vertical positions are used, and the turntable 

rotated 36 degrees, between capture sessions. During image 

capture camera files are created containing the camera matrix 

that transforms a 3D point to a 2D point on the image plane. 

Plant structure varies significantly between species; when 

modelling those expected to be rotationally symmetric the 

search for camera locations need only be performed once and 

the same positions used at each turntable rotation. Given 

species that may not be rotationally symmetric a new search 

may be performed for each turntable setting.  

C. Reconstruction methods 

 A point cloud is first generated from the images and 

corresponding transformation matrices using Patch-based 

Multi-view Stereo [17]. The point cloud is the starting point 

for further reconstruction and is a common input for many 

software packages and surface reconstruction algorithms.  

We also apply Pound et al’s Canopy Reconstruction 

method [18] which accepts a point cloud as input and 

generates a surface using alpha-shapes and level set methods, 

aiding the process by revisiting the images to ensure 

consistency. Note that this final stage is not possible when 

using a direct 3D sensor such as a laser scanner. 

Surface reconstruction is fully automated and only 

requires user interaction if the hardware is moved, in which 

case the calibration stage needs to be performed. Patch-

Based Multi-View Stereo (PMVS) and Canopy 

Reconstruction have been integrated into our cell to create a 

smooth workflow that can run unattended, taking a step 

towards reducing the phenotyping bottleneck. PMVS takes a 

set of images and camera parameters and reconstructs the 3D 

structure and Canopy Reconstruction takes the output to 

generate a surface-based description.  

IV. RESULTS AND DISCUSSION 

We conducted experiments on four artificial plants of 

varying sizes and densities (Figure 3). Models of each plant 

were built using a set of fixed camera positions, defined such 

that the largest of our plants is fully visible in each image, 

and results compared to those obtained from our active 

vision system, which reacts to the size of the plant. A set of 

60 images were used for each reconstruction. 

This initial study focuses first on the point cloud data 

provided by PMVS. Comparison of the number of high 

quality points generated from static and actively captured 

images by this state of the art method gives some insight into 

the potential benefits of the active approach. Figure 4 shows 

the point clouds obtained from each image set, for clarity we 

have manually removed, using Meshlab, the excess data 

obtained from under the plant, mainly from the plant pot.  

 

 
FIGURE 3. ORIGINAL PLANTS, TOP ROW PLANTS A AND B, SECOND ROW 

PLANTS C AND D 

We compare the number of points obtained by static and 

active vision for each plant; Plant A active 120,422 whereas 

static produces significantly less at 35,872. Plant C active has 

99,570 points compared to 26,668 static and Plant D active 

51,267 points and 17,388 static. The static camera positions 

were in fact obtained by running the active method over plant 

B, ensuring that the largest plant is fully visible in the images 

and therefore has the same number of points for both static 

and active; 168,344. Active vision provides significantly 

more valuable points for each plant, which is particularly 

useful for the small dense plants in this study.  

Though point clouds capture the broad structure of the 

target object, surface reconstruction is essential for plant 

phenotyping, as many desirable traits must be measured over 

leaves.  The canopy reconstruction method of [18] was 

applied to the actively acquired image sets generated here; 

results are shown in Figure 5. Our artificial test plants are 

particularly challenging, with only very small 3D and colour 

differences between their very close packed, uniform leaves. 

[18] employs an image-based surface patch extension 

method which produced an acceptable surface 

reconstruction, but tended to over-extend leaves. We applied 

the same techniques to a dense domestic plant (Figure 6). 

The noise present in the point cloud (middle) has 

successfully been removed by [18] which uses a colour 

threshold to remove noisy points. The point clouds and 

images obtained from our initial active phenotyping cell can 

support fully automatic 3D modelling of real plants.  

More complex reconstruction algorithms such as [18] may 

also benefit from the integration of active image acquisition 

strategies, but have different requirements than point cloud 

recovery methods. Though [18] builds on data supplied by 

PMVS, choosing images to simply increase the number of 

points may not be the best strategy. [18] operates within 

planar patches fitted to point clusters – increasing the number 

of points available need not improve the plane descriptions, 

and could add noise. The points provided by PMVS arise 

from textured leaf areas; [18] may benefit more from 

strategies that provide clearer views and higher resolution 



  

images of smoother (less textured) areas, allowing a greater 

degree of patch extension while making leaf boundaries more 

easily identifiable. This could be achieved by exploiting 

initial surface reconstruction data to guide acquisition of new 

images, rather than selecting them from a pre-acquired set as 

is currently the approach in [18]. 

 

 

 

 
FIGURE 4. LEFT HAND SIDE ACTIVE VISION POINT CLOUDS, RIGHT SIDE 

STATIC. THE PLANTS FROM TOP TO BOTTOM ARE A, B, C, D 

 
FIGURE 5. SURFACE RECONSTRUCTION FOR THE FOUR ARTIFICIAL PLANTS 

CORRESPONDING TO THOSE SHOWN IN FIGURE 3 

Point cloud data may also be used to guide image 

acquisition. Though point clouds provide a relatively crude 

representation of complex plant architectures, they can 

capture plants’ broad structure. Models of the expected 

distribution of points in different species might highlight 

regions of the target volume that are not sufficiently explored 

by an initial image set, allowing the camera to viewpoints 

that will produce more complete plant descriptions. 

 

 
FIGURE 6. SURFACE RECONSTRUCTION OF A  REAL PLANT FROM ACTIVELY 

ACQUIRED IMAGES. TOP; ACTUAL PLANT, MIDDLE; THE POINT CLOUD 

ACQUIRED, BOTTOM; SURFACE RECONSTRUCTION 

V. CONCLUSION 

 

 We present initial work towards an active plant 

phenotyping cell capable of recovering 3D descriptions of 

plant shoots from multiple colour images. An automatic 

image acquisition technique is described which provides 

improved point cloud data and supports the 3D 

reconstruction of leaf surfaces. After the initial calibration of 

the system, which need only be done if hardware is replaced 

or moved, no user input is necessary and the process can 

continuously run through a custom designed interface. 

Experimental results show that by using an active vision 

approach, rather than a traditional static set of camera 

positions we are able to gather significantly more data on the 

plant and its structure from the same number of images.  

The active vision approach provides significant 

opportunities to enhance and extend the scope of surface 

reconstruction methods such as [18]. Careful selection of 

views focusing on areas of ambiguity will, we believe, 

produce both more accurate point clouds and higher quality 

image data from which surfaces can be produced. Active 



  

vision may also reduce the number of unnecessary images 

captured, those adding little to the reconstruction, improving 

throughput.  

Cameras and multi-view stereo are employed here, rather 

than e.g. laser scanners, as the image sets involved carry 

information on plant appearance missing from a point cloud. 

In addition to providing 3D structure, multiple colour images 

could be used e.g. to assess plant health. We would suggest, 

however, that an active sensing approach could aid the 

integration of the 2½D data produced by such devices. 

 Future work will more closely integrate active image 

acquisition into the reconstruction process, allowing a wide 

range of camera movements and focusing on areas of 

ambiguity, occlusion and those likely to be missing data. 

Evaluation of the models produced is difficult as ground 

truth data is required. Future work will also investigate the 

possibility of using X-ray CT data to produce reference data. 

In the longer term we aim to provide improved, active 

phenotyping of a wide range of complex plant species.  
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