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Abstract 36 

Context: Maternal obesity and gestational diabetes mellitus (GDM) can both contribute to 37 

adverse neonatal outcomes. The extent to which this may be mediated by differences in 38 

placental metabolism and nutrient transport remains to be determined.  39 

Objective: To examine whether raised maternal BMI and/or GDM contributed to a resetting of 40 

the expression of genes within the placenta that are involved in energy sensing, oxidative stress, 41 

inflammation and metabolic pathways. 42 

Methods: Pregnant women from Spain were recruited as part of the PREOBE survey at the first 43 

antenatal visit (12-20 weeks of gestation) and stratified according to pre-pregnancy BMI and the 44 

incidence of GDM. At delivery, placenta and cord blood were sampled and newborn 45 

anthropometry measured.  46 

Results: Obese women with GDM had higher estimated fetal weight at 34 gestational weeks, 47 

greater risk of preterm deliveries and Caesarean section. Birth weight was unaffected by BMI or 48 

GDM, however, women who were obese with normal glucose tolerance had increased placental 49 

weight and higher plasma glucose and leptin at term. Gene expression for markers of placental 50 

energy sensing and oxidative stress, were primarily affected by maternal obesity as mTOR was 51 

reduced whereas SIRT-1 and UCP2 were both upregulated. In placenta from obese women with 52 

GDM gene expression for AMPK was also reduced whereas the downstream regulator of 53 

mTOR, p70S6KB1 was raised. 54 

Conclusions: Placental gene expression is sensitive to both maternal obesity and GDM which 55 

both impact on energy sensing, and could modulate the effect of either raised maternal BMI or 56 

GDM on birth weight.  57 

  58 
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Introduction 59 

Obesity is of great importance to individual and global health [1]. Its prevalence amongst 60 

women of reproductive age is increasing [2] so that, in Spain for example, up to 17%  of 61 

pregnant women are obese [3]. The increased prevalence of obesity in pregnant women has 62 

occurred concurrently with an increase in gestational diabetes mellitus (GDM) [4] which now 63 

affects up to 14% of all pregnancies in the US, and around 2–6% of pregnancies in Europe [5, 64 

6]. Raised maternal body mass index (BMI) and GDM are both associated with adverse 65 

metabolic adaptations in the mother. These include increased risks of miscarriage and stillbirth, 66 

preeclampsia [7] and both intrauterine growth restriction and macrosomia [8], conditions with 67 

the potential to compromise fetal and newborn survival and health [9-11]. 68 

 69 

Consumption of an unhealthy diet in pregnancy has been linked to increased gestational weight 70 

gain (GWG) [12], raised BMI [13] and GDM [11] that are associated with fetal overgrowth [14]. 71 

Placental nutrient supply is one mechanism linking maternal nutritional status and fetal growth 72 

and is dependent on utero-placental blood flow, hormone production and nutrient transfer 73 

capacity, which is itself dependent on the type, number and activity of a range of nutrient 74 

transporters [15]. Increased glucose and lipid transport in GDM [16, 17] are also accompanied 75 

by placental defects arising from compromised trophoblast invasion and blood vessel formation 76 

[18]. Although the association between high pre-pregnancy BMI and fetal overgrowth is well 77 

established for type 1 diabetes [19], the effect of maternal BMI on placental function in women 78 

without GDM, its relationship to GWG [20] and its relationship to current diet remains 79 

unknown [21, 22].  80 

 81 

Obesity is associated with perturbed maternal metabolism, raised plasma hormones, including 82 

leptin, insulin and IGF1 and the accumulation of inflammatory markers (e.g. interleukin-6) [21]. 83 
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Insulin signalling is crucial for the regulation of intracellular and blood glucose concentrations. 84 

Alterations in the number of insulin binding sites, reflecting placental IR expression, have been 85 

demonstrated in obesity [23] and diabetes mellitus [24]. Fetal glucose and amino acids and 86 

placental insulin/IGF1 signalling act as upstream regulators of the mammalian target of 87 

rapamycin (mTOR), which is central to energy sensing and can be reset by maternal obesity and 88 

GDM [25] through phosphorylation mechanisms. These responses are mediated through 89 

changes in NFkB signalling, thereby resetting pro-inflammatory and pro-oxidative pathways 90 

[26] acting through toll-like receptor (TLR4) [27]. Furthermore, mTOR inactivation occurs 91 

through the AMP-activated protein kinase (AMPK) pathway [28], whilst uncoupling protein 92 

(UCP)2 limits oxidative damage within the placenta by decreasing reactive oxygen species 93 

(ROS) production [29]. Free fatty acids also decrease peroxisome proliferator-activated receptor 94 

gamma (PPAR)γ expression [30] whilst activating myeloid pro-inflammatory cells, although 95 

whether these placental responses can be modulated by BMI and/or GDM are not established.  96 

 97 

In the present study, we aimed to determine whether maternal BMI and/or GDM influenced 98 

placental homeostasis and energy balance and thus impact on birth outcomes. The establishment 99 

of direct links between maternal nutritional status, the placenta and weight at birth will give 100 

insight on mechanistic pathways thereby enabling targeted interventions designed to prevent 101 

adverse outcomes under these conditions. 102 

  103 
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Materials and Methods 104 

Participants 105 

The subjects participated in a longitudinal study on the influence of body composition by 106 

maternal genetics and nutrition (PREOBE study: P06-CTS-02341) undertaken between 2007 107 

and 2010 and registered with www.ClinicalTrials.gov, (NCT01634464) [31, 32]. It was 108 

conducted according to the guidelines in the Declaration of Helsinki and all experimental 109 

procedures approved by the Ethics Committees for Granada University, San Cecilio University 110 

Hospital and the University of Nottingham. Witnessed, written informed consent was obtained 111 

from all subjects before their study inclusion and participants were assured of anonymity. 112 

Anthropometric assessments of were undertaken following the standards established by the 113 

Spanish Society of Gynaecology and Obstetrics, the Fetal Foundation and the Spanish 114 

Association of Paediatrics. 115 

 116 

In the overall PREOBE study (Figure 1), 474 pregnant women aged 18-45, with singleton 117 

pregnancies, were assessed for eligibility between 12-20 weeks gestation at two different 118 

primary health care settings (Clinical University Hospital “San Cecilio” and the “Mother-Infant” 119 

University Hospital) in Granada, Spain. Amongst these, 124 declined to participate. Criteria for 120 

exclusion (n=19) were participation in another study simultaneously, receiving drug treatments, 121 

being underweight (BMI<18.5 kg/m2), having type 1 diabetes or pre-existing disease. Therefore, 122 

331 women were included in the project and classified according to their BMI (based on self-123 

reported pre-pregnancy weight provided on enrolment) as normal weight (pre-pregnancy 124 

BMI≥18.5 but <25 kg/m2; n=132), overweight (pre-pregnancy BMI ≥25 but < 30 kg/m2; n=56) 125 

and obese (pre-pregnancy BMI ≥30 kg/m2; n=64). In addition, 79 women were diagnosed with 126 

GDM following measurement of raised fasting plasma glucose concentrations, 25 women after a 127 

75g oral glucose tolerance test (OGTT) between 16-18 weeks gestation [11], if they either had a 128 
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family history of GDM, or had previously had GDM, or were obese, whilst 54 women after an 129 

additional 100 g OGTT between 24-28 weeks gestation.  130 

 131 

The number of women in each BMI group for whom collection of biological samples was 132 

achieved at the time of delivery are shown in Figure 1. Amongst these a subpopulation of 135 133 

subjects,  underwent molecular analysis in Nottingham  (i.e. ~half of those sampled within each 134 

group - 59 normal weight, 29 overweight, 22 obese, 25 GDM). The 25 mothers with GDM were 135 

subsequently classified according to their BMI as normal weight GDM (pre-pregnancy 136 

BMI≥18.5 but <25 kg/m2; n=14) and obese GDM (pre-pregnancy BMI≥30 kg/m2; n=11). 137 

Participants diagnosed with GDM then had increased medical supervision   and received 138 

nutritional advice for meal plans designed to control normoglycaemia, with none receiving 139 

insulin. 140 

 141 

During pregnancy, each mother attended additional PREOBE study medical visits at 24  (BMI 142 

group) or 34 weeks of gestation (BMI and GDM groups), .  Gestational age was calculated as 143 

from the last menstrual period and through ultrasound scan considering a gestational age below 144 

37 weeks as preterm delivery. Anthropometric characteristics of the fetus were estimated by 145 

using ultrasound scan at 34 gestational weeks. When there was a disagreement between the last 146 

menstrual period and ultrasound, the measurements taken by ultrasound were used to calculate 147 

the gestational age [33]. 148 

 149 

Maternal weight gain (GWG) during pregnancy was defined as weight change to the last 150 

recorded weight in the 34th gestational week and  compared to the 2009 IOM guidelines [34]. 151 

Large (LGA) and small (SGA) for gestational age infants were defined according to the 152 

Lubchenco growth curves [35] with standard adjustment for gestational age at birth i.e. birth 153 
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weights >90th population centile were defined as LGA infants and those <10th population centile 154 

as SGA. 155 

 156 

Maternal nutrient intake 157 

This was collected during late gestation (34-40 weeks) using standardised 7 day dietary records 158 

given during their second visit. Each participant was given verbal and written instructions  on 159 

how to record food and drinks consumed with a booklet of common food items and mixed 160 

dishes to facilitate estimation of portion sizes. Near delivery, food records were reviewed 161 

individually by a nutritionist for completeness and accuracy of food description and portion size. 162 

Nutritional data were analysed for nutrient intake by using a nutritional software program 163 

(CESNID 1.0: Barcelona University, Spain) based on validated Spanish food tables [36]. These 164 

results were compared with a food frequency questionnaire taken at 24 weeks gestation and both 165 

sets of records were reviewed with the mother around the time of delivery by a professional 166 

nutritionist with respect to their accuracy, thereby avoiding the potential inaccuracies associated 167 

with these types of records [37].  168 

 169 

Collection and analysis of blood samples 170 

Maternal venous blood was collected at 24, 34 weeks of gestation and during labour. Umbilical 171 

venous blood samples were collected within 30 minutes after placental delivery from a double-172 

clamped section of umbilical cord. EDTA and serum collection tubes were used (Vacutainer® 173 

Refs: 368857 & 367953) for haematological assessment and biochemical analyses respectively. 174 

Blood samples for serum preparation were left at 4°C for 15 minutes to allow blood clotting, 175 

centrifuged at 3,500 rpm for 10 minutes, and the serum fraction  transferred into a sterile tubes. 176 

Samples were stored at 4°C for same day analyses or at -80oC for further analysis. 177 

Haematological parameters were analysed using a haematology analyser (Sysmec XE-2100, 178 

Roche Diagnostic) and flow cytometer (Advia 120-160858, Bayer HealthCare, Tarrytown, NY). 179 
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Plasma glucose and triglycerides were measured enzymatically (Modular Analytics EVO, 180 

Roche, Neuilly sur Seine Cedex, France), whilst serum leptin concentrations measured by 181 

ELISA (Biosource Kap 2281, Denmark).  182 

 183 

Collection of placenta samples 184 

Placenta were collected and weighed immediately after delivery. Disc samples containing both 185 

maternal and fetal tissue were obtained from identical portions of the placental plate to avoid 186 

any as regional variations. Visual inspection of the placenta for necrosis or any other 187 

abnormality was undertaken by experienced clinicians. This included the measurement of 188 

placental size, weight and morphology and if there was any abnormality such as multilobules, or 189 

placenta spuria, annular, membranous, infarction, chorangiosis or vasculopathies, a sample was 190 

either obtained from a healthy region. Then after removal of the decidua a representative 191 

0.5×0.5×0.5cm (200mg) sample was excised from the middle of the radius (distance between 192 

the insertion of the umbilical cord and the periphery) of each placenta, rinsed twice with saline 193 

solution (NaCl 0.9%) and immediately placed into sterile 1.5ml microtubes containing RNAlater 194 

solution (Qiagen Ltd., Crawley, UK). All samples were stored under RNase free conditions 195 

using liquid nitrogen before storage at -80°C for later analysis in Nottingham. 196 

 197 

Laboratory analysis 198 

Gene expression 199 

Total RNA was extracted from 100mg of maternal placenta tissue using 200µl of chloroform per 200 

1mL of TRI reagent solution (Sigma Chemical Co. Poole, UK) and RNeasy extraction kit 201 

(Qiagen Ltd., Crawley, UK). Two µg RNA was used to generate 20µl cDNA using High 202 

Capacity RNA-to-cDNA kit (Applied Biosystems, CA 94404, USA). Negative control RT 203 

samples lacking Enzyme Mix (-RT) were included for each sample.  204 

 205 
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Real-time PCR using 15µl of reactions consisting of 4.5µl diluted 1:10 cDNA, 3.0µl (final 206 

concentration of 250 nM) gene specific primers (Table 1), and 7.5µl of SYBR Green mastermix 207 

(Thermo Scientific, ABgene Ltd. Epson, UK) were performed. Duplicate samples were run for 208 

40 cycles with negative controls in 96-well plates using the Techne Quantica Thermocycler 209 

(Techne Inc., Barloword Scientific, Stone, UK). Ten-fold serial dilutions of cDNA for each gene 210 

were used to generate standard curve analysis and only experiments with R2>0.985 were 211 

included. CT measurements, calculated by 2-ΔCt method [38], were used for mRNA expression. 212 

Human 18S ribosomal RNA was used as a housekeeping gene for data normalisation.   213 

 214 

Placental triglyceride and thiobarbituric active reactive substance (TBARS) content 215 

Total lipid extraction used an  adapted Folch method and the triglyceride concentration, 216 

determined spectrophotometrically (Randox Laboratories Ltd, Crumlin, UK). TBARS was 217 

determined as described by Mistry et al [39]. 218 

 219 

Statistical analysis 220 

These were performed using IBM SPSS v20.0 statistical software for Windows (IBM Corp. 221 

Armonk, NY, USA). To assess the data for normality, a Kolmogorov–Smirnov test was 222 

performed, where a p value >0.05 indicated normally distribution. Thereafter, appropriate 223 

parametric, or non-parametric, tests were used to analyse the effects of maternal overweight and 224 

obesity as follows: 1) anthropometrical and physiological comparisons between comparable 225 

groups of mothers, placentas and newborns were made using a Students t-test between relevant 226 

groups; 2) comparisons of gene expression were determined by using Mann-Whitney test. 227 

Categorical data were analysed using Chi-square test of independence. The study was not 228 

designed to look at the effect of fetal gender on the placenta. Continuous data presented are 229 

expressed as mean average with their standard errors (SEM), with p value <0.05 deemed to 230 

represent statistical significance.  231 

232 
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Results 233 

Maternal characteristics, pregnancy outcome, placental composition and metabolic status 234 

Obese women with GDM were older, more likely to be unemployed and have lower educational 235 

attainment. Women with obesity gained less weight up to 34 weeks gestation compared to those 236 

of normal weight and glucose tolerance (Table 1). In particular obese women with GDM gained 237 

significantly less weight than the 2009 IOM guidelines for their BMI group (Chi square test, 238 

p=0.04) and reflected their lower total energy and carbohydrate intake (Table 2). They also had 239 

a lower lipid intake primarily as a consequence of decreased saturated fatty acid consumption. 240 

The importance of IOM classified GWG [34] on birth weight was reflected in the trend for 241 

obese women to deliver bigger infants when gaining more weight than  recommended (Table 1). 242 

 243 

A majority of women gave birth normally at term, with obese women with GDM having a 244 

greater risk of preterm delivery and Caesarean section (Table 1). Although estimated fetal 245 

weight at 34 gestational weeks was higher when GDM was accompanied by obesity, size and 246 

weight at birth were not different between these groups (Table 3). The increased fetal weight at 247 

late gestation is likely to reflect the higher preterm and caesarean section delivery rate for obese 248 

women with GDM (Table 1). However, although maternal obesity alone did not affect size at 249 

birth, women who were obese with normal glucose tolerance had increased placental weight and 250 

LGA infants. 251 

 252 

Close to delivery, maternal blood glucose was elevated in women with GDM irrespective of 253 

BMI (Table 4). Triglyceride concentrations and monocyte counts were similar between groups 254 

but monocyte count was higher in the cord blood of  obese women with normal glucose 255 

tolerance. Serum leptin concentrations at delivery were elevated in obese compared to normal 256 

weight mothers and their offspring. Placental triglyceride content was raised in obese women 257 

with GDM with no difference in TBARS. 258 



12 
 

 259 

Maternal body weight, GDM and placental markers of energy homeostasis, cell growth and 260 

endocrine sensitivity 261 

Maternal obesity was accompanied with reduced placental gene expression for mTOR (Table 5), 262 

whilst upstream (i.e. Akt) and downstream (i.e. p70S6KB1) signalling molecules for mTOR were 263 

unaffected. Placental mRNA abundance for p70S6KB1 was increased when obesity was 264 

accompanied by GDM. In addition, GDM was associated with reduced placental gene 265 

expression for AMPK irrespective of BMI. Increased placental leptin gene expression in normal 266 

weight women with GDM, was reversed when GDM was accompanied by obesity. There were 267 

no differences in LEPR gene expression between groups. Markers of oxidative stress i.e. SIRT1 268 

and UCP2 were up-regulated in overweight and obese women, not by GDM. Placental gene 269 

expression for glucocorticoid receptor (GRα) increased with maternal GDM but was not 270 

affected by obesity, and no differences were apparent for inflammatory markers PPARγ and 271 

TLR4, or indices of insulin action i.e. IGF1R or IRS1. There was no evidence of any effect of 272 

gestational age, mode of delivery or insulin administration on any of these outcomes.  273 



13 
 

Discussion 274 

Our major finding is the differential effects of perturbations in energy homeostasis on placental 275 

expression of genes regulating placental size, function and endocrine sensitivity with raised BMI 276 

and GDM. Maternal obesity, but not GDM, contributed to greater placental weight whereas 277 

placental adaptation was demonstrated in markers of energy sensing for both groups. Reduced 278 

placental AMPK mRNA expression with GDM but not with obesity alone, and suppression of 279 

gene expression for mTOR with obesity are indicative of complementary control mechanisms. 280 

Furthermore, the mTOR downstream regulator, p70S6KB1 was increased by obesity even 281 

without GDM. Consequently, as maternal glucose was raised at term, and with GDM, these 282 

responses could be mediated by changes in glucose homeostasis [28, 40].  283 

 284 

Surprisingly, placental gene expression for IRS1 and IGFR1 were not affected by obesity or 285 

GDM, findings that differ with those described by Jansson et al. [41] in a cohort of Swedish 286 

women, in which placental activation of mTOR was accompanied by enhanced insulin/IGF1 287 

signalling with raised BMI. However, there are important demographic differences between 288 

studies, as the obese Swedish women had a higher mean BMI and substantially greater GWG 289 

than our Spanish women. Therefore, the discrepancy between studies may reflect placental 290 

threshold effects in response to excess energy intake [42, 43]. In the overweight and obese 291 

PREOBE women studied here, reduced placental mTOR gene expression was accompanied with 292 

raised SIRT1 and UCP2, suggesting enhanced antioxidant capacity [44]. These findings indicate 293 

an adaptive placental response to increased BMI, in line with the physiological role of 294 

mitochondria in regulating cellular ATP and AMP concentrations [45]. This could occur through 295 

changes in the activity of AMPK, Akt, and mTOR with the former sensing energy depletion 296 

[46], and the latter stimulated by raised energy supply [43].  Mitochondria also regulate ROS 297 

production and oxidative stress by uncoupling energy supply, with both AMPK and mTOR 298 

modulating oxidative stress through changes in UCP2 [47] and NFkB action [26, 48], thereby 299 



14 
 

promoting pro-inflammatory and pro-oxidative pathways within trophoblast cells. In contrast, 300 

mitochondrial replication is dependent on SIRT1 activity that also determines cell survival and 301 

senescence by inhibiting mTOR activity [49]..Our findings are, therefore, indicative of a 302 

protective or physiological adaptation by the placenta against oxidative stress [49, 50] with 303 

raised maternal BMI. This is further supported by the stability of placental TBARS content, a 304 

marker of oxidative stress [44], between groups suggesting that the fetus is protected from 305 

excess ROS. These responses were accompanied by similar expression of placental genes 306 

involved in inflammatory responses, i.e. PPARγ [30] and TLR4 [27], suggesting inflammation 307 

was not directly promoted with raised BMI [30].  308 

 309 

Although there were no differences in maternal triglyceride concentrations, obesity with GDM 310 

lead to placental triglyceride accumulation, that [51] has been shown to be correlated with fetal 311 

adiposity [52] reflected in the increase in LGA infants with maternal obesity. Increased 312 

placental triglyceride storage with GDM was accompanied by up-regulation of placental GRα 313 

that has been shown in an ovine model on nutritional manipulation of placental growth to follow 314 

changes in placental mass with gestation [53]. 315 

 316 

As expected, maternal obesity was associated with higher plasma leptin irrespective of GDM 317 

although whether this leads to a direct inhibitory effect on food intake [54] as reported by these 318 

women or reflects maternal metabolism complicated by leptin resistance [55] is uncertain. 319 

Although the placenta is a source of plasma leptin [56], which can be stimulated by obesity and 320 

GDM [57, 58], we did not observe differences in leptin gene expression, suggesting that 321 

adipocytes, rather than the placenta, are the main origin of differences in plasma leptin [59]. An 322 

alternative explanation is that there are changes in leptin turnover or that leptin regulated its own 323 

expression within the placenta through a mechanism involving the suppression of AMPK [60]. 324 

Effects on placental leptin expression through the action of glucocorticoids has also been 325 
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described [61], and is compatible with our observations of an increase in placental GRα 326 

suggesting a local inflammatory response within the placenta of obese gestational diabetic 327 

women [62, 63].  328 

 329 

Plasma leptin concentrations were raised in cord blood of infants born to obese and obese GDM 330 

mothers. This could reflect increased transplacental substrate supply from raised maternal 331 

plasma glucose in these women acting through fetal insulin to then promote fetal fat deposition 332 

[11, 64]. An enhanced glucose-insulin pathway can promote offspring adiposity [11], whilst the 333 

adipokine leptin stimulates cell proliferation by inducing the IRS1/MAPK pathway in a glucose-334 

dependent manner [65]. Furthermore, whilst fetal hyperleptinemia can contribute to induce 335 

leptin resistance by chronic activation of leptin receptors in the fetus [66], it is not known 336 

whether hypothalamic leptin targets are responsive before birth or whether neonatal leptin 337 

resistance leads to long-term adverse consequences. Enhanced circulating leptin in obese 338 

women was associated with higher leptin and monocyte concentrations in cord blood. In 339 

addition to its potential role in newborn adiposity [64, 67], growing evidence has linked leptin 340 

with the maturation of the hypothalamus [68] and the fetal and neonatal immune system [69], 341 

leading to impaired immune responses [59]. As part of the PREOBE follow-up further studies 342 

are exploring potential long term implications of obesity and diabetes in offspring 343 

neurodevelopment through functional measurements. This will enable a more direct assessment 344 

of any impact on differences in leptin surge between infants born into the study and their 345 

subsequent brain development. Increased pro-inflammatory cytokine expression, including 346 

TNFα and IL6, and/or enhanced circulating monocyte chemo-attractant protein (MCP)1 347 

concentrations in obese women may account for raised monocytes concentrations in cord blood 348 

of their infants [70]. Higher plasma MCP1 [71] has been implicated in monocyte recruitment 349 

into adipose tissue of newborns from obese individuals [70] and ultimately produce pro-350 
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inflammatory cytokines, contributing to a state of insulin resistance and low grade 351 

inflammation. 352 

 353 

As the relative risk of obese and GDM women producing a LGA infant is substantial [11, 14, 354 

72],  one strategy to prevent this outcome [73] is through healthier food choices [74]. In our 355 

study, the first line of treatment of GDM was through nutrition and lifestyle advice in maternity 356 

welfare clinics. These reinforced local secular food preferences of Spanish women of primarily 357 

Hispanic European white origin (95-98%) for a Mediterranean diet rich in polyunsaturated fatty 358 

acids, fruit and vegetables [75, 76] which contrast with those of Northern European and 359 

American women recruited in previous studies [77, 78]. However, although there was no 360 

difference in mean birth weight in our study, maternal obesity was associated with a higher 361 

incidence of LGA infants despite lower self-reported energy and macronutrient intakes. The 362 

latter may reflect recall bias as women with increased BMI do not always accurately report their 363 

food intake [79, 80]. Alternatively nutrient supply to the fetus of obese woman may be more 364 

dependent on existing maternal nutrient stores and current metabolic state [81] than daily 365 

intakes. This is supported by raised plasma glucose concentrations even in those obese women 366 

who were not diagnosed with GDM. Furthermore, the dietary advice given to these women 367 

despite being lowering GWG, did not reduce the incidence of LGA infants, although it is 368 

acknowledged that the study was not powered to directly assess such an outcome. 369 

 370 

In conclusion, placental gene expression is sensitive to both maternal BMI and GDM which 371 

impacts on both placental triglyceride content and energy sensing. These adaptations could 372 

modulate maternal and fetal glucose homeostasis and thus prevent some of the potential adverse 373 

consequences on fetal growth and body composition. 374 

  375 
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Table 1: Socio-demographic characteristics and birth weights of all participants, with and without gestational diabetes: 598 
normal weight (N), overweight (OW), obese (O), gestational diabetic normal weight (GDMN) and gestational diabetic obese 599 
(GDMO) pregnant women. 600 

Maternal characteristics N (n=59) OW (n=29) O (n=22) GDMN (n=14) GDMO (n=11) 

Age at delivery (years) 30.4±4.5 30.9±7.2 29.0±4.7 33.1±4.1* 34.7±4.3** 

Unemployed (%) 32.2 28.6 38.1 14.3 66.7* 

Higher education (University) (%) 42.4 42.9 22.7 42.8 10 

Smoking during pregnancy (%) 12.1 25* 9.1 0 0 

Primiparous (%) 58.6 46.4 63.6 57.1 60 

Height (cm) 162.9±5.7 162.5±6.4 162.7±6.2 159.3±3.9 160.5±6.0 

Pre BMI (kg/m2) 21.8±1.8 27.8±2.2
***

 32.5±2.6
***

 22.4±1.8 35.5±4.9*** 

BMI at 34 weeks (kg/m2) 26.6±2.6 31.3±2.4
***

 35.4±2.4
***

 25.9±2.6 36.4±4.1*** 

GWG 0-34 weeks (kg) [32] 12.6±4.3 9.9±4.6
**  7.3±5.1

***
 9.0±5.6

**
 2.2±7.8

***
 

     LGWG (kg & % of women in   
     BMI category: n=15;5;8;8;6 resp.) 

7.3±1.9 
(25%) 

2.7±1.9
*** 

(18%) 
2.5±1.7

*** 

(36%) 

5.2±3.5
* 

(57%) 

- 3.4±5.0
*** 

(55%) 

     AGWG (kg & % of women in   
     BMI category: n=23;9;5;3;2 resp.) 

12.1±1.1 
(39%) 

8.2±1.2
*** 

(32%) 

5.9±0.9
*** 

(23%) 

11.4±1.0 
(22%) 

5.2±0.6
*** 

(18%) 

     HGWG ((kg & % of women in   
     BMI category: n=21;14;9;3;3 resp.) 

17.0±2.9 
(36%) 

13.6±2.4
** 

(50%) 

12.3±3.4
** 

(41%) 

17.0±1.1 
(21%) 

11.3±3.2
** 

(27%) 

 
BW for each GWG 0-34 weeks (g) [32] 

     

     LGWG (n=15;5;8;8;6 resp.) 
 

3410±116 
 

 
3496±241 

 

 
3253±158

 

 

 
3307±151

 

 

 
3373±221

 

 

     AGWG (n=23;9;5;3;2 resp.) 
 
  3160±61 

 

 
2870±109

 

 

 
3318±274

 

 

 
3493±334 

 

 
3090±350 

 

     HGWG (n=21;14;9;3;3 resp.) 
 

3348±101 
 

 
3475±117

 

 

 
3707±156.

 

 

 
3433±98 

 

 
3716±301 

 

No. of Caesarean delivery (%) 12.3 25.9 38.1 25 50* 

Preterm delivery (< 37gw) (%) 3.4 3.4 9.1 14.3 27.3* 

Male new born (%) 52.5 39.3 61.9 57.1 72.7 

Values are means ± SD or categorical data as appropriate; n: number of women per group; gw: gestational weeks.  601 

Pre: pregestational; BMI: body mass index;  602 

GWG: gestational weight gain during the first 34 gestational weeks based on 2009 IOM guidelines for each category [34]: LGWG 603 
- gestational weight gained (kg) classified as low: <9.8 kg for normal weight, <5.9 kg for overweight and <4.2 kg for obese 604 
women;  AGWG - gestational weight gain (kg) classified as adequate: 9.8-13.6 kg for normal weight, 5.9-9.8 kg for overweight 605 
and 4.2-7.6 kg for obese women; HGWG - gestational weight gain (kg) classified as high: >13.6 kg for normal weight, >9.8 kg for 606 
overweight and >7.6 kg for obese women.  607 

Statistical differences: *p<0.05, **p<0.01 ***p<0.001 compared to normal weight group (Chi-square test or t-independent test 608 
for continuous variables; chi-square test for categorical variables). 609 
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Table 2: Maternal energy and nutrient intake: normal weight (N), overweight (OW), obese (O), gestational diabetic normal 610 
weight (GDMN) and gestational diabetic obese (GDMO) pregnant women. 611 

Maternal dietary intake N (n=37) OW (n=15) O (n=8) GDMN (n=11) GDMO (n=6) 

Energy (kcal) 2155±339 2114±784 1831±560* 1879±379* 1656±348
**

 

Total carbohydrates (g) 237±54 217±63 189±69* 187±31
**

 173±46
**

 

Total proteins (g) 83.9±17.5 84.5±28.4 74.8±1.2 84.4±23.0 74.8±11.9 

Total lipids (g) 90.5±19.4 95.6±54.2 86.5±26.4 81.7±27.4 68.7±14.7* 

SFA (g) 33.8±8.3 36.6±25.9 30.3±8.9 28.3±13.8 21.4±5.6
**

 

MUFA (g) 36.2±9.6 38.3±19.2 35.1±14.5 36.5±12.1 31.8±10.1 

PUFA (g) 12.8±4.3 12.5±7.2 13.7±4.6 10.1±2.0 9.7±2.7 

Values are means ± SD; n: number of women per group;  612 

SFA: saturated fatty acid; MUFA: monounsaturated fatty acid; PUFA: polyunsaturated fatty acid.  613 

Statistical differences: *p<0.05, **p<0.01 compared to normal weight group (t-independent test for continuous variables). 614 

  615 
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Table 3: Anthropometric and clinical characteristics of infants born to mothers with and without gestational diabetes: 616 
normal weight mother (N), overweight mother (OW), obese mother (O), gestational diabetic normal weight mother (GDMN) 617 
and gestational diabetic obese (GDO) mother. 618 

Infant  characteristics N (n=59) OW (n=29) O (n=22) GDMN (n=14) GDMO (n=11) 

Estimated fetal weight at 34 
weeks of gestation (g)  

2363±183 2345±183 2393±383 2467±380 2541±501* 

Placental weight (g) 469±120 495±135 531±114* 498±134 476±93 

Placental to birth weight ratio 
0.143±0.03
1 

0.157±0.046 0.158±0.041 0.147±0.035 0.139±0.017 

Gestational age (weeks) 39.2±1.0 39.4±1.6 39.3±1.7 39.3±1.3 38.8±1.3 

Newborn length (cm) 50.2±1.8 50.5±1.5 50.6±2.7 50.6±1.7 50.9±3.4 

Newborn weight (g) 3292±410 3230±587 3454±549 3374±402 3415±549 

   SGA (n) (%) 4 (6.8) 3 (10.3) 1 (4.5) 1 (7.1) 2 (18.2) 

   AGA (n) (%) 52 (88.1) 24 (82.8) 16 (72.8) 12 (85.8) 7 (63.6) 

   LGA (n) (%) 3 (5.1) 2 (6.9) 5 (22.7) * 1 (7.1) 2 (18.2) 

Ponderal index (g/cm3*100) 2.62±0.27 2.56±0.49 2.58±0.28 2.60±0.34 2.60±0.42 

Anthropometric characteristics of the fetus were estimated by using ultrasound scan at 34 gestational weeks. 619 
 620 
Values are means ± S.D.; n: number of women per group;  621 
 622 
SGA: small for gestational age (birthweight population centile < 10%); AGA: average for gestational age (10% < birthweight 623 
population centile < 90%); LGA: large for gestational age (birthweight population centile > 90%).  624 
 625 
Statistical differences: *p<0.05 compared to normal weight group (t-independent test for continuous variables; chi-square test 626 
for categorical variables). 627 
  628 
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Table 4: Maternal, placental and cord blood metabolic characteristics: normal weight (N), overweight (OW), obese (O), 629 
gestational diabetic normal weight (GDMN) and gestational diabetic obese (GDMO) pregnant women. 630 

Maternal blood at term N (n=59) OW (n=29) O (n=22) GDMN (n=14) GDMO (n=11) 

Glucose (mmol/L) 4.3±1.3 4.6±1.3 5.3±2.3* 6.0±2.2*** 6.1±1.9*** 

Triglyceride (mmol/L) 11.7±3.9 13.2±4.2 12.8±4.3 11.6±3.9 12.3±3.3 

Leptin (µg/L) 16.0±13.6 24.2±23.5 33.9±21.9** 21.1±16.4 36.6±19.9** 

Monocyte count (x109/L) 0.5±0.2 0.6±0.2 0.6±0.2 0.6±0.3 0.40±0.2 

Cord blood Ψ N (n=33) OW (n=18) O (n=16) GDN (n=10) GDO (n=7) 

Glucose (mmol/L) 3.8±1.2 3.6±1.2 3.3±1.3 3.9±0.7 4.3±1.0 

Triglyceride (mmol/L) 2.7±1.1 2.5±0.8 2.5±1.4 2.5±1.3 2.5±1.2 

Leptin (µg/L) 19.7±17.9 32.7±19.6 62.3±69.0* 42.6±31.5* 36.6±19.9 

Monocyte count (x109/L) 1.0±0.4 1.1±0.4 1.4±0.6* 1.2±0.8 1.1±0.4 

Placental tissue N (n=59) OW (n=29) O (n=22) GDN (n=14) GDO (n=11) 

Total placental TG (mg/g) 
per placental weight (g) 

19.9±10.0 22.0±10.9 23.9±12.8 19.7±10.6 28.3±16.5* 

Relative placental TBARS  1.0±0.3 0.9±0.3 0.8±0.2 1.0±0.3 1.0±0.3 

Values are means ± SD; n: number of women/group; Ψ see text for information on missing individuals.  631 

TBARS: thiobarbituric acid reactive substances; TG: triglyceride. 632 

 Statistical differences: *p<0.05, **p<0.01 compared to normal weight group (t-independent test for continuous variables). 633 

634 
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Table 5: Effects of maternal BMI on gene expression markers of energy sensing and balance, oxidative stress and 635 
inflammation in placenta of normal weight (N), overweight (OW), obese (O), gestational diabetic normal weight (GDMN) 636 
and gestational diabetic obese (GDMO) pregnant women. 637 

 638 
 639 
 640 
Data expressed relative to housekeeping gene (ribosomal 18S RNA), normalised to the control group to give the fold change.  641 
 642 
a.u.: arbitrary units; n = number of women/group.  643 
 644 
AMPK: AMP-activated protein kinase; Akt: v-akt murine thymoma viral oncogene homolog; mTOR: mammalian target of 645 
rapamycin; p70S6KB1: ribosomal protein S6 kinase 70kDa polipeptide; LEP: leptin; LEPR: leptin receptor; IGF1R: insulin growth 646 
factor 1 receptor; IRS1: insulin receptor substrate 1; UCP: uncoupling protein; SIRT: sirtuin; PPARγ: peroxisome proliferator-647 
activated receptor gamma; TLR: toll like receptor; GRα: glucocorticoid receptor alpha.  648 
 649 
Data are non parametric and represent mean ± S.D. Statistical differences: *p<0.05, **p<0.01, ***p<0.001 compared to normal 650 
weight (Mann Whitney test). 651 
 652 

 653 

 654 

Pathway       gene NCBI sequence 
Target 
Gene 

N 
(n=59) 

OW  
(n=29) 

O  
(n=21) 

GDMN   
(n=14) 

GDMO    
(n=11) 

Energy sensing        

 NM_006251 AMPK 1.0±0.1 0.9±0.1 1.0±0.2 0.6±0.1* 0.4±0.1*** 

 NM_001014432 Akt1 1.0±0.1 1.0±0.2 1.2±0.2 0.8±0.1 0.9±0.1 

 NM_004958 mTOR 1.0±0.1 0.7±0.1 0.5±0.1* 0.6±0.1 0.5±0.1 

 NM_003161 p70S6KB1 1.0±0.1 1.1±0.2 1.6±0.4 0.7±0.2 1.4±0.2* 

Energy balance        

 NM_000230 LEP 1.0±0.2 1.5±0.5 0.9±0.4 4.1±1.1* 0.8±0.4 

 NM_002303 LEPR 1.0±0.2 0.8±0.1 1.1±0.3 0.5±0.0 0.5±0.1 

Insulin action        

 NM_000875 IGF1R 1.0±0.1 1.2±0.1 1.2±0.2 1.0±0.1 0.8±0.1 

 NM_005544 IRS1 1.0±0.1 1.1±0.1 1.4±0.2 0.9±0.1 0.8±0.1 

Oxidative stress        

 NM_001033611.1 UCP2 1.0±0.2 1.4±0.2** 1.4±0.2* 1.3±0.4 0.8±0.3 

 NM_001142498 SIRT1 1.0±0.1 1.4±0.2* 1.6±0.2** 0.8±0.2 1.5±0.3 

Inflammation        

 NM_015869.4 PPARγ 1.0±0.1 0.9±0.1 0.9±0.1 1.0±0.2 0.9±0.1 

 NM_001135930.1 TLR4 1.0±0.1 0.9±0.1 0.9±0.1 0.8±0.1 0.8±0.2 

 NM_000176 GRα 1.0±0.1 1.2±0.1 1.0±0.1 1.2±0.1* 1.5±0.2* 
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 670 
Figure 1: Offspring birth weight trend according to IOM stratification of maternal metabolic status and weight gain during 671 
the first 34 gestational weeks. 672 
Normal weight (white bar; n=15;23;21), overweight (light grey bar; n=5;9;14) obese (grey bar; n=8;5;9), normal weight 673 
gestational diabetes (dark grey bar; n=8;3;3) and obese gestational diabetes (black bar; n=6;2;3) pregnant women. 674 
Values are means ± SEM; weight gain during the first 34 gestational weeks is based on 2009 IOM guidelines for each BMI 675 
category[34]:  LGWG: low gestational weight gain (<9.8 kg for normal weight, <5.9 kg for overweight and <4.2 kg for obese 676 
women); AGWG: adequate gestational weight gain (9.8-13.6 kg for normal weight, 5.9-9.8 kg for overweight and 4.2-7.6 kg for 677 
obese women); HGWG: high gestational weight gain (>13.6 kg for normal weight, >9.8 kg for overweight and >7.6 kg for obese 678 
women). 679 
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