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Abstract 

Emission estimation and carbon productivity at the firm level for India’s manufacturing 

sector are scanty. We fill this gap by estimating CO2 emissions at the firm level and further 

determining the optimal and the actual trade-offs between emissions and output at the firm 

level. We use data from the Center for Monitoring Indian Economy (CMIE) Prowess IQ, and 

MoEF&CC, Government of India. Between 1998 to 2019, growth in CO2 emission and 

output is estimated to be 3 and 9 per cent, respectively. This indicates a case of weak 

decoupling for the manufacturing sector where technology, export promotion strategies, 

environmental taxes, energy mix at the firm level, and cap-and-trade policy are the significant 

determinants of carbon productivity for the sample firms in India’s manufacturing sector. We 

conclude that improving carbon productivity is necessary for better decoupling and R&D 

intensity to be complemented with R&D efficiency to gain carbon productivity for the 

manufacturing industry. These findings are crucial for better energy and climate policy for 

the Indian economy. 

Keywords: Carbon productivity; energy efficiency; decoupling growth; threshold regression; 

club convergence 

JEL Classification: Q53. Q54. Q55. Q57 

1. Introduction 

Climate policy is one of the crucial goals for policymakers (Pachauri and Reisinger, 2008). In 

this context, optimal emission policy contributes to economics literature (Oates, 1995). On 

the contrary, the Paris Agreement has turned out to be a non-cooperative game between 

economies, and hence country-specific solutions are suggested as a mitigation effort.5 

Literature in these lines for the Indian economy is rather scanty. India has become the third-

highest global emitter, after China and the US. India emitted 2.62 billion tons of CO2 (around 

 

1 Department of Humanities and Social Sciences, Indian Institute of Technology Madras, Chennai, 

Tamil Nadu, prantikbagchi95@gmail.com 
2Department of Humanities and Social Sciences, Indian Institute of Technology Madras, Chennai, 

Tamil Nadu, santosh@iitm.ac.in 
3Corresponding Author, EMLYON Business School, Ecully, France, akumar@em-lyon.com 
4Nottingham University Business School, Nottingham, UK, kim.tan@nottingham.ac.uk 
5Climate Action Tracker 

mailto:prantikbagchi95@gmail.com
mailto:santosh@iitm.ac.in
mailto:akumar@em-lyon.com
mailto:kim.tan@nottingham.ac.uk
https://climateactiontracker.org/


2 

 

7 per cent of the Global emission) during 2019. Given the size of the GDP of the Indian 

economy, India is eligible to receive funds for environmental expenses. These two 

characteristics make the Indian economy vital for a detailed analysis. However, as data is still 

not available at the firm level on emissions, most existing studies focus on using a proxy for 

emissions or analysis at aggregate levels. Deviating from the current studies, we estimate 

carbon emissions, carbon productivity and optimal emission policy at the firm level to fill the 

research gap. As the Indian economy has “missed the manufacturing bus”, we focus on the 

sectoral levels (Cantore et al., 2017; Ministry of Finance, 2015). There is a scope to enhance 

the manufacturing sector’s performance by improving the emission policy, which will help 

the mitigation goals, besides attaining the “Making in India” goals (Bhattacharya et al., 

2018). The novelty of this paper lies in estimating the CO2 emission of the Indian 

manufacturing firms since the Kyoto protocol until the latest available data. Either the 

standard literature has focused on emission control or improving carbon productivity, but 

often these two becomes contradictory. In this paper, we solve the puzzle by analyzing the 

following objectives: 

1. Explain the trade-off between emission and growth for the Indian manufacturing 

sector. 

2. Explain factors affecting the trade-off to help in strategizing policies. 

3. Identify the inter-firm heterogeneity in CO2 emission. 

The first objective of this paper contributes to the ongoing debate on optimal emission policy. 

As there is a trade-off between output and emission levels, this paper’s results will benefit the 

policy context in the Indian economy. However, there is a crucial question to address if there 

is a gap between the optimal and the actual emission from firms. This is investigated in the 

second objective of this paper. The second objective will help us determine the importance of 

demand and supply-side factors on emission control in general and the tole of technology and 

price in particular. Among other things, it’s also essential to explain the inter-firm 

heterogeneity in emission. This is essential to define the macro-policy for the industrial sector 

of the Indian economy. 

The remainder of the paper is as follows. Section 2 discusses a brief literature review, section 

3 discusses the empirical setting, section 4 presents the empirical results, and section 5 

concludes with possible policy suggestions. 
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2. Review of literature 

Climate change and emission have ignited the debate on optimal emission. In this context, 

recent suggestions for the cost practical climate mitigation goal focuses on strengthening 

carbon productivity (Bai et al., 2019; Li and Wang, 2019; Li et al., 2018). The study on 

carbon productivity was initiated during the late 1990s (Kaya and Yokobori, 1997). Later, 

carbon intensity is focused in the literature as an alternative or proxy to carbon productivity 

(Sun, 2005). The main aim for explaining carbon productivity is to link it with the policy 

goals, especially at the sectoral level (Li et al., 2018). Such analysis helps decide the optimal 

trade-off between emission and output (Beinhocker et al., 2008; Meng and Niu, 2012). This 

implies that such studies contribute to emission control and help foster economic growth and 

employment through cost-efficient mitigation efforts (Bhattacharya et al., 2018).  

Nonetheless, the findings vary, depending on multiple factors, such as types of data, time-

frame, methods, variables used across studies. Hence, sector-specific approaches are 

fundamental to be analyzed. In this context, China and India gained special attention, 

specifically after the Paris agreement (Tapio, 2005), though studies investigating such issues 

in India are negligible compared to the Chinese literature (Fang and Yu, 2021; Herrerias et al. 

2013; Liu et al., 2017). Studies have suggested that sector-level policies benefit carbon 

productivity for the Chinese economy (Lin and Jia, 2019; Zhao and Lin, 2019; Zheng and 

Lin, 2020). Carbon emission rights are allocated for China’s six high-energy-consuming 

industries (Wu et al., 2020). They conclude that electric power and the iron & steel industries 

show the most significant potential for emissions reduction instead of the transport industries. 

In this case, they suggest a “high economic growth and low energy consumption” scenario for 

the sustainable growth of the industrial sector. Most recently, the social cost of carbon has 

been investigated for China (Zhang et al. 2021). Studies have identified decision-making, 

equity weight, uncertainty, risk aversion, and discount and time preference rates have a 

higher impact on the social cost of carbon (Wang and Luo, 2020). 

Further, a “weak” Porter hypothesis for specific listed companies in 31 provinces in China 

was also estimated and explained (Dong et al., 2013). This study concludes that companies 

mainly choose to reduce output instead of increasing green technological innovations to 

achieve emission reduction targets. Their conclusions align with the suggestions of climate 
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scientists and policymakers for improving carbon productivity (Hu and Liu 2016; Meng and 

Niu, 2012) from the industrial sector.  

Due to the absence of emission data, Indian studies are mostly confined to energy and output 

trade-offs as a proxy (Sahu et al., 2021; Sahu and Narayanan, 2014). Minimal investigations 

in the Indian context have been attempted in this line. For example, studies have focused on a 

social accounting approach and the input-output method on the carbon emission scenarios for 

India (Li et al., 2018). Studies, such as (Ryan, 2018; Sahu and Mehta, 2018; Sahu and 

Narayana, 2010), have examined emissions for the manufacturing sector in India. Most of the 

findings suggest energy consumption patterns as one of the significant drivers of carbon 

emissions. However, most of these studies have not explained the degrees of proximity. 

Carbon productivity is explained from the decoupling growth theory (Chen et al., 2020).  The 

current literature on carbon productivity and emission control has three significant findings: 

(1) technology is the critical driver (Meng and Niu, 2012); (2) price instruments, i.e. tax/cap-

and-trade/hybrid pricing are helpful (Hu and Liu, 2016); and (3) have directly related to 

productivity and associated factors (Zhengnan et al., 2014). Among all these factors, 

technological advancement and technology have gotten the maximum attention from the 

scientific committees and the economic literature on adaptation or mitigation. The traditional 

understanding is that innovation, R&D, green adoption help improve carbon productivity 

(Dong et al., 2013; Du and Li, 2019). It is also suggested that they generally fail to attain 

impressive carbon productivity due to lower investment in technological development. 

Hence, it is essential to examine the nature of technological development on emission control 

in the developing economies as strategies are taken by developed countries may not produce 

similar results in the developing or underdeveloped nations, and thereby, national targets are 

essential (Bjørn et al., 2018; Li et al., 2018). 

Studies investigating the relationship between technology and emission control in the 

decomposition approach have gotten sufficient attention in the recent literature (Wang and 

Feng, 2018). Since the last decade, the idea of the decomposition approach has been extended 

to check the contribution of various other economic factors on carbon productivity (Ma et al., 

2019; Ma et al., 2020; Wang et al., 2015; Zhang et al., 2020). These studies identify the 

changes in carbon productivity in terms of economic activities and technological production 

changes. For example, technological progress is a crucial driver for improving inter-regional 
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disparities in carbon productivity in China during 2005–2015 (Chen, 2020). Such studies are 

highly impactful for policy making. This leads to the research gap on understanding the 

context for the Indian economy, which is vital to prescribe policies for emission control with 

cost-efficient solutions that may induce the stagnant manufacturing growth of India 

(Bhattacharya et al., 2018). Indian studies recently focused on the growth path to propose 

mitigation policy (Bhattacharya et al., 2018). They discuss energy productivity and offer 

club-specific solutions for the Indian states. Bai et al. (2019) use a similar econometric 

analysis to explain carbon productivity from 1975 to 2013 for 88 economics. However, these 

studies are highly influenced by green investments and bypass the inter-linkage between 

emission, technology, and economic factors (Kim, 2015; Yu et al., 2015). As sectoral level 

analysis is scanty for the Indian economy, it is crucial to analyze carbon productivity at the 

sectoral and firm levels. 

3. The empirical setting 

For various years, we collected data from the Centre for Monitoring Prowess (CMIE) 

Prowess-IQ and the Ministry of Environment, Forest, and Climate Change (MoEF&CC), 

Government of India. CMIE registers the firm-level data annually. Our data covers from 

1998 to 2019. Data on energy consumption (both economic and physical units), gross sales 

(Y) and net sales (Q), factor inputs (labour, capital, material, and energy), R&D expenditure, 

expenditure on imported goods, royalties and technical fees, exports, and profits are primary 

data of interest from the CMIE. Based on the pollution loads, data on industrial classification 

are taken from the MoEF&CC. These pollution loads are matched with the 5-digit National 

Industrial Classification of the Government of India. Since few firms report physical energy 

consumption data, we left with 31,000 observations. This represents unbalanced panel data; 

however, as our analysis requires firmly balanced data, we arrive at 1,496 observations from 

1998-2019 for our study. We describe our sample in table 1. 

3.1 Variables description 

We use energy efficiency (EE) (Lin and Jia, 2014; Wang et al., 2019) and carbon productivity 

(CP) (Hu and Liu, 2016; Wang et al., 2019) as dependent variables in our analysis. Energy 



6 

 

efficiency is defined by the ratio of net sales6 to physical energy consumption7. Various types 

of energies are defined under six major groups: coal, gas, fuel, nuclear, waste, and oil. The 

average energy efficiency for the Indian manufacturing firm is 0.88. We have estimated 

emission from the energy consumption data by applying the IPCC’s (2006) approach (Chen 

and Paulino, 2010) as specified in equation (1): 

𝐶𝑡 = ∑ 𝐶𝑡
6
𝑘=1 = ∑ 𝐸𝑘,𝑡

6
𝑘=1 ∗ 𝑁𝐶𝑉𝑘 ∗ 𝐶𝐸𝐹𝑘 ∗ 𝐶𝑂𝐹𝑘 ∗ (44 12⁄ )    (1) 

Where, 𝐶𝑡: flow of CO2 (per 1,00,000kg); 𝐸𝑘,𝑡: energy consumption forkthinput at period t; 

𝑁𝐶𝑉𝑘: The net calorific value of kth input, provided by the IEA Energy Statistics for India 

(2011); 𝐶𝐸𝐹𝑘: Carbon emission factor for kth input, provided by the National GHG 

inventories in IPCC (2006); 𝐶𝑂𝐹𝑘:The carbon oxidization factor for kth input, normalized to 

one unit in the calculation; (44/12) is the molecular weight ratio between CO2 and C. 

Finally, we estimate the carbon productivity by taking the net sales ratio to emission. The 

average carbon productivity for the full sample is 42291.54emissions per output. The 

covariates are broadly divided into significant factors, such as technological variables (Hu 

and Liu, 2016; Krugman, 1994; Linn, 2004), policy variables (Moroney, 1992; Pokrovski, 

2003; Ren and Hu, 2012), and demand &supply-side factors. We use R&D efficiency, 

embodied technology import intensity, and disembodied technology import intensity as 

variables related to technological capabilities at the firm level. Further, total factor 

productivity is estimated using the semi-parametric technique that takes care of the 

simultaneity and selectivity bias of the Solow residual (Levinsohn and Petrin, 2003).8 Firms 

that continuously reported physical energy consumption data from 1998 to 2019 exhibit an 

average productivity growth of 4.62 per cent per annum. 

 

6All the monetary variables are deflated using the appropriate deflators taken from the Office of 

Economic Advisor. 

7Energy consumption in physical unit is registered in the energy segment of CMIE Prowess. 

However, the data is unorganized. The data is not also reported in similar or unified units. There differ 

between the inputs and also within the same input, and for different years. We have cleaned and 

arranged them under six major categories, and summed them up into aggregate. This data is used for 

estimating the energy efficiency. 

8For the construction of capital, we follow (Balakrishnan and Pushpangadan, 1996). 
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Since a cost-efficient solution suggests complementing technology with price instruments, we 

incorporate such policy variables in our analysis. We implement two important policy 

variables, i.e. tax and cap-and-trade, in this study.9 We have matched the CMIE Prowess and 

MoEF&CC data to construct firm-level environmental tax (ENVT) and pollution loads 

indicators. All price instruments are binary, viz. firms under the environmental tax policies 

are assigned a value of 1, 0 otherwise. Almost 13 percent of firms have implemented 

environmental tax policy in the sample. The rest of the firms have implemented cap-and-

trade, and they are assigned different industrial colour codes based on their pollution loads. 

For instance, the red category firms are the most polluting, followed by the orange, green, 

and white categories. Of the sample firms in cap-and-trade, 66 percent belong to the red, 13 

per cent to the orange, 4 per cent to the green category, and the rest belong to the white 

category, respectively. We also use export intensity to represent the demand side and tax rate 

to define the supply side factor at the firm level.  

  

 

9Environmental tax and colour codes are used as industry dummies to explain the variation of energy 

efficiency and carbon productivity. 
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Table 1. Descriptive statistics 
Variables Definition Observations Mean Share (%) 

Carbon Productivity (CP) The ratio between net sales (monetary) and CO2 emission 

(physical unit)   

1,496 42291.540 
 

Energy Efficiency (EE.) The ratio between net sales (monetary) and energy 

consumption (physical unit)  

1,496 0.882 
 

R&D Efficiency (RE) The ratio between net sales (monetary) and R&D 

(monetary) 

1,496 1.559 
 

Embodied Technological Intensity (ETI) The ratio of expenditure on imported capital on capital 

goods to net sales (monetary) 

1,496 0.009 
 

Disembodied Technological Intensity (DETI)  The ratio of royalties and technical fee payments in 

foreign currency (monetary) to net sales(monetary)  

1,496 0.001 
 

Total Factor Productivity Growth (TFPG) Levinsohn and Petrin (2003) 1,496 4.622 
 

Export Intensity (EXI) The ratio between export (monetary) and net sales 

(monetary) 

1,496 0.183 
 

Tax to Net Sales (TN) The ratio between tax (monetary) to profit (monetary) 1,496 0.143 
 

Tax to Profit (TP.) The ratio between tax (monetary) to net sales (monetary) 1,496 4.435 
 

Environmental Tax (ET) If a firm pays environmental tax=1, otherwise 0 1,496 
 

13.235 

Red Firms (Red) If a firm belongs to red industries of MoEF&CC 

classification=1, otherwise 0  

1,496 
 

66.176 

Orange Firms (Orange) If a firm belongs to orange industries of MoEF&CC 

classification =1, otherwise 0 

1,496 
 

13.235 

Green Firms (Green) If a firm belongs to green industries of MoEF&CC 

classification =1, otherwise 0 

1,496 
 

4.411 

White Firms (White) If a firm belongs to white industries of MoEF&CC 

classification =1, otherwise 0 

1,496 
 

16.176 

Note: The continuous variables are measured in monetary values (lakhs) at constant prices. Energy consumption and emission are measured in 

kg (lakhs).  



9 

 

3.2Emission and output growth 

There is an argument among different schools of thought over the optimal decision on 

emission and growth (Lin and Du, 2014). We address the first research question by 

estimating decoupling growth (Tapio, 2005), using recent empirical literature (Chen et al., 

2020; Green, 2021; Sahu and Narayanan, 2010; Yu et al., 2020). We use advanced techniques 

in assessing decoupling growth to avoid overlapping zone problems. We define decoupling 

growth as a percentage change in emission (EM) due to the percentage change in aggregate 

output (Y) as specified in equation (2). 

𝛽𝐸𝑀,𝑌 = (∆ 𝐸𝑀 𝐸𝑀)⁄ /(∆𝑌/𝑌)        (2) 

Classification and types of decoupling are presented in table 2. For example, if both EM and 

Y contract and the contraction of EM surpass the contraction of Y, it is defined as recessive 

decoupling (RD). Similarly, if the strength of EM contraction is lower, it is referred to as 

weak negative decoupling (WND). If both of them expand and the expansion of the output is 

higher, it is referred to as weak decoupling (WD). On the contrary, if the expansion of the 

output is lower, it is called expansionary negative decoupling (END). If EM contracts and Y 

expands, it is known as strong decoupling (SD), and if the exact opposite case is found, it is 

defined as strong negative decoupling (SND). SD is superior to any other outcome, whereas 

the SND is the worst. WD is better than END as the beta-value of the former is lesser. 

However, both are superior to RD and WND as the latter two are recessionary situations. 

Depending on the degrees of contraction, we conclude RD is superior to WND.  

Table 2. Definition and types of growth 

Growth type Specification (∆ 𝐸𝑀 𝐸𝑀)⁄  (∆𝑌/𝑌) 𝛽𝐸𝑀,𝑌 

Positive 

decoupling 

RD <0 <0 𝛽𝐸𝑀,𝑌 > 1 

WD >0 >0 0 < 𝛽𝐸𝑀,𝑌 < 1 

SD <0 >0 𝛽𝐸𝑀,𝑌<0 

Negative 

decoupling 

END >0 >0 𝛽𝐸𝑀,𝑌 > 1 

WND <0 <0 0 < 𝛽𝐸𝑀,𝑌<1 

SND >0 <0 𝛽𝐸𝑀,𝑌 < 0 

Source of classification: Fang and Yu (2021) 
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We present the year-wise decoupling series in table 3. The result shows that our sample is 

inconsistent in decoupling over time. For example, 50 percent of the full sample has 

experienced negative decoupling growth. The best performances are estimated for the 

following years; 1999, 2009, 2011, and 2016. On the contrary, for 2017 and 2018, the 

estimated decoupling is weak. Overall, the Indian manufacturing sector has achieved WD, 

which does not present a best-case scenario for decoupling and needs a better understanding.  

Table 3. Year-wise breakdown of growth types for Indian manufacturing sector 

Year (∆ 𝐸𝑀 𝐸𝑀)⁄  (∆𝑌/𝑌) 𝛽𝐸𝑀,𝑌 Growth type Specification 

1999 -0.04 0.08 -0.47 Positive Decoupling SD 

2000 0.11 0.10 1.08 Negative Decoupling END 

2001 -0.22 -0.04 5.00 Positive Decoupling RD 

2002 0.27 0.06 4.58 Negative Decoupling END 

2003 0.32 0.07 4.76 Negative Decoupling END 

2004 0.37 0.47 0.79 Positive Decoupling WD 

2005 0.15 0.59 0.26 Positive Decoupling WD 

2006 0.30 0.11 2.84 Negative Decoupling END 

2007 -0.16 0.00 31.11 Positive Decoupling RD 

2008 0.14 0.00 34.04 Negative Decoupling END 

2009 -0.03 0.03 -1.02 Positive Decoupling SD 

2010 0.09 0.15 0.62 Positive Decoupling WD 

2011 -0.14 0.06 -2.51 Positive Decoupling SD 

2012 0.22 0.55 0.40 Positive Decoupling WD 

2013 0.01 0.04 0.13 Positive Decoupling WD 

2014 -0.03 -0.03 0.88 Negative Decoupling WND 

2015 -0.03 -0.09 0.32 Negative Decoupling WND 

2016 -0.31 0.01 -39.19 Positive Decoupling SD 

2017 0.18 -0.07 -2.40 Negative Decoupling SND 

2018 0.49 -0.01 -39.74 Negative Decoupling SND 

2019 -0.95 -0.09 10.73 Positive Decoupling RD 

Overall 0.03 0.09 0.38 Positive Decoupling WD. 

Note: Authors’ estimation; beta value is the ratio of the mean value of change in emission and 

change in output.  

Along with the earlier decoupling results, we also estimate decoupling at industry levels and 

present it in table 4. Industries such as coke and refined products, computers, electronics and 

allied, pharmaceutical, and textile industries perform best in decoupling growth. In 

comparison, woods and wood products have performed the worst. 
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Table 4. Industry-wise decoupling growth 

Note: Authors’ estimation 

Industry (∆ 𝐸𝑀 𝐸𝑀)⁄  (∆𝑌/𝑌) 𝛽𝐸𝑀,𝑌 Growth type Specification 

Basic metal 0.04 0.09 0.48 Positive Decoupling WD. 

Chemical and chemical products 0.03 0.08 0.36 Positive Decoupling WD. 

Coke and refined products -0.14 0.20 -0.71 Positive Decoupling SD 

Computer, electronics and allied -0.09 0.13 -0.71 Positive Decoupling SD 

Electrical equipment 0.14 0.07 1.87 Negative Decoupling END 

Fabricated metal 0.18 0.10 1.75 Negative Decoupling END 

Food products 0.12 0.09 1.36 Negative Decoupling END 

Machinery and equipment 0.02 0.16 0.12 Positive Decoupling WD. 

Motor vehicles 0.11 0.06 1.75 Negative Decoupling END 

Other non-metallic products 0.08 0.09 0.80 Positive Decoupling WD. 

Paper and paper products 0.03 0.14 0.20 Positive Decoupling WD 

Pharmaceuticals -0.11 0.05 -2.24 Positive Decoupling SD 

Rubber and plastic 0.10 0.09 1.09 Negative Decoupling END 

Textile -0.02 0.07 -0.31 Positive Decoupling SD 

Wearing apparel 0.09 0.08 1.10 Negative Decoupling END 

Wholesale trade 0.01 0.04 0.26 Positive Decoupling WD. 

Wood and wood products 0.13 -0.01 -13.45 Negative Decoupling SND 
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3.3 Technological capabilities and emissions 

One of the major concerns is finding plausible reasons for the underperformance in 

decoupling growth in India’s manufacturing sector. Since India’s manufacturing industry 

represents a case of weak decoupling growth, absolute emission control should be considered. 

In this context, decomposition literature helps examine the drivers of emission control for 

India's manufacturing sector. 

Further, decomposition analysis will help us check technological advancement and industrial 

activities on emission control (Kaya, 1989). We use the extended Log Mean Divisia Index 

(LMDI) (Wang and Feng, 2018).10 We define aggregate emission as the sum of emissions 

from all energy inputs consumed at a firm level. In equation (3), this is further divided into 

several factors: (1) Pollution intensity (PI): ratio of emission to energy consumption; (2) 

Energy mix (EMIX): ratio of consumption of specific energy input by a firm to its total 

energy consumption; (3) energy intensity (ECQ): ratio of energy consumption to net sales; 

(4) R&D efficiency (RE): ratio of net sales to R&D; (5) R&D intensity (RI): ratio of R&D to 

net sales; (6) investment intensity (II): ratio of investment11 to net sales; and (7) industrial 

activities (Q): defined by the net sales of a firm. 

𝐸𝑀𝑡 = ∑ ∑ 𝐸𝑀𝑖𝑗
𝑡

6

𝑗=1

68

𝑖=1

= ∑ ∑
𝐸𝑀𝑖𝑗

𝑡

𝐸𝐶𝑖𝑗
𝑡

6

𝑗=1

68

𝑖=1

∗
𝐸𝐶𝑖𝑗

𝑡

𝐸𝐶𝑖
𝑡 ∗

𝐸𝐶𝑖𝑗
𝑡

𝑄𝑖
𝑡 ∗

𝑄𝑖
𝑡

𝑅𝑖
𝑡 ∗

𝑅𝑖
𝑡

𝐼𝑖
𝑡 ∗

𝐼𝑖
𝑡

𝑄𝑖
𝑡 ∗ 𝑄𝑖

𝑡 

 = ∑ ∑ 𝐸𝑀𝑃𝐼𝑖𝑗
𝑡6

𝑗=1
68
𝑖=1 ∗ 𝐸𝑀𝐸𝑀𝐼𝑋𝑖𝑗

𝑡 ∗ 𝐸𝑀𝐸𝐶𝑄𝑖
𝑡 ∗ 𝐸𝑀𝑅𝐸𝑖

𝑡 ∗ 𝐸𝑀𝑅𝐼𝑖
𝑡 ∗ 𝐸𝑀𝐼𝐼𝑖

𝑡 ∗ 𝐸𝑀𝑄𝑖
𝑡 (3) 

Where 𝑡 represents year; 𝑖 represents the firms, and 𝑗 describes the energy sources; 𝐸𝑀𝑃𝐼𝑖𝑗
𝑡 : 

Pollution intensity of the ith firm from the jth fuel at period t; 𝐸𝑀𝐸𝑀𝐼𝑋𝑖𝑗
𝑡 : Energy mix of the 

ith firm from the jth fuel at period t; 𝐸𝑀𝐸𝐶𝑄𝑖
𝑡: Energy intensity of the ith firm at period t; 

𝐸𝑀𝑅𝐸𝑖
𝑡: R&D efficiency of the ith firm at period t; 𝐸𝑀𝑅𝐼𝑖

𝑡: R&D intensity of the ith firm at 

period t; 𝐸𝑀𝐼𝐼𝑖
𝑡: Investment intensity of the ith firm at period t; 𝐸𝑀𝑄𝑖

𝑡: Industrial activities of 

the ith firm at period t. 

 

10A similar idea of provinces is applied to the firm level analysis. 
11We have estimated the difference between the capital stock of consecutive two periods to calculate 

the investment of a firm. 
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The change in aggregate emission is the difference between two consecutive periods. This 

difference arises from the changes in the composition of different components specified in 

equation (4). Hence, following (Wang et al., 2017) we can modify the preceding equation and 

specify as: 

∆𝐸𝑀𝐴𝐺𝐺 = 𝐸𝑀𝐴𝐺𝐺𝑡 − 𝐸𝑀𝐴𝐺𝐺𝑡−1 = ∆𝐸𝑀𝑃𝐼 + ∆𝐸𝑀𝐸𝐼𝑋 + ∆𝐸𝑀𝐸𝐶𝑄 + ∆𝐸𝑀𝑅𝐸 +

∆𝐸𝑀𝑅𝐼 + ∆𝐸𝑀𝐼𝐼 + ∆𝐸𝑀𝑄          (4) 

∆𝐸𝑀𝑃𝐼: emission from an additional unit of energy consumption; ∆𝐸𝑀𝐸𝐼𝑋: emission from 

an additional source of specific energy in the total energy used; ∆𝐸𝑀𝐸𝐶𝑄: emission from an 

extra unit increase in energy intensity; ∆𝐸𝑀𝑅𝐸: emission generated from an additional unit 

of increase in technological efficiency; ∆𝐸𝑀𝑅𝐼: emission from an additional unit increase in 

R&D intensity; ∆𝐸𝑀𝐼𝐼: emission from an additional unit increase in investment intensity; 

∆𝐸𝑀𝑄: emission from an additional unit increase in industrial sales. 

Accordingly, these factors are estimated using equations (5) to (11): 

∆𝐸𝑀𝑃𝐼 = ∑
𝐸𝑀𝐴𝐺𝐺𝑖𝑗

𝑡 −𝐸𝑀𝐴𝐺𝐺𝑖𝑗
𝑡−1

ln 𝐸𝑀𝐴𝐺𝐺𝑖𝑗
𝑡 −ln 𝐸𝑀𝐴𝐺𝐺𝑖𝑗

𝑡−1𝑖  (ln 𝐸𝑀𝑃𝐼𝑖𝑗
𝑡 − ln 𝐸𝑀𝑃𝐼𝑖𝑗

𝑡−1)    (5) 

∆𝐸𝑀𝐸𝑀𝐼𝑋 = ∑
𝐸𝑀𝐴𝐺𝐺𝑖𝑗

𝑡 −𝐸𝑀𝐴𝐺𝐺𝑖𝑗
𝑡−1

ln 𝐸𝑀𝐴𝐺𝐺𝑖𝑗
𝑡 −ln 𝐸𝑀𝐴𝐺𝐺𝑖𝑗

𝑡−1𝑖  (ln 𝐸𝑀𝐸𝑀𝐼𝑋𝑖𝑗
𝑡 − ln 𝐸𝑀𝐸𝑀𝐼𝑋𝑖𝑗

𝑡−1)   (6) 

∆𝐸𝑀𝐸𝐶𝑄 = ∑
𝐸𝑀𝐴𝐺𝐺𝑖𝑗

𝑡 −𝐸𝑀𝐴𝐺𝐺𝑖𝑗
𝑡−1

ln 𝐸𝑀𝐴𝐺𝐺𝑖𝑗
𝑡 −ln 𝐸𝑀𝐴𝐺𝐺𝑖𝑗

𝑡−1𝑖  (ln 𝐸𝑀𝐸𝐶𝑄𝑖𝑗
𝑡 − ln 𝐸𝑀𝐸𝐶𝑄𝑖𝑗

𝑡−1)    (7) 

∆𝐸𝑀𝑅𝐸 = ∑
𝐸𝑀𝐴𝐺𝐺𝑖𝑗

𝑡 −𝐸𝑀𝐴𝐺𝐺𝑖𝑗
𝑡−1

ln 𝐸𝑀𝐴𝐺𝐺𝑖𝑗
𝑡 −ln 𝐸𝑀𝐴𝐺𝐺𝑖𝑗

𝑡−1𝑖  (ln 𝐸𝑀𝑅𝐸𝑖𝑗
𝑡 − ln 𝐸𝑀𝑅𝐸𝑖𝑗

𝑡−1)    (8) 

∆𝐸𝑀𝑅𝐼 = ∑
𝐸𝑀𝐴𝐺𝐺𝑖𝑗

𝑡 −𝐸𝑀𝐴𝐺𝐺𝑖𝑗
𝑡−1

ln 𝐸𝑀𝐴𝐺𝐺𝑖𝑗
𝑡 −ln 𝐸𝑀𝐴𝐺𝐺𝑖𝑗

𝑡−1𝑖  (ln 𝐸𝑀𝑅𝐼𝑖𝑗
𝑡 − ln 𝐸𝑀𝑅𝐼𝑖𝑗

𝑡−1)    (9) 

∆𝐸𝑀𝐼𝐼 = ∑
𝐸𝑀𝐴𝐺𝐺𝑖𝑗

𝑡 −𝐸𝑀𝐴𝐺𝐺𝑖𝑗
𝑡−1

ln 𝐸𝑀𝐴𝐺𝐺𝑖𝑗
𝑡 −ln 𝐸𝑀𝐴𝐺𝐺𝑖𝑗

𝑡−1𝑖  (ln 𝐸𝑀𝐼𝐼𝑖𝑗
𝑡 − ln 𝐸𝑀𝐼𝐼𝑖𝑗

𝑡−1)              (10) 

∆𝐸𝑀𝑄 = ∑
𝐸𝑀𝐴𝐺𝐺𝑖𝑗

𝑡 −𝐸𝑀𝐴𝐺𝐺𝑖𝑗
𝑡−1

ln 𝐸𝑀𝐴𝐺𝐺𝑖𝑗
𝑡 −ln 𝐸𝑀𝐴𝐺𝐺𝑖𝑗

𝑡−1𝑖  (ln 𝐸𝑀𝑄𝑖𝑗
𝑡 − ln 𝐸𝑀𝑄𝑖𝑗

𝑡−1)              (11) 
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Table 5 shows the year-wise estimates of the decomposition from the extended LMDI 

approach for 68 Indian manufacturing firms.12 Using this approach, we can explain a 

reduction of 34.6 Mt13 of emission for sample firms. Expenditure on research and 

development (RE) is the most significant driving force to stimulate emission, as we 

hypothesized, and followed by Q, ECQ, PI, II, RI, and EMIX. The implications are analogous 

to recent studies (Wang and Feng, 2018). Hence, we conclude RE helps improve carbon 

productivity but at the cost of increasing the absolute emission. Therefore, by setting an 

optimal emission limit, R&D efficiency can also be limited to a certain extent. This would 

help balance between the investment of output and emission decisions. Therefore, the climate 

policy of India's manufacturing sector should not only focus on increasing carbon 

productivity, but also to reduce absolute emissions to match with the international policy 

goals in mitigating emissions from the high emitting sectors. 

The mean aggregate change in emission per annum is presented in figure 1. It exhibits 

fluctuations throughout the sample. The distribution ranges from -277.5 Mt to +310.2 Mt. 

There are two major increases in emissions reported from 2004 to 2005 and 2008 to 2009. 

The first increase has happened due to increased industrial activities/production (see table 5). 

The increase in the second period is due to several factors at firm level and can be identified 

as movement in PI, EMIX, RE, II, and Q. In addition, these firm-level factors are also 

associated with the financial crisis. Due to the recession, imports have reduced from the 

import dependent/advanced economies, and hence a negative effect on technology 

upgradation and heavy dependence on the dirty fuel for production process. To fill this gap 

new investments have injected in the Indian economy. However, the investments have not 

directed to focus on cleaner fuels or technology related to energy and carbon efficiency gain. 

This is one of the reasons of the statistical relationship between R&D intensity and emission, 

(a positive influence). Therefore, to ensure the emission control and improvement in carbon 

productivity R&D efficiency has to be backed by R&D intensity. This means not only a 

higher portion of income should be invested but also a higher proportion of that investment 

has to be invested on R&D directed towards green technologies.  It may help the industries to 

 

12Some values are missing in the 6th and 7th column because of the negative investment values that are 

dropped out after the necessary adjustments.  
13The bottom right cell shows the value is -0.346; it is measured in kg (lakhs). We have transferred it 

to Mt.  
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control the threat of rebound generated from R&D efficiency, especially during the phases 

such as post-recession. However, we also need to ensure whether this emission control is 

translated to ensure better carbon productivity or not.   

Other than these factors, the policy implementation has also influenced emission from this 

sector. Emission has increased for the year 2013 and 2016. Higher energy intensity, energy 

mix, and R&D intensity are the main drivers for inducing emissions in 2013. This has mainly 

happened due to the Performance, Achievement, and Trade (PAT)-I policy. Initially, firms 

bought the permit and emitted more. However, technological investment and the strategic 

business adjustment produced positive results in the following years. A similar case is also 

found during the implementation of PAT-II. Along with the previous factors, increase in the 

net industrial sales also increased emission for the year 2016. The successive rapid incidents 

have led to a fluctuation of the change in emission in the manufacturing sector of Indian 

economy.   

Figure 1. Change in aggregate emission (absolute) 

 

Note: Authors’ calculation; the bars represent the average of the change in emission per 

annum in kg (lakhs) 
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Table 5. Year-wise decomposition of extended LMDI 

Year ∆EMPI ∆EMEMIX ∆EMECQ ∆EMRE ∆EMRI ∆EMII ∆EMQ ∆EMAGG 

1999 0.005 0.110 -0.054 -0.149 - - 0.036 0.049 

2000 -0.034 -0.235 0.146 0.091 0.508 -0.350 0.026 -0.246 

2001 -0.052 -0.522 -0.361 0.152 - - 0.070 -0.816 

2002 0.070 -0.013 0.119 0.528 - - -0.035 0.277 

2003 -0.033 -0.760 0.405 -0.015 - - 0.138 -0.250 

2004 0.090 -3.356 0.257 0.211 - - 0.447 -2.507 

2005 0.063 -0.204 -0.426 0.148 -4.696 4.544 0.736 3.102 

2006 0.008 -0.310 0.310 -0.802 1.335 -0.321 0.267 0.108 

2007 -0.464 -0.800 -0.206 -0.768 4.581 -2.479 0.085 -2.775 

2008 -0.190 -1.808 0.532 0.206 -1.942 1.218 0.045 -0.651 

2009 0.032 1.333 0.394 0.533 -4.674 1.951 0.098 2.654 

2010 -0.213 -1.002 0.233 -0.025 1.216 -0.719 0.066 -1.293 

2011 0.057 0.216 -0.156 0.799 -2.701 0.818 0.058 0.408 

2012 -0.011 -0.164 -0.901 1.081 0.494 -1.640 0.879 -1.341 

2013 -0.027 1.523 0.047 -0.269 0.619 -0.427 0.059 1.245 

2014 0.035 0.025 -0.024 0.062 2.733 -2.782 -0.097 -2.061 

2015 -0.001 0.038 -0.036 -0.016 -0.029 0.045 -0.005 0.000 

2016 -0.030 1.085 -0.599 -0.099 0.009 0.117 -0.007 0.534 

2017 -0.215 -2.975 1.348 1.038 -1.997 0.811 0.019 -1.191 

2018 0.014 -0.546 0.590 2.147 -0.050 -1.406 0.027 -0.818 

2019 0.197 -0.633 -1.785 -0.039 -0.140 0.144 -0.085 -2.047 

Overall -0.035 -0.454 -0.002 0.239 -0.413 -0.042 0.143 -0.346 

Note: Authors’ calculation; all the values are reported in kg (lakhs).  
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Since R&D efficiency, emission control, and carbon productivity has a puzzle, we further 

divide our sample into two sub-samples, pre-recession (up to 2007) and post-recession (2008 

and onwards) for further analysis. Figure 2 explains similar results as in table 5. RE has 

initially helped reduce the emission in pre-recession, but there is a rebound in the post-

recession that led to higher emissions. Further, RI and EMIX have contributed to emission 

reduction; however, EMIX has performed better in the pre-recession period. Additionally, the 

contraction in RI is estimated for the post-recession period, which helped in reducing 

emissions.  

Figure 2. Contribution of various components on the emission growth

 

Note: Authors’ estimation; the red bars denote full sample, the grey bars represent pre-

recession, and blue bars signify the post-recession.  

We further analyze the industry-level decompositions in figure 3. The result explains a 

heterogeneous effect for each industry. For example, EMIX has helped in emission reduction 

for the sectors such as basic metal, chemical, computers and allied, electrical equipment, 

fabricated metal, pharmaceutical, wholesale trade, and wood products. However, it has 

stimulated the emission of the rubber and plastics segments of India’s manufacturing sector. 

On the contrary, RE has induced the emission in coke, food, pharmaceutical, the textile 
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sector. ECQ has caused emissions in industries such as chemical, fabricated metal, wearing 

apparel, and wood. RI has induced the emission for motor vehicles and reduced the emission 

in food, machinery, papers etc. Similarly, investment intensity and industrial activities have 

also heterogeneous impacts across the industries.   

 

Figure 3. Industry-wise break-up of emission growth components 

 

Note: Authors’ calculation 

3.4 The threshold regression models 

Since literature on R&D efficiency is directly linked with improvement in carbon 

productivity, we need to further examine for the manufacturing sector in India and see the 

outcomes. A direct link between R&D efficiency and carbon productivity will help control 

emission and improve carbon productivity simultaneously. Our initial results indicate a scope 

to examine possible solutions to improve the decoupling growth for India’s manufacturing 

sector. Therefore, we focus on the empirical analysis of the optimal trade-off between 

emission and output growth. We are not able to use the modified decomposition techniques 

as (1) missing values in the sample, (2) high correlation between variables, and (3) difficult to 

address the price effect.  
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However, EE and CP can be explained by the firm characteristics, such as technological 

capabilities, demand and supply-side factors and policy variables. Hence, we apply threshold 

regression to address our second research question. This will help us to capture the impact of 

RE on CP for different thresholds. This is important because if the effects for different 

thresholds vary, ordinary regression will give a biased estimation as the distribution becomes 

non-standard because of “nuisance parameter problem”. Hence, we construct our regression 

equation that determines the level of sustainability of the CP for different levels of R&D 

efficiency, as presented in equations (12) and (13) (Fang and Yu, 2021; Hansen, 1999). 

𝑙𝑛𝐸𝐸𝑖𝑡 = 𝛽0 + 𝛽1𝐿. 𝐸𝐸𝑖𝑡. 𝐼(𝑙𝑛𝑅𝐸 ≤ 𝛾1) + 𝛽2𝐿. 𝐸𝐸𝑖𝑡. 𝐼(𝑙𝑛𝑅𝐸 > 𝛾1) +  𝛽𝑘𝑍𝑖𝑡 + 𝜀𝑖𝑡 + 𝜇𝑖 

            (12) 

𝑙𝑛𝐶𝑃𝑖𝑡 = 𝛽0 + 𝛽1𝐿. 𝐶𝑃𝑖𝑡. 𝐼(𝑙𝑛𝑅𝐸 ≤ 𝛾1) + 𝛽2𝐿. 𝐶𝑃𝑖𝑡. 𝐼(𝑙𝑛𝑅𝐸 > 𝛾1) +  𝛽𝑘𝑙𝑛𝑍𝑖𝑡 + 𝜀𝑖𝑡 + 𝜇𝑖 

             (13) 

For both the models, I and t represent the firm and year, respectively. These models will 

capture multiple breaks with the help of the indicative function I(.), and it takes the value one 

if the terms in the parenthesis are true, otherwise 0. 𝛾 represents the threshold value, and 𝛽 

denotes the parameter, and they are estimated using the non-linear least square method. 

Further, we estimate the level of significance for the thresholds and the authenticity tests. A 

“self-sampling method” is proposed for robust results (Hansen, 1999). This follows an 

asymptotic distribution of the F-statistic and helps to construct the p-values for significance 

tests. The second test helps in constructing the confidence intervals for the threshold values 

as per the given value of the LR-statistics, and the condition is 𝐿𝑅(𝛾0) ≤ −2ln (1 − √1 − 𝛼) 

where 𝛼 is the level of significance. Z is the vector of the control variables, i.e. EXI, TN, TP, 

TFP, ETI, and DETI.14 𝜀𝑖𝑡 is the random interference term and 𝜇𝑖denotes the individual 

specific effect.  

4. The empirical findings 

We explain factors that explain carbon productivity and energy efficiency. The correlation 

between is presented in table A-1 in the appendix. Since EE and CP are highly correlated, we 

 

14The variables are taken in the logarithm. 
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estimate them separately. If the factors affecting EE are the same as in the case of CP, we 

conclude that achieving energy efficiency can act as a proxy for emission reduction, which 

helps in designing direct policy for the manufacturing sector targeting the energy efficiency. 

As we have balanced panel data, we first estimated the panel unit root tests. The results are 

presented in table A-2 in the appendix. From the results obtained, we reject the null 

hypothesis and confirm that panels are stationary. This can also explain the stability of our 

variables. However, unit root tests do not validate the long-run stability of variables, and 

hence we use the cointegration test before estimating our empirical equations (12) and (13). 

We confirm that the series are cointegrated from the cointegration test and stable for long-run 

analysis. Results of the cointegration tests are presented in table A-3 of the appendix. We also 

conducted a multicollinearity test for each dependent variable of interest further and reported 

in table A-4 in the appendix. Since the variance inflation factor (VIF) is less than 10, we 

conclude that the issue of multicollinearity is absent in our series of variables. Our empirical 

analyses are classified into three sub-sections. Firstly, we present determinants of energy 

efficiency and carbon productivity. Secondly, we arrive at the inter-firm heterogeneity, and 

lastly, we explain the factors explaining different club-convergence. 

4.1 Determinants of energy efficiency and carbon productivity  

We present the estimated coefficients of the regression results in table 6. Model (1) and (2) 

determine the influence of covariates on EE. The rest of the models explain the case of CP 

Model (1) is the single threshold regression, and model (2) is the double threshold regression 

for EE In model (1), we find that R&D efficiency helps to induce the EE. The first threshold 

level is specified in table 6, and it is -0.02, which is 0.98 in absolute terms. Therefore, we 

conclude that lag EE helps increase the current EE if the RE is below 0.98. Once it exceeds 

the threshold level, it stimulates EE with lower impact. However, based on the p-value of 

table 6, we reject the double threshold estimate for the EE. The acceptance of the first 

threshold model is shown in figure-4.15 Our results also confirm that other than RE, export 

intensity, tax on net profit, embodied technology import intensity, and productivity also 

 

15The red dot lines in figure 1 and 2 are the confidence interval specified by Hansen at 5 per cent level 

of significance. The vertical axis measures the LR-statistics and the horizontal axis measures the 

threshold range.  
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explain EE at the firm level. These results confirm that the demand and supply-side factors 

are related to EE at the firm level other than technological capabilities. The industry level 

dummies have two major implications: i. the environmental tax reduces the energy efficiency 

of the firms. This may happen because either the polluter may choose to pollute and pay, or 

there is a rebound effect (Bagchi and Sahu, 2020; Chakravarty et al., 2013); ii. Since red 

firms are found to be energy-intensive and, orange firms are energy efficient, and we 

conclude that polluting firms are energy-intensive.  

We also conduct the authenticity for EE, which is presented in table 6. The results show that 

the threshold estimates fall at 95 percent confidence level, and the range lies between -0.18 to 

0.00, which is 0.83 to 1 in absolute value. This confirms that firms that have R&D efficiency 

are energy efficient and sustainable. We carry out a similar analysis for CP in models (3-4). 

From the threshold specification presented in table 6, we select model (3) as the efficient 

model as the double threshold is rejected (figure-5). Results indicate that lag CP is most 

effective if the RE is below -0.10, i.e. 0.90 in absolute value. The impact of sustainability 

reduces if RE crosses this threshold. This implies that R&D efficient firms are carbon 

productive. The authenticity tests suggest that the first threshold lies between -0.16 to -0.02, 

which is 0.85 and 0.98 in absolute terms. The other set of vectors that influence the CP are 

similar to EE, except for tax on net sales. This implies that technological capabilities and 

demand factors influence CP. We find similarities in results for both EE and CP in our 

empirical estimates. Hence, we conclude that energy efficiency is a good policy proxy for 

carbon productivity, i.e. effective energy policy complements climate change mitigation.  

The analysis is helpful in terms of strategizing the emission control policy. However, not all 

the firms exhibit similar emission patterns. Hence, we need to address the heterogeneity of 

the firms in terms of emission so that we can prescribe the exact policies for different firms. 

This is analyzed in the following section with a convergence analysis that will address the 

final research question. 
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Figure 4. The first threshold for energy efficiency  

 

Note: Authors’ estimation 

Figure 5. Different thresholds for carbon productivity 

 

Note: Authors’ estimation 



23 

 

Table 6. Determinants of energy efficiency and carbon productivity 

Explanatory Variables Energy Efficiency  Carbon Productivity  

 (1) (2) (3) (4) 

lnEXI 1.352*** 1.422*** 1.286*** 1.347*** 

 (0.524) (0.522) (0.408) (0.406) 

lnETI 0.0481 0.048 0.076*** 0.0677*** 

 (0.032) (0.032) (0.025) (0.025) 

lnDETI -0.047 -0.045 -0.095** -0.064 

 (0.061) (0.061) (0.048) (0.048) 

lnTFP 0.324*** 0.334*** 0.360*** 0.357*** 

 (0.107) (0.107) (0.083) (0.082) 

lnTN 0.241** 0.237* 0.045 0.025 

 (0.122) (0.122) (0.095) (0.094) 

lnTN 0.069 0.0667 0.085 0.081 

 (0.103) (0.102) (0.079) (0.079) 

lnET -0.190*** -0.187*** -0.089*** -0.091*** 

 (0.033) (0.033) (0.0262) (0.026) 

lnRed 0.070*** 0.064*** 0.069*** 0.062*** 

 (0.017) (0.017) (0.013) (0.013) 

lnOrange -0.062* -0.062* -0.043* -0.047* 

 (0.033) (0.033) (0.026) (0.026) 

lnGreen 0.043 0.0341 0.043 0.012 

 (0.055) (0.055) (0.043) (0.043) 

lnRE-1 4.661*** 5.008*** 0.0001*** 0.0001*** 

 (0.805) (0.811) (2.03e-05) (1.99e-05) 

lnRE-21 0.019*** 0.612*** 4.27e-07*** 3.89e-05*** 

 (0.005) (0.204) (1.42e-07) (7.88e-06) 

lnRE-22  0.019***  4.20e-07*** 

  (0.005)  (1.41e-07) 

Constant -37.81 -30.39 -57.74** -44.22* 

 (30.59) (30.62) (23.79) (23.84) 

Observations 1,428 1,428 1,428 1,428 

Number of id 68 68 68 68 

R-squared 0.103 0.111 0.141 0.150 

Sigma_u 184.906 178.923 122.88 118.302 

Sigma_e 2.613 2.602 2.033 2.022 

Rho 0.999 0.999 0.999 0.999 

R-Square: Within 0.102 0.110 0.140 0.150 

R-Square: Between 0.004 0.004 0.008 0.010 

R-Square: Overall 0.003 0.003 0.006 0.007 

F-value 12.88*** 12.92*** 18.38*** 18.35*** 

F test that all u_i=0 60.66*** 51.59*** 47.12*** 41.08*** 

Note: Standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1 
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Table 7. Selection of threshold 

Threshold 

Variable 
Model 

F-

value 
P-value 1% 5% 10% 

Threshold 

estimates 
95% Confidence Interval 

lnEE 

 

 

 

Single 

threshold 
38.75 0.000 32.51 25.60 19.15 -0.02 [-0.18, 0.00] 

Double 

threshold 
8.68 0.346 31.74 24.65 21.02 

-0.10 

0.90 

 

[-0.20, -0.02] 

[0.34, 0.96] 

 

lnCP 

Single 

threshold 
70.72 0.000 45.33 24.60 19.73 -0.10 [-0.16, -0.02] 

Double 

threshold 
16.25 0.166 41.68 24.43 19.75 

-0.24 

0.00 

[-0.26, -0.21] 

[-0.18, 0.03] 

Note: Authors’ estimation 
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4.2 Inter-firm heterogeneity 

Following (Kim, 2015; Mohammadi and Ram, 2012; Yu et al., 2015), we estimate the inter-

firm heterogeneity in carbon productivity. One way to address the problem is to estimate club 

convergence (Brannlund et al., 2015; Dong et al., 2013; Green 2021). Studies have addressed 

club convergence for carbon productivity (Apergis and Payne, 2017; Burnett, 2016; Parker 

and Liddle, 2017; Zhang and Broadstock, 2016). We apply one of the recent techniques to 

estimate club convergence (Phillips and Sul, 2007). The basic idea is that similar firms will 

club together and approach different equilibrium or convergent paths instead of a unique 

equilibrium. The estimation technique helps us to capture both the cross-section and time-

series heterogeneity within panels.  

First, we rank firms on carbon productivity (most recent year). Next, we choose k highest 

ordered firms to form the sub-group where 𝑘 lies between 2to 𝑁. After running log(t) 

regression, the convergence statistic for the sub-group is estimated where 𝑡𝑘 = 𝑡(𝐺𝑘). To 

choose the group size 𝑘∗ t-statistic ranked by maximizing over 𝑘 where 𝑘∗ = arg max[𝑡𝑘] 

subject to min 𝑡𝑘 > −1.65.16 If the constraint is not satisfied, the highest carbon productive 

firms are dropped from the sub-group, and a new group is formed. This process is continued 

until we create the core group. Once the core group is specified, Phillips and Sul (PS) 

regression are re-estimated. If tk exceeds the critical value of PS, it is included in the new 

convergent group and added to the core group. The groups that are not added to the first 

convergent group are dropped out and grouped into the subsequent clubs. These steps are 

continued until all convergent clubs are formed, and the remaining firms are clubbed into the 

divergent group.   

The final clubs are represented in table 8. The numbers in the column of the ‘firms’ denote 

the rank of the firms based on the CP. Table 8 describes the initial groups into six categories, 

and out of them, one club is divergent. We also observe that firms come in different clubs, 

even classified in the same industry. All the convergent clubs have higher t-statistics than -

1.65, except the divergent group. The t-statistics suggests that the 6th club is only divergent. 

Out of all the clubs, 31per cent belongs to club-1; 12 per cent belongs to club-2; 25 per cent 

 

16A detailed analysis is carried out by Bai et al. (2019) and Bhattacharya et al. (2018) regarding the 

construction of the t-statistics. 
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belongs to club-3; 15 per cent belongs to club-4; 7 per cent belongs to club-5, and the rest are 

divergent groups. Half of the beta coefficients values denote the speed of the convergence. 

We conclude that the 4thclub converges fastest, and the 5th club is the slowest in terms of 

convergence. Since the beta value is less than 2, it rejects the null hypothesis of absolute 

convergence, and hence we conclude it exhibits a relative convergence.  

We look into the decoupling pattern of every club. Table 9 represents the ranks of the clubs 

based on their CP. Our finding suggests that only club-1 exhibits a strong decoupling. On the 

contrary, club-5 has negative decoupling and rank 3rd in carbon productivity. Hence, there is 

a scope for improvement. The study addresses the heterogeneity of the firms in terms of 

carbon productivity. We find five major groups exhibit different characteristics. Hence, a 

unique policy for all the groups will not be ideal; instead, we conclude that separate policy 

suggestions are required for different groups. Hence, we determine the factors influencing the 

choice of the club in the following section. 
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Table 8. Final clubs of firms 

Clubs Firm IDs No. of firms Frequency Percent Status b-coefficient t-statistic 

Aggregate -0.64 -17.91 

1 
51, 36, 41, 8, 47, 31, 24, 66, 63, 59, 60, 

54, 55, 64, 56, 49, 48, 62, 61, 65, 57 
21 462 30.88 Convergent -0.04 -1.42 

2 22, 53, 50, 52, 45, 40, 44, 46 8 176 11.76 Convergent -0.16 -1.32 

3 
6, 43, 34, 20, 25, 35, 5, 30, 32, 10, 27, 23, 

39, 37, 38, 29, 33 
17 374 25.00 Convergent -0.18 -1.51 

4 17, 21, 15, 18, 16  ̧11, 9, 3, 28, 7 10 220 14.70 Convergent 2.25 6.36 

5 12, 26, 13, 19, 4 5 110 7.35 Convergent -0.62 -0.82 

6 42, 14, 67, 68, 1, 58, 2 7 154 10.29 Divergent -0.68 -29.81 

Note: Authors’ estimation; the speed of convergence is predicted from the beta coefficient.  

 

Table 9. The growth pattern of different clubs 

Club      Rank CP (∆ 𝐸𝑀 𝐸𝑀)⁄  (∆𝑌/𝑌) 𝛽𝐸𝑀,𝑌 Growth type Specification 

1 1 7248.25 -0.03 0.09 -0.32 Decoupling SD 

2 2 4745.35 0.02 0.10 0.24 Decoupling WD 

3 4 866.36 0.05 0.09 0.59 Decoupling WD 

4 5 40.90 0.02 0.09 0.19 Decoupling WD 

5 3 1410.34 0.27 0.04 6.88 Negative decoupling END 

Note: Authors’ estimation. 
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4.3 Factors influencing different clubs 

The club convergence estimates the heterogeneity of the inter-firm variation. We focus on 

carbon productivity in understanding club convergence. However, other economic factors can 

influence the choice of clubbing. We try to capture the influence of these factors using 

equation (14). 

Pr(𝐶𝑙𝑢𝑏𝑖𝑡 = 1) = ɸ(𝛼 + 𝛽𝐶𝑃𝑖,𝑡 + 𝒁 + µ𝑖𝑗,𝑡)     (14) 

Whereɸ represents the standard normal cumulative distribution, and the control variables are 

denoted as 𝒁 that also accounts for the time and firm-specific effects. The subscript i 

indicates the firm specification and t represents the time. The data is binary, and it takes a 

value one if it belongs to the corresponding group, otherwise 0.  

The main variable of interest is carbon productivity. However, the model can suffer from the 

issue of endogeneity. This is because the firms’ form the clubs based on ranks of the latest 

year’s carbon productivity. To omit this issue, we introduce the IV Probit, where CP is 

treated as endogenous, and it depends on a variable other than the variables specified in 𝒁 

vector. This particular variable should be exogenous to the system, and the model is 

assumedrecursive, i.e. CP enters into equation (14) but the clubs do not enter into the CP’s 

equation. Both the error terms follow a normal distribution (N~0, ∑). The rule of thumb is ∑ 

cannot be a block diagonal between the two error terms. Otherwise, CP would not be 

endogenous. In our model, we introduce lag of carbon productivity. Studies find that Indian 

manufacturing sector’s energy management and emission control is endogenous its own lag 

(Bagchi and Sahu 2020; Sahu et al., 2021; Sahu and Mehta, 2018; Sahu and Narayanan, 

2014). 

We present the marginal effects in table 10 for five consecutive clubs in models (5) to (9). 

The Wald test for exogeneity throughout all the models suggests that IV Probit would be 

suitable for taking care of the endogeneity. Our estimation suggests that the instrument is not 

weak and it is exogeneous to the model.17 Model (5) indicates that new firms with higher lag 

 

17First-stage estimation of IV Probit is given in the appendix (table A-5). 
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CP tend to move to club-1 through an improvement of current CP. This suggests that carbon 

productive firms ensure better decoupling growth, or alternatively, a carbon intensive firm 

performs poorly in terms of decoupling growth. Hence, improvement in carbon productivity 

becomes the thumb rule for future sustainability in terms of decoupling growth. Higher 

export intensity induces the firms to move out from club-1, i.e., export-intensive are not 

focusing on long term convergence path of sustainability. Hence, a sustainable export 

promotion policy is urgently required to ensure better decoupling for the export intensive 

firms. In addition, higher environmental tax induces the firm’s probability to move out from 

club-1.A similar analysis also holds for the cap-and-trade. In model (6), we observe a similar 

finding for CP. 

However, export intensive firms18 increase the probability for the firms to move into the club-

2 category. A higher corporate tax or a higher environmental tax induces the probability of 

the firms to choose club-2. On the contrary, the most polluted firms (red) try to move into 

club-2. In addition to that, the technological factors, viz. RE and DETI exhibit positive 

influences. Model (7) estimates the probability of moving in club-3 due to several 

explanatory factors. A higher CP produces an opposite result with the previous findings for 

the choice of rest of the clubs. This is in line with the previous argument of CP and clubbing. 

The supply-side factors (TP) and productivity negatively influence the choice of clubbing. 

In model (8), we estimate the determinants of club-4. EXI, RE, and polluting firms negatively 

affect club-4; whereas, TP, ETI, DETI have positive impact. The positive influence of 

embodied and disembodied technologies may be one of the reasons for this group to be the 

fastest convergent. Model (9) gives us the estimate of the convergence for club-5. We 

observe a positive influence of EXI, TN, DETI, TFP, and the colour codes. The negative 

influence of CP makes club-5 the slowest converging club.  

 

 

 

18In few of the regressions from model (6) and onwards, some variables are dropped out because of 

the multicollinearity. 
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Table 10. Factors explaining the convergence of the manufacturing firms 

Explanatory Variables Marginal 

Effects 

     

 (5) (6) (7) (8) (9)  

       

lnCP 0.20*** 0.22*** -0.09*** -0.32*** -0.17***  

 (0.01) (0.02) (0.01) (0.02) (0.02)  

lnEXI -0.05** 0.19*** 0.007 -0.11*** 0.08**  

 (0.02) (0.04) (0.02) (0.03) (0.03)  

lnTN 0.08 0.10* -0.18*** -0.11 0.30***  

 (0.05) (0.06) (0.05) (0.08) (0.06)  

lnTP 0.005 0.16*** -0.19*** 0.23*** -0.004  

 (0.04) (0.06) (0.06) (0.06) (0.06)  

lnETI -0.009 -0.01 0.004 0.04** -0.02  

 (0.01) (0.01) (0.01) (0.02) (0.02)  

lnDETI 0.02 0.08*** -0.08*** 0.15*** 0.09***  

 (0.01) (0.02) (0.01) (0.03) (0.02)  

lnRE -0.02 0.18*** -0.20*** -0.27*** 0.32***  

 (0.05) (0.05) (0.05) (0.07) (0.06)  

lnTFP 0.008 0.02 -0.14*** 0.05 0.31***  

 (0.03) (0.04) (0.03) (0.05) (0.07)  

ET -0.0006*** 0.001*** 0.01 - 0.001***  

 (0.0001) (0.0001) (0.007)  (0.0001)  

Red -0.0005*** 0.0001*** 0.01* -

0.0003*** 

0.0006***  

 (0.00009) (0.00007) (0.007) (0.00008) (0.00009)  

Orange -0.0002** - 0.01 -0.0009 0.0009***  

 (0.0001)  (0.007) (0.0001) (0.00009)  

Green -0.0003*** -  0.0006*** -  

 (0.0001)   (0.0001)   

Constant -0.25 -3.36 -4.96 -0.02 -2.84  

 (0.20) (0.26) (0.32) (0.26) (0.20)  

Wald Chi2 206.55*** 299.97*** 432.75*** 311.27*** 398.02***  

       

Wald test for 

exogeneity 

8.49*** 9.78*** 9.81*** 12.27*** 2.16***  

Observations 1281 1071 1218 1113 1,218  

Note: Standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1 

5. Conclusions 

We estimate CO2emission at the firm level using the bottom-up approach suggested by the 

IPCC referral approach. Further, we present the trade-off between emissions and output 



31 

 

growth for India’s manufacturing sector. This allows us to estimate the decoupling growth at 

the firm level for the Indian economy. The key findings are listed as follows: 

1. Firms in Indian manufacturing exhibit a weak decoupling. In terms of decoupling 

growth, coke and allied, computer; electronics, and allied; pharmaceutical; and 

textiles perform best. Thus, we can say that there is a need for industrial regulation to 

ensure sustainable environmental outcomes.  

2. Further, we investigate the relationship between technology and carbon productivity. 

This helps in determining the effective instruments in promoting environmental goals. 

We find a single threshold with a higher impact at the lower thresholds. This implies 

that carbon productivities are more sustainable at a lower level of R&D efficiency due 

to the output effect. We confirm that energy efficiency is a good proxy for policies 

related to emission control. Technology and the demand-side factors helped to 

improve carbon productivity, i.e. balancing the optimal trade-off. However, standard 

price mechanisms do not improve carbon productivity.  

3. We also captured the inter-firm heterogeneity and estimated the club convergence. 

We find five convergent clubs and one divergent club and evaluate the possible 

factors affecting different clubs. We observe mixed findings in terms of estimating the 

same. More data with multi-unit assessment would help to understand the decoupling 

and trade-off better. 

4. To explain the puzzle between decoupling and carbon productivity’s contradictory 

results. We find consistent fluctuations in CO2 emissions from the manufacturing 

sector over the last two decades. This is mainly because of endogenous production 

decisions, exogenous shocks, and new policy implementation. PAT cycles have been 

helpful in emission control in the long-run. The emission has increased because of the 

rebound of the R&D efficiency, mainly in the post-recession period. Factors such as 

energy mix and R&D intensity helped firms in emission control. These contributions 

are more significant post-recession. The contributions of various decomposition 

factors have a heterogeneous impact on different industries. 

The paper simultaneously provides a solution for emission control and energy productivity 

improvement. The core of the contradiction occurs because factors affecting these two targets 

are different. R&D efficiency plays a significant role in improving CP, but policymakers 
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should fix the threshold as the rebound threat is associated with it. Unless this is 

implemented, emission control will be difficult.  

Our finding suggests that demand-side factors and technology help in improving carbon 

productivity at the aggregate level. In addition, an aggressive tax policy is not helpful. The 

paper also explains specific policies at a disaggregate scale. However, an improvement in 

carbon productivity does not ensure emission control. Efficient emission control requires an 

improvement of the energy mix and R&D intensity. This means cleaner production and 

technological advancement help in emission control. Further, a higher proportion of 

investment in R&D ensures a sufficiency to meet both goals. Also, the successful 

implementation of a cap-and-trade scheme ensures emission control and the attainment of 

scale efficiency. 

One of the significant constraints of the analysis is the data limitation. Very few have 

consistently reported the data, which is even reduced since we had to adjust for the balanced 

panel because of the thumb rule of the threshold estimation. If more firms report their 

physical energy consumption data, the analysis will be more specific and robust. With 

sufficient data reporting, we can validate the performance of the energy schemes 

implemented in India that can be helpful for future research direction to address the 

international negotiations for climate goals. 
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List of appendix 

 

Table A-1. Correlation matrix 

 
lnCP lnEE lnEXI lnTN lnTP lnETI lnDETI lnTFP L.CP lnRE 

lnCP 1 
         

lnEE 0.94* 1 
        

lnEXI 0.16* 0.16* 1 
       

lnTN -0.04 0.0002 0.07* 1 
      

lnTP 0.01 0.04 0.005 0.07* 1 
     

lnETI 0.02 0.04 -0.13* -0.03 0.05* 1 
    

lnDETI -0.07* -0.05* -0.08* -0.01 0.07* 0.13* 1 
   

lnTFP 0.26* 0.14* 0.08* -0.22* -0.13* -0.22* -0.12* 1 
  

L.CP 0.19* 0.13* 0.11* -0.03 -0.05* -0.06* 0.01 0.28* 1 
 

lnRE -0.04 -0.04 -0.006 -0.04 0.01 -0.04 0.07* 0.26* 0.11* 1 

Note: * represents the level of significance at 5 per cent 
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Table A-2. Results of the unit root tests 

Rho Statistic p-value 

lnCP 0.632*** 0.000 

lnEE 0.634*** 0.000 

EXI 0.747*** 0.000 

lnTN 0.598*** 0.000 

lnTP 0.188*** 0.000 

lnETI 0.260*** 0.000 

lnDETI 0.581*** 0.000 

lnTFP 0.627*** 0.000 

L.CP 0.606*** 0.000 

lnRE 0.527*** 0.000 

Note: *** represents 1 per cent level of significance  

Table A-3. Results of the cointegration test 

 
Statistic p-value 

Modified Dickey-Fuller t -6.697*** 0.000 

Dickey-Fuller t -7.240*** 0.000 

Augmented Dickey-Fuller t -4.162*** 0.000 

Unadjusted modified Dickey -14.789*** 0.000 

Unadjusted Dickey-Fuller t -10.363*** 0.000 

Note: *** represents 1 per cent level of significance Table A-4. Multicollinearity check 

Explanatory Variables Energy Efficiency 
 

Carbon Productivity   
VIF 1/VIF VIF 1/VIF 

lnEXI 1.58 0.63 1.59 0.63 

lnETI 1.64 0.61 1.64 0.61 

lnDETI 1.14 0.88 1.14 0.87 

lnTFP 5.47 0.18 5.63 0.18 

lnTN 9.33 0.11 9.36 0.11 

lnTP 1.04 0.96 1.04 0.96 

lnETI 2.37 0.42 2.36 0.42 

lnRed 7.19 0.14 7.21 0.14 

lnOrange 2.20 0.45 2.20 0.45 

lnGreen 1.54 0.65 1.54 0.65 

Note: Estimated by the authors. 
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Table A-5. First-stage estimation of choice of club 

Explanatory 

Variables 

First-stage 

estimation 

     

 (10) (11) (12) (13) (14)  

       

lnCP 0.87*** 0.85*** 0.86*** 0.87*** 0.86***  

 (0.01) (0.01) (0.01) (0.02) (0.02)  

lnEXI 0.01 0.02 0.01 0.01 0.01  

 (0.02) (0.03) (0.02) (0.03) (0.03)  

lnTN -0.07 -0.04 -0.08 -0.11* -0.08  

 (0.06) (0.06) (0.06) (0.06) (0.06)  

lnTP 0.09 0.03 0.09 0.02* 0.09  

 (0.06) (0.06) (0.06) (0.06) (0.01)  

lnETI 0.02 0.01 0.01 0.02 0.01  

 (0.01) (0.02) (0.01) (0.01) (0.01)  

lnDETI -0.02 -0.01 -0.01 -0.01 -0.01  

 (0.18) (0.02) (0.02) (0.02) (0.02)  

lnRE -0.15** -0.14** -0.15** -0.14** -0.15***  

 (0.06) (0.06) (0.05) (0.06) (0.06)  

lnTFP 0.07* 0.06 0.06 0.08 0.06  

 (0.04) (0.04) (0.04) (0.05) (0.04)  

ET -0.0001 0.002 0.0002 - 0.002  

 (0.0001) (0.0001) (0.0001)  (0.0001)  

Red -0.0001 0.0001 0.0001 0.0001 0.0001  

 (0.00009) (0.00007) (0.0001) (0.0001) (0.0001)  

Orange -0.0008 - 0.000009 0.0001 0.0009  

 (0.0001)  (0.001) (0.0001) (0.0001)  

Green -0.0003 - - -0.0003 -  

 (0.0001)   (0.0006)   

Constant 0.20 0.08 0.08 -0.01 0.08  

 (0.31) (0.79) (0.26) (0.30) (0.31)  

Adjusted R2 0.79 0.76 0.80 0.77 0.77  

F 407.73*** 343.24*** 407.73*** 408.52*** 377.02***  

Observations 1281 1071 1218 1113 1,218  

Note: Standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1 

 


