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Generation of quantum steering and interferometric power in the dynamical Casimir effect
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We analyze the role of the dynamical Casimir effect as a resource for quantum technologies, such as quantum
cryptography and quantum metrology. In particular, we consider the generation of Einstein-Podolsky-Rosen
steering and Gaussian interferometric power, two useful forms of asymmetric quantum correlations, in
superconducting waveguides modulated by superconducting quantum interferometric devices. We show that
while a certain value of squeezing is required to overcome thermal noise and give rise to steering, any nonzero
squeezing produces interferometric power which in fact increases with thermal noise.
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I. INTRODUCTION

The first experimental observation of the dynamical Casimir
effect (DCE) [1] in a superconducting circuit architecture in
2011 [2] has triggered a renewed interest in this phenomenon.
The DCE consists of the generation of photons out of the vac-
uum of a quantum field by means of the relativistic motion of
boundary conditions. Letting alone its paramount foundational
relevance as a paradigmatic prediction of relativistic quantum
field theory, the fact that it can be realized by the modulation
of a superconducting quantum interferometric device (SQUID)
interrupting a superconducting transmission line has paved the
way for the analysis of the role of DCE radiation as a resource
for quantum technologies [3].

In particular, it has been shown that the photon pairs
generated by the DCE display quantum entanglement [4] and
quantum discord [5] under realistic experimental conditions.
Moreover, these correlations can be swapped to superconduct-
ing qubits, enabling the generation of highly entangled qubit
states [6]. It is thus of particular relevance to investigate in
more detail how the DCE can be exploited to generate other
useful forms of quantum correlations, and how robust they are
to thermal noise in realistic settings.

In mixed states of bipartite systems, one can distinguish in
fact different layers of quantum correlations, which in order
of decreasing strength include Bell nonlocality [7], Einstein-
Podolsky-Rosen (EPR) steering [8], quantum entanglement
[9], and discord-type correlations [10]. In this paper we focus
on two correlation measures, both having an asymmetric nature
and both playing resource roles for some important quantum
technological tasks involving Gaussian states of continuous
variable systems.

On the one hand, we consider a computable measure
of Gaussian quantum steering GA~#, which captures the
EPR paradox, and quantifies to which extent Bob’s mode
can be steered by Alice’s Gaussian measurements on her
mode, in a two-mode entangled Gaussian state [11]. Op-
erationally, the Gaussian quantum steering measure can be
interpreted as the guaranteed key rate achievable in a one-
way device-independent quantum key distribution protocol
based on shared Gaussian states and reverse reconciliation
[12].
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On the other hand, we consider a metrological figure of
merit that captures a form of discord-type correlations, known
as interferometric power [13]. In the continuous variable
setting, the Gaussian interferometric power P2 is given by
the minimum quantum Fisher information for estimating a
phase shift applied to Alice’s probe mode in an optical
interferometer, minimized over the (Gaussian) generators of
the transformation encoding the phase [14,15]. Operationally,
the Gaussian interferometric power can be interpreted as the
guaranteed precision achievable by a two-mode Gaussian
state for unitary parameter estimation in an interferometric
configuration.

Both quantities are therefore directly relevant for practical
applications, and both admit simple closed formulas for
two-mode Gaussian states, a fact which will be advantageous
for our analysis. We remark that any separable or entangled
Gaussian state can have a nonzero interferometric power [14],
while only a subset of entangled states can be steered by
Gaussian measurements [8,11].

In the following, we compute both the Gaussian quantum
steering and the Gaussian interferometric power generated in
the experimental setup employed for the observation of the
DCE, namely, a superconducting waveguide interrupted by
a SQUID [2]. Using realistic experimental parameters, we
show that these quantities exhibit quite different features. In
the case of quantum steering, the value of the experimental
driving amplitude and velocity must be higher than a critical
value in order to overcome the initial level of thermal noise,
a similar behavior to the one predicted for entanglement and
other quantum correlations [4,5]. Conversely, the interfero-
metric power is nonzero for any experimental value of the
amplitude and velocity, regardless of the level of thermal noise.
Remarkably, it increases with the average number of thermal
phonons. This ties in with the observation that the performance
of quantum metrology, discrimination, and reading protocols
with continuous variable probes can indeed be enhanced by
thermal noise [14,16].

The structure of the paper is the following. In Sec. II
we briefly recall the formalism of the dynamical Casimir
effect in superconducting circuits, and in particular we
compute the covariance matrix of the system. In Sec. III
we show the results for both Gaussian quantum steering
and Gaussian interferometric power. We conclude in Sec. IV
with a summary of the results and a discussion of possible
applications.
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II. DYNAMICAL CASIMIR EFFECT WITH
SUPERCONDUCTING CIRCUITS

We will consider the same experimental setup as in [2,4].
The electromagnetic field confined by a superconducting
waveguide is described by a quantum field associated with
the flux operator ®(x,#), which obeys a (1 + 1)-dimensional
Klein-Gordon wave equation, d,, ®(x,t) — v=29,®(x,t) = 0.
The field can thus be written as

(D( t) hZ() /00 dw
x, = —_— J—
V4r ) Vol

% [a(w)efi(fkwx#»wf)_,r_b(a))efi(kwx#»wt)]’ (1)

where a(w) and b(w) are the annihilation operators for photons
with frequency w propagating to the right (incoming) and left
(outgoing), respectively. Here k, = w/v is the wave number,
v is the speed of light in the waveguide, Z is the characteristic
impedance, and we have used the notation a(—w) = al(w).

As shown in [17,18], for large enough SQUID plasma
frequency, the SQUID is a passive element that provides the
following boundary condition to the flux field:

D(0,1) + Legr(1)0x P(x,1)[ =9 = 0, 2
which can be described by an effective length
Lefi(1) = (®o/27)* /[E; (1) Lol 3)

where L is the characteristic inductance per unit length of the
waveguide and E;(t) = E ;[ ®ex(?)] is the flux-dependent ef-
fective Josephson energy. For sinusoidal modulation with driv-
ing frequency w,/2m and normalized amplitude €, E;(t) =
E?[l + € sinwyt], we obtain an effective length modulation
amplitude 8L = eLgff, where L(e)ff = Le(0). If the effective
velocity ver = 8Lefrwy is a significant fraction of v, the
emission of DCE photon pairs is sizable.

The DCE can be analyzed using scattering theory which
describes how the time-dependent boundary condition mixes
the otherwise independent incoming and outgoing modes
[19]. In the perturbative regime discussed analytically in
[4,17,18], the resulting output field is correlated to modes with
frequencies w,,w_, such that w; + w_ = wy, SO we can write
wt = wy/2 £ Sw, where dw is the detuning. Introducing the
notation a4+ = a(w+) and by = b(w4y), the relation between
the input and the output fields is the following:

SL i
eff N /a)+a),a[¥, @

v

biZ—Cli—i

where SLesr/w_wy /v is a small parameter. If we consider
small detuning, then w_ >~ w; >~ wy/2 and

3Leff\/ w-_wy € Lt (0)wqg Veff

=—. 5
v 2v 2v )

Denoting the small parameter as f, we can write
be=—ar—ifal. (6)

Let us consider now the covariance matrix of the system
V. Using the same convention as in [4], which assumes zero
displacement without any loss of generality, we have

Vag = 3(RaRp + RgRu),
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where RT = (g_, p_,q,, p+)is a vector with the quadratures as

elements: g1 = (by + bL)/v/2 and py = —i(by — bL)/v/2.
Note that the quadratures of the outgoing modes can be written

in terms of those of the ingoing modes, go+ = (a+ + al)/ V2
and poyr = —i(ayx — al)/«/ﬁ, by using Eq. (6):

g+ = —(qo+ + f pog), px=—(pox+ fqox) (7

We assume that the ingoing modes are in a weakly thermal,
quasivacuum state characterized by a small fraction of thermal
photons nﬁ, n' as is the case for typical GHz frequencies
and mK temperatures in a superconducting scenario. Then the
ingoing covariance matrix is

1+2nt 0 0 0
1 0 14+2nt 0 0
Vo=351 0 1420t o | ®
0 0 0 142nh

Note that since we are considering small detuning, w; >~ w_ ~
wa/2, it follows that n'f! >~ n™ ~ n', that is, the states can be
considered approximately symmetric under a swap of the two
modes. Using Egs. (7) and (8), we obtain the covariance matrix
of the outgoing modes

1/A C
V=§<CT B)’

A=1+2n"+ 20 +2nMH1,
B=1+2n"+ 21 +2n™M1,
C=2f1+n"+n"o,. 9)

This is a two-mode squeezed thermal state characterized by
the squeezing parameter 2 f and its standard form is obtained
just by replacing the Pauli matrix o, with o in C.

III. QUANTUM STEERING AND
INTERFEROMETRIC POWER

We are now ready to characterize the aforementioned two
different forms of quantum correlations for the state described
by the covariance matrix in Eq. (9). We start by computing
the Gaussian quantum steering, which for Gaussian bipartite
states takes the form [11]

GA~B(V) = max {o,lln det A } (10)

2 detV

Using Egs. (10) and (9) we can evaluate the Gaussian quantum
steering in the perturbative regime. We find

G2~ B(V) = max{0,3 f2 —2n"}. (11)

Therefore, the DCE radiation exhibits nonzero Gaussian

steering as long as
2 th
£ ’3’ . (12)

Writing it explicitly in terms of the driving amplitude €, we
find that the onset of the Gaussian quantum steering occurs at

= SBlLaOaos

€0 13)
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FIG. 1. (Color online) Gaussian interferometric power (blue,
solid line) and Gaussian quantum steering (purple, dashed) as
a function of the normalized driving amplitude €. We consider
experimental parameters v = 1.2 x 10 m/s, w; =27 x 10 GHz,
Ler(0) = 0.5 mm and 7 = 50 mK. Thus the small parameter f <
0.05 is well within the perturbative regime, as well as the average
numbers of thermal photons n™ ~ 8 x 10~3. Quantum steering is
zero in this regime while interferometric power increases quickly
with the driving amplitude.

Let us analyze now the behavior of the Gaussian interfero-
metric power, whose expression is given by [14]

X+JX21YZ
pAW)= 2TV T2 (14)
2Y
where
X=+L)Y1+L+1—1I)—I7,
Y=UL-DA+L+L+21+ 1), (15)

Z=~U+ 1y — 1)+ Q2L+ B)YA + D),
with

Iy =detA, LL=detB, Lz=detC, I,=detV.

Using Egs. (14) and (9) we find that in the perturbative regime
the interferometric power of the DCE state is

PAV) = f2(1 +2n™). (16)

Therefore we note that regardless the degree of thermal noise,
the interferometric power is generated for any nonzero value
of the squeezing parameter, and it further increases with the
number of thermal photons.

In Figs. 1 and 2 we analyze the behavior of quantum
steering and interferometric power with respect to the driving
amplitude and average number of thermal photons in a
realistic experimental regime. We observe that for a realistic
temperature of 7 = 50 mK [2] quantum steering is zero for
any sensible value of €. Indeed, quantum steering is very fragile
to thermal noise and is only different from zero below 32 mK
for the value of € achieved in [2], in contrast to entanglement
and entropic discord, which display critical thresholds of 60
and 67 mK, respectively, for the same value of €. On the
other hand, the interferometric power achieves finite values
that increase quickly with the driving amplitude and are almost
insensitive to thermal noise in this regime.
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FIG. 2. (Color online) Same as Fig. 1, but as a function of the
average number of thermal photons n'". We consider experimental pa-
rameters v = 1.2 x 10 m/s, w; = 2w x 10 GHz, L(0) = 0.5 mm
and € = 0.15. Thus the small parameter f ~ 0.02 is well within the
perturbative regime. Quantum steering quickly decreases with tem-
perature and vanishes at 7 ~ 32 mK. In contrast, the interferometric
power is always nonzero and increases with temperature.

Finally, to understand better the interplay between squeez-
ing and temperature in the generation of quantum steering, we
plot the measure G4~ 2 in Fig. 3 in the parameter regime where
it is nonzero. For sufficiently high values of the squeezing,
quantum steering survives for temperatures as big as 35 mK.

IV. CONCLUSIONS

In conclusion, we have investigated the experimental
scenario of the DCE demonstration in a superconducting
waveguide terminated by a SQUID, focusing our attention
on the nature of the correlations in the generated radiation. We
studied in particular the ability of the DCE for the generation
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FIG. 3. (Color online) Gaussian quantum steering as a function
of the average number of thermal photons n" and the squeezing
parameter f. The number of photons considered corresponds to
temperatures ranging from 0 to 35 mK. Steering achieves nonzero
values in this regime of temperatures.
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of (i) EPR quantum steering [11], a form of quantum
correlation stronger than entanglement and essential for one-
way device-independent quantum cryptography [8,12], and
(ii) interferometric power [14], a form of quantum correlation
weaker than entanglement, which captures the usefulness of a
state to act as a probe for quantum metrology in a worst-case
scenario [13].

We found that both correlations can be generated by the
DCE inrealistic experimental conditions, although they exhibit
quite different behaviors. On the one hand, steering is very
fragile and disappears for moderate levels of thermal noise,
even though the state of the radiation may remain entangled.
On the other hand, interferometric power is always nonvan-
ishing and is even enhanced by thermal noise. This shows that
the DCE can be regarded as an effective and practical resource
to generate useful correlations for entanglement-based [6]
and non-entanglement-based quantum technologies in the

PHYSICAL REVIEW A 92, 042107 (2015)

continuous variable setting, including in particular quantum
estimation and communication. An experimental verification
of black-box phase estimation [14] in a superconducting
architecture [2] or in a Bose-Einstein condensate [20], based
exclusively on correlated probe states of the (radiation or
phononic) field generated by the DCE, and exploiting thermal
enhancements, would be an intriguing subject for a future
work. Finally, let us highlight that these results would be valid
as well to any process that generates multimode squeezed
states in the presence of thermal noise.
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