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Abstract—A hyper-heuristic is a heuristic optimisation method
which generates or selects heuristics (move operators) based on
a set of components while solving a computationally difficult
problem. Apprenticeship learning arises while observing the
behaviour of an expert in action. In this study, we use a multilayer
perceptron (MLP) as an apprenticeship learning algorithm to
improve upon the performance of a state-of-the-art selection
hyper-heuristic used as an expert, which was the winner of
a cross-domain heuristic search challenge (CHeSC 2011). We
collect data based on the relevant actions of the expert while
solving selected vehicle routing problem instances from CHeSC
2011. Then an MLP is trained using this data to build a selection
hyper-heuristic consisting of a number classifiers for heuristic
selection, parameter control and move acceptance. The generated
selection hyper-heuristic is tested on the unseen vehicle routing
problem instances. The empirical results indicate the success of
MLP-based hyper-heuristic achieving a better performance than
the expert and some previously proposed algorithms.

I. INTRODUCTION

The design and development of effective heuristic optimisa-
tion methods to real-world problems is often time-consuming
and becoming increasingly complex. Hence, there is a con-
siderable interest in automating the design of heuristic search
methods and obtaining more general approaches applicable
to various instances with different characteristics or multiple
domains [12], [22]. Hyper-heuristics have emerged as such
methods [16]. A hyper-heuristic is a high level search method
or a learning mechanism that selects or generates a set of low
level heuristics for solving hard computational problems. A
selection hyper-heuristic performs a single point based search
using a single active solution and fixed set of low level
heuristics. At each step, a heuristic is chosen and applied to a
solution and the resultant solution is considered to replace the
incumbent solution using a move acceptance method. In this
study, each low level heuristic is perturbative, processing and
returning a complete solution at all times. The hyper-heuristic
research has the potential of bringing together promising ideas
from the field of Machine Learning accumulated over the years
into heuristic optimisation [10]. A diagram of hyper-heuristic
framework in figure 1 illustrates the domain barrier between
hyper-heuristic and problem domain layer. Any problem do-
main specific knowledge is not allowed to pass through that
barrier. However, domain independent information, such as,
quality of a solution, number of heuristics available can be
accessed by a hyper-heuristic.

Fig. 1: Hyper-heuristics Conceptual Framework [8]

There are different classifications for hyper-heuristics based
on different criteria [11], [13]. This study focuses on an
offline approach based on apprenticeship learning [1] which
generates a selection hyper-heuristic for solving a Vehicle
Routing Problem (VRP) [17]. Asta and Özcan [5] applied
apprenticeship learning using the VRP domain from a hyper-
heuristic benchmark implemented as a part of Hyper-heuristic
Flexible framework (HyFlex) [32]. They have used decision
trees, C4.5 as the machine learning approach. However, in this
study, we use a multilayer perceptron (MLP) and compare
its performance to C4.5 and some other previously proposed
approaches on the same problem domain. MLP learns from an
expert selection hyper-heuristic through training (observation)
how to perform heuristic selection, move acceptance and
set relevant parameters using a set of sample instances and
then mimics the behavior of the expert operating as a ‘new’
selection hyper-heuristic for solving unseen (test) instances.

This paper is organised as follows. Section II provides
an overview of related work, Multilayer Perceptron, Vehicle
Routing Problem, and Cross-Domain Heuristic Search Chal-
lenge (CHeSC), successively. Section III describes the pro-
posed approach. Section IV presents the experimental results.
Finally, section V summarises our findings and points out
potential research directions.



II. BACKGROUND

A. Related Work

The idea of automating the design of algorithms has been
explored from many perspectives since the initial work of
machine learning by Arthur Samuel in 1959 [31]. According
to [34], the latest machine learning research can operate at a
higher level of generality than hyper-heuristic. The concept
of a heuristic in the optimisation community is similar to
that of a classifier in the machine learning community. Since
both communities share a common goal which is providing
algorithms ability to generalise to new datasets, it motivates
to closer integration on these two fields.

Apprenticeship learning is mostly applied in the field of
robotics [1]. In a previous work [5], a machine learning
approach based on apprenticeship learning with the C4.5 clas-
sifier was implemented to build a generalised selection hyper-
heuristics. The approach was initially trained on small problem
instances in the VRP domain consisting of two representative
problem instance classes (Solomon and Gehring-Homberger
[40]). It was capable of generalizing the extracted knowledge
to unseen problem instances. The result outperforms the expert
which used an Adaptive Dynamic Heuristics Set (ADHS) or
AdapHH strategy [30]. It is worth mentioning that it also
delivers outstanding performance compared to some other
previously proposed selection hyper-heuristics in various oc-
casions on HyFlex VRP instances. This work encourages us to
extend the previous work in order to gain a better performance
by implementing a Multilayer Perceptron (MLP). Other work
on apprenticeship learning was implemented in Bin Packing,
which can be found in [7].

This study is also inspired from work in [4], which found
that between two classification algorithms of Waikato Envi-
ronment for Knowledge Analysis (Weka) interface, MLP is
a better algorithm compared with J48 (Java implementation
of C4.5 algorithm) in most of the datasets available from
The University of California Irvine (UCI) Machine Learning
Repository. Weka is a popular open source data mining and
machine learning platform implemented in Java [43]. Algo-
rithms based on neural network have better learning capability
if trained properly. Besides, in this case it only requires a small
training times.

Actually, function approximation with MLP has been im-
plemented by one of the contestants of the CHeSC 2011 com-
petition [18]. MLP as learning agent became one component
on the algorithm proposed based on Reinforcement Learning
(RL). That is, in [18], the proposed algorithm is only responsi-
ble for heuristic selection and no move acceptance strategy is
employed. One major difference between our approach and the
one in [18] is that we also build move acceptance classifiers
to improve the performance.

There are a number of related studies on machine learning
in hyper-heuristic. One work observed off-line learning hyper-
heuristic using Evolutionary Algorithms (EAs) in bin-packing
problems [38]. EAs is excellent for searching very large
spaces. Other work investigated on-line learning evolutionary

hyper-heuristics which solves Dynamic VRP [20]. On-line
learning is good if there is lack of availability instances and
more suitable for dynamic problems.

B. Multilayer Perceptron

Multilayer Perceptron (MLP) is the most popular neural
network architecture, which utilises back-propagation on error-
correction learning rule, and process input by feeding it
forward from one layer to the next layer. There are three layers
in MLP: input, hidden, and output layers. Artificial Neural
Network (ANN) is able to predict with high accuracy after it
has been taught with historical data. MLP have been applied
successfully to solve many real world applications. Some
well-known application areas are airline marketing tactician,
data compression, financial prediction, hand-written character
recognition, autonomous driving, ECG noise filtering, protein
secondary structure, psychiatric patient length of stay, and
speech recognition [36].

MLPs pass the output of their layers through an activation
function. MLP usually use sigmoid (logistic) activation func-
tion in the feed forward. By far this is the most common form
of activation function.

Sigmoid (logistic) activation function is defined by [23] :

yj =
1

1 + exp(−vj)
(1)

Differentiability is the only requirement that an activation
function has to satisfy. This form is defined by :

yj =

{
0 for

∑n
j=1 wjxj ≤ threshold

1
1+exp(−vj)

for
∑n

j=1 wjxj > threshold
(2)

where vj is the weighted (wj) sum of all synaptic inputs
(xj) of neuron j, and yj is the output of the neuron.

Tuning the MLP topology design is a challenge itself
because the task is complex and commonly addressed by
simple trial and error procedures. There are no constraints on
the number of hidden layers, however it has been demonstrated
in [25] that an MLP with a single hidden layer can approxi-
mate any bounded continuous function with arbitrarily small
error. Hence for a preliminary work, it is sensible to focus
on one hidden layer and not complicate the MLP structure
unnecessarily.

Moreover, parameters tuning is needed to obtain an optimal
classifier. Four main parameters for learning MLP are the
number of hidden nodes or neurons, learning rate, momentum,
and number of training time (iterations). First is in terms of
neurons number, because MLP is intended to do classification,
then it is often preferable to have one output neuron for each
group that input items are to be assigned into. The number
of output in MLP depends on the number of classes in the
dataset, while the input number depends on the attributes in
the dataset. There are many rule-of-thumb for determining the
right number of hidden neurons to provide a starting point.
One piece of guidance is from [24]. It states that there are
three rules for determining the correct number of neurons to



use in the hidden layer, namely the number should be between
the size of input and output layer, should be 2/3 the size of
input layer plus size of output layer, or should be less than
twice the size of input layer.

The second parameter to be considered is learning rate.
Too high a learning rate makes the perceptron periodically
oscillate around the solution. At this condition, most networks
do not converge or they converge to a poor solution and
become stuck. Learning rate value is mostly less than or
equal to 0.2 based on [2]. In addition, a typical ranges of
learning rate is [0.05 ≤ learning rate ≤ 0.75] [37]. However,
the common number of learning rate is 0.1 which is often
suggested according to [42].

Momentum as third parameter is a method to reduce prob-
lems of instability while increasing the rate of convergence. In
general, small learning rate values call for larger momentum
values to increase the speed and probability of convergence.
Large values of momentum will allow the algorithm to re-
member more terms in the adjustment history.

C. Vehicle Routing Problem

Vehicle Routing Problem (VRP) aims to design an optimal
distribution of delivery from a central depot to a number of
customers subject to constraints. The objective of VRP is to
minimize efforts such as route length, total driving costs or
driving time, while the common constraints include vehicle
capacity, vehicle type, number of cities, and which precedence
relations between pairs of cities for delivering services to a
customer have to be satisfied [29]. Recent study in VRP for
example is in [44] who proposes a new Electric Vehicle (EVs)
route optimization model where green VRP is a relatively new
promising research topic in terms of energy saving. Besides,
various variants of VRP are observed in [35] by presenting
a general heuristic for all. Some previous works on the latest
advances of VRP can be found in [21].

In this study, Vehicle Routing HyFlex model is used which
include an extra variant, namely time window limit. Solution
will be valid if a customer is served within this time range.
The objective function for VRP HyFlex domain is subject to
minimization of the number of vehicles and travelled distance
[41]. Objective function can be defined as follows :

obj = c× v + d (3)

where v is the number of vehicles, d is the travelled distance,
and c, initially set to 1000, is the level of importance to the
number of vehicles.

VRP instances which currently available in HyFlex frame-
work are taken from two sources, Solomon and Gehring-
Homberger with five instances from each source. For these two
sources, there are three types of instances which depend on
the determination of the customer’s location. They are Random
(R), Clustered (C), or Clustered Random (RC). Solomon and
Gehring-Homberger have been utilized by many researchers as
benchmark datasets in VRP. Further details on the list variant
of instances can be seen in table I. The main difference be-
tween instances are the number of vehicles and their capacities.

TABLE I: VRP instances in HyFlex [27]

Instance Name No.Vehicles Vehicle Capacity
0 Solomon/RC/RC207 25 1000
1 Solomon/R/R101 25 200
2 Solomon/RC/RC103 25 200
3 Solomon/R/R201 25 1000
4 Solomon/R/R106 25 200
5 Homberger/C/C1-10-1 250 200
6 Homberger/RC/RC2-10-1 250 1000
7 Homberger/R/R1-10-1 250 200
8 Homberger/C/C1-10-8 250 200
9 Homberger/RC/RC1-10-5 250 200

There are ten low-level heuristics for the VRP domain
implemented within HyFlex, which are categorized as follows
[32].

1) Mutation (MU): modifies solution component
2) Ruin-Recreate (RR): partially destroys then repairs so-

lution
3) Hill Climbing (HC): conducts iterative moves in neigh-

bourhood to improve quality of solution
4) Crossover (XO): takes two candidate solutions and then

returns a new solution as offspring
The indices of the low level heuristics in HyFlex for HC are
{4,8,9}, MU are {0,1,7}, RR are {2,3} and XO are {5,6}.

Hill Climbing is used for intensification to perform local
search in a particular region, while mutation, ruin-recreate,
and crossover are used for diversification to explore other good
regions of the search space. Furthermore, there are two param-
eters that control the low-level heuristics behaviour namely
Intensity of Mutation (IoS) for mutation and ruin-recreate
heuristics and Depth of Search (DoS) for hill climbing.

D. Cross-Domain Heuristic Search Challenge

Because HyFlex is an easy to use platform in the form of
flexible Java class library, HyFlex v1.0 was used to support
the first Cross-Domain Heuristic Search Challenge (CHeSC
2011), which is a competition run and organised by Automated
Scheduling, Optimisation and Planning (ASAP) group at the
University of Nottingham, Nottingham, United Kingdom in
2011. The goal has been to promote development of effective
general search methodologies and get more insights into dif-
ferent strategies in algorithm design [9]. CHeSC 2011 aimed
at finding the state-of-the-art selection hyper-heuristic which
performs the best across six different problem domains.

The scoring system was based on median performance
inspired by Formula 1. The top eight algorithms receive 10,
8, 6, 5, 4, 3, 2 and 1 points respectively, while the remaining
algorithms receive no point. These points are added across
number of instances. Algorithm with highest points is the
winner.

CHeSC 2011 attracted 20 participants across the globe to
implement HyFlex as software interface. For testing, there
were six problem domains provided including two hidden
domains. Five instances from each domain that were selected
consist of three instances from training set provided and
another two were hidden. The hidden parts aimed to reach



generality of algorithm. Participants needed to benchmark
their machines with program provided to know the time limit
they can run their algorithms. This program corresponds to
ten minutes of computer usage in the competition. Moreover,
scoring was based on a typical 31 run by reusing the random
seeds so that each algorithm and instance will start from the
same initial state.

PHUNTER [14] ranked the first on the VRP problem do-
main in CHeSC 2011. The proposed selection hyper-heuristic
is configured using an offline training session first via a
decision tree. The approach is based on an iterative local
search performing intensification and diversification when
needed. Adaptive Hyper-heuristic (AdapHH) was the winner
of CHeSC 2011 [30]. AdapHH outperformed its competi-
tors in three problem domains: MAX-SAT, BP, and TSP. It
ranked tenth in PS, second in FS, and fifth in VRP. AdapHH
implements adaptive features to manage heuristic sets by
adapting heuristic parameters on-line. Based on performance
metric with quality indicators such as speed and improvement
capability, it will decide which heuristics have to be excluded.
It also investigates relay hybridisation to determine effective
pairs of heuristics. For accepting mechanism, AdapHH imple-
ments adaptive iteration limited list-based threshold by using
fitness values of previous best solutions.

III. PROPOSED APPROACH

Our approach is that the MLP algorithm constructs a clas-
sifier for each dataset. This datasets were generated by the
training phase of Apprenticeship Learning (AL) based on the
work in [5]. AL represents each state of search space by a
feature vector. Then after defining necessary actions, extracting
of corresponding actions from expert algorithm was executed.
The extraction was for each state of the search that is inserted
into various datasets. The data were collected only if the expert
accepted the solution.

The expert was running on instance 0 from Solomon and
instance 5 from Gehring-Homberger. These two instances were
chosen arbitrarily to represent the generalization, because they
were taken from each class of VRP HyFlex domain. After
that, thirteen datasets were constructed, and the two instances
combined together. In each dataset, there are eight values of
delta as the attributes. Delta means the change in evaluation
function (fitness value) from current solution to candidate
solution in eight previous consecutive time. This number is
sufficient in AL. Dataset was split into 13. One for predicting
heuristic selection, one for estimating Depth of Search (DoS)
parameter value, one for estimating Intensity of Mutation
(IoM) parameter value, and the other ten for each low-level
heuristics move acceptance criteria. These accepting criteria
are :

1) Equal Accepted (EA) : accept candidate solution even
if it is the same with current solution

2) Worsening Accepted (WA) : accept candidate solution
even if it is worse than current solution

Improving solutions are always accept, however the policy
to deal with non-improving (equal or worsening) solution

is also critical in order not to get trapped in local optima.
Besides, the systems can only accept the heuristic index chosen
in previous step. Consequently, attention is given for both
heuristic selection and acceptance process.

First phase in this work is generating classifier for each
datasets using MLP. Since the procedure for finding a good
enough MLP model requires trial and error, the number of
training times was limited to 500 epochs. As stated in II-B,
the parameters for MLP learning, consist of the learning rate,
momentum, and number of hidden neurons. In this case, data
normalization is not necessary. This is because MLP classifier
can learn to apply appropriate scaling to the pattern attributes.
Meaning that any rescaling of input can be effectively undone
by changing the corresponding weights and biases. So that
applying data normalization or not will give the same outputs
in both ways [39].

Cross-validation with folds number ten is used as test
options in doing the classification. This will split the whole
dataset into equal sized subsets. It returns the averaged value
of the prediction scores of each subset obtained on the union
of all the other subsets [28]. Prediction scores for example are
returned in the form of an estimation classifier’s error rate.
This approach does not waste too much data, which is a major
advantage in problem where the number of samples is very
small.

Second phase is the testing stage which applies the MLP
classifiers to unseen instances. The workflow of MLP learning
hyper-heuristics is illustrated in figure 2. There are five steps,
namely initialize solution, select heuristic based on MLP
classifier, set parameter (DoS or IoM) based on low level
heuristic chosen, apply heuristic, and accept heuristic that
is also based on classifiers generated by MLP. The process
will stop when the time limit which uses benchmark time in
CHeSC 2011 is reached.

Modifying low level heuristics can be done by the use
of Depth of Search (DoS) and Intensity of Mutation (IoM)
parameters. Initial value for both parameters in HyFlex is set
to 0.2 in the range [0,1], which generally relates to number
of improving steps. Changing the value will modify the
behaviour of low level heuristics. Each parameter’s meaning
depends on the heuristic. DoS only affects hill-climbing, while
IoM only affects mutation and ruin-recreate. Higher values
in DoS means that the hill-climbing heuristic searches more
neighbourhoods for improvement. Higher values in IoM means
that more variables are changed for mutation heuristic. For
example, IoM = 0.5 for ruin-recreate heuristic means that
a half of solution will be destroyed and rebuilt. Since the
outcome are real-valued, not discrete set, so regression is
implemented rather than classification in task of learning
process [15].

The two sided Wilcoxon signed-rank test is applied to verify
how close the best value performance is between this work
and MLP-ALHH throughout the text, and previous work or
C4.5-ALHH throughout the text. The test is performed at 95
% confidence level. The test takes score differences in pairs
and ranks them by absolute value in ascending order. The sign



Fig. 2: Workflow of MLP Learning Hyper-heuristics

(negative or positive) of each difference is given to its rank as
a label [26].

IV. EXPERIMENTAL RESULTS

A. Experimental Design

We have applied the proposed approach on the VRP in-
stances implemented in HyFlex. The results are then compared
to those achieved in [5] and elsewhere. In order to maintain
fairness in our comparisons, we have used precisely the same
settings as in [5]. Our approach consists of a training phase
followed by testing. Instances 0 and 5 have been chosen
from Solomon and Gehring-Homberger datasets respectively
for training (refer to Table I). Similar to the study in [5], a
number of datasets are generated after the training process.
That is, one dataset is trained to model expert’s heuristic
selection strategy, two datasets to separately model the choice
of values for DoS and IoM parameters, and one dataset to
predict the acceptance strategy for each low level heuristic
available for VRP instances. After training, the generated
models are applied on all the instances (indexed from 0 to
9 in Table I) where 31 independent runs have been repeated
for each instance. Similar to the study in [5], the training
instances (indexed 0 and 5 in Table I) are also included
in the test phase. The inclusion of these instances play a
confirmatory role assessing the success of the trained model.
The experiments are performed on an Intel(R) Core(TM)i7
Windows 7 Enterprise (3.20 GHz) with 6 GB RAM. Each
trial terminates after 600 nominal seconds with respect to the
CHeSC 2011 machine.

Regarding the setting for the MLP, various configurations
have been considered and experimented for the heuristic
selection dataset. The best performing MLP model contains
one hidden layer with 20 hidden neurons operating with a
learning rate of 0.1, momentum of 0.1, and 500 iterations
for training. Following the training, it was observed that the
trained model has a 50.3 % accuracy. This value is worse than
the accuracy rate of 65.0 % obtained by the apprenticeship
learning approach using the C4.5 algorithm in [5]. This result
however is not that surprising, considering the previous work
by Amancio et al [3]. They have obtained an accuracy rate

of 50.9 % and 67.1 % with MLP and C4.5 respectively,
while classifying DB10F (artificial datasets modelling various
characteristics of real data) which data pattern is also not well-
localized. It is imperative to note that the accuracy of the
heuristic selection machine is not vital. Firstly, an accuracy of
50.3 % does not suggest that the heuristic selection machine
is choosing randomly among all heuristics. Instead, it merely
means that the heuristic selection mechanism is nearly random
and it chooses from five particular heuristics which are more
favoured by the expert algorithm (AdapHH) as projected to
the collected dataset. Here we ignore the cross-over heuristics
since they are not favoured by the expert. Secondly, it has
been observed in previous studies that it is only combined
with the acceptance mechanism that the heuristic selection
strategy influential on the overall performance of a hyper-
heuristic [33]. This will be further confirmed throughout
experiments where despite a seemingly low accuracy of the
heuristic selection machine, extra-ordinary results are achieved
for various instances.

Considering the heuristic acceptance datasets, and em-
phasizing that there are one such dataset per heuristic, the
following network configuration has been observed to perform
the best. The MLP model for heuristic index three is a network
with a single hidden layer of 5 neurons, learning rate of 0.3
and a momentum of 0.2. The configuration for heuristic index
six is one hidden layer of 20 neurons, learning rate of 0.1 and
momentum isequal to 0.1. As for the rest of the heuristics,
the expert (AdapHH) apparently has a fixed strategy of Equal
Accepted (EA) for heuristics 0, 1, 4, 8 and 9 and Worsening
Accepted (WA) for heuristics 2, 5 and 7. The prediction
accuracy of the two MLP models trained for heuristics three
and six are 80.0% and 93.5% respectively. The accuracy rate
achieved in [5] was 90.0%.

By using Linear Regression (LR) to predict the real values
of Depth of Search and Intensity of Mutation, value of 0.5824
is obtained with correlation coefficient 0.3. This correlation is
described as moderate. The LR also supports the MLP-ALHH
to improve the performance of hyper-heuristic.

B. Experimental Analysis

The results of experiments is shown in table II. The per-
formances are measured by comparing average, minimum or
maximum value of the objective function. In majority of in-
stances (seven out of ten), MLP-ALHH manages to outperform
C4.5-ALHH in terms of average and median objective function
value. The MLP-ALHH outperforms its rival not only on
training instances, but also on unseen test instances. Even
though instance zero is a training instance, C4.5-ALHH has
lower average and median performance compared to MLP-
ALHH. However, there is no significant difference (statisti-
cally) between the two. This is an indication of generalization
capability of our approach, encouraging us to extend this work
to a cross-domain level in future.

A Two sided Wilcoxon signed-rank test is performed to
compare the performance of MLP-ALHH to C4.5-ALHH
(Table III). Z-value less than or equal to -1.96 or z-value



TABLE III: Two Sided Wilcoxon Signed Rank Test on the
performance based on the objective values obtained by MLP-
ALHH and C4.5-ALHH over 31 trial for each VRP instance.
≥ (>) indicates that MLP-ALHH performs slightly (signifi-
cantly) better than C4.5-ALHH (within confidence interval of
95%), while ≤ (<) indicates vice versa

instance 0 1 2 3 4 MLP/C4.5
Solomon ≤ > > > > 4/1
z-value -1.94 -3.99 -4.50 -2.72 -2.23
instance 5 6 7 8 9 MLP/C4.5

Homberger > < < > > 3/2
z-value -3.03 -4.85 -4.52 -4.80 -4.58

more than or equal to 1.96 indicates the rejection of the null
hypothesis, leading to the conclusion that there is significant
difference between the results. The table shows that MLP-
ALHH performs significantly better than C4.5-ALHH on all
the instances except for instance six and seven. On four out
of five Solomon instances and three out of five Gehring-
Homberger instances, MLP-ALHH perform significantly bet-
ter than C4.5-ALHH. In order to provide a better visual
difference between two algorithms, box plot comparison for
all ten instances are provided in Figure 3.

On the majority of instances, the variance of MLP-ALHH
is notably less than the C4.5-ALHH approach. This indicates
that the MLP-ALHH method is more reliable in terms of
consistency as compared to the case when apprenticeship
learning uses decision trees. Interestingly, even though the
accuracy level in heuristic selection and acceptance is lower
than C4.5-ALHH, MLP-ALHH outperforms C4.5-ALHH in
generalising to the unseen VRP instances better. This could
be also an indicator that the data collected from a stochas-
tic online learning hyper-heuristic algorithm contains some
noise/imprecision even if the machine learning produces a high
accuracy rate while detecting a pattern.

When MLP-ALHH is compared to the participants of
CHeSC 2011, MLP-ALHH achieves the highest score of 29
out of the maximum score of 50, performing slightly better
than the winner in the VRP domain, PHUNTER [14] which
receives a Formula 1 score of 28 points. Table II shows that
MLP-ALHH produces a better performance achieving a better
median value on the instances five and nine.

MLP-ALHH is also compared to AdOr-ILS [41] which is
an adaptive Iterated Local Search hyper-heuristic incorporating
two components: adaptive operator selection and adaptive
ordering of the local searcher heuristics.

AdOr-ILS was reported to have a superior performance
based on twenty trials when compared to another adaptive ILS
variant and a non-adaptive variant which randomly chooses
a mutational and then local search heuristic invoking them
successively at each iteration. The crossover operators are
ignored by those approaches as our approach. Table II shows
that MLP-ALHH performs even better than AdOr-ILS for 9
out of 10 instances on average.

(a) instance 0 (b) instance 1

(c) instance 2 (d) instance 3

(e) instance 4 (f) instance 5

(g) instance 6 (h) instance 7

(i) instance 8 (j) instance 9

Fig. 3: Difference Between MLP-ALHH (V1) and C4.5-
ALHH (V2) in VRP HyFlex Domain



TABLE II: Performance comparison of MLP-ALHH to C4.5-ALHH and PHUNTER in VRP CHeSC 2011 instances. Comparing
MLP-ALHH to C4.5-ALHH, the bold entries represent algorithm which give better performance in average, the underline entries
correspond to algorithm which give better performance in median. Comparing MLP-ALHH to PHUNTER, the italic entries
refer to algorithm with better performance in median. The ’-’ entries means non-competition instances

Solomon Homberger
algorithm instance 0 1 2 3 4 5 6 7 8 9

MLP-ALHH mean 5168.7 20656.5 12461.4 5349.4 13903.1 145723.9 69772.0 163676.3 149366.7 145420.1
min 5161.9 20653.5 12311.8 5341.9 13296.5 145309.7 68185.1 162484.9 148815.9 144942.5

median 5161.9 20655.7 12333.0 5346.0 14270.3 145309.7 68185.1 162484.9 148815.9 144942.5
std.dev 16.9 3.3 348.7 12.2 554.6 1072.3 3863.7 3146.6 861.0 1033.0

C4.5-ALHH [5] mean 4954.6 20792.8 13266.7 5365.2 14113.8 147017.6 60101.9 161491.5 153132.2 147414.9
min 4178.8 20653.3 12300.2 5305.2 13277.0 144037.7 58352.6 160084.5 149227.1 145478.3

median 5156.4 20661.2 13365.5 5366.7 14294.0 146988.0 60163.0 161529.8 153000.2 147480.9
std.dev 394.2 340.9 310.9 29.4 481.3 1780.5 790.0 842.7 1663.2 956.8

PHUNTER [14] min - 20650.8 12263.0 - - 143663.9 61139.3 - - 146472.9
median - 20650.8 12290.0 - - 146944.4 64717.8 - - 148659.0

AdOr-ILS [41] mean 5281.7 21291.9 13605.0 6564.4 14280.8 155305.5 77302.7 163177.7 158941.9 149447.7
std.dev 334.6 482.6 451.6 554.8 319.5 6154.2 3384.8 2100.1 2460.7 1500.9

Fig. 4: Formula 1 scoring and ranking of MLP-ALHH, C4.5-
ALHH and other CHeSC 2011 competing hyper-heuristics.

V. CONCLUSION

This preliminary work illustrates that MLP based approach
is indeed capable of learning from the state-of-the-art ex-
pert hyper-heuristic and automatically generating classifiers
forming a well performing selection hyper-heuristic to solve
a vehicle routing problem. The apprenticeship learning MLP
generalises and even improves the performance of the expert
to unseen instances. The empirical results show that the
generated selection hyper-heuristic performs better than some
other previously proposed approaches.

Learning from a hyper-heuristic optimisation algorithm op-
erating with limited information allowed through the domain
barrier is extremely challenging. Different machine learning
algorithms performs differently in hyper-heuristic generation.
There is already an indication that machine learning algorithms
would become even more useful in an information rich envi-
ronment where they have access to the problem domain [6].

This work encourages us for a further study. We will test
the performance of different machine learning algorithms,
particularly, Adaptive Network based Fuzzy Inference System
(ANFIS). Based on [19], ANFIS was able to achieve a

better generalization capability in prediction as compared to
MLP. Moreover, we will give the machine learning algorithm
access to the problem domain as well for improving heuristic
optimisation.
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