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EDITOR'S SUMMARY (MAX 300 CHAR INCL SPACES) 

Learning to reinforce rewarding decisions and avoiding repeated mistakes is critical for survival, yet 

the neural systems mediating feedback processing in value-guided choices remain elusive. Here 

the authors uncover the spatiotemporal dynamics of two separate but interacting value systems 

during learning. 

 

ABSTRACT: Avoiding repeated mistakes and learning to reinforce rewarding decisions is critical 

for human survival and adaptive actions. Yet, the neural underpinnings of the value systems that 

encode different decision-outcomes remain elusive. Here, coupling single-trial EEG with 

simultaneously acquired fMRI we uncover the spatiotemporal dynamics of two separate but 

interacting value systems encoding decision-outcomes. Consistent with a role in regulating 

alertness and switching behaviors, an early system is activated only by negative 

outcomes and engages arousal-related and motor-preparatory brain structures. Consistent with a 

role in reward-based learning, a later system differentially suppresses or activates regions of the 

human reward network in response to negative and positive outcomes, respectively. Following 

negative outcomes, the early system interacts and down-regulates the late system, through a 

thalamic interaction with the ventral striatum. Critically, the strength of this coupling predicts 
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participants’ switching behavior and avoidance learning, directly implicating the thalamostriatal 

pathway in reward-based learning.   
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INTRODUCTION  

Imagine picking wild berries in a forest when suddenly a swarm of bees flies out from behind a 

bush. In a split second, your motor system has already reacted to flee the swarm. This automatic 

response constitutes a powerful survival mechanism that allows efficient behavior switching to 

escape from a potential hazard in the environment. In turn, a separate and more deliberate 

process of learning to avoid similar situations will also occur, rendering future berry picking 

attempts less appealing. 

 

The Reinforcement Sensitivity Theory (RST) introduced by Jeffrey Gray in the 1970’s was the first 

to describe two distinct decision-outcome value systems that trigger avoidance behavior and 

orchestrate learning, respectively 1. According to RST, the first value system quickly assesses 

whether an outcome is positive or negative in order to alert an organism to take immediate action if 

required, while the second estimates all relevant information necessary to adjust future actions. In 

its initial form, the theory also postulated an interaction between the two systems such that the 

quick evaluation of outcome valence by the first system would modulate the second system to 

update future value expectations 1.   

 

To date, and despite RST’s intuitive appeal, the biological validity and neural underpinnings of the 

two value systems (including their potential interactions) remain unclear. In line with RST, recent 

human electroencephalography (EEG) data revealed two temporally distinct processing stages of 

outcome value; an early valence-sensitive process thought to be driven by an automatic alertness 

response to negative outcomes 2–4 and a later, more deliberate, assessment of the value 

information required for learning and updating reward expectations 3. The poor spatial resolution of 

the EEG, however, precludes a thorough characterization of the spatial generators associated with 

each stage.  

 

Conversely, functional magnetic resonance imaging (fMRI) studies investigating a pure categorical 

response to positive versus negative outcomes offer evidence of a distributed network of 

activations in response to outcome valence 5–10. The low temporal resolution of the blood-oxygen-
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level-dependent (BOLD) signal precludes a rigorous assessment of the relative timing and 

potential interactions between these activations. Here, we combine single-trial EEG with 

simultaneously acquired fMRI to assign temporal order to these activations by mapping them onto 

the two valuation systems identified earlier using stand-alone EEG 3. Our hypothesis is that 

endogenous trial-to-trial variability in the two temporally distinct EEG components can be used to 

form separate BOLD predictors (rather than using a categorical predictor representing outcome 

valence) to tease apart the cortical and subcortical networks associated with each system.  

 

Separating these networks in time will also enable the investigation of potential interactions 

between the two value systems. We hypothesize that an early alertness system would likely 

engage autonomic arousal and motor preparatory structures whereas the late system would 

encompass regions more directly involved in reward processing. Relatedly, recent animal studies 

using optogenetics and electrophysiology have started to examine the functional role of the 

thalamostriatal pathway in mediating the interaction between these structures to exert control over 

learning-related plasticity 11,12. To date, most animal and human neuroimaging studies have largely 

overlooked this pathway and focused instead on the connections between the dopaminergic 

system in the midbrain and its direct projection sites in the striatum and prefrontal cortex 13,14.  

 

Here, in line with our hypotheses, we uncover two spatiotemporally distinct but interacting outcome 

value systems associated with learning in the human brain. We show that an early system initiates 

a fast alertness response in the presence of negative outcomes, while a later system controls 

reward learning and value updating. Moreover, we show that the early system down-regulates the 

late system to promote avoidance learning via a thalamostriatal interaction, imposing new 

constraints on theories of reward processing and outcome evaluation.  

 

RESULTS 

We collected simultaneous EEG-fMRI data from twenty participants while they performed a 

probabilistic reversal-learning task 3,8. On each trial subjects saw a pair of abstract symbols and 

through feedback learned to select the symbol with the highest reward probability. Upon reaching a 
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predefined performance criterion, the high reward probability was re-assigned to a different symbol 

in the set and subjects had to enter a new learning phase (i.e. a “reversal” in reward contingencies 

was introduced; Fig. 1a). Overall subjects achieved multiple reversals (20.4 ± 2.1, see 

Supplementary Note 1) during the course of the experiment suggesting a high degree of 

engagement with the task. Overall, participants’ responses were probabilistic based on expected 

values assigned to each symbol on individual trials, in line with the principles of a simple 

reinforcement-learning mechanism (see Supplementary Method 1). 

 

Two temporally specific components of outcome value. To identify temporally distinct neuronal 

components associated with outcome value we used single-trial multivariate discriminant analysis 

on EEG signals locked to the delivery of the decision-outcome 15. Specifically, for each participant, 

we estimated linear weighting of the EEG electrode signals (i.e. spatial filters) that maximally 

discriminated between positive vs. negative outcomes over several temporally distinct training 

windows (Equation (1)). Applying the estimated spatial filters to single-trial data produced a 

measurement of the resultant discriminating component amplitudes, which we later used to 

parametrically modulate the amplitude of fMRI regressors (Supplementary Fig. 1). These values 

represent the distance of individual trials from the discriminating hyperplane and can be thought of 

as a surrogate for the neuronal response variability following positive and negative outcomes, with 

activity common to both conditions removed 15–18. Our discriminator was trained to map positive 

component amplitudes to positive outcomes and negative component amplitudes to negative 

outcomes. 

 

To quantify the discriminator's performance over time we used the area under a receiver operating 

characteristic curve (i.e. Az value) with a leave-one-out trial cross validation approach. Using this 

method, we identified two temporally distinct EEG components discriminating between positive and 

negative outcomes: an Early component peaked, on average, 219 ms following the outcome 

whereas a Late component peaked, on average, at 308 ms (Fig. 1b). Importantly, both components 

were present in each individual participant (Supplementary Fig. 2a and Supplementary Note 2), 

confirming our EEG data was of sufficiently high quality after removal of MR-related artifacts (see 



 6 

Methods). Control analyses revealed that neither of these components arose due to outcome 

salience 19 (e.g. the deviation from expectations estimated with a classical reinforcement-learning 

model, Supplementary Equations (1-3), Supplementary Fig. 2b and Supplementary Note 3), by the 

contextual sequence of outcomes 20 (i.e. the ratio of positive vs. negative outcomes; 

Supplementary Fig. 2c and Supplementary Note 4), or differences in the visual properties of the 

outcome stimuli (Supplementary Fig. 2d and Supplementary Note 5).  

 

Moreover, scalp topographies (Fig. 1b, Equation (2)) revealed broad and largely distinct spatial 

profiles for the two components, providing initial support for the presence of separate generators 

associated with each component. Furthermore, trial-by-trial amplitude variations in the two 

discriminating components were largely uncorrelated (r = 0.09, P = 0.35 and r = 0.17, P = 0.24 for 

positive and negative outcomes respectively). Taking advantage of the latter we used the 

endogenous single-trial variability (STV) in the component amplitudes (as highlighted in Fig. 1c for 

one participant) to build two parametric EEG-informed fMRI regressors to identify the brain 

networks correlating with each of the Early and Late outcome value components. 

 

Specifically, we built a general linear model (GLM) designed to investigate the extent to which the 

BOLD signal across the whole brain correlated with the EEG STV associated with each component 

either positively or negatively (i.e. revealing regions activated more for positive compared to 

negative outcomes and vice versa respectively; Fig. 1d). Note, that while deeper/subcortical 

structures contribute less to the EEG signal our method can still expose these regions through 

correlations with the cortical sources of the EEG STV. For comparison, we also used a separate 

GLM in which we introduced a single categorical BOLD predictor for outcome value (Fig. 1d), as 

was previously done in stand-alone fMRI studies 5. In both models we included a separate 

parametric regressor to absorb any unaccounted variance in the degree of outcome salience 

(Supplementary Fig. 3 and Supplementary Note 6; see Methods for full design details). 

  

Conventional fMRI of outcome value. Our conventional fMRI analysis using a single categorical 

outcome regressor (GLM 1; Methods) revealed a distributed network of activations including areas 
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showing greater BOLD response for positive than negative outcomes (Pos > Neg; Fig. 2a, red 

clusters) and areas showing the opposite effect (Neg > Pos; Fig. 2a, blue clusters). Regions in 

which the BOLD signal was greater for positive than negative outcomes included areas of the 

human reward network 5,6,8,9,21, such as the ventromedial prefrontal cortex (vmPFC), the striatum 

(STR), the amygdala and  the dorsal posterior cingulate cortex (dPCC). Regions in which the 

BOLD signal was greater for negative than positive outcomes were overall less statistically reliable 

(surviving only an uncorrected threshold) and included clusters in the anterior mid-cingulate cortex 

(aMCC; often also labeled as dorsal anterior cingulate cortex), the supplementary motor area and 

dorsolateral prefrontal cortex bilaterally. Overall these results agree with the large body of literature 

reporting activations relating to the contrast between positive vs. negative outcomes 5,6,10 (see 

Supplementary Table 1 for whole-brain results).  

 

EEG-fMRI reveals Early and Late outcome value systems. Even though the conventional 

analysis revealed a distributed set of activations for both the positive vs. negative contrast and vice 

versa, their relative timing and potential interactions remain unclear. The main goal of our EEG-

informed fMRI analysis (GLM 2; Methods) was the assignment of temporal order to the fMRI 

activations identified above by characterizing the extent to which these could be explained by the 

Early and Late outcome value EEG components. In this analysis we capitalized on the additional 

explanatory power afforded to us by the EEG STV (i.e. endogenous variability) in each component, 

which ought to carry more information about the internal processing of decision-outcomes than the 

stable (categorical) representation of the external stimulus valence. Thus this approach could 

provide a full spatiotemporal characterization of the networks associated with outcome value, 

potentially enable identification of latent brain states (unobservable in the conventional analysis) 

and offer mechanistic insights regarding the functional role of the relevant networks.  

 

Critically, we only found negative correlations with the EEG STV in our Early value component, 

which absorbed virtually all activations that appeared in the conventional analysis, exhibiting 

greater response for negative compared to positive outcomes (Fig. 2b, left panel; Supplementary 

Table 2). In addition, we observed unique activation clusters (compared to the conventional 
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analysis) in the centromedial thalamus (CM-THAL) bilaterally, the anterior insula (aINS) as well as 

along the posterior mid-cingulate cortex, extending to the dPCC. These areas were significantly 

more activated compared to the conventional analysis (paired t-tests, all P < 0.05). This further 

confirms that the endogenous variability in our electrophysiologically-derived measure of outcome 

value carries additional explanatory power over and above its externally (stimulus) defined 

counterpart. Conversely, we only found positive correlations with the EEG STV in our Late value 

component, which absorbed exclusively the activations that exhibited greater response for positive 

compared to negative outcomes in the conventional analysis (Fig. 2b, right panel; Supplementary 

Table 2). We also found activations in the anteromedial and superior medial prefrontal cortices as 

well as the ventral PCC that were absent from the conventional analysis. Direct comparisons 

between the EEG-informed and conventional analysis in these regions revealed significant 

differences (paired t-tests, all P < 0.05), highlighting the importance of exploiting the EEG STV to 

reveal latent brain states.   

 

Taken together, our results paint a striking spatiotemporal picture of the underlying network. 

Specifically, our Early value component arises from a network of regions implicated in generating 

states of autonomic arousal that control immediate behavioral responses as well as adjustment 

and negative outcome processing 22–24. In contrast, our Late value component is linked to brain 

regions that play a crucial role in reward processing and value-guided learning 9,21,25.  Accordingly, 

our findings appear consistent with our original two separate value systems hypothesis, whereby 

an early automatic alertness response to outcome valence is followed by a later process involved 

in updating value information and guiding future behaviors. This interpretation is supported further 

by evidence that the Early system (predicts response caution following negative outcomes, while 

the Late system predicts value updating after each outcome (see Supplementary Note 7). 

 

Early and Late responses to positive and negative outcomes. Thus far, we demonstrated how 

the two value systems respond differentially across positive and negative outcomes (i.e. overall 

Neg > Pos for the Early system and Pos > Neg for the Late one). However, the extent to which 

positive and negative outcomes could separately explain the BOLD responses associated with 
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each of the two systems remains unclear as conventional fMRI studies using categorical predictor 

of outcome valence can only capture relative changes across conditions. Here, we capitalized 

instead on the endogenous trial-by-trial variability in response to identical outcomes (i.e. either 

rewarded or non-rewarded) to understand how the Early and Late systems respond separately to 

positive and negative outcomes.   

 

Specifically, we demeaned the EEG STV for each system and outcome type separately to obtain 

trial-to-trial residual fluctuations (i.e. EEG rSTV as illustrated in Supplementary Fig. 1c) in which the 

overall contribution of the categorical value contrast and any task-independent baseline effects 

were removed. We used these endogenous fluctuations to build four new parametric fMRI 

regressors in a new GLM analysis (Fig. 3a, EarlyNeg, EarlyPos, LateNeg and LatePos, GLM 3; 

Methods). We hypothesize that regions responding to each outcome-type separately should 

continue to covary with the EEG rSTV in the relevant regressors above. 

 

Interestingly, we found that regions of the Early system correlated with the endogenous variability 

related to negative outcomes only (i.e. higher EEG rSTV leading to higher BOLD), including major 

clusters in the CM-THAL and aMCC reported earlier (Fig. 3b left, Supplementary Table 3-4). This 

result suggests that the Early system is primarily activated by negative events. This is consistent 

with previous reports implicating the thalamo-cingulate pathway in avoidance control by alerting an 

organism of non-rewarding or undesirable outcomes and re-orienting behavior towards alternative 

actions 23,26,27. In contrast, regions associated with the Late system correlated significantly with the 

endogenous variability resulting from both negative and positive outcomes (i.e. for negative 

outcomes: smaller EEG rSTV leading to lower BOLD; for positive outcomes: higher EEG rSTV 

leading to higher BOLD), including prominent activations in the STR and vmPFC (Fig. 3b right, 

Supplementary Table 3). This finding indicates that the Late system suppresses or activates these 

regions in response to negative and positive outcomes, respectively, an activity pattern consistent 

with the role of the dopaminergic system in motivating both avoidance and approach learning 9,14.  
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Early and Late system interaction mediates learning. Having established the presence of two 

separate value systems, with distinct outcome-related response profiles, we turned to the question 

of whether the Early (alertness) system interacts with the Late (reward-related) system to aid in 

learning to avoid choices that previously led to negative outcomes, as proposed by the original 

RST 1. To quantify potential interactions we adopted a connectivity approach using a 

psychophysiological interaction analysis (PPI) 28. As a seed region for the PPI analysis we selected 

the CM-THAL for three main reasons: 1) the CM-THAL is one of the most prominent activations 

uniquely correlating with the EEG STV in our Early value component, 2) recent animal studies 

suggested that the CM-THAL exerts state control over learning-related plasticity 11,12 and 3) the 

CM-THAL is a major hub with strong connections to regions appearing in both the Early and Late 

systems 23,27,29. We designed the PPI analysis to identify brain areas in the Late system that 

increase their connectivity with the thalamus following negative outcomes (see Methods). 

 

This connectivity analysis revealed a significant inverse coupling between the thalamus and the 

ventral STR cluster we found in the Late system, which corresponds to the Nucleus Accumbens 

(NAcc), a known projection site of the dopaminergic system 13 (Fig. 3c). Specifically, as the 

thalamic response in the Early system increased following negative outcomes, NAcc activity in the 

Late system decreased. The relative timing of these activations as captured by the EEG suggests 

that the interaction proceeds from the CM-THAL (Early) to the NAcc (Late). We further confirmed 

the directionality of this interaction using Dynamic Causal Modeling analysis 30,31 (Supplementary 

Fig. 4a and Supplementary Method 2). Interestingly, this coupling was not evident in the EEG 

signal itself likely because these regions form only a small subset of the overall activations 

associated with each system, highlighting the complimentary nature and the importance of 

integrating the two neuroimaging modalities. 

 

The dynamics of this thalamostriatal inverse coupling are consistent with a mechanism of value 

updating, which in turn can alter future choice behavior 27,32–35. To test this interpretation and 

establish a direct link between the strength of this coupling and participants’ behaviors we 

performed an additional analysis. Specifically, we correlated the strength of the thalamostriatal 
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coupling (regression coefficient from the PPI analysis) from each participant with individual switch 

patterns (fraction of switches following a negative outcome) and with learning rates associated with 

negative outcomes 33 (as estimated with a classical reinforcement learning model, Supplementary 

Equations 1-3). We hypothesized that those individuals exhibiting stronger (more negative) 

thalamostriatal coupling would be showing a higher rate of switching behavior and, 

correspondingly, would be weighing recent negative outcomes more strongly (i.e. show a higher 

learning rate in the model). Our findings confirmed this hypothesis (Fig. 3d), showing that the 

strength of the thalamostriatal coupling was a significant predictor of behavioral switches and 

learning rates (P < 0.001 and P < 0.001, respectively). The strength of this coupling remained a 

significant predictor of behavior even after accounting for the individual activity of the CM-THAL 

and the NAcc (P = 0.0045 and P = 0.0019, for behavioral switches and learning rates respectively). 

These findings offer the first instance in the human brain where the thalamostriatal pathway is 

directly linked to switching behavior and updating value expectations in line with animal literature 

12,36.  

 

Finally, we also looked at whether the CM-THAL covaried positively with other regions within the 

Early system itself and found that it was functionality connected to the aMCC and the aINS 

(Supplementary Fig. S3b), consistent with known connectivity patterns between these regions 37,38. 

Repeating the PPI analysis with either the aMCC or aINS as seeds confirmed this connectivity 

profile within the Early system. Interestingly, however, only the CM-THAL showed a significant 

inverse coupling with the Late system as discussed above. These findings suggest that following 

negative outcomes the CM-THAL interacts both with structures controlling early autonomic 

responses as well as those activated later to update value information, acting as a major hub 

between the Early and Late systems 37,38. 

 

DISCUSSION 

Here we integrated EEG and fMRI data by exploiting the trial-by-trial variability in the two 

neuroimaging modalities to provide a characterization of the global network dynamics associated 

with outcome value during reward-based learning in humans. Correlating electrophysiological and 
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hemodynamic measures allowed “static” fMRI activations (resulting from temporal averaging and 

the slow dynamics of conventional fMRI) to be absorbed by temporally specific components of 

outcome value. This in turn offered temporal order to the underlying networks and enabled a 

rigorous characterization of relevant network interactions. 

 

This approach led to the identification of two separate but interacting neural value systems 

associated with learning in the human brain. More specifically, our data suggests that a fast (Early) 

system processes mainly negative decision-outcomes and appears to serve a dual role. 

Specifically, it appears to initiate a fast alertness response in the presence of negative outcomes, 

while in parallel down-regulates the response profile of a slower (Late) reward-related system to 

promote avoidance learning. Conversely, positive decision-outcomes primarily activate the brain 

network associated with the Late system, consistent with a role in approach learning and value 

updating, without a corresponding contribution from the Early system. The presence of these 

separate value systems suggests that different neurotransmitter pathways might modulate each 

system and facilitate their interaction (see illustration in Fig. 3e). 

 

The brain regions associated with the Early system, such as the CM-THAL, the aMCC and 

neighboring premotor regions, are known target sites of ascending noradrenergic and serotonergic 

projections, from the locus coeruleus and the raphe nucleus respectively, that regulate alertness 

responses 39. Although largely speculative, this observation indicates a possible role for these 

pathways in modulating the activity of the Early system, which appears to act as an “interrupt” 

signal of on-going activity in the Late system to first address an immediate challenge in the 

environment 35. This idea is supported further by evidence showing that the onset time of the Late 

system (in the EEG) shifts later in time with the strength of the Early system (Supplementary Fig. 

4b and Supplementary Note 8). Moreover, the profile of the early EEG component is in line with the 

feedback-related negativity 40,41, which was recently shown to respond to serotonergic rather than 

dopaminergic modulation 42,43. Taken together, these findings suggest that the fast initial response 

of the Early system might not be facilitated by dopamine. 
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In contrast, the brain regions associated with the Late system (e.g. vmPFC, STR, dPCC) have 

consistently been linked to the dopaminergic pathway 14,19,44,45 and its role in learning. In particular, 

the incremental response profile we observed along the negative/positive outcome dimension (i.e. 

decreases and increases in BOLD activity following negative and positive outcomes respectively) 

is in line with the distinct roles of the D1 and D2 dopamine receptor subtypes, which have been 

shown to drive approach (D1 stimulation after a positive outcome) and avoidance learning (D2 

suppression after a negative outcome) respectively 44, in the appetitive domain. These findings 

also suggest that the Late EEG component, which is largely consistent with a P300-type evoked 

response referred to as feedback-related positivity46,47, could be under dopaminergic control, 

although this hypothesis remains to be tested. 

 

Notably, recent evidence from animal electrophysiology suggests that the midbrain neurons 

mediating the avoidance learning highlighted above behave markedly different following negative 

outcomes depending on whether the outcome involved an omission of reward or a true 

loss/punishment 48,49. Our work focuses on appetitive reinforcement and therefore positive and 

negative outcomes represent rewards and non-rewards, respectively. Whether or not our results 

extent to the aversive domain (e.g. receiving punishments) remains unclear, though unpublished 

stand-alone EEG data from our lab using monetary gains and losses in an otherwise identical task 

yielded similar results (i.e. an early and a late outcome value components). 

 

Importantly, we also showed that the observed decrease of striatal activity in the Late system 

(NAcc), following negative outcomes is regulated by an increase in thalamic activity in the Early 

system (CM-THAL). Correspondingly, recent animal studies have suggested that a direct CM-

THAL/NAcc interaction might play a major role in inhibiting the activity of the network involved in 

motivational learning 11,12,27,36. In line with these animal studies our work suggests that the Early 

value system exerts state-control over the Late system to promote switching behaviors and 

avoidance learning via a similar thalamostriatal pathway. 

 

It has long been known that the striatum, in particular the NAcc, receives glutamatergic inputs from 
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the CM-THAL 50,51, however, the functional role of this interplay in reward learning has long been 

neglected 13,14. Importantly, the glutamatergic inputs in the NAcc have a reliable inhibitory effect on 

striatal cholinergic interneurons 51 that in turn suppress D2 receptors in the striatum  52,53. One 

hypothesis could be that this thalamostriatal interplay is part of an extended circuitry including 

regions of the brainstem, such as the VTA, the primary source of dopamine-releasing neurons 13, 

and medial prefrontal cortex that regulate negative reinforcement learning. Though this 

interpretation is still putative, we hope that future studies, including high-resolution fMRI of the 

brainstem 54 and more invasive electrophysiological experiments will elucidating the precise role of 

this neuromodulatory pathway and the interactions of the two value systems. 

  

In conclusion, we demonstrated that capitalizing on the endogenous variability in 

electrophysiologically derived measures of outcome value, recorded simultaneously with fMRI, 

offered critical new insights, otherwise unobservable with each modality alone. As such our general 

research approach opens up new avenues for the investigation of the neural systems underlying 

reward-based decision making in humans. Crucially, our findings also have the potential to further 

improve our understanding of how everyday responses to rewarding or stressful events can affect 

our capacity to make optimal decisions, as well as facilitate the study of how mental disorders - 

such as chronic stress, obsessive-compulsive-disorder, post-traumatic disorder and depression - 

affect learning and strategic planning. 

 

 

METHODS 

 

Participants. Twenty-four subjects participated in the experiment. Four were removed from the 

analysis for excessive head movements inside the scanner. The remaining twenty subjects (8 

males), aged between 18-31 years (mean = 21 years, SD ± 2.6), were included in all subsequent 

analyses. All were right handed, had normal or corrected-to-normal vision and reported no history 

of psychiatric, neurological, or major medical problems, and were free of psychoactive medications 
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at the time of the study. Written informed consent was obtained in accordance with the School of 

Psychology Ethics Committee at the University of Nottingham.  

 

Stimuli display. We used a set of twelve abstract symbols that were adapted from our previous 

experiment 3. In addition to these symbols we used a tick and a cross to provide positive and 

negative feedback, respectively. The stimuli (180x180 pixels), feedback symbols (125x125 pixels) 

and fixation cross (30x30 pixels) were equated for luminance and contrast. A Windows 

Professional 7, 64 bit based machine (3GB RAM) with an nVidia (Santa Clara, CA) graphics card 

and Presentation software (Neurobehavioral Systems Inc., Albany, CA) controlled the stimulus 

display. Images were projected with an EPSON EMP-821 projector (refresh rate: 60Hz, resolution: 

1280x1024 pixels) onto a screen which was 2.3 m from the subject (projection screen size: 

120x90cm’s). Stimuli and feedback symbols were subtended 4°× 4° and 3°× 3° of visual angle 

respectively. 

 

Reversal learning task. The experiment consisted of two blocks of 170 trials each (340 trials in 

total). The two blocks were separated by a break. At the beginning of each block, subjects were 

shown a screen with three symbols. For each block, a different triplet was chosen randomly from 

the larger set of twelve symbols. Subjects were told that their goal was to identify the symbol with 

the highest reward probability. They were also informed that in the course of each block, the 

highest reward probability might shift to one of the other two symbols and that they would have to 

adjust their choices accordingly. Each rewarded trial earned them 1 point, while unrewarded trials 

earned them zero points. Subjects were also told that they would receive a fixed payment for 

participation (£15 per hour) and an additional amount (up to a maximum of £45) based on the 

outcome of a random subset of trials selected at the end of the experiment (excluding “lost” trials – 

see below). No further details regarding the mapping between earned points and the final payoff 

were given to the subjects. 

 

Each trial began with the presentation of a central fixation cross for a random delay in the range 1-

4 s (mean delay 2.5 s). To ensure alertness during the experiment, and minimize saccades, 
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subjects were instructed to focus on the central fixation. Two of the three symbols were then 

placed to the left and to the right of the fixation cross for 1.25 s. During this time, subjects had to 

choose one of the symbols by pressing the left or right button on a fORP MRI compatible response 

box (Current Design Inc., Philadelphia, PA, USA) using their right index or middle finger, 

respectively. When subjects indicated their choice the fixation cross flickered for 100 ms to signal 

that the response was registered successfully. Next, the decision outcome was presented after a 

second random delay in the range 1-4 s (mean delay 2.5 s). Positive and negative outcomes were 

provided by placing a tick or a cross, respectively, in the center of the screen for 650 ms. Trials, in 

which subjects failed to respond within the 1.25 s of the stimulus presentation, were followed by a 

“Lost trial” message and were excluded from further analysis. Figure 1a summarizes the sequence 

of these events. To increase detection power and estimation efficiency in the fMRI analysis the 

sequence of these events and the timing of the two delay periods were optimized using a genetic 

algorithm 55,56. 

 

At any one point in the course of the experiment, one of the three symbols was associated with a 

“high” reward probability of 0.7 (i.e., good symbol) compared to the remaining two symbols (i.e., 

bad symbols), each of which had a reward probability of 0.3. Participants were naïve about the 

exact reward probabilities assigned to the symbols and they were told to learn to choose the good 

symbol through trial and error and by taking into account the decision-outcome on each trial. To 

detect when subjects learned to choose the symbols with the higher reward probability we defined 

a learning criterion. Specifically, subjects were thought to have learned the good symbol when they 

chose it in 5 out of the last 6 trials. Every time the learning criterion was reached, a reversal was 

introduced by randomly changing the reward contingencies across the three symbols (i.e. the 

“high” reward probability was re-assigned to a different symbol). To make reversals less 

predictable, we included additional trials (i.e. buffer trials) after the learning criterion was reached 

that followed a Poisson process, such that there was a probability of 0.3 that a reversal took place 

on any given post learning criterion trial (with a minimum of 1 and a maximum of 8 trials) and 

before participants entered a new learning phase.  
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To prevent subjects from searching for non-existent patterns and to reduce cognitive load we 

presented the three possible pair combinations of the three symbols in a fixed order (i.e. AB, BC, 

CA) – though the presentation side of the symbols on the screen (left or right) of the fixation cross 

was randomized. Subjects were explicitly informed about this manipulation. Another key 

component of this paradigm was that we presented stimulus pairs chosen from a pool of three 

symbols. This manipulation served two important purposes. First, it encouraged subjects to engage 

in an exploration phase to identify the most rewarding symbol after reversals occurred. Second, it 

forced the subjects to choose between the two least rewarding symbols (in every third trial, when 

the two were presented together) even when they had learned the task. Overall, when deciding 

between the two bad symbols subjects chose the one that carried the highest expected value as 

estimated based on past reward history (Supplementary Fig. 2b). This manipulation ensured a 

more balanced number of positive and negative outcomes. 

 

Training. Two weeks prior to the main experiment, participants were invited to complete a full set 

of trials on the main task. This training session was designed to familiarize participants with the 

task and identify those individuals that understood the probabilistic nature of the task, whom we 

invited back for the main experiments. The day of the simultaneous EEG-fMRI scanning session, 

prior to the main experiment, all subjects completed an additional 100 trials to remind them of the 

main task. 

 

Electrophysiological data acquisition. EEG was collected simultaneously with the fMRI data 

using an MR-compatible EEG amplifier system (BrainAmps MR-Plus, Brain Products, Germany) 

and recorded using Brain Vision Recorder (BVR; Version 1.10, Brain Products, Germany) with a 5 

kHz sampling rate. Data underwent online (hardware) filtering with a band-pass filter of 0.016–250 

Hz. The EEG cap consisted of a 64 Ag/AgCl scalp electrodes positioned according to the 

international 10–20 system of electrode positioning. Reference and ground electrodes were 

embedded in the EEG cap and placed along the midline (Reference electrode: between electrode 

Fpz and Fz, Ground electrode: between electrode Pz and Oz). Each electrode had in-line 10 kΩ 

surface-mount resistors to ensure subject safety. All leads were twisted for their entire length and 
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bundled together to minimize inductive pick-up. All input impedances were kept below 20 kΩ 

(including the 10 kΩ surface-mount resistors on each electrode). Acquisition of the EEG data was 

synchronized with the MR data acquisition (Syncbox, Brain Products, Germany) and MR-scanner 

triggers were collected separately to enable offline removal of MR gradient artifacts. Scanner 

trigger pulses were lengthened to 50µs using an in-house pulse stretcher to facilitate accurate 

capture by the BVR. Experimental event codes were also synchronized with the EEG data and 

collected using the BVR software.   

 

To minimize the MR gradient artifacts, we ensured that electrodes Fp1 and Fp2 were at the 

isocentre of the MR scanner in the z-direction 57 when placing participant’s in the scanner. We 

achieved this, by aligning these two electrodes with the laser beam used to position the 

participants inside the bore. A 32-channel SENSE head coil incorporated an access port which 

allowed the cables from the EEG cap to run along a straight path out of the scanner and helped to 

ensure there were no wire loops, minimizing the risk of RF heating of the EEG cap and associated 

cables and induce EEG artifacts. Additionally the cabling was isolated from scanner vibrations as 

much as possible to minimize induced artifacts, through the use of a cantilevered beam 58.  

 

EEG pre-processing. We performed EEG pre-processing offline using Matlab (Mathworks, Natick, 

MA). EEG signals recorded inside an MR-scanner are contaminated with gradient artifacts and 

ballistocardiogram (BCG) artifacts due to magnetic induction on the EEG leads. We first removed 

the gradient artifacts. Specifically, from each functional volume acquisition we subtracted the 

average artifact template constructed using the 80 volumes centered on the volume of interest 

using in house Matlab software. We repeated this process for as many times as there were 

functional volumes in our datasets. We subsequently applied a 10 ms median filter to remove any 

residual spike artifacts. Next we removed standard EEG artifacts a 0.5 Hz high-pass filter to 

remove DC drift, 50 Hz and 100 Hz notch filters to remove electrical line noise, and 100 Hz low-

pass filter to remove high frequency artifacts not associated with neurophysiological processes. 

These filters were applied together, non-causally to avoid distortions caused by phase delays. 
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BCG artifacts share frequency content with the EEG and as such are more challenging to remove. 

Here, to avoid loss of signal power in the underlying EEG, we adopted a conservative approach 

based on our previous work 59,60. Specifically, we only removed a small number of subject-specific 

BCG components using principal component analysis (see below) and relied instead on our single-

trial classifiers (see Single-trial EEG analysis section) to identify discriminating components that 

are likely to be orthogonal to the BCG. Note that this approach is robust to the presence of BCG 

artifact residuals due, specifically, to the multivariate nature of our classification techniques. BCG 

principal components were extracted from the data after the data were first low-pass filtered at 

4 Hz to extract the signal within the frequency range where BCG artifacts are observed, and then 

subject-specific principal components (average number of components across subjects: 2.3) were 

determined. The sensor weightings corresponding to those components were projected onto the 

broadband data and subtracted out.  

 

Eye-movement artifact removal. Prior to the main experiment, we asked our participants (while in 

the scanner) to complete an eye movement calibration task during which they were instructed to 

blink repeatedly upon the appearance of a fixation cross in the center of the screen and then to 

make several horizontal and vertical saccades according to the position of the fixation cross. The 

fixation cross subtended 0.6° × 0.6° of visual angle. Horizontal saccades subtended 30 degrees 

and vertical saccades subtended 22 degrees. This exercise enabled us to determine linear EEG 

sensor weightings corresponding to eye blinks and saccades (using principal component analysis) 

such that these components were projected onto the broadband data from the main task and 

subtracted out 61.  

 

Single-trial EEG analysis. We applied a linear multivariate classifier to EEG data locked to the 

time of decision outcome, using the sliding window method in 15–18. Specifically, we found a 

projection of the multidimensional EEG signal, 𝒙𝑖(𝑡), where i = {1…T} and T is the total number of 

trials, within a short time window that achieved maximal discrimination between positive and 

negative outcome trials. All time windows had a width of  = 60 ms and the window center  was 

shifted from -100 to 600 ms relative to outcome onset, in 10 ms increments. We used a regularized 
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Fisher discriminant analysis (see below for details) 62 to learn the spatial weighting, 𝒘(𝜏), that 

maximally discriminated between positive and negative outcomes, arriving at the one-dimensional 

projection 𝑦𝑖(𝜏), for each trial i and a given window : 

 

𝑦𝑖(𝜏) =
1

𝑁
∑ 𝒘(𝜏)⊥𝒙𝑖(𝑡)

𝑡=𝜏+𝑁/2
𝑡=𝜏−𝑁/2          (1) 

 

where 𝒚𝑖(𝜏), is organized as a vector of single-trial discriminator amplitudes [1 x Trials], the spatial 

filter, 𝒘(𝜏), is organized as a vector with as many weights as there are channels in the data [1 x 64] 

and data, 𝒙𝑖(𝑡), is organized as a matrix, with dimensions [64 x Trials/Samples]. We adopted this 

approach to identify all time windows yielding significant discrimination performance in the 

outcome period and used the resultant single-trial component amplitudes, 𝒚𝑖(𝜏), to construct 

parametrically modulated BOLD predictors for our fMRI analysis as discussed below (see fMRI 

analysis section). Note that in separating the two groups of trials the classifier was designed to 

map positive and negative discriminant component amplitudes to positive and negative outcomes 

respectively. As such brain regions in the fMRI that correlated positively with the EEG STV showed 

an overall stronger response to positive rather than negative outcomes, whereas regions that 

correlated negatively showed the opposite effect (i.e. stronger response to negative rather than 

positive outcomes). 

 

The projection vectors 𝒘 at each time window  were estimated as: 𝒘 = 𝑺𝒄(𝒎𝟐 − 𝒎𝟏) where 𝒎𝒊  is 

the estimated mean of condition i and 𝑺𝒄 = 𝟏/𝟐(𝑺𝟏 + 𝑺𝟐) is the estimated common covariance 

matrix (i.e. the average of the condition-wise empirical covariance matrices, 𝑺𝑖 = 1/(𝑇 −

1) ∑ (𝒙𝒋 − 𝒎𝒊
𝑇
𝑗=1 )(𝒙𝒋 − 𝒎𝒊)⊥, with T = number of trials). To treat potential estimation errors we 

replaced the condition-wise covariance matrices with regularized versions of these matrices: 

𝑺𝑖 ̃ = (1 − 𝜆)𝑺𝒊 + 𝜆𝜈𝑰, with 𝜆 ∈ [0,1] being the regularization term and  the average eigenvalue of 

the original 𝑺𝒊 (i.e. trace(𝑺𝒊)/64). Note that =0 yields unregularized estimation and =1 assumes 

spherical covariance matrices. Here, we optimized  for each participant using a leave-one-out trial 

cross validation procedure (’s, mean ± se: 0.028 ± 0.05) across the entire post-outcome period. 
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We quantified the performance of the discriminator for each time window using the area under a 

receiver operating characteristic (ROC) curve, referred to as an Az-value, using a leave-one-out 

trial procedure 63. To assess the significance of the discriminator we used a bootstrapping 

technique where we performed the leave-one-out test after randomizing the trial labels. We 

repeated this randomization procedure 1000 times to produce a probability distribution for Az, and 

estimated the Az leading to a significance level of P < 0.01. Additionally, we implemented a 

separate temporal-clustering procedure using a similar randomization test. Specifically, we 

repeated the procedure above, each time identifying the maximum number of continuous time 

steps surviving the Az significance threshold found with the original bootstrapping technique 

described above. This in turn enabled us to produce a null distribution for the maximum number of 

continuous temporal windows and estimate a temporal cluster size leading to a significance level of 

P < 0.05 (individually for each participant, average temporal cluster threshold: 4.7 time steps ± 

2.1). 

 

Given the linearity of our model we also computed scalp topographies of the discriminating 

components resulting from Equation (1) by estimating a forward model as: 

 

a(𝛕) =  
𝒙(𝛕)𝒚(𝛕)

𝒚(𝛕)⊥𝒚(𝛕)
        (2) 

 

where 𝒚𝒊(𝜏) is now shown as a vector 𝒚(𝛕), where each row is from trial i, and 𝒙𝑖(𝑡) is organized as 

a matrix, 𝒙(𝛕), where rows are channels and columns are trials, all for time window . These 

forward models can be viewed as scalp plots and interpreted as the coupling between the 

discriminating components and the observed EEG 15,17,59. Code for the linear discriminant analysis 

described above is available at: http://liinc.bme.columbia.edu/downloads/lr1.2_plugin.tar.gz 

 

To visualize the temporal profile of the resultant discriminating components across individual trials, 

we also constructed discriminant component maps (as seen in Fig. 1c). To do so we applied the 
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spatial weighting vectors, 𝒘(𝜏) from a time window, , which led to significant discrimination 

performance between positive vs negative outcomes, to an extended time window (100 ms before 

until 600 ms after the outcome). Each row of one such discriminant component map represents a 

single trial across time (see Fig. 1c for an example).  

 

MRI data acquisition. BOLD datasets were acquired on a 3 Tesla Philips Achieva MRI scanner 

(Philips, Netherlands). Functional Echo-Planar-Imaging (EPI) data were acquired using an 32-

channel SENSE head coil with SENSE factor 2.3 with an anterior–posterior fold over direction, 40 

slices of 68×68 voxels with in-plane resolution of 3×3 mm and slice thickness of 3 mm and a flip 

angle of 80°. Repetition time (TR) was 2.5 s with an echo time (TE) of 40 ms. Slices were acquired 

in an interleaved order. In total, two separate runs of 468 volumes each were acquired 

corresponding to the two blocks of trials in the main experimental task. Anatomical images were 

acquired using a MPRAGE T1-weighted sequence that yielded images with a 1×1×1mm resolution 

(160 slices of 256×256 voxels; TR: 8.2 ms, TE: 3.7 ms). A B0 map was acquired using a multi-shot 

gradient echo sequence with TE = 2.3 ms and delta TE = 5 ms with 3 mm isotropic resolution, 

68×68×32 matrix, TR 383 ms, flip angle 90°, which was subsequently used to correct for distortion 

of the EPI data due to B0 inhomogeneities for each participant. 

 

fMRI preprocessing. The first five volumes from each fMRI run (pre-task period) were discarded 

to ensure a steady-state MR signal, and the remaining 463 volumes were used for the statistical 

analysis. Initial fMRI data preprocessing was performed using the FMRIB’s Software Library 

(Functional MRI of the Brain, Oxford, UK) and included head motion correction, slice-timing 

correction, high-pass filtering (>100 s), and spatial smoothing (with a Gaussian kernel of 8 mm full-

width at half maximum). Registration of EPI images to standard space (Montreal Neurological 

Institute, MNI) was performed using FMRIB’s Non-linear Image Registration Tool with a 10 mm 

warp resolution 64. The registration procedure involved transforming the EPI images into an 

individual’s high-resolution space (with a linear six-parameter rigid body transformation) prior to 

transforming to standard space. Finally, we performed B0 unwarping to correct for signal loss and 

geometric distortion due to B0 field inhomogeneities in the EPI images 65. 
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fMRI analysis. Whole-brain statistical analyses of functional data were performed using a 

multilevel approach within the framework of a general linear model (GLM), as implemented in FSL 

(using the FEAT module 66): 

 

𝑌 = 𝑋𝛽 +  𝜀 =  𝛽1𝑋1 + 𝛽2𝑋2 + … + 𝛽𝑁𝑋𝑁 +  𝜀       (3) 

 

where Y is a T×1 (T time samples) column vector containing the times series data for a given 

voxel, and X is a T × N (N regressors) design matrix with columns representing each of the 

psychological regressors convolved with a canonical hemodynamic response function (double-γ 

function). β is a N × 1 column vector of regression coefficients (commonly referred to as betas or 

parameter estimates) and ε a T × 1 column vector of residual error terms.  

 

A first-level analysis was performed to analyze each subject’s individual runs, which were then 

combined using a second-level analysis (fixed effects). Finally, to combine data across subjects a 

third-level, mixed-effects model was used (FLAME 1), treating participants as a random effect. 

Time series statistical analysis was carried out using FMRIB’s improved linear model with local 

autocorrelation correction 67. In total, we performed three different GLM analyses using this 

framework (see below).  

 

Conventional fMRI analysis of outcome value – GLM 1. We first ran a conventional fMRI 

analysis designed to identify the brain networks responding differentially to positive and negative 

outcomes using a simple categorical regressor for outcome valence. Specifically, locking at the 

time of outcome (i.e. when the tick/cross appeared) we included four boxcar regressor with a 

duration of 100 ms for each regressor event: 1) an unmodulated regressor (all event amplitudes 

set to 1), 2) a simple categorical regressor for outcome valence (amplitudes set to +1 for positive 

and -1 for negative outcomes), 3) a fully parametric regressor whose event amplitudes were 

modulated by the unsigned PE estimates from a RL model (to control for salience effect) and 4) an 
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unmodulated regressor for all lost trials. In addition we included an unmodulated regressor of no 

interest at the time of stimulus presentation (i.e. decision phase) and six nuisance regressors, one 

for each of the motion parameters (three rotations and three translations).  

 

EEG-informed fMRI analysis of outcome value – GLM 2. In this analysis we capitalized on the 

EEG single trial variability (EEG STV) in two highly discriminating components of outcome value 

(Fig. 1b; Early and Late). Specifically, we used the resulting trial-by-trial amplitude estimates of 

𝑦𝑖(𝜏) (Equation  (1)) for each component to build two separate BOLD predictors (Supplementary 

Fig. 1). Our hypothesis is that the endogenous trial-by-trial variability in these two components 

carries more information about the internal processing of decision-outcomes than the stable 

(categorical) representation of the external stimulus valence (in GLM 1). As such this approach 

could enable both separation of the relevant fMRI activations (as seen in the conventional analysis 

above), identification of latent brain states (activations unobserved in the conventional analysis) 

and assignment of temporal order to the underlying networks. We therefore replaced the 

categorical valence regressor in the conventional analysis above (GLM 1) with two fully parametric 

regressors modulated by the EEG STV in each of the Early and Late discriminating components of 

outcome value. We set the onset time of these regressors at the time of outcome. Shifting these to 

the actual times of the Early and Late components (as seen in the EEG) yielded identical results 

due to the sluggish nature of the hemodynamic response function. Dissociating the contribution of 

the two components was driven exclusively by amplitude modulation of our regressor events. The 

rest of the design was identical to GLM 1. To account for the shared variance between the two 

EEG-informed regressors, we also performed two supplementary analyses. Specifically, we 

repeated GLM2 while orthogonalizing the regressor for the Early EEG component with respect to 

the one for the Late EEG component and vice versa. We found that in both designs the activations 

correlating with the Early and Late components remained identical to those in the original model 

(See Supplementary Note 9). 

 

EEG-informed fMRI valence analysis – GLM 3. Demeaning the EEG STV for each value system 

and outcome type separately produced trial-to-trial residual fluctuations (EEG rSTV) in which the 
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overall contribution of the categorical value contrast was removed (Supplementary Fig. 1c). This 

manipulation introduced four new fMRI regressors (Fig. 3a, EarlyNeg, EarlyPos, LateNeg and 

LatePos) to examine the extent to which negative and positive outcomes could explain the BOLD 

responses associated with each of the Early and Late systems (as identified in GLM 2) separately. 

The main motivation for this analysis rests with the idea that regions responding to each outcome 

type separately should continue to covary with the EEG rSTV (i.e. electrophsyiologically derived 

endogenous variability) in the relevant regressors above. We therefore replaced the categorical 

valence regressor in the conventional analysis above (GLM 1) with four fully parametric regressors 

modulated by the EEG-rSTV as described above. The rest of the design was identical to GLM 1/2. 

 

The three GLM model highlighted above were selected to offer a hierarchically principled approach 

to illustrate what can be gained when the analysis proceeds from using a conventional 

(categorical) fMRI contrast (GLM1), to using multiple single-trial EEG-informed predictors to absorb 

the activations appearing in the conventional analysis and offer temporal order to the relevant 

networks (GLM2), to finally showing how the temporally-specific activations identified in the 

previous step respond separately to positive and negative outcomes (GLM3). 

 

Resampling procedure for fMRI thresholding. In order to properly correct the fMRI statistical 

maps for multiple comparisons, we used a resampling procedure that took into account the a priori 

statistics of the trial-to-trial variability in all of our fully parametric regressors (i.e. EEG-derived 

regressors and model-based unsigned PE regressor) in a way that trades off cluster size and 

maximum voxel Z-score 68. Specifically, we maintained the overall distributions of the EEG 

discriminating components (𝑦𝑖(𝜏) values for the Early and Late components) as well as the trial-by-

trial variability of the unsigned PE regressor from the RL model while removing the specific trial-to-

trial correlations in individual experimental runs. Thus for each resampled iteration and each 

regressor type, all trials were drawn from the original 𝑦-value/|PE| distribution, however the specific 

values were mixed across trials and runs. In other words, each subject had the same resampled 

run 𝑦-values/|PE’s| for a given iteration, though the resulting regressors for each subject were 

different given that each had a random sequence of regressor amplitude events. 
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This procedure was repeated 100 times. For each of the 100 resampled iterations, a full three-level 

analysis (run, subject, and group) was performed. Our design matrix included the same regressors 

of non-interest used in all our GLM analyses. In turn this allowed us to construct the null hypothesis 

H0, and establish a joint threshold on cluster size and Z-score based on the cluster outputs from 

the permutated parametric regressors. Specifically, we extracted cluster sizes from all activations 

exceeding a minimal cluster size (10 voxels) and Z-score (2.57 per voxel) for both positive and 

negative correlations with the permuted parametric regressors. Finally, we examined the 

distribution of cluster sizes (number of voxels) for the permuted data and found that the largest 5% 

of cluster sizes exceeded 76 voxels. We therefore used these results to derive a corrected 

threshold for our statistical maps, which we then applied to the clusters observed in the original 

data (i.e. Z = 2.57, minimum cluster size of 76 voxels, corrected at P = 0.05).  

 

Extracting time-series data. Time-series data from subject-specific clusters of interest were 

extracted for a psychophysiological interaction analysis (see below). Specifically, we first identified 

clusters of interest at the group level (i.e. in standard space) by applying the cluster correction 

procedure described above. We subsequently back-projected these clusters from standard space 

into each individual’s EPI (functional) space by applying the inverse transformations as estimated 

during registration (see fMRI preprocessing section). Each clusters was then checked against the 

relevant (regressor-specific) statistical maps in the individual brains [at a slightly more lenient 

threshold of P < 0.01 uncorrected, cluster size > 10 voxels (90 mm3)] to ensure that the inverse-

transformation was performed properly. Finally, average regression coefficient or time-series data 

from all voxels in the back-projected clusters in each subject were computed and normalized for 

each of the positive and negative regressors. 

 

PPI analysis. Using the procedure described above we extracted time series data from individual 

clusters in the CM-THAL (bilaterally) of the Early value system, which served as a seed region (i.e. 

physiological regressor – PHY) for a psycho-physiological interaction (PPI) analysis 28,69. This 

analysis was primarily designed to investigate the potential interaction of the Early and Late 
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systems following negative outcomes. As such, the increase in correlation between the CM-THAL 

and potential regions of the Late system should be specific for the task in which this coupling is 

relevant; that is, it should be greater during processing of negative compared to positive outcomes 

(since the Early system engages only after negative outcomes). Therefore our psychological (PSY) 

task regressor was constructed such that negative outcomes were weighted +1 and positive 

outcomes were weighted -1 (using the EEG STV in the Early system instead yielded identical 

results, see Supplementary Note 10). The PPI analysis thus included the following regressors 

during the outcome phase: 1) an unmodulated regressor (all event amplitudes set to 1), 2) the PHY 

regressor, 3) the PSY regressor and 4) the interaction regressor (PHY.*PSY). The rest of the 

design was identical to GLM 1/2/3. Correction for multiple comparisons was performed on the 

whole brain using the outcome of the resampling procedure as described earlier. Finally, we note 

that we used this analysis to also search for increased coupling within the Early system itself 

following negative outcomes.  

 

Thalamostriatal connectivity predicting behavior. To test whether the strength of the 

connectivity between the CM-THAL and NAcc as identified in our PPI analysis (see PPI analysis 

section; Fig. 3c) predicted participants’ choice behavior we performed the following between-

subject correlation analyses: we correlated the individual PPI regression coefficients from subject-

specific NAcc clusters with 1) the fraction of switch choices away from the symbol that led to a 

negative outcome (the next time that symbol was offered) and 2) the individual negative learning 

rates from the RL model (representing individual tendencies to weigh recent negative outcomes 

more strongly). Additionally, to confirm that it was not the activity of the individual regions (CM-

THAL and NAcc driving the correlations above) we performed a separate regression analysis. 

Specifically, in addition to the strength of the thalamostriatal coupling (PPI coefficients) we also 

included the activity of the CM-THAL and NAcc as separate predictors of switches and negative 

learning rates. The results of these analyses are depicted in Fig. 3d in the main text. 

 

END NOTES 
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FIGURES 

 

 

 

Figure 1. Experimental design and temporal characterization of separate outcome value 

systems. (a) Schematic representation of the experimental paradigm. On each trial two abstract 

symbols (selected from a larger set of three symbols) were presented for maximum of 1.25 s. 

During this time subjects had to select, by pressing one of two buttons, the symbol that was most 

likely to lead to a reward. Once a decision was made, a random delay was presented before the 

outcome was revealed. A tick and a cross were used to inform the participants of a positive 

(constant reward) and a negative (non-rewarding) outcome, respectively. Participants (n = 20) 

performed two blocks of 170 trials each. (b) Multivariate discriminator performance (Az) during 

positive-vs-negative outcome discrimination of outcome-locked EEG responses, averaged across 

subjects. Shaded error bars represent standard errors across subjects. The dotted line represents 

the average Az value leading to a significance level of P = 0.01, estimated using a bootstrap test. 
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Two outcome value components (Early and Late) were revealed, with spatially distinct scalp 

topographies as estimated at time of maximum discrimination. (c) Single-trial discriminant 

component maps, for a representative subject. The four panels represent the discriminator 

amplitudes for the Early and Late components for positive and negative outcome trials using the 

training windows shown by the vertical white bars (solid: Early, dashed: Late). (d) Hypothetical 

value-related BOLD effects showing either greater overall BOLD signal for positive than negative 

outcomes and vice versa (red and blue curves, respectively). Three different BOLD predictors were 

used to model these effects: a conventional categorical regressor for positive-vs-negative 

outcomes and two parametric regressors modulated by the single-trial variability (STV) in the 

discriminator amplitudes of positive and negative outcomes in each of the Early and Late EEG 

components (extracted from subject-specific windows corresponding to the two components – solid 

and dashed windows, as seen in (c)).  
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Figure 2. Spatiotemporal characterization of the Early and Late value systems. (a) A 

distributed network of activations including areas showing greater BOLD response for positive than 

negative outcomes (red clusters, mixed-effects (n = 20), Z > 2.57, corrected) and areas showing 

greater BOLD response for negative than positive outcomes, albeit at a more lenient threshold 

(blue clusters, mixed-effects (n = 20), Z > 1.67 uncorrected) using a conventional categorical 

outcome regressor (Supplementary Table 1). (b) A parametric regressor based on the EEG STV in 

the Early value component, absorbed all activations that appeared in the conventional analysis in 

(a) exhibiting greater response for negative compared to positive outcomes (blue clusters) and 

additional unique activation clusters showing the same overall response profile (Neg > Pos; 

Supplementary Table 2). A parametric regressor based on the EEG STV in the Late value 

component, absorbed exclusively the activations that exhibited greater response for positive 
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compared to negative outcomes in the conventional analysis in (a) (red clusters), including 

additional unique clusters showing the same overall response profile (Pos > Neg; Supplementary 

Table 2). All activations represent mixed-effects (n = 20) and are rendered on the standard MNI 

brain at Z > 2.57, corrected using a resampling procedure (minimum cluster size = 76 voxels; see 

Methods). 
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Figure 3. Separate responses of the Early and Late systems to negative and positive 

outcomes and their interaction. (a) Demeaning the EEG STV for each value system and 

outcome type separately (top panels) produced trial-to-trial residual fluctuations (EEG rSTV) in 

which the overall contribution of the categorical value contrast was removed (bottom panels). This 

manipulation introduced four new fMRI regressors to examine the extent to which negative and 

positive outcomes could explain the BOLD responses associated with each of the Early and Late 

systems separately. (b) The regions of the Early system correlated with the residual fluctuations 

related to negative outcomes only (i.e. higher EEG rSTV leading to higher BOLD). Group 

regression coefficients from the CM-THAL and aMCC are shown for illustration (Supplementary 

Tables 3 and 4). Direct comparisons revealed significant differences in the response profile 
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between positive and negative outcomes. In contrast, regions of the Late system correlated with 

the residual fluctuations in both negative and positive outcomes. Group regression coefficients 

from the STR and vmPFC are shown for illustration (Supplementary Tables 3 and 4). Error bars 

represent standard errors across subjects. (c) The CM-THAL of the Early system exhibited a 

strong inverse coupling with a striatal cluster in the NAcc belonging to the Late system, following 

negative outcomes (n = 20). The NAcc activation is shown at Z > 2.57, P < 0.05 corrected, on the 

standard MNI template. (d) Participants that exhibited stronger (more negative) thalamostriatal 

coupling and hence stronger down-regulation of the NAcc showed a higher rate of switching 

behavior following negative outcomes (r = 0.73; P < 0.001) and higher negative learning rates (r = 

0.77; P < 0.001), estimated using a classical reinforcement learning model. (e) Graphical 

illustration of the two outcome value systems. Our data suggests that controlling reward learning 

might extend beyond the direct influence of the dopaminergic system, though future work would be 

required to elucidate the specific neuromodulatory pathways driving the two systems and their 

interactions. 

 

 


