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Forgetfulness can help you win games
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We present a simple game model where agents with different memory lengths compete for finite resources.
We show by simulation and analytically that an instability exists at a critical memory length, and as a result,
different memory lengths can compete and coexist in a dynamical equilibrium. Our analytical formulation makes
a connection to statistical urn models, and we show that temperature is mirrored by the agent’s memory. Our
simple model of memory may be incorporated into other game models with implications that we briefly discuss.
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I. INTRODUCTION

All successful forms of life must eventually engage in
competition for resources. The equilibrium analysis of these
competitions began with von Neumann [1] and Nash [2]. The
theory of games has since found applications in genetics,
ecology, economics, and sociology [3–6]. Computational
implementation of games leads to agent-based models, which
may be of particular importance in understanding the behavior
of financial systems [6,7]. For example, the particularly suc-
cessful minority game model [8–12] captures the competition
between intelligent agents with a restricted form of memory.
Recent work suggests such games may be generalized leading
to clearly separated regimes of behavior [13]. In general,
understanding the complex collective behavior arising from the
nonlinear interactions between individuals is a major challenge
for statistical physics [14,15].

In this paper we present a simple discrete time game model:
individual agents reside in one of two urns, each offering a
stochastic yield to be shared by the residents. Each agent has
a memory of these payouts for the previous τ rounds, and
may switch urns, using this memory to aid its decision. Such
stochastic yield sharing is known as “exploitative competition”
in ecological settings, where the urns may represent different
prey species [16] or foraging patches [17,18]. Stock market
investors may also be viewed as foragers [19], searching for
under-exploited stocks, although price dynamics adds an extra
layer of complexity to the game in this case. Some form of
intelligence is essential in order to compete [20]. As with the
minority game [8], agents’ memory in our model is a tool
for decision making, but our agents’ memory is used to make
direct estimates of the highest paying choice, rather than to
second guess opponents’ next moves. Whereas minority game
agents possess both a detailed short term bit-string memory,
and a secondary memory in the form of their strategy scores,
our agents’ only tool is a finite version of the latter memory
type; they are more primitive. The behavior we uncover is
related to the finite length of this memory: it is possible for
payoffs to be remembered for too long. In the minority game
the optimal length bit-string memory maximizes coordination
between agents, but in our game the profitability of different
memory lengths is due to a competition between obtaining
accurate statistics and maintaining stability.

In common with the thermal minority game [10], dynamical
urn models [21], and some evolutionary games [22], our agents
have a “selection temperature,” which captures the level of
noise in the switches they make in search of yields. We find that
the additional noise inherent in their finite memory samples,
which is greater for shorter memories, leads the system to
behave as if its agents have a higher temperature. Therefore,
increasing memory “cools” the system. However, at a critical
memory, a Hopf bifurcation [23] emerges producing stable
cycles in the numbers of agents in each urn. Perhaps not
surprisingly, a long memory is advantageous when the system
possesses a stable fixed point, but the presence of these cycles
allows short-memory agents to compete, and a mixed memory
system will evolve toward the bifurcation point. Our theoretical
formulation follows that of statistical urn models such as
Ehrenfest’s dog flea model [24], which played an important
role in the early development of statistical mechanics, and
more recently allowed analytical investigation of effects
such as slow relaxation and condensation in nonequilibrium
statistical mechanics [21].

While we have restricted our analysis to a yield-sharing
game, our simple model of memory may be applied in general
to social systems, where agents make decisions to switch
between behaviors based on their memory of past payoffs or
interactions. Simple systems in which memory could naturally
be incorporated include the Hawk Dove [3] and Rock Scissors
Paper [25] games, or the voter model [26]. The fact that
systems of interacting units display a remarkable range of
collective behavior controlled by temperature suggests that
these behaviors, including condensation and the emergence of
order [26], which have social interpretation, may also have a
connection with memory [27], but that long memory can also
introduce instability.

II. MODEL DEFINITION

Consider the case of two urns and a total of n agents. We
let the urn yields, U1(t), U2(t), at round t be random variables
uniformly distributed on [0,ωn] and [0,n], respectively, where
ω > 1 so that urn 1 yields more on average than urn 2. This
choice of yield distribution is motivated by simplicity—only
one extra model parameter, ω, is required to describe it. The
behavior we uncover is not tied to the particular choice of
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yield distribution; it requires only that the yields have finite
variance, allowing the central limit theorem [28] to be applied
to sums of payoffs. We allow agents access to the arithmetic
mean of the last τ payoffs, but we note that other forms of
sampling could be used. Letting φt be the fraction of agents in
urn 1, then the difference in the average payoffs between urn
1 and urn 2 is

�t := 1

τ

τ−1∑
s=0

[
U2(t − s)

n(1 − φt−s)
− U1(t − s)

nφt−s

]
. (1)

We refer to τ as the “memory length” of the agents. Agent
dynamics is encoded in transition probabilities between urns,
which are deterministic functions of �t . At each round, each
agent will switch urns using the probabilities

W1→2(�) = ε

2
[1 + tanh(β�)], (2)

W2→1(�) = ε

2
[1 − tanh(β�)]. (3)

These so called “Fermi Functions” are used in evolutionary
game models [22,29,30], where changes in strategy are made
based upon perceived increases in payoff, but with some
degree of noise or irrationality in the switching process. The
level of this stochasticity in decision making, which has been
experimentally measured in humans [31] is captured by the
parameter β, the “inverse temperature.” For finite β, agents
may decide to switch strategies even though their estimate
of the payoff difference is unfavorable. In the limit β → ∞
agents will only move if their estimate of the payoff difference
indicates that the move is favorable. The parameter ε controls
the rate at which strategy switching takes place compared to
the rate at which yield information arrives, or equivalently
the inertia in agent’s decision making. It may also be seen
as the frequency with which opportunities to switch strategy
arise. In the limit ε → 0, at most one agent will move at
each round. We note that the effects we uncover in the
remainder of this paper do not require that the transition
probabilities take the particular forms of Eqs. (2) and (3).
In the Appendix we show that the same qualitative behavior is
observed for transition probabilities that increase in proportion
with perceived payoff difference (±�), provided the difference
is positive and |�| < ε−1.

III. SIMULATION

A. Instability

We simulate the model for a series of values of τ when n =
106. Two different values of ε are used; in Fig. 1 we have ε−1 =
106 � τ and in Fig. 2 we have ε = 10−3. For ε = 10−6, the ex-
pected number of moves at each step is <1, and φ appears very
stable. For larger ε, φ experiences much larger fluctuations
about the steady-state value, driven by the yield process. For
shorter memory values these fluctuations are random, but as
τ approaches ε−1, periodic oscillations appear and dominate.
The appearance of these stable oscillations at critical memory,
τc, calculated analytically in Sec. IV, is known as a Hopf
bifurcation [23]. From Figs. 1 and 2 we see that the number
of rounds taken for the system to evolve to steady state, in the
probabilistic sense, starting from an equal distribution between
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FIG. 1. Evolution of φt when n = 106, ω = 2, β = 5, ε = 10−6,
and φ0 = 0.5. Memory values are τ ∈ {5, 10, 50, 500} (squares,
circles, dots, triangles, respectively). Dashed lines are analytical
equilibrium values [see Eq. (12)]. Critical memory (see Sec. IV)
is τc ≈ 1.8 × 105.

the two urns, is ≈ε−1. By allowing agents access only to the
mean of their memory, we implicitly assume that changes in the
expected payoff over the course of their memory, brought about
by oscillations, are too subtle for them to infer from noise.

B. Coexistence

We now investigate how agents with two different memories
compete against one another by interpreting the payoff as
reproduction rate. We define δ and γ as rates of death and
reproduction per unit payoff, respectively. Reproduction is
assumed to occur before death in each round, but in practice the
probability of any one agent reproducing and dying in the same
round is extremely small for the γ, δ values we choose. Letting
pτ

i (t) be the number of agents with memory τ in urn i at time
t we set the probability of birth for each agent in urn i to be

P(birth) = γUi(t)∑
τ pτ

i (t)
. (4)
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FIG. 2. Evolution of φt when n = 106, ω = 2, β = 5, ε = 10−3,
and φ0 = 0.5. Memory values are τ ∈ {5, 10, 50, 500} (squares,
circles, dots, triangles, respectively). Dashed line is solution to
Eq. (15) when τ = 500 and ω, β, ε are as above. Critical memory
(see Sec. IV) is τc ≈ 390.
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FIG. 3. Scaled populations pτ (t) := pτ
1 (t) + pτ

2 (t) for τ = 10
(circles) and τ = 1000 (triangles) when total initial population is
n = 106, ε = 10−3, β = 5 with γ = 10−4 and δ = 2 × 10−4. Also
shown (thin black line) is evolution of variance of φt , over a moving
time window of 105 steps, during population dynamics simulation.
Straight dashed line shows variance of homogeneous population with
the same ε, β, ω values at critical memory τc ≈ 390, where τc is
calculated analytically using the theory of Hopf bifurcation (Sec. IV).
Note: rapid initial equilibration of population values (bringing birth
and death into balance) is not visible on time scale of plot.

The denominator in this term is the total population in urn i,
reflecting the fact that the yield Ui(t) is shared between all
agents in the urn. When a given agent reproduces, he produces
a copy of himself in his current urn, having the same memory
length, τ . The death probability for each agent is set equal to
δ. If populations are fixed in size and the system is not in an
oscillatory state, then we expect that in equilibrium the longer
memory agents will dominate the high yielding urn. Their long
memory allows them to perceive smaller statistical advantages
that are obscured by noise for the short-memory agents. Using
the thermodynamic analogy, the higher temperature (shorter
memory) agents are more likely to make moves that leave
them in an urn with a lower expected payoff, corresponding
to a higher “energy” state. Above zero temperature, and
in the absence of oscillations, the high yield urn will be
under-exploited, placing high memory agents at an advantage.
This effect can be observed in Fig. 3, where we have simulated
a mixed population of two memories τ ∈ {10, 1000} beginning
with a ratio of 10:1 short-memory to long-memory agents.
We see that initially the advantage afforded the long-memory
agents causes their population to grow, whereas the short-
memory agents reduce in number. Were this advantage to be
sustained indefinitely then we would expect the short-memory
agents to eventually disappear, but in fact the populations
stabilize. This effect appears because the long-memory agents
cause oscillations to develop once they are in sufficiently high
concentration. In the presence of oscillations the short-memory
agents have an advantage because they can quickly observe
opportunities offered by the oscillating payoffs. We therefore
expect the system to evolve to the point where oscillations
are just beginning to form. We may observe this evolution by
making use of the variance of φt as an order parameter that
captures proximity to the Hopf bifurcation point. In Fig. 3 we
see that at a critical ratio of short- to long-memory agents, the
variance climbs rapidly, stabilizing just below the value seen

in a system where all agents have memory τc but all other
parameters are equal. In this way the Hopf bifurcation may be
viewed as a self-organized state.

IV. ANALYSIS

A. Equilibrium

We consider the behavior of the model as ε → 0, allowing
us to view it as an urn model in the Ehrenfest class [21],
where agents independently make transitions using state (φt )
dependent probabilities. Provided τ � ε−1, the fraction φt

may be approximated by a constant φ during the window over
which payoff averaging takes place. In this case, by the central
limit theorem, the marginal distributions of �t for each t are
approximately normal N (�̄,σ 2/τ ) where, from Eq. (1),

�̄(φ,ω) := 1

2

(
1

1 − φ
− ω

φ

)
, (5)

σ 2(φ,ω)

τ
:= 1

12τ

[
ω2

φ2
+ 1

(1 − φ)2

]
. (6)

We now introduce a intermediate time scale T satisfying τ �
T � ε−1 and define the time average 〈·〉, over a window of
length T ,

〈Wi→j (�)〉(t) := 1

T

t∑
s=t−T +1

Wi→j (�s). (7)

This average is a random variable which, for constant φ, has
expected value E[Wi→j (�)], where the expectation is taken
over the marginal distribution of �. The condition τ � T �
ε−1 ensures that φ is approximately constant over the window
and that the variance of 〈Wi→j (�)〉 is proportional to T −1

(because �t1 and �t2 are dependent only when |t2 − t1| <

τ � T ). As ε → 0, then assuming T is sufficiently large,
the probability that an agent will make a transition i → j

during interval T approaches T 〈Wi→j (�)〉 ≈ T E[Wi→j (�)],
equivalent to a memoryless (Ehrenfest class) model, where
transition probabilities, Eqs. (2) and (3), are replaced with
their expectations E[Wi→j (�)]. Averaging over the normally
distributed difference � we find that

〈W1→2(�)〉 ≈ E[W1→2(�)] ≈ ε

2
[1 + tanh(α�̄)], (8)

where

α =
√

2τβ2

2τ + πβ2σ 2
. (9)

To obtain this result, we have made the approximation
tanh(β�) ≈ erf(

√
πβ�/2), allowing us to make use of the

exact relationship E[erf(
√

πβ�/2)] = erf(
√

πα�̄/2). The
constant α acts as an effective inverse temperature and
we see that increasing τ “cools” the system closer to the
inverse temperature β, and in the limit β → ∞, α ∝ √

τ .
To complete our analogy to a thermal urn model we now
write the probability of finding the agents in a particular
arrangement, or microstate, i, such that a fraction φ are in
urn 1, as pi(φ) ∝ e−αE where E is an “energy” function.
Considering two microstates separated by a single transi-
tion, and defining δφ = 1/n, then detailed balance requires
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that in equilibrium 2α�̄ = ∂φ(αE)δφ. This condition allows
E(φ) to be computed, in principle, by integration. A closed
form approximation E(φ) ≈ −nln[φω(1 − φ)] is obtained by
noting that α depends weakly on φ compared to E so that
∂φ(αE) ≈ α∂φE. Summing over all microstates corresponding
to macrostate φ we have a Boltzmann probability distribution
for φ,

P(φ) = n!

(nφ)![n(1 − φ)]!

e−α(φ)E(φ)

Z , (10)

where Z is the partition function. Taking the thermodynamic
limit n → ∞, and making use of Stirling’s approximation, we
find that the most likely fraction, φ̄, satisfies

1

2n

∂

∂φ
ln P(φ) = α�̄ − 2φ + 1 = 0. (11)

As the memory increases and the system cools we expect the
agents to arrange themselves so that yields are shared more
fairly. We therefore linearize Eq. (11) about the perfectly fair
state, φ = ω/(1 + ω), where agents in both urns receive the
same expected payoff, finding that

φ̄ ≈ f (τ ) + β(1+ω)2

2

2f (τ ) + β(1+ω)3

2ω

, (12)

where f (τ ) =
√

1 + πβ2(1 + ω)2/(12τ ). The accuracy of this
approximation is verified in Fig. 1. For larger values of ε

(Fig. 2), agents move more quickly so the averaging effect
Eq. (8) damps fluctuations in transition rates less strongly,
creating larger fluctuations in φt . For finite β the system cannot
reach perfect fairness for any memory length, but in the limit
β → ∞ where the transition probabilities, Eqs. (2) and (3),
become step functions, we have that

φ̄ ≈ ω

ω + 1

[
1 −

√
π (ω − 1)√

3τ (ω + 1)2
+ O(τ−1)

]
. (13)

From this we see that the distance away from the fair state
decreases as τ−1/2 as the memory of the agents becomes large.

We have shown that provided the timescales of switching
and agent memory are sufficiently separated, then our model
behaves as a memoryless dynamical urn model [21,24] with
time-averaged transition rates. This averaging is equivalent to
a rescaling of temperature, and we have given an approximate
analytic expression for this new temperature, α, in terms of
the underlying “selection temperature” of agents, β, and their
memory length, τ . The study of the dynamics of particles
in urns began with Ehrenfest’s dog-flea model [24], where
agents make random transitions between two urns at a fixed
rate without reference to energy or temperature. Thermal mod-
els [21] include an energy, E, and have transition probabilities
that respect detailed balance with respect to the Boltzmann
distribution. These probabilities are decreasing functions of
β�E, where �E is the energy change associated with the
transition, and β is the inverse thermodynamic temperature, so
that reducing temperature makes energy increasing transitions
less likely. In our case, �̄ plays the role of an energy change
and α is the inverse temperature. Increasing memory reduces
α, making payoff reducing transitions less likely. However, if
memory is increased to the extent that it becomes comparable

to the timescale of switching between urns (≈ε−1) then the
model begins to behave quite differently to classical thermal
urn models [21,24]. It becomes important that the average
payoff agents use to make decisions is calculated from the
history of the system. This is because the populations in the
urns are able to change significantly during the course of
a single agent’s memory, and so using delayed information
for decision making can falsely identify the optimal urn. To
understand mathematically why increasing τ too far, when ε is
finite, destabilizes the system, we must make use of the theory
of delay differential equations [23].

B. Instability

As τ increases, fluctuations in �t due to the yield process
are reduced but for finite ε we can no longer treat φt as a
constant over the averaging window. It is instructive, therefore,
to study the effect of variations in φt , neglecting the variations
in yield. Promoting t to a continuous variable and replacing
the urn yields with their mean values we have

�t ≈ 1

2τ

∫ t

t−τ

[
1

1 − φs

− ω

φs

]
ds. (14)

We then approximate the evolution of φt using the following
delay differential equation:

φ̇t = (1 − φt )W2→1(�t ) − φtW1→2(�t ). (15)

A numerical solution to this equation is shown in Fig. 2,
along with simulation results using the same parameter values.
The oscillations in the simulation are accurately captured
by Eq. (15), but the stochastic yield disrupts their perfect
periodicity. To discover the parameter values at which stable
oscillations develop we linearize Eq. (15) by writing φt =
φ̄ + ψt , where ψt are small fluctuations and φ̄ is the constant
fixed point, not necessarily stable, of Eq. (15). In terms of these
new variables,

�t ≈ �̄(φ̄,ω) + 6
σ 2(φ̄,

√
ω)

τ

∫ t

t−τ

ψsds, (16)

where the functions �̄ and σ 2 are defined in Eqs. (5) and (6).
After expanding the tanh functions in the transition rates to
first order about �̄(φ̄,ω), we obtain the following linear delay
equation:

ψ̇t = −ε

[
ψt + A

τ

∫ t

t−τ

ψsds

]
, (17)

where A = 3βsech2[β�̄(φ̄,ω)]σ 2(φ̄,
√

ω). To determine the
stability of this equation we introduce an exponential trial
solution ψt = eλt where λ = x + iy. Substitution into Eq. (17)
yields a characteristic equation with real and imaginary parts
given by

x2 − y2 + εx + εA

τ
(1 − e−τx cos τy) = 0, (18)

2xy + εy + εA

τ
e−τx sin τy = 0. (19)

For sufficiently small memory, τ , the real part, x, of the
solutions to Eqs. (18) and (19) is negative so the fixed point φ̄

is stable. As we increase τ , λ crosses through the imaginary
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FIG. 4. Estimated variance of φt in steady state, as a function of
memory length τ , from simulations with n = 106, ω = 2, β = 5, and
ε = 10−3 (squares), 10−4 (dots), 10−5 (circles). Variance estimates
computed using time average over 106 time steps for ε ∈ {10−3, 10−4}
and 107 time steps for ε = 10−5. Vertical black line marks theoretical
Hopf bifurcation point ετc = 0.39, computed from Eq. (21).

axis, destabilizing the fixed point and creating oscillations of
exponentially increasing magnitude in the linearized version
Eq. (17) of the full delay Eq. (15). Although the fixed point
of the full Eq. (15) shares this transition to instability, we find
that the resulting oscillations are bounded. The appearance of
these stable oscillations as τ passes through a critical value,
which we denote τc, constitutes the Hopf Bifurcation [23]. To
compute τc we set x = 0 in Eq. (19) so that sinc(τy) = A−1.
Expanding the sinc function to second order about its root at
π/τ and solving the resulting quadratic, we find that

y ≈ π

2τ
(3 −

√
1 − 4A−1) := κ

τ
, (20)

which defines a new constant κ . Substitution of this solution
into Eq. (18) yields the following expression for the critical
memory length:

τc = κ2

εA(1 − cos κ)
. (21)

In order to test this analysis, in Fig. 4 we have plotted
estimates of the variance of φt in equilibrium as a function
of memory length for three values of ε ∈ {10−3, 10−4, 10−5}.
The transition from stable fixed point to limit cycles should,
according to Eq. (21), occur when the product ετ reaches
a critical value, beyond which we expect the oscillations to
increase the variance of φt . This behavior is clearly observed
in the Fig. 4. For the largest ε value, the variance is significantly
greater than zero for τ < τc because the shorter memory length
has a reduced damping effect on stochastic fluctuations in the
yield process.

V. CONCLUSION

We have introduced a simple thermal urn model of
competition between agents with memory. Increasing memory
allows agents to more accurately determine the most pro-
ductive strategy and reduces the temperature of the model.
However, if a sufficiently high concentration of long-memory

agents is present a limit cycle appears that reduces their
competitiveness, leading to a self-organized Hopf bifurcation
driven by population dynamics. The simplicity of our memory
model, its connection to classical urn models, together with
the fact that limit cycles arise naturally, suggest it might
be fruitfully generalized and employed to study a different
games. For example, our approach may be applied to the Rock
Scissors Paper game [3], where agents, interacting pairwise,
recall their last τ interactions [33]. Other natural extensions
include the introduction of multiple urns to represent different
sources of yield or game strategies, or heterogeneity in
switching rates and a more general distribution of memory
lengths. By introducing multiple urns we might expect to
observe more complex patterns of oscillation [32] and regimes
of behavior [12]. Experimental research into the nature of
human and animal memory [34–37] places emphasis on the
“forgetting function,” which describes how memories decay
with time. Such a function, or greater powers of statistical
inference, could be naturally incorporated into our analysis,
and their effects on stability explored.
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APPENDIX: ALTERNATIVE TRANSITION
PROBABILITIES

In this Appendix we address the following question: Is
the “Fermi Function” (smoothed step) transition probability
essential to the effects we uncover? To motivate this question,
we note that the step form,

W1→2(�) = ε

2
[1 + tanh(β�)], (A1)

produces transition rates that remain approximately constant
for values of the payoff difference � � β−1. As β becomes
large, agents become progressively less sensitive to the
magnitude of the payoff difference, and in the limit β → ∞
they react only to its sign.

As an alternative we consider the following form of
transition probability:

W̃1→2(�) =
{

min(ε�,1) if � � 0
0 if � < 0 , (A2)

with W̃2→1 = W̃1→2(−�). Here we have no concept of irra-
tionality in agent behavior, and stochasticity in decision mak-
ing is driven purely by noise inherent in the finite memory of
agents. This corresponds to taking the limit β → ∞ in the orig-
inal rates. In contrast to the original form of Eq. (A1), here the
transition probability is proportional to payoff difference pro-
vided that � < ε−1. For the values of ε we consider, this con-
dition is always met so, in contrast to the original rates, agents
remain sensitive to the magnitude of �. With these new transi-
tion rates, the connection to thermal urn models is lost because
they do not satisfy detailed balance with respect to a Boltzmann
distribution for which � plays the role of an energy change.

We first explore the evolution of a system where all agents
have identical memory. In Fig. 5 we consider the case ε = 10−3

where we see that provided agents’ memory is sufficiently
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FIG. 5. Evolution of φt (fraction of agents in urn 1) using
alternative transition probabilities when n = 106, ε = 10−3, ω = 2,
and φ0 = 0.5. Memory values are τ ∈ {5, 100, 1750} (open circles,
dots, squares).

short, the system remains stable. As with the original rates,
increasing memory brings the system closer to the fair state
φ = ω/(1 + ω), but for long enough memory, high-amplitude
regular oscillations appear. Qualitatively, therefore, the system
behaves in the same way for both choices of rate. However,
the critical memory length at which oscillations appear differs
between the two choices.

We now consider the case of mixed memory with population
dynamics. In Fig. 6 we have simulated a population of two
memory lengths τ ∈ {100, 4000} in the case ε = 10−3. From
Fig. 5 we see that these memory values lie below and above
the critical length, respectively. We see that the behavior of
the system matches its behavior in the case of smoothed step
rates Eq. (A1): initially the population of short-memory agents
declines. While the system possesses a stable fixed point (no
oscillations) agents with a longer memory make more accurate
estimates of the true payoff difference between the urns and
are less likely to make detrimental moves. Once oscillations
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FIG. 6. Scaled populations pτ (t) = pτ
1 (t) + pτ

2 (t) for τ = 100
(circles) and τ = 4000 (triangles) when initial population is n = 106

with memory types in ratio short:long = 10:1. Parameter values
are ε = 10−3, γ = 10−4, and δ = 2 × 10−4. Also shown (thin black
line) is evolution of variance of φt , over a moving time window
of 105 steps, during population dynamics simulation. Note: rapid
initial equilibration of population values (bringing birth and death
into balance) is not visible on time scale of plot.
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FIG. 7. Scaled populations pτ (t) = pτ
1 (t) + pτ

2 (t) in the original
model with step rates when inverse temperature β → ∞. Memory
lengths are τ = 10 (circles) and τ = 1000 (triangles) and initial
population is n = 106 with memory types in ratio short:long = 10:1.
Parameter values are ε = 10−3, γ = 10−4, and δ = 2 × 10−4. Also
shown (thin black line) is evolution of variance of φt , over a moving
time window of 105 steps, during population dynamics simulation.
Note: rapid initial equilibration of population values (bringing birth
and death into balance) is not visible on time scale of plot.

appear, short-memory agents have an advantage because they
respond more quickly to opportunities created by oscillating
payoffs. The onset of oscillations takes place once long-
memory agents are in sufficient concentration and is marked
by a dramatic jump in the window averaged variance φt . This
jump coincides with a stabilization of the population dynamics,
indicating that the advantage of long-memory players has
disappeared. Figure 6 demonstrates that the phenomenon of
a dynamical equilibrium between competing memory lengths
appears both with “smoothed step” probabilities (W ) and
“proportional” probabilities (W̃ ).

To complete our analysis we perform a population dynamics
simulation using the original transition probabilities (W ) in the
limit β → ∞, obtaining a pure step functional form

W1→2(�) =
{
ε if � � 0
0 if � < 0 , (A3)

so that individual agents react only to the sign of the perceived
payoff difference. In this way we are able to compare the two
types of transition probability when agents have no intrinsic
irrationality of behavior. The simulation results are shown in
Fig. 7. We use the same ε value in both simulations, but agents
make fewer moves with proportional rates because the payoff
difference is typically small: � � 1 ⇒ W̃1→2(�) � ε. This
delays the appearance of payoff differences between memory
lengths that drive the population changes, so these changes
take place on a longer time scale for proportional transition
probabilities. This effect is evident in Figs. 6 and 7.

In both Figs. 6 and 7 we see that the population of short-
memory agents initially declines, but eventually stabilizes.
This stabilization occurs coincidentally with a jump in the
variance of φt , indicating that Hopf Bifurcation is responsible
for the dynamical equilibrium between memory lengths. It
is interesting to note that the jump in variance is more
dramatic in the case of proportional probabilities (Fig. 6).
We suggest that this occurs because the proportional form
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of transition probability damps fluctuations more effectively
than the step form, so that when oscillations do appear in
φt they have a more significant effect on the behavior of
the system, and therefore on the relative competitiveness
of agents with different memory lengths. Variance builds
more gradually with step probabilities because fluctuations
are damped less effectively, and prior to the fixed point losing
stability, we see decaying oscillations (under damping) that
increase variance when coupled with stochastic fluctuations.
The relative equilibrium frequency of short- to long-memory
agents depends, in a nontrivial way, on the functional form
of switching probabilities, memory length, and population

dynamics, and can vary quite considerably (Figs. 6 and 7).
A theoretical calculation of these equilibrium population sizes
remains an open challenge.

We conclude by noting that the proportional transition prob-
ability we have considered in this appendix is a representative
of a wider class of functional forms that are zero when � � 0
and increase continuously with � for � > 0. When � is small,
the behavior of such systems will depend on the first derivative
of the transition probability at � = 0+, which in the case we
have considered is equal to ε. We therefore expect to see similar
behavior for all such forms when fluctuations about the fixed
point are small.
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