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a b s t r a c t

The linear inverse problem for energy beam processing, in which a desired etched profile is known and a
trajectory of the beam that will create it must be found, is studied in this paper. As an example, abrasive
waterjet machining (AWJM) is considered here supported by extensive experimental investigations. The
behaviour of this process can be described using a linear model when the angle between the jet and the
surface is approximately constant during the process, as occurs for shallow etched profiles. The inverse
problem is usually solved by simply controlling dwell time in proportion to the required depth of milling,
without considering whether the target surface can actually be etched. To address this, a Fourier analysis
Is used to show that high frequency components in the target surface cannot be etched due to the
geometry of the jet and the dynamics of the machine. In this paper, this frequency domain analysis is
used to improve the choice of the target profile in such a way that it can be etched. The dynamics of the
machine also have a large influence on the actual movement of the jet. It is very difficult to describe this
effect because the controller of the machine is usually unknown. A simple approximation is used for the
choice of the slope of a step profile. The tracking error between the desired trajectory and the real one is
reduced and the etched profile is improved. Several experimental tests are presented to show the use-
fulness of this approach. Finally, the limitations of the linear model are studied.
& 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Abrasive Waterjet Machining (AWJ) machining is a fast-grow-
ing non-conventional technology capable of processing any ma-
terial regardless of its properties. Modern AWJ machining systems
make use of high-pressure water jets (up to 90 000 psi¼620 MPa)
forced through a tiny orifice (0.1–0.3 mm) that enables the en-
trainment and acceleration of abrasive particles (e.g. garnet,
Al2O3) to high velocities (200–800 m/s). When the resulting
three-phase jet plume (water, abrasives and air, [1]) impacts a
target surface, it removes material by abrasive erosion (i.e. erosion
by solid particle impingement) [2–4].

The inverse problem consists of defining the control para-
meters, in particular the 3D beam path (position and orientation of
the beam as a function of time), to create a prescribed freeform
surface. This inverse problem is well understood for conventional
machining (e.g. turning, grinding, drilling), because the cutting
tool geometry is well defined and the material removal is a time
independent process. In contrast, energy beam (EB) machining is
achieved through the local interaction of an energy beam of
Ltd. This is an open access article u
particular characteristics (e.g. energy distribution), which leads to
a time-dependent removal rate. Furthermore, EB machining is a
time-dependent process in which not only does the etched surface
vary with the dwell time, but also any acceleration or deceleration
of the machine/beam delivery system when performing raster
paths will influence the actual geometry of the surface generated.
This makes the process inherently nonlinear, and dependent upon
good mathematical models, which then have to be inverted to
produce a suitable beam path, i.e. solving the inverse problem.

Some research in addressing the direct problem, i.e. given a
model for the footprint and the beam path, to determine the
generated surface, has been reported. Some of the most common
methods are based on statistical approaches [5], finite element
methods [6–8] or artificial intelligence methods [9]. Finite element
methods have also been used to model overlapped footprints [10].
However, there are some important drawbacks to these three
methods: statistical methods are only valid if the operating para-
meters are near the ones used for the modelling; finite element
approaches are computationally expensive and simplifying hy-
potheses are needed; artificial intelligence approaches requires
significant sets of data for training and give little insight into the
details of the physics that affect the process.

There is another set of more thorough approaches for
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Fig. 1. AWJM model.

A. Bilbao Guillerna et al. / International Journal of Machine Tools & Manufacture 99 (2015) 34–42 35
predicting footprint profiles based on analytical/geometric mod-
elling. One of the first studies details a model of the footprints of
stationary air powder-blaster jets [11]. The advantage of such
models is their relationship to the physical process of material
removal and their ability to predict the jet footprint whenever the
initial conditions are known [12]. This approach has been mainly
used for the prediction of single trenches when the jet impinge-
ment angle is π/2 rad and the path used is straight [13]. Recently,
some studies have been published that consider free-moving tra-
jectories of the jet [14] and the effect of the overlapping of raster
paths [15].

In contrast, the inverse problem in EB controlled-depth ma-
chining, the more technically important and yet academically
challenging problem, has not been studied in detail. The most
common strategy is simply to vary the dwell time of the beam on
each pixel of the target surface [16]. This is simply the leading
order approximation to the necessary strategy when the radius of
the beam is small compared to the size of the feature that is being
etched. There has been some work on the inverse problem for
other time-dependent processes: electro-chemical machining [17],
where the tool/electrode works in tangential mode to envelope
the required surface and is more similar to the movement of a cam
than to the energy beam inverse problem; electro-discharge ma-
chining [18] where the electrode, with wear pattern measured at
time intervals, copies the geometry of the final surface, so a
mathematical solution to the inverse problem is not required.

In this paper a new approach to the inverse problem for EB
processes, with an emphasis on abrasive Waterjet Machining
(AWJM) is presented. Most of the previous solutions just consist of
varying the dwell time in proportion to the required depth of
milling to achieve the desired surface. However, they do not
consider whether a solution to the inverse problem actually exists.
In other words, the target surface is usually defined without
checking whether the process can etch that particular surface. We
will show below that some frequency components, usually high
frequency ones, cannot be etched due to the geometry of the jet. A
Fourier analysis can be used to find a solution to this problem. This
approach gives information about what kind of surfaces can be
etched by checking the influence of each frequency on the etched
surface. Moreover, an exact solution to the problem can be cal-
culated. The dynamics of the machine also have a large influence
on the actual trajectory of the energy beam. Developing an un-
derstanding of and a model for these dynamics is difficult, because
most of the control parameters of the machine are not accessible
to the user. However, for some particular profiles the machine
dynamics can be compensated. In [19], the slope of a ramp on the
target surface is calculated using the maximum value of the jerk
that the AWJM can achieve. This seems to be the first approach to
consider the dynamics of the machine tool when precise surfaces
are required in EB machining and further analysis is needed for
more complicated surfaces where the behaviour of the machine
changes during the trajectory. However, this approach is good
enough to select the appropriate value of the slope of a ramp. The
tracking error between the desired trajectory and the target one is
reduced and the quality of the etched surface is improved.

1.1. Scope of the paper

The inverse problem is studied for a general EB process, with
particular emphasis on its application to AWJ machining. To
achieve this scope the following aspects have been investigated:

1. For shallow surfaces a linear model describes the process well,
and a frequency domain analysis can be performed to obtain the
solution of the inverse problem. This approach gives informa-
tion about what kind of surfaces can be etched.
2. The machine dynamics are compensated when a step is in-
cluded in the target surface; the maximum value of the jerk is
measured and used to decide the slope of the ramp.

3. Experimental results indicate when a linear model is valid and
when a nonlinear model is needed. Different values of the
depths for the target profile are considered and the influence of
overlapping between two consecutive passes of the energy
beam is studied.
2. Generic model of an energy beam process

A generic partial differential equation model for an energy
beam process is

x a p
Z
t

E t Z Z t, , , ; , , 10
∂
∂

= − ( ∇ ( )) ( )

subject to x xZ Z, 0 .0( ) = ( ) In this model, E0 is the etching rate
function, which characterises the rate of removal of material, t is
time, with t T0 ≤ ≤ , x x y,=( ) is spatial position, xz Z t,= ( ) is the
evolving position of the surface in a Cartesian coordinate system,
x y z, ,( ). In addition, a is a vector of constant parameters that
characterize the model and p(t) is a vector of control parameters.
The appearance of Z and Z∇ in E0 indicates that, in general, the
slope of the evolving surface and its distance from the nozzle af-
fect the rate at which material is removed. In the forward problem,
the final surface, xZ T,( ), is determined by the choice of control
parameters, p(t). In the inverse problem, the objective is to find p
(t) given a specified target surface, xZ T,( ).

In this paper, it is assumed that the initial surface is flat
( xZ 00 ( )= ) and the linearized problem is studied. In the context of
AWJM (Fig. 1), upon which this paper focuses, this means that the
feed speed is assumed to be sufficiently high that nonlinear effects
due to the evolving slope of the surface and its distance from the
nozzle can be neglected, an assumption that can be tested ex-
perimentally. In this case, (1) can be written as the linear equation.
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In order to make some analytical progress and easily compare
theory to experiment, we will further restrict our attention to the
case where the axis of the AWJ plume remains perpendicular to
the plane, z 0,= of the unetched surface, so that

Z
t

E r , 3
∂
∂

= − ( ) ( )

where x Xr t= − ( ) is the distance to the centre of the beam, X t( ),
projected onto z 0= , which provides the only control parameters,
and E r( ) is the etching rate function.

As described in Kong et al. (2012) E r( ), can be calibrated ex-
perimentally by using a jet with high feed speed to generate a
straight, shallow trench, from which E r( ) can be calculated using
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Here Z yf ( ) is the measured profile across the trench and distance is
measured in units of beam radius.
3. Linear inverse problem

In the inverse problem the objective is to find the appropriate
values of the control parameters, in this case X t( ), to obtain a final
surface close to a given target surface. For a nonlinear model of the
form given by (1), this is a complex optimization problem that
requires significant computational resources and will be the sub-
ject of a future paper. By studying the linearized inverse problem,
using Eq. (3), significant insight can be gained into some funda-
mental limitations on the family of surfaces that can be etched
using a beam with a given footprint, E r .( ) It also gives a simple
framework within which to study the influence of the dynamics of
the machine, which experimental tests show to be very significant.

The experimental tests discussed in Section 4 are all for straight
paths etched by a jet with a variable feed speed, which results in
straight trenches of variable depth. The centreline of these tren-
ches can be treated as the outcome of a one-dimensional etching
process. The centreline of these trenches can be treated as the
outcome of a one-dimensional etching process. We therefore
consider (3) in 1D, so that

Z
t

E x X t , 5
∂
∂

= − ( − ( )) ( )

where x is position along the trench, X t( ) is the position of the
centre of the jet and E is the etching rate function, assumed to be
an even function of its argument, obtained using the experimental
calibration procedure described above. The final etched surface is

Z x T E x X t dt, . 6
T

0
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If we also assume that X t( ) is strictly increasing (the jet never
retraces its path),1 we can write (6) as

Z x T E x X x D x dx, , 7L
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where D x dX
dt

1( ) ≡ ( )− is the dwell time as a function of position
along the path, which runs from x L= − to x L= . Then, by the
convolution theorem,

Z LE D2 , 8n n n= − ( )
1 This assumption is not restrictive as a path that reverses its direction can be
replaced with an equivalent unidirectional path within the context of a linear
theory.
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E
L

E x e dx
1

2
, 9n

L

L
in x L/∫= ( ) ( )

π
−

−

is the nth Fourier component of E x( ) and similarly for Zn and
Dn.

2

Since En can be calculated from the calibrated etching rate
function, E x( ), as can Zn from a given target trench depth profile,
Z x T,( ), in principle Dn, and hence the required dwell time profile,
D x( ), can be calculated. However, if E 0n= for some n, then that
mode has no effect on the etched surface. Moreover, if some En is
small but nonzero (as is typical for high order modes of the Fourier
transform of a function with finite support) it will lead to a cor-
respondingly large value of Dn. It can be concluded that, not only is
there a fundamental restriction on the frequency content of the
final target surface that comes from the frequency content of the
etching rate function, but also that, if a given frequency does exist
in E x( ) but is small, it induces a correspondingly large component
in the dwell time, D x( ), and hence in the beam path, X t( ), that may
not be realizable in practice due to the dynamics of the AWJ ma-
chine, which is discussed below.
4. Compensation of the dynamics of the machine

The dynamics of the machine have a big influence on the
possible movement of the jet. Although the trajectory of the jet is
usually implemented as a CNC file, the controller used by the
machine to generate the actual trajectory is usually unknown and
the identification of a model valid under any conditions is not an
easy task. For example, if a step is defined as in Fig. 2(a), where the
slope is determined by Z1, Z2 and ΔX, then the required feed
speed, calculated using the linear model (3), is shown in Fig. 2(b).
In this paper two different approaches are used to compensate for
the dynamics of the machine when a step like this is implemented
in the required trajectory.

4.1. Frequency analysis approach

For a particular step the jet trajectory is calculated and im-
plemented in the machine, and then the actual trajectory is
measured. The input and measured trajectories are then compared
in the frequency domain. A Frequency Response Function (FRF)
can be calculated from those signals. For any other step the tra-
jectory can be compensated by multiplying by the inverse of the
FRF in the frequency domain. From (8),

Z LE D H2 10n n n n,= − ( )

where Hn is the FRF calculated as
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where Xn
measured̅ and Xn

input̅ are the measured and input trajectories
of the beam in the frequency domain. Similar conclusions as in
Section 3 can be reached in this case with the inclusion of this FRF.
If the value of Hn is zero for a particular mode, that frequency
cannot appear on the etched surface since it is filtered by the
dynamics of the machine. The main advantage of this method is
that one can know the range of frequencies that can be included in
2 The theory is presented in terms of a periodic extension of the path and a
Fourier series. It could equally well have been derived using a Fourier transform.
Once the transformations are implemented numerically as discrete versions, the
results are equivalent.
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Fig. 2. Definition of a step in the target surface (a) and the calculated feed speed of the machine (b).

A. Bilbao Guillerna et al. / International Journal of Machine Tools & Manufacture 99 (2015) 34–42 37
the target surface. However, although this is a convenient frame-
work within which to understand how the dynamics of the ma-
chine affect the range of surfaces that can be etched, these dy-
namics are unavoidably nonlinear. In the experimental tests we
therefore used a different approach to compensate the machine
dynamics.

4.2. Maximum gradient approach

In this method different values of Δx are considered for a
particular step (Fig. 2) with constant values for Z1 and Z2. For each
value ofΔx the response is measured and the value of the gradient
of the feed speed, F(x), is calculated in the middle of the step.3 For
small values of the slope the machine is able to achieve the desired
gradient. However, when the gradient is too large it cannot be
obtained.

In order to compensate for the dynamics the following steps
are taken:

1. Define the desired value of the slope (s) for the step in the
profile and calculate the gradient of F(x) in the middle of the
step using

s KF G F 12m m
2= − ( ) ( )−

where F F F /2m 1 2=( + ) is the mean value of the feed speed and
G Fm( ) is the value of the gradient in the middle of the step. F1and
F2 are the values of the feed speed needed to obtain the target
depths, Z1 and Z2. K is a constant parameter obtained for ex-
perimental data.

2. Use the measured data to calculate the value of Δx that gives
the desired value of the gradient obtained in the previous step.

3. Compensate the look-ahead option of the machine by changing
the position of the step. The controller of the machine calculates
the trajectory by considering the next points in the commanded
input. For this reason the jet starts accelerating or decelerating
in a different position. This value is unknown, but it can be
compensated if the position of the step is moved.

4. Use round corners to avoid the high frequency components that
are identified as being impossible to etch using the theoretical
results given above.

5. Generate the new target profile with those values and calculate
the input trajectory using (8). Since the gradient depends on the
sign of ΔF¼F2 – F1, the etching is always done in one direction
(no raster paths)
3 Note that the spatial gradient of the feed speed, F(x), is the acceleration di-
vided by the feed speed.
The proposed method can be summarized as the following
steps:

1. First, an experimental shallow trench Is generated to calibrate
the linear model described in Eq. (3). the etching rate function, E
(r), Is calculated using Eq. (4)

2. The small frequency components in the etching rate function
are avoided in the target surface. in particular, High frequencies
are not included in the target surface.

3. The trajectory of the beam Is obtained from the inverse of the
Fourier transform of the dwell time, Dn, calculated using Eq. (8).

4. Finally, the dynamics of the machine are compensated using the
method described in Section 4.
5. Experimental tests

The experimental data for model validation has been generated
with a Microwaterjet 3-axis F4 type machine developed by Wa-
terjet AG4 (Fig. 3). Several cutting heads, with a diameter of the
mixing nozzle from 0.2 to 0.8 mm, can be mounted in the system.
The diameter of the water orifice varies from 0.08 to 0.24 mm. The
machine is empowered by a KMT streamline SL-V100D ultra-high
pressure pump, capable of delivering a pressure range from 700 to
4000 bar. The apparatus has been designed for high accuracy
cutting applications, with a cutting accuracy of 0.01 mm and a
positioning accuracy of 0.003 mm, and its maximum traverse
speed is 4000 mm/s. The abrasive particles used for this study are
BARTON HPX 220. The following constant parameters are con-
sidered: P¼138 MPa, ma¼0.03 kg/min, SOD (stand-off distance)¼
3 mm. The diameters of the mixing and water nozzles are 0.5 mm
and 0.18 mm, respectively. The material of the workpiece is
Ti6Al4V alloy extensively used for the manufacture of aerospace
and medical components.

5.1. Model calibration

First the calibration of the etching rate function has to be
performed. In the theory, only one trench is necessary for cali-
bration purposes. However, in practice the measured profile varies
due to the fluctuations of the pump pressure and the process
noise. In order to avoid this limitation several trenches are gen-
erated using the same conditions and an experimental profile is
measured from each set of data. Then the average of the different
4 www.waterjet-group.com



Fig. 3. Experimental setup.
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profiles is calculated. Each trench is generated by moving the jet at
3000 mm/min in the x-direction and the average of the profile in
the y-direction is calculated. In Fig. 4 the average profile is dis-
played. Then using (4) the etching rate function can be calculated
(Fig. 5). Once the etching rate function is known the process is
simulated using (3) and a simulated profile is obtained (Fig. 4).

Eq. (4) provides a set of points for the etching rate function. For
simulation purposes these points are fitted to an equation. The
summation of different sinusoidal functions has been found as the
equation with the best fitting. The etching rate function in Fig. 4
can be fitted to

E r a sin b r c 13k k k k1

8 ( )∑( )= + ( )=

with a1¼0.1053; b1¼5.916; c1¼0.798; a2¼0.05573; b2¼11.8;
c2¼1.609; a3¼0.003392; b3¼33.39; c3¼2.911; a4¼0.003818;
b4¼24.07; c4¼3.201; a5¼0.00117; b5¼50.84; c5¼1.917;
a6¼0.001062; b6¼60.79; c6¼2.325; a7¼0.0006665; b7¼71.68;
c7¼2.633; a8¼0.0003799; b8¼83.96; c8¼2.788.

5.2. Frequency domain analysis

In order to show how the frequency domain analysis is used to
select the target surface, the profile described in Fig. 6 is con-
sidered. T describes the period of the trapezoidal wave and τ de-
fines the length of the ramp. Small values of τ lead to larger values
of the slope and higher frequency components. In Fig. 7a fre-
quency analysis is done for three different values of τ. τ¼0.25 mm
(red line) leads to larger values of the high frequency modes. These
modes are attenuated for τ¼1 mm. The Fourier transform of the
etching rate function calculated in the previous section is also
displayed (dotted black line). The component of the mode of the
etching rate function at f¼3 mm�1 is almost zero. This means that
the inclusion of this mode in the target surface would lead to a
large value of that mode in the trajectory of the beam. Obviously
this is not a good idea and any frequency larger than 3 mm�1
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should be avoided in the trajectory. In particular, target surfaces
with τ¼1 mm (blue line in Fig. 7) and τ¼0.5 mm (black line in Fig.
7) have a nonzero component at f¼ 3 mm�1. The solution of the
inverse problem for these two profiles would lead to large com-
ponents around that frequency and undesirable oscillations of the
jet.

The target surface is selected in such a way that all the fre-
quency components can be etched by the etching rate function.
First τ is selected in such a way that the first minimum is at f¼
3 mm�1, which happens when τ is 0.4 mm (blue line in Fig. 8).
Moreover, round corners can also be used to filter the high fre-
quencies while the value of the slope of the ramp is kept constant
(green line). Finally, the inverse Fourier transform is used to obtain
the target profile in the spatial domain, Zr(x).

5.3. Compensating the dynamics of the machine

In order to show how the dynamics of the machine are com-
pensated, a particular step described as in Fig. 2 is considered,
with Z1 ¼0.06 mm and Z2¼0.12 mm. These depths are obtained
with feed speeds F1¼3280 mm/min and F2¼1640 mm/min, re-
spectively. Fig. 9 shows the measured value of the gradient of the
feed speed in the middle of the step as a function of ΔX. The ex-
periment is performed for both accelerating (red line) and decel-
erating cases (blue). Positive (xþ) and negative (x�) movements
in x-axis of the machine are considered as well. The results show
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that there is no difference between the positive (solid line) and the
negative (dotted line) axis for the same step. However, the value of
the gradient achieved is higher when the machine is decelerating.
This is an important aspect to be taken into account since most
surfaces are etched using raster paths.

Fig. 10 shows a target surface with Z1¼�0.06 mm, Z2
¼�0.12 mm and ΔX¼10 mm. The desired value of the slope at
the middle of the step is obtained when the gradient of the speed
is 184.5 min�1. Now from the results in Fig. 8 that particular value
of the gradient is achieved whenΔx¼7.5 mm. Moreover, the look-
ahead option is compensated by delaying the step 4 mm. Fig. 11
shows the correction of the trajectory. The red line is the com-
pensated trajectory used to generate the input CNC and the black
line is the actual measured trajectory of the beam. One can see
that the error between the desired trajectory (blue) and the actual
trajectory (black) is reduced, while the desired slope in the middle
of the step is achieved.

5.4. AWJ milling tests for the linear inverse problem

The target profile is displayed in Fig. 12. Three different values
of the depths are considered. The profile is selected by analysing
its Fourier transform and checking that all the frequency compo-
nents can be included. Then the dynamics of the machine are
compensated using the technique described above. In Fig. 13a
comparison between the measured trajectory after the compen-
sation and the target one is displayed.

The trajectory is implemented in a milling process and the
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Fig. 11. Target, measured and input trajectories.
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profile is measured. Fig. 14 compares the measured profile (blue)
and the desired one (black). The tracking error is almost zero for
two of the target depths, while there is a small error in the deepest
one. Nonlinear effects have more influence at larger depths, since
the angle between the jet and the etched surface is larger. More-
over, the measured values of the slopes of both ramps are also
close to the target values.

Finally, in order to investigate the limitations of the assumption
of linearity, the same trajectory is repeated and the trenches
allowed to overlap. Overlapping describes the distance between
two consecutive passes in the y-direction (ΔY). Three different
overlapping values are considered: ΔY¼0.5 mm (0%),
ΔY¼0.4 mm (20%) and ΔY¼0.3 mm (40%), represented by Sec-
tions I, II and III, respectively in Fig. 15. Figs. 16–18 show the
average profiles in the y-direction for the part of the trajectory
with constant speed (and hence constant depth). Sections A, B and
C correspond to the constant feed speed parts equal to 3763 mm/
min (blue lines), 2503 mm/min (black lines) and 1576 mm/min
(red lines), respectively. In Figs. 16–19, the experimental data is
displayed with solid lines, while dotted lines are used for the
model prediction. Now the nonlinear effect is more evident. For
small overlapping, the prediction of the model is still good.
However, if the overlapping is large, the linear model is not ac-
curate enough to predict the profile. Moreover, for the same
overlapping value the tracking error is always lower for the
highest value of the speed, since the resulting profile is shallower
and the linear model therefore more accurate. Note that the
etched experimental profiles are not constant for the same input
parameters. The main reason is that the value of the pressure
delivered by the pump used to generate the waterjet is not con-
stant during the process and introduces some noise on the etched
surface. We observed that the pressure changed by about 10%
around the command input during the experiments. AWJ are
usually designed to be used for cutting, where these fluctuations
are not so important. However, this value is not so high in general
and the noise should be smaller with a better pump.

Experimental tests have shown that the linear model can be
used when the etched surface is shallow and the angle between
the jet and the surface is approximately constant. However, for
deeper surfaces the linear model cannot be used if the surface
needs to be etched in one single pass. The best option in that case
is to etch the target surface in several passes, where each of these
passes only removes a small amount of material and the linear
model can be applied. Fig. 19 shows the result of performing two
equal passes for the same case described in Section 5.3. The pre-
diction is still good enough for small values of the overlapping.
6. Conclusions

In this paper a new approach to the 1D linear inverse problem
for energy beam processes has been presented, with particular
emphasis on its application to Abrasive Water Jet milling. A linear
model can be used to describe the behaviour of the machine when
the angle between the jet and the surface is approximately con-
stant during the whole process and the feed speed is high enough
that the etched surface is shallow. Under these conditions a fre-
quency analysis shows that there are fundamental limitations on
the frequency content of surfaces that can be milled. These lim-
itations come both from the frequency content of the footprint of
the jet and also from the dynamics of the machine. By an appro-
priate choice of the modes to be included in the target surface, one
can ensure that there is a solution of the inverse problem. This is
an important result, because this problem is usually solved with-
out considering if there is a solution. Moreover, undesired modes
can be filtered and undesirable oscillations in the trajectory of the
jet avoided.

The influence of the dynamics of the machine has also been
studied. The real trajectory of the jet is always different to the
commanded one due to the controller and the limitations of the
machine. The precise details of the controller are not known to the
user in most devices. In this paper an approach for the compen-
sation of the dynamics for a step in the profile is presented. The
value of the slope of the ramp depends on the magnitude of the
spatial gradient of the speed of the jet that can be achieved in
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practice. Using this information the trajectory is corrected and the
error between the desired path and the real one is minimized.

Finally, experimental tests to validate this approach to the in-
verse problem have been performed. For shallow trenches the
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tracking error is small, showing that the linear model is quite ac-
curate. For deeper profiles, nonlinear effects are more evident
because the angle cannot be considered constant and a nonlinear
model should be used. Similarly, the predicted profile is close to
the experimental profile when small values of the overlapping are
used. Nonlinear effects will form the subject of a future paper. The
influence of the fluctuations of the pressure has been observed as
well. This is an important aspect and it is being studied in the
research group. It will be included as an additional noise in the
nonlinear model to be used in the future.
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