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Abstract— This paper presents a new speed Finite Control Set 

Model Predictive Control (FCS-MPC) algorithm which has been 

applied to a Permanent Magnet Synchronous Motor (PMSM) 

driven by a Matrix Converter (MC). This method replaces the 

classical cascaded control scheme with a single control law that 

controls the motor currents and speed. Additionally, unlike 

classical MC modulation methods, the method allows direct 

control of the MC input currents. The performance of the 

proposed work has been verified by simulation studies and 

experimental results. 

 
Index Terms— FCS-MPC, Matrix Converter, PMSM drive 

 

SYMBOLS 

𝐿𝑓      Input filter inductance 

𝐶𝑓      Input filter capacitance 

𝑅𝑓     Input filter parasitic resistance 

𝐿𝑙      Line inductance 

𝑅𝑙      Line resistance 

 

𝑅𝑚     Stator resistance 

𝐿𝑚     Stator inductance 

𝑛𝑝     Pole pairs 

𝜑      Rotor flux 

𝐽      System inertia 

𝐵𝑎     Viscous friction 

 

 

𝑉𝑠      Source voltage 

𝐼𝑠      Source current 

𝐼𝑖𝑗  j
th

 component of the matrix converter input 

current 

𝑉𝑖𝑗 j
th

 component of the matrix converter input 

voltage 

𝐼𝑜𝑗  j
th

 component of the matrix converter output 

current 

𝑉𝑜𝑗 j
th

 component of the matrix converter output 

voltage 

𝐼𝑑      Motor direct current 

𝐼𝑞       Motor quadrature current 

𝜔𝑚     Motor rotor speed 

𝜃𝑟      Motor rotor position 

𝐾𝑡      Motor torque constant 

 

𝜇𝑚𝑐     Matrix converter efficiency 

⋅̃      Updated value 

⋅̂      Predicted value 

ℜ(⋅)     Real part 

ℑ(⋅)     Imaginary part 

 

I. INTRODUCTION 

A matrix converter (MC) is a power electronic converter 

which allows to connect directly two three-phase systems 

using a matrix of 9 bi-directional switches [1]. 

Fig. 1 shows a schematic representation of a MC used as a 

motor drive for a Permanent Magnet Synchronous Motor 

(PMSM). The MC is composed of a matrix of 9 bidirectional 

switches which connection between every input and output 

phase. 

A single switch can and must be turned on for each converter 

output leg, in order to avoid both short-circuit of two input 

phases and opening of an output inductive circuit. This limits 

the number of possible switching configurations to 27 . One 

filtering stage is generally present on the input converter side 

in order to filter the high frequency components introduced by 

the power semiconductor devices  switching. 

The first modulation strategy for MCs was proposed by 

Venturini [2]. Subsequently, the space vector modulation 

(SVM) has been proposed, which is a modulation strategy 

based on the instantaneous vector representation of the 

converter input and output voltages [3]. A common drawback 

related to the above mentioned modulation strategies is the 

inability to directly control the input filter current, with the 

consequent risk of creating unstable resonances in the system 

[4-6]. The two main solutions to this problem, which have 

been proposed in the technical literature, are the use of a 

damping resistor in the input filter or the use of a low-pass 

filter to properly adjust the measurement of the converter input 

voltage. 

In recent years, Finite Control Set Model Predictive Control 

(MPC-FCS) is becoming an interesting and alternative 

approach to traditional control strategies of power converters 

[7-10], also owing to the increasing cost reduction of the most 

powerful control hardware. FCS-MPC uses a model of the 

system to be controlled to predict the next state of the system 

itself subjected to each possible control action. The best 

control action is then chosen by minimizing a cost function. 

This strategy allows to directly control more than one state 

variable at the same time, using a single control rule. 

Several authors have applied FCS-MPC to the MC [11, 12]. In 

[13] a method for increasing the efficiency of the converter 

has been proposed, while in [14] the use of a virtual damping 

resistor to mitigate the resonances of the input filter is 

proposed. In contrast to SVM modulation, FCS-MPC 

generates a switching harmonic distortion that is not 

concentrated on a single frequency, on the contrary its 

harmonic spectrum is almost white. In some applications this 

behavior may not be appropriate. Owing to this reason, in [15] 
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a method to impose a well-defined spectrum of the switching 

harmonic distortion has been proposed. 

PMSMs are widely used in industry due to their high dynamic 

performance and power density. The combination of a PMSM 

and a MC gives a four-quadrant drive system with potentially 

low weight and size [16, 17]. The typical control strategy for 

speed/position drive systems is composed of cascade linear 

controllers, with a high dynamic inner current loop and a 

relatively slow outer speed control loop. The use of a single 

FCS-MPC to control both the PMSM currents and speed when 

fed by a standard two level converter has been proposed in 

[18-20]. This solution removes the cascade linear controllers 

as well as the modulator. 

In this paper the innovative idea of using the speed FCS-MPC 

algorithm to control both PMSM currents and speed with a 

MC is proposed. The higher number of feasible states along 

with the need to control input stage quantities increases the 

algorithm complexity when compared to the one needed from 

a standard two level inverter, making more difficult its 

practical implementation using the small sampling time 

required by FCS-MPC. A new cost function has been also 

proposed. It permits to take into account both mechanical and 

electrical variables, overcoming the classical cascaded loop 

limitations and resulting in a high dynamic response, thus 

avoiding unwanted oscillations in the input filter currents 

during transients. 

Additionally, a new input filter observer to estimate the source 

voltage has been presented. This observer reduces the number 

of sensors, thereby increasing the system reliability and 

reducing costs. 

II. SYSTEM MODELS 

FCS-MPC uses a system model to predict the next state of the 

system itself. Owing to this reason, the definition of the model 

is a key point for a successful implementation of the control 

strategy. In the following sections the models that have been 

used are described. 

A. Matrix converter model 

With reference to Fig. 1, the mathematical relations between 

input and output side currents and voltages of the matrix 

converter are  

 

 𝑉𝑜 = 𝑇𝑇𝑉𝑖 𝐼𝑖 = 𝑇𝐼𝑜 (1) 

 

where 

 

 

𝑉𝑜 = [

𝑉𝑜𝑢

𝑉𝑜𝑣

𝑉𝑜𝑤

] 𝑉𝑖 = [

𝑉𝑖𝑎

𝑉𝑖𝑏

𝑉𝑖𝑐

] 

(2) 
 

𝐼𝑜 = [

𝐼𝑜𝑢

𝐼𝑜𝑣

𝐼𝑜𝑤

] 𝐼𝑖 = [

𝐼𝑖𝑎
𝐼𝑖𝑏
𝐼𝑖𝑐

] 

 

The MC state matrix T is defined as 

 

 

𝑇 = [

𝑆𝑎𝑢 𝑆𝑎𝑣 𝑆𝑎𝑤

𝑆𝑏𝑢 𝑆𝑏𝑣 𝑆𝑏𝑤

𝑆𝑐𝑢 𝑆𝑐𝑣 𝑆𝑐𝑤

] (3) 

 

where 𝑆𝑖𝑗 = 1 if the switch that connects the i
th

 input phase 

with the j
th

 output phase is ON and 𝑆𝑖𝑗 = 0 otherwise. The 

need to avoid short-circuits between two input phases and the 

need to avoid the opening of an output phase reduce the 

number of possible switching configurations to 27. 

 

B. Input filter model 

Matrix converters typically need an input filter to filter 

currents and to avoid voltage spikes during switching. Fig. 2 

shows the LC filter used in this work. Only one phase is 

shown in such a figure, since the system is assumed balanced. 

Similarly, the subscripts that identify the phase will be omitted 

in the following equations. The term 𝑅𝑓 represents the 

parasitic resistance of the filter components, since no damping 

resistor has been used in this work. 

The equation representing the model of this input stage is 

 

 𝑥𝑓̇ = 𝐴𝑓𝑥𝑓 + 𝐵𝑓𝑢𝑓 (4) 

 

with 

 

 
𝑥𝑓 = [

𝐼𝑠
𝑉𝑖

] 𝑢𝑓 = [
𝑉𝑠
𝐼𝑖

] (5) 

 

 

𝐴𝑓 = [
−

𝑅𝑡
𝐿𝑡

⁄ −1
𝐿𝑡

⁄

1
𝐶𝑓

⁄ 0
] (6) 

 

 

𝐵𝑓 = [

1
𝐿𝑡

⁄ 0

0 −1
𝐶𝑓

⁄
] (7) 

 

 

and 

 

 𝐿𝑡 = 𝐿𝑙 + 𝐿𝑓 𝑅𝑡 = 𝑅𝑙 + 𝑅𝑓 (8) 

 

are respectively the total inductance and total resistance of the 

input stage. 

Generally, in almost all the works where the use of FCS-MPC 

has been described, all variables were considered physically 

measurable. Here, a different approach is adopted [21]: the 

 
Fig. 1 - Schematic representation of a matrix converter 
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mains voltage 𝑉𝑠 can be considered sinusoidal and at fixed 

frequency. For this reason, it can be considered as a system 

sinusoidal disturbance and therefore it is possible to 

implement an observer to estimate it. The knowledge of 𝑉𝑠 is 

necessary to predict the future values of 𝐼𝑠 and 𝑉𝑖 and, as it 

will be explained in the following, to compute the optimal 

control. 

The generic state space equation of a sinusoidal disturbance is 

[22] 

 

 
𝑥̇𝑛 = [0 −𝜔2

1 0
] 𝑥𝑛 

𝑑 = [0 1]𝑥𝑛 
(9) 

 

where 𝜔 is the disturbance pulsation. 

Merging equations (4) and (9) and imposing 

 

 
𝑥𝑛 = [

𝑉̇̂𝑠
𝑉̂𝑠

] (10) 

 

the new filter model equation becomes 

 

 𝑥̇𝑓𝑜 = 𝐴𝑓𝑜𝑥𝑓𝑜 + 𝐵𝑓𝑜𝑢𝑓𝑜 (11) 

 

with 

 

 

𝐴𝑓𝑜 =

[
 
 
 
 
 
0 −𝜔𝑠

2 0 0
1 0 0 0

0 1
𝐿𝑡

⁄ −
𝑅𝑡

𝐿𝑡
⁄ −1

𝐿𝑡
⁄

0 0 1
𝐶𝑓

⁄ 0
]
 
 
 
 
 

 (12) 

 

 𝐵𝑓𝑜 = [0 0 0 − 1
𝐶𝑓

⁄ ] 

 
(13) 

 

The new augmented state vector and control input become 

 

 

𝑥𝑓𝑜 =

[
 
 
 
 𝑉̇̂𝑠
𝑉̂𝑠
𝐼𝑠
𝑉𝑖]

 
 
 
 

 𝑢𝑓𝑜 = 𝐼𝑖 (14) 

 

where 𝑉̂𝑠 is the estimated source voltage. 

It is now possible to construct an observer for system (11) 

using only the 𝐼𝑠 and 𝑉𝑖 measurement. 

The system (11) must be discretized to be implemented into a 

Digital Signal Processor (DSP). The obtained equation is 

 

 𝑥𝑓𝑜𝑘+1
= Φ𝑓𝑜𝑥𝑓𝑜𝑘

+ Γ𝑓𝑜𝑢𝑓𝑜𝑘
 (15) 

 

where 

 Φ𝑓𝑜 = 𝑒𝐴𝑓𝑜𝑇 Γ𝑓𝑜 = ∫ 𝑒𝐴𝑓𝑜𝜏𝑑𝜏𝐵𝑓𝑜

𝑇

0

 (16) 

and T is the sample time. The subscripts k, k+1 and so on 

denote the system sample time instants. 

Current sensors are generally affected by a low noise and, in 

addition, it was found that FCS-MPC provides better 

performance by using unfiltered values of 𝐼𝑠 current and 𝑉𝑖 

voltage. For this reason, a reduced order observer has been 

used to estimate the line voltage, thus reducing the complexity 

of the control algorithms. The system state defined in (14) has 

been split in 

 

 
𝑥𝑓𝑜

𝑎 = [
𝑉̇̂𝑠
𝑉̂𝑠

] 𝑥𝑓𝑜
𝑏 = [

𝐼𝑠
𝑉𝑖

] (17) 

 

where the superscripts a and b have been arbitrarily used to 

distinguish the two sub-states. (15) could be then rewritten as 

 

 
[
𝑥𝑓𝑜

𝑎

𝑘+1

𝑥𝑓𝑜
𝑏

𝑘+1

] = [
Φ𝑓𝑜

𝑎𝑎 ∅

Φ𝑓𝑜
𝑏𝑎 Φ𝑓𝑜

𝑏𝑏] [
𝑥𝑓𝑜

𝑎

𝑘

𝑥𝑓𝑜
𝑏

𝑘

] + [
∅

Γ𝑓𝑜
𝑏 ] 𝑢𝑓𝑜𝑘

 (18) 

 

with Φ𝑓𝑜
𝑎𝑎 , Φ𝑓𝑜

𝑏𝑎, Φ𝑓𝑜
𝑏𝑏  ∈ ℜ2𝑥2, Γ𝑓𝑜

𝑏  ∈ ℜ2. 

It is now possible to write the observer as 

 

 𝑥̃𝑓𝑜
𝑎

𝑘
= 𝑥̂𝑓𝑜

𝑎

𝑘
+ 𝐾 (𝑥𝑓𝑜

𝑏

𝑘
− 𝑥̂𝑓𝑜

𝑏

𝑘
) (19) 

 

and 

 

 𝑥̂𝑓𝑜
𝑎

𝑘+1
= Φ𝑓𝑜

𝑎𝑎  𝑥̃𝑓𝑜
𝑎

𝑘
 

𝑥̂𝑓𝑜
𝑏

𝑘+1
= Φ𝑓𝑜

𝑏𝑎 𝑥̃𝑓𝑜
𝑎

𝑘
+ Φ𝑓𝑜

𝑏𝑏 𝑥𝑓𝑜
𝑏

𝑘
+ Γ𝑓𝑜

𝑏 𝑢𝑓𝑜𝑘
 

(20) 

 

In the previous equations 𝑥̃𝑓𝑜
𝑎  is the updated state, 𝑥̂𝑓𝑜

𝑎  and 𝑥̂𝑓𝑜
𝑏  

are the predicted states, 𝑥𝑓𝑜
𝑏  is the measured state and 𝐾 ∈

ℜ2𝑥2 is the observer gain matrix. 

The above described observer allows eliminating the mains 

voltage sensor, thus increasing system reliability and reducing 

costs. In addition, its use allows the use of FCS-MPC even in 

the absence of the input filter inductors, for example when a 

transformer is present on the line-side. In fact, in such a 

configuration, the only inductance existing in the input stage 

would be that of the grid, and therefore a physical 

measurement of the mains voltage would not be possible. 

C. PMSM model 

The d-q structure with general equation (21) has been used to 

model the PMSM on the output side of the MC 

 

 𝑥̇𝑚 = 𝑓(𝑥𝑚, 𝑢𝑚) (21) 

 

where 

 

 
Fig. 2 - Schematic model of an input filter phase 
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 𝑥𝑚 = [

𝐼𝑑
𝐼𝑞
𝜔𝑟

𝜃𝑟

] 𝑢𝑚 = [

𝑉𝑑

𝑉𝑞
𝑇𝐿

] (22) 

 

and 

 

 

𝑓(⋅) =

(

 
 
 
 
 

−
𝑅𝑚

𝐿𝑚

𝐼𝑑 + 𝑛𝑝𝐼𝑞𝜔𝑟 +
𝑉𝑑

𝐿𝑚

−𝑛𝑝𝐼𝑑𝜔𝑟 −
𝑅𝑚

𝐿𝑚

𝐼𝑞 −
𝜑𝑛𝑝

𝐿𝑚

𝜔𝑟 +
𝑉𝑞

𝐿𝑚

3𝜑𝑛𝑝

2𝐽
𝐼𝑞 −

𝐵𝑎

𝐽
𝜔𝑟 −

𝑇𝐿

𝐽
𝜔𝑟 )

 
 
 
 
 

 (23) 

 

The absence of an integral stage in the FCS-MPC imposes to 

observe a possible torque disturbance (𝑇𝐿  in (23)) applied to 

the motor shaft in order to eliminate the steady state speed 

error. Including a constant disturbance observer the system 

(21) becomes 

 

 𝑥̇𝑚𝑜 = 𝑓𝑚𝑜(𝑥𝑚𝑜 , 𝑢𝑚𝑜) (24) 

 

where 

 

 𝑥 =

[
 
 
 
 
𝐼𝑑
𝐼𝑞
𝜔𝑟

𝜃𝑟

𝑇̂𝐿 ]
 
 
 
 

 𝑢 = [
𝑉𝑑

𝑉𝑞
] (25) 

 

and 

 

 

𝑓𝑚𝑜(⋅) =

(

 
 
 
 
 
 

−
𝑅𝑚

𝐿𝑚

𝐼𝑑 + 𝑛𝑝𝐼𝑞𝜔𝑟 +
𝑉𝑑

𝐿𝑚

−𝑛𝑝𝐼𝑑𝜔𝑟 −
𝑅𝑚

𝐿𝑚

𝐼𝑞 −
𝜑𝑛𝑝

𝐿𝑚

𝜔𝑟 +
𝑉𝑞

𝐿𝑚

3𝜑𝑛𝑝

2𝐽
𝐼𝑞 −

𝐵𝑎

𝐽
𝜔𝑟 −

𝑇̂𝐿

𝐽
𝜔𝑟

0 )

 
 
 
 
 
 

 (26) 

 

The system (24) has been discretized using a Taylor series 

expansion [23] and a truncation order of 1.  

Considering that the measures of both 𝐼𝑑 and 𝐼𝑞  are available 

and using only the shaft position to update the estimated state, 

it is possible to implement a linear reduced order observer for 

the mechanical subspace only. Its equations are 

 

 𝑥̃𝑚𝑜
𝑏

𝑘
= 𝑥̂𝑚𝑜

𝑏
𝑘

+ 𝐿 ∙ 𝐶 (𝑥𝑚𝑜
𝑏

𝑘
− 𝑥̂𝑚𝑜

𝑏
𝑘
) (27) 

 

and 

 

 𝑥̂𝑚𝑜
𝑎

𝑘+1
= 𝑓𝐷

𝑎 (𝑥𝑚𝑜
𝑎

𝑘
, 𝑥̃𝑚𝑜

𝑏
𝑘
) + 𝐵𝐷

𝑎  𝑢𝑘  

𝑥̂𝑚𝑜
𝑏

𝑘+1
= 𝐴𝐷

𝑏𝑎 𝑥𝑚𝑜
𝑎

𝑘
+ 𝐴𝐷

𝑏𝑏 𝑥̃𝑚𝑜
𝑏

𝑘
 

(28) 

 (29) 

 

where 

 

 

𝐴𝐷
𝑏𝑎 = [

3𝜑𝑛𝑝𝑇𝑠

2𝐽
0

0 0
0 0

] 𝐴𝐷
𝑏𝑏 =

[
 
 
 
 1 −

𝐵𝑎𝑇𝑠

𝐽
0 0

𝑇𝑠 1 0
0 0 1]

 
 
 
 

 

(30)  

𝐵𝐷
𝑎 = [

𝑇𝑠

𝐿𝑚

0

0
𝑇𝑠

𝐿𝑚

] 𝐶 = [0 1 0] 

 

 

 

 

𝑥𝑚𝑜
𝑎 = [

𝐼𝑑
𝐼𝑞

] 𝑥𝑚𝑜
𝑏 = [

𝜔𝑟

𝜃𝑟

𝑇̂𝐿

] (31) 

 

𝐿 ∈ ℜ3𝑥1 is the observer gain matrix and the subscript D 

denotes discretized quantities. Note that the prediction 

equation (28) is not necessary for the observer, but it will be 

used later on by the predictive algorithm. 

III. FINITE CONTROL SET MODEL PREDICTIVE CONTROL 

Fig. 3 shows the steps of the FCS-MPC utilized in this paper. 

At the beginning of the k
th

 sampling period, all the system 

inputs are read and saved in memory. Subsequently the states 

of the two observers described in section II are updated using 

equations (19) and (27). 

The high computational cost and the high sampling frequency 

required by the FCS-MPC imply that the new control action is 

available to be applied only at the beginning of the next 

sampling instant. This produces a delay of a sampling period 

that needs to be compensated [24]. To accomplish this task the 

system state at the (k+1)
th

 sampling period has been computed 

using the optimal control obtained at the (k-1)
th

 sampling 

period. This operation corresponds to the observers prediction 

steps ((20), (28) and (29)) and, therefore, can be computed 

only once with a consequently computational optimization. 

Subsequently the system state at the k+2
th

 sampling period is 

computed for each of the 27 possible MC switching 

configurations. A cost function is computed using a 

combination of the system state. The optimal control is 

selected choosing the MC switching configuration producing 

the lowest cost function value. 

IV. COST FUNCTION SELECTION 

The choice of the cost function is a key point in the 

implementation of FCS-MPC. In contrast to the classical 

control schemes, it is possible to take into account and to 

control different state variables, if the cost function is properly 

selected. Variable quantities of both sides of the converter 

must be taken into account to control the whole system. 

A. Input filter cost function 

On the input filter side, it is necessary to control the source 

currents 𝐼𝑠, in order to avoid resonances, obtain a unitary 

power factor and achieve low distortion. To handle this, a 

reference signal 𝐼𝑠
∗ is computed based on a power balance . 

The input filter equations can be rewritten in a phasor 

representation as 
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 𝑰𝑖 = (1 − 𝐶𝑓𝐿𝑡𝜔𝑠
2 + 𝐶𝑓𝑅𝑡𝑗𝜔𝑠)𝑰𝑠 − 𝑽𝑠𝐶𝑓𝑗𝜔𝑠 

𝑽𝑖 = (−𝑅𝑡 − 𝐿𝑡𝑗𝜔𝑠)𝑰𝑠 + 𝑽𝑠 
(32) 

 

The power at the input side of the MC is 

 

 
𝑃𝑖 =

3

2
(ℜ(𝑰𝑖)ℜ(𝑽𝑖) + ℑ(𝑰𝑖)ℑ(𝑽𝑖)) (33) 

 

Substituting (32) in (33) 

 

 
𝑃𝑖 =

3

2
(ℜ(𝑰𝑠)ℜ(𝑽𝑠) + ℑ(𝑰𝑠)ℑ(𝑽𝑠) − 𝑅𝑡𝐼𝑠̅

2) (34) 

 

and, assuming a unitary power factor on the grid side 

 

 
𝑃𝑖 =

3

2
(𝐼𝑠̅𝑉̅𝑠 − 𝑅𝑡𝐼𝑠̅

2) (35) 

 

where superscripts ⋅ ̅denote modules. 

On the output side of the converter the power can be written as 

 

 
𝑃𝑜 =

3

2
(𝑅𝑚𝐼𝑞

2) + 𝐾𝑡𝜔𝑟𝐼𝑞  (36) 

 

In (36) 𝐼𝑑 is considered negligible and the motor iron losses 

are neglected. 

Input and output MC power can be related by the efficiency of 

the converter. 

In motoring mode the relation is 

 

 𝑃𝑜 = 𝜂𝑚𝑐𝑃𝑖  (37) 

 

The reference source current module has been finally 

calculated replacing (35) and (36) in (37) and solving for 𝐼𝑠̅ 

 

 
𝐼𝑠̅
∗ =

𝑉̅𝑠
2𝑅𝑡

±
√Δ

3𝑅𝑡

 

Δ =
1

𝜂𝑚𝑐

(−9𝑅𝑡𝑅𝑚𝐼𝑞
2 − 6𝐾𝑡𝜔𝑟𝐼𝑞𝑅𝑡) +

9𝑉̅𝑠
2

4
 

(38) 

 

In regenerative mode (37) becomes 

 

 
𝑃𝑜 =

𝑃𝑖

𝜂𝑚𝑐

 (39) 

 

and consequently 

 

 
𝐼𝑠̅
∗ =

𝑉̅𝑠
2𝑅𝑡

±
√Δ

3𝑅𝑡

 

Δ = 𝜂𝑚𝑐(−9𝑅𝑡𝑅𝑚𝐼𝑞
2 − 6𝐾𝑡𝜔𝑟𝐼𝑞𝑅𝑡) +

9𝑉̅𝑠
2

4
 

(40) 

 

The proposed method of current reference generation is 

correct if referred to electrical steady-state. However, the 

electric variables transient is very fast and it has been verified 

experimentally that the use of the proposed method also 

during transients does not affect so much the system 

performance. 

Using eqs. (38) and (40) and imposing 𝑰𝑠
∗ in phase with 𝑽𝑠, the 

CF relative to the input filter at the k
th

 sample time has been 

defined as 

 

 
𝑐𝑖𝑓 = (𝐼𝑠

∗
𝛼

− 𝐼𝑠𝛼𝑘+2
)

2

+ (𝐼𝑠
∗
𝛽

− 𝐼𝑠𝛽𝑘+2
)

2

 (41) 

 

where the subscripts 𝛼 and 𝛽 denote quantities transformed in 

the 𝛼 − 𝛽 domain. This cost function ensures a sinusoidal 

input current and a unity power factor. The use of sinusoidal 

references, compared to reactive power minimization method 

used in some other works[13], avoids that the system becomes 

unstable owing to resonances due to the input filter, even in 

the presence of a low damping, without affecting the dynamic 

performance of the system. 

The presence of the 𝑐𝑖𝑓 term slightly reduces the performance 

on the motor side. It is however necessary to have a stable 

behavior on the matrix converter input side. 

B. PMSM cost function 

The main variable to control on the PMSM side is the motor 

speed. Also in this case the square error has been used and the 

speed cost function term at the k
th

 sample time has been 

defined as 

 

 𝑐𝜔 = 𝑒𝜔
2

𝑘+2
 (42) 

 

with 

 

 𝑒𝜔𝑘+2
= 𝜔𝑟

∗ − 𝜔𝑟𝑘+2
 (43) 

 

The same equation (28) and (29) used for the observer 

prediction step has been adopted to predict the future states of 

the motor variables. It has been however necessary to 

Update 
observer states

Delay 
compensation

Predict using 

the ith
 control

Write outputs

Compute cost 
functions

i=27

i=i+1

Select control 
with minimum 
cost function

Read inputs

Y

N

 
 
Fig. 3 – FCS-MPC flowchart. 
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discretize the 3
rd

 equation of (26) with a Taylor series 

truncated at the second term in order to obtain a direct relation 

between 𝜔𝑟
𝑘+1 and  input 𝑢𝑘. The first equation of (29) then 

becomes 

 𝜔𝑟
𝑘+1 = 𝛾1𝐼𝑑

𝑘𝜔𝑟
𝑘 + 𝛾2𝐼𝑞

𝑘 + 𝛾3𝜔𝑟
𝑘 + 𝛾4𝑇̂𝐿

𝑘 + 𝛾5𝑉𝑞
𝑘 (44) 

 

where 

 

  

𝛾1 = −
3𝜑𝑇𝑠

2𝑛𝑝
2

4𝐽
 

𝛾2 =
3𝜑𝑇𝑠𝑛𝑝

2𝐽
−

3𝑇𝑠
2𝜑𝑛𝑝 (

3𝐵𝑎

2𝐽2 +
𝑅𝑚

2𝐽𝐿𝑚
)

2
 

𝛾3 = 1 −
3𝑇𝑠𝐵𝑎

𝐽
+

𝑇𝑠
2 (

𝐵𝑎
2

𝐽2 −
3𝑛𝑝

2𝜑2

2𝐽𝐿𝑚
)

2
 

𝛾4 =
𝑇𝑠

2𝐵𝑎

2𝐽2
−

𝑇𝑠

𝐽
 

𝛾5 =
3𝜑𝑇𝑠

2𝑛𝑝

4𝐽𝐿𝑚

 

(45) 

 

In addition to the motor speed it is also important to control 

the motor currents in order to reduce the output currents 

distortion during steady-state operation and to avoid exceeding 

the drive and motor physical limits during transients. For these 

reasons, a 𝐼𝑞  current reference has been defined as 

 

 𝐼𝑞
∗ = (𝐵𝑎𝜔𝑟

∗ − 𝑇̂𝐿)𝐾𝑡
−1 (46) 

 

and used in the current cost function  

 

 𝑐𝑖𝑑 = 𝐼𝑑
2
𝑘+2

 𝑐𝑖𝑞 = (𝐼𝑞
∗ − 𝐼𝑞𝑘+2

)
2

 (47) 

 

These terms ensure good currents quality during steady-state 

operation. An additional term has been added to avoid currents 

exceeding the limits during transients 

 

 
𝑐𝑖𝑙 = {

1𝑒10, 𝐼𝑜̅ > 𝐼𝑜
𝑚𝑎𝑥

0, 𝐼𝑜̅ < 𝐼𝑜
𝑚𝑎𝑥 (48) 

 

where 𝐼𝑜
𝑚𝑎𝑥 is the maximum module of the motor currents. 

The total cost function has been created as a weighted sum of 

the single CFs as 

 

 𝑐 = 𝑤𝜔𝑐𝜔 + 𝑤𝑖𝑓𝑐𝑖𝑓 + 𝑤𝑖𝑑𝑐𝑖𝑑 + 𝑤𝑖𝑞𝑐𝑖𝑞 + 𝑐𝑖𝑙  (49) 

 

C. Weight parameters tuning 

FCS-MPC is a very versatile control strategy able to control 

different variables at the same time by simply adding 

appropriate terms to the cost function. However, as the 

number of terms in the cost function increases, the adjustment 

of the weight parameters can become very complex. This 

problem is still an open topic in literature. Different solutions 

have been thoroughly analyzed and several approaches have 

been proposed [25-29]. 

In this work, to properly tune the weights in (49), the system 

has been initially simulated in a speed steady-state condition 

(50 rad/s) using a Simulink model. As shown in [16], the total 

harmonic distortion (THD) of the input and output currents are 

affected not only by the weight parameters but also by the 

output current amplitude and output power magnitude. The 

system has been therefore analyzed in different working 

points: 𝑤𝑖𝑓 has been arbitrarily set equal to 1 and the value of 

𝑤𝑖𝑑  and 𝑤𝑖𝑞  have been selected in order to have low input and 

output THDs in the whole operating range. 

Subsequently, the dynamic response to a speed reference 

variation has been analyzed. To obtain a good speed dynamic 

response, 𝑤𝜔 should be set to a high value. However, the 

predominance of the 𝑐𝜔 term on the current ones does not 

permit to properly control currents during speed transients, 

resulting in distorted waveforms and unstable oscillatory 

behaviors as shown in Fig. 4. To handle this problem, the 

absolute value of the speed tracking error in (43) has been 

limited modifying the speed reference as 

 

 𝜔̃𝑟
∗

= {

𝑒𝜔
𝑚𝑎𝑥 + 𝜔𝑟𝑘+1

, 𝜔𝑟
∗ − 𝜔𝑟𝑘+1

> 𝑒𝜔
𝑚𝑎𝑥

𝜔𝑟𝑘+1
− 𝑒𝜔

𝑚𝑎𝑥 , 𝜔𝑟
∗ − 𝜔𝑟𝑘+1

< −𝑒𝜔
𝑚𝑎𝑥

𝜔𝑟
∗, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
(50) 

 

(43) has been accordingly modified as 

 

 𝑒𝜔𝑘+2
= 𝜔̃𝑟

∗ − 𝜔𝑟𝑘+2
 (51) 

 

 

Fig. 4 – Simulative response to a reference step variation without the 

limitation of equation (50). 
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During speed transients the product 𝑤𝜔𝑒𝜔
𝑚𝑎𝑥  defines the 

importance of the speed term over the current ones: a too 

small value compromises the speed dynamic response, while a 

too high value affects the current THDs. Also in this case, a 

simulative analysis has been used to tune this term in order to 

ensure a good currents control during speed transients, while 

maintaining a good speed dynamic response. Fig. 5 shows the 

system response with different value of 𝑒𝜔
𝑚𝑎𝑥 keeping constant 

the others parameters. 

The value of 𝑤𝜔 has been subsequently tuned keeping 

constant the above mentioned product. High values of 𝑤𝜔 

increase the speed dynamic response but decrease currents 

quality in steady-state due to the position transducer noise. 

Fig. 6 shows the system response with different values of 𝑤𝜔, 

keeping constant the product 𝑤𝜔𝑒𝜔
𝑚𝑎𝑥 and the others weights. 

The weight parameters resulting from the described procedure 

have been finally normalized and are reported in Table I. The 

influence of weight parameters variation has been also tested, 

resulting in a good system robustness within a variation of  

±10%. 

D. Robustness analysis 

In industrial applications the identified system parameters may 

be slightly wrong or change in time. The most critical are 

usually the mechanical ones as they are dependent from the 

application. For this reason, it is important to evaluate the 

control system robustness to parameters variation. To this end, 

a simulative model of the experimental system described in 

the next section has been implemented. Subsequently the 

motor inertia and friction have been changed and the system 

response has been analyzed. Fig. 7 shows the system response 

to a speed reference change with different inertia values. It can 

be noted that the system is stable and it exhibits good 

performance even with a 20% inertia variation. Similarly, a 

speed reference step variation is depicted in Fig. 8, with 

different friction values. Also in this case, the traces show 

good system stability against wrong friction values. 

TABLE I 

NORMALIZED COST FUNCTION WEIGHTS 

Parameter Value Units 

𝑤𝜔 1 - 

𝑤𝑖𝑓 4e-5  

𝑤𝑖𝑑  4e-5 - 

𝑤𝑖𝑞 1e-5 - 

𝐼𝑜
𝑚𝑎𝑥  10 A 

𝑒𝜔
𝑚𝑎𝑥 1 𝑟𝑎𝑑 ⋅ 𝑠−1 

 

 

Fig. 6 – Simulative response to a speed reference step variation with 

different 𝑤𝜔 value (keeping constant the product 𝑤𝜔𝑒𝜔
𝑚𝑎𝑥). Blue: 

nominal value (Table I). Red: 25% of nominal value. Green: 400% of 

nominal value. 
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Fig. 5 – Simulative response to a speed reference step variation with 

different 𝑒𝜔
𝑚𝑎𝑥 value. Blue: nominal value (Table I). Red: 200% of 

nominal value. Green: 400% of nominal value. 
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Fig. 7 – Simulative response to a speed reference step variation with 
different inertia values. Blue: nominal inertia. Red: 120% of nominal 

inertia. Green: 80% of nominal inertia. 
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V. EXPERIMENTAL RESULTS 

The proposed control algorithm has been tested on an 

experimental set-up. Fig. 9 shows the controller and matrix 

converter used. The proposed control algorithm has been 

implemented on a Texas Instruments DSP C6713 with a 

sample time of 20 𝜇𝑠. An FPGA has been connected with the 

DSP and used to generate the IGBTs four-step commutation 

pattern. The matrix converter prototype has been realized by 

the Power Electronics, Machines and Control Group of 

University of Nottingham using SK60GM123 IGBT modules. 

The PMSM used in this work coupled with a DC motor is 

depicted in Fig. 10 and the main parameters of the system are 

reported in Table II. A resolver with a 12 bit per revolution 

resolution has been used as position sensor. The parameters of 

the input stage have been experimentally identified using an 

approach similar to the one proposed in [30, 31] and are 

reported in Table III. An LC filter with Δ-connected capacitors 

and no damping resistors has been used in this work. The 

input filter observer gain K has been tuned using a Kalman 

filter approach,  in order to place the observer poles at a 

frequency of about 50 Hz with damping factor equal to 0.707. 

An empirically procedure has been used to set the noise 

covariance matrices. It ensures a good filtering of possible 

source harmonics and a fast enough convergence time. The 

TABLE III 

INPUT FILTER PARAMETERS 

Parameter Value Units 

𝐿𝑡 0.4 𝑚𝐻 

𝐶𝑓
∗ 4 𝜇𝐹 

𝑅𝑡 1 Ω 
*
: Δ connected 

 

 
Fig. 9 – Controller board and matrix converter. 

 
Fig. 10 – PMSM coupled with DC machine. 

 

Fig. 8 – Simulative response to a speed reference step variation with 

different friction values. Blue: nominal friction. Red: 120% of nominal 

friction. Green: 80% of nominal friction. 
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TABLE II 
MOTOR PARAMETERS 

Parameter Value Units 

𝑅𝑚 1 Ω 

𝐿𝑚 3.2 𝑚𝐻 

𝑛𝑝 10 − 

𝜑 0.126 𝑊𝑏 

𝐽 0.126 𝑘𝑔 ⋅ 𝑚2 

𝐵𝑎 9.62e-3 𝑁 ⋅ 𝑠 ⋅ 𝑚−1 

 

 

Fig. 11 – Top: matching between real source voltage (red) and estimated 

one (blue). Bottom: error between real and estimated voltage. 
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comparison between the measured line-to-line source voltage 

and the estimated one is reported in Fig. 11, where a very 

good match between the two quantities can be noted. 

The motor-side observer has been empirically tuned to handle 

the system mechanical resonances: a pole placement approach 

has been used and the gain L has been set to obtain a 

bandwidth of about 5 Hz and to avoid overshoot. Both 

observer gains are reported in Table IV along with their 

bandwidth. In some other works [32] a stability analysis has 

been made in order to properly tune the observer gain. In this 

paper the stability has been verified by simulation in different 

working points. 

The response of the system to a speed reference step variation 

is reported in Fig. 12, where the system is forced to reverse its 

rotational direction. This causes a regenerative behavior till 

the rotor speed reaches the null value, thereafter the system 

switches to motoring mode to accelerate the load to the new 

set point. It is possible to note a good speed dynamic response 

along with low-distorted sinusoidal source currents. Also 

motor-side currents show a good behavior without exceeding 

the physical limit. Fig. 13 shows a speed reference step 

response comparison, using FCS-MPC and a standard PI 

speed controller. The latter has been tuned using the Ziegler–

 

Fig. 12 – Reference step variation. Top: rotor speed. Middle: motor current in d-q frame. Bottom: source current in alpha-beta frame. 
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Fig. 13 – Speed reference step response comparison between PI and FCS-MPC controllers. Left: overall response. Right: detail of the final transient. 
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TABLE IV 

OBSERVER GAINS 

 Value Bandwidth 

𝐾 [
−0.54 1.37𝑒 − 3
0.139 2.83𝑒 − 2

]  50 Hz 

𝐿 [
4.87𝑒 − 2
1.56𝑒 − 3

−8.92𝑒 − 2
]  5 Hz 
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Nichols method and a low pass filter has been added to the 

regulator output in order to handle mechanical resonance. 

From such a figure it is possible to note how the proposed 

approach exhibits a better dynamic response. Fig. 14 shows 

input phase current and voltage during steady-state operations 

with an output power of about 600 W. It can be noted that the 

current matches very well its reference (dashed red line in 

figure, computed as explained in section IV.A) and it is in 

phase with the source voltage resulting in unitary power 

factor. 

Finally, the system response to a load step is reported in Fig. 

15. Note how the motor speed reaches its set point again, 

confirming a good efficiency of the PMSM observer. 

VI. CONCLUSION 

In this work a speed FCS-MPC algorithm applied to a PMSM 

driven by a MC has been presented. The high number of 

possible states and the need to control MC input and output 

quantities render its practical implementation very 

challenging. The use of a multiobjective cost function permits 

to replace the classic multi-loop control structure used in drive 

applications with a single control law. The proposed cost 

function permits to control currents during both speed 

transient and steady state conditions avoiding unstable 

oscillations on the MC input side, fulfilling currents limit and 

resulting in a very good speed dynamic response. The overall 

control behavior has been tested during speed transients and 

steady state operation. FCS-MPC shows promising result with 

respect to both. A simple and clear procedure to tune weight 

parameters has been proposed resulting in a simple 

commissioning of the drive.  

In addition, a new input filter observer has been presented. 

The estimation of the source voltage permits the reduction of 

sensors increasing the reliability of the whole system. It also 

allows the use of the FCS-MPC algorithm in absence of an 

input filter inductance. In this case the source voltage cannot 

be measured since the input inductance is the grid one. 

The presented work has been validated on an experimental set-

up and the excellent results obtained confirm the dynamic 

advantage of the proposed approach. 
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