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Abstract 38 

The North America Monsoon (NAM) provides the majority of rainfall for central and northern 39 

Mexico as well as parts of the south west USA. The controls over the strength of the NAM in 40 

a given year are complex, and include both Pacific and Atlantic systems. We present here an 41 

annually resolved proxy reconstruction of NAM rainfall variability over the last ~6ka, from an 42 

inwash record from the Laguna de Juanacatlán, Mexico. This high resolution, exceptionally 43 

well dated record allows changes in the NAM through the latter half of the Holocene to be 44 

investigated in both time and space domains, improving our understanding of the controls on 45 

the system. Our analysis shows a shift in conditions between c. 4 and 3 ka BP, after which 46 

clear ENSO/PDO type forcing patterns are evident. 47 
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1. Introduction 57 

The North American Monsoon (NAM) is a crucial precipitation source within its core region of 58 

Mexico and the south-west USA, providing up to 60% of annual precipitation (Metcalfe et al. 59 

2015, Fig. 3b; Ropelewski et al., 2005), and is vital to sustaining agriculture, industry and 60 

biodiversity. Climate change projections for the NAM region suggest that both increased 61 

temperatures and reduced precipitation are likely in the coming century (Karmalkar et al., 62 

2011). Better understanding of NAM variability and its controls are therefore essential 63 

(Englehart and Douglas, 2002). High temporal resolution proxy records (e.g. Stahle et al., 64 

2012) are necessary to identify both the long term evolution of the NAM and its variability 65 

under different climate modes.  66 

The NAM arises from the seasonal, insolation driven, northward migration of the 67 

Intertropical Convergence Zone (ITCZ) in the Northern Hemisphere (NH) summer, the 68 

development of a thermal low over the SW USA, and the development of a strong thermal 69 

contrast off the coast of Baja California (Barron et al., 2012). Its duration and intensity are 70 

affected by conditions in both the eastern tropical Pacific and the North Atlantic (Englehart 71 

and Douglas, 2002, 2010; Mendez and Magaña, 2010).  Investigations into the controlling 72 

role of the Pacific have focussed on the El Niño Southern Oscillation (ENSO) (Castro et al., 73 

2001; Magaña et al., 2003) and the Pacific Decadal Oscillation (PDO), recognising that these 74 

are not entirely independent (Gutzler, 2004), as the PDO can be seen as an example of 75 

ENSO-type variability operating over different timescales (Castro et al., 2001; Wilson et al, 76 

2010).  In Mexico, NAM summer rainfall is reduced during El Niño events and positive 77 

phases of the Pacific Decadal Oscillation (PDO) (Castro et al., 2001; Magaña et al., 2003; 78 

Bhattacharya and Chiang, 2014) when the eastern tropical Pacific warms and the thermal 79 

gradient to the continental interior is reduced.  During La Niña or negative PDO phases, 80 

summer NAM rainfall increases.  NAM drivers associated with the North Atlantic, specifically 81 

the Atlantic Multidecadal Oscillation (AMO) and the North Atlantic Oscillation (NAO) (Mendez 82 

and Magaña, 2010), seem to have their greatest impact on the NAM in the summer season. 83 

Positive (warm) phases of the AMO give rise to wetter summers in central and southern 84 
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Mexico and the wider Caribbean, as the ITCZ moves north, generating more Atlantic tropical 85 

cyclones (Knight et al., 2006; Mendez and Magaña, 2010).   86 

Understanding controls on NAM region precipitation is complicated by complex and 87 

variable connections between the two regions of NAM forcing i.e. Atlantic and Pacific Oceans 88 

(Englehart and Douglas, 2010; Stahle et al., 2012) and variability in, often localised, storm 89 

events (Curtis, 2008). It is also increasingly evident that NAM rainfall patterns are not 90 

spatially homogeneous and it has been suggested (Castro et al., 2001) that the NAM in 91 

Mexico should be treated separately from the NAM in the south-west USA, where winter rain 92 

is more significant and El Niño or positive PDO give rise to increased winter precipitation and 93 

overall wetter conditions.   94 

Here we present an annually resolved proxy record of precipitation through the last 95 

6000 years from the Laguna de Juanacatlán (Jalisco, Mexico) which is located close to the 96 

tropical core of the NAM (Englehart and Douglas, 2002).  The record shows a marked shift in 97 

the dominant frequencies of variability between 4 and 3 cal ka BP. This change in the 98 

frequency domain coincides with a general shift in conditions through this time period to the 99 

pattern of precipitation seen today. 100 

 101 

2. Site Description 102 

Laguna de Juanacatlán (20°37′N, 104°44′W; 2000 m.a.s.l.) is a lava-dammed lake with a 103 

maximum depth of 25–30 m, in the Sierra de Mascota close to the Pacific coast of Mexico. 104 

The basin (approximately 10 km2) is orientated in a southeast to northwest direction, with the 105 

lake occupying about 0.5 km2 at the northwest end (Metcalfe et al., 2010).  The closest 106 

meteorological station is in Mascota (800 m lower and 12 km away) where annual average 107 

precipitation is 1026 mm/yr, of which 88% falls between June and October.  108 

The sediments of Juanacatlán contain fine, mm scale laminations, with alternating 109 

organic, diatomaceous layers and pink clay from catchment in-wash. In addition a number of 110 

thick, cm scale, fining up layers consisting of sands and clays are present, which are 111 

interpreted as instantaneous turbidites.  112 
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Titanium (Ti) has been shown, via XRF scanning (see methods below), to mark the 113 

pink clay layers in the core and through comparison with observational, instrumental and 114 

historical records and other regional rainfall proxies through the last 2000 years, has been 115 

established as a proxy for run-off, which is derived principally from summer rainfall in this 116 

catchment (Metcalfe et al., 2010). The Ti profile from high resolution XRF scanning has been 117 

shown to follow sedimentary changes, recording higher values in the pink clay layers.  118 

 119 

3. Methods and results 120 

Two parallel, continuous cores (both ca. 9 m long) were taken from the deepest part of 121 

Laguna de Juanacatlán using a Kullenberg coring system, resulting, once disturbed sections 122 

of core had been avoided and instantaneous turbidites excluded from the record, in a 7.25m 123 

continuous composite core sequence. 124 

27 AMS radiocarbon age estimates from bulk organic matter were obtained from the 125 

core sequence, including two dates from sediment trap and core-top material to check for 126 

any reservoir effect (Fig. 1; Supplementary Table 1). Additional age control for the top of the 127 

core is supplied by clear peaks in 137Cs (Metcalfe et al., 2010). 128 

U-channels (2cm wide) were taken from the cores and scanned using an ITRAX XRF 129 

scanner at 200 μm resolution (Croudace et al., 2006).  An annually resolved Ti record was 130 

produced from the original 200 μm data set between 50 and 5821 years BP; each 200 μm 131 

data point was given an age from the age-depth model and then rounded to the nearest year. 132 

Annual values were then calculated as the mean value for all the data points rounded to that 133 

given year. 134 

The resulting record of rainfall variability (Fig. 2) shows variation at all time scales 135 

from inter-annual to millennial through the last 6000 years. Wavelet analysis of the Ti record 136 

identified variation at different frequencies (Fig. 2); significant (95% confidence interval) 137 

cycles appear at ~2000, ~565, ~105 and ~65 and ~22 years through large parts of the record 138 

(Fig. 3). 139 

 140 
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4. Discussion 141 

The striking feature of the Juanacatlán Ti record is the change between 3 and 4 cal ka BP 142 

that marks a shift in the dominant frequencies of variability (Fig. 3).  This period, particularly 143 

between 2.8 and 3.8 cal ka BP, is also a time during which overall precipitation apparently 144 

reduced (Fig. 2a), recording the lowest average Ti values for any individual 1000 year period 145 

in the record. Frequencies similar to the significant multi-centennial and millennial 146 

frequencies (~565 and ~2000 years) found in the Juanacatlán record, which both increase 147 

notably in strength after 3ka BP, have been observed elsewhere regionally in the Gulf of 148 

Mexico (Poore et al., 2004) and Chihuahua, northern Mexico (Castiglia and Fawcett, 2006) 149 

as well as in Lake Pallcacocha, Ecuador (Moy et al., 2002; Fig. 4).  Interestingly, the ~200 150 

year cycle, reported from other parts of the NAM region and often associated with solar 151 

activity (e.g. Jimenez-Moreno et al., 2008), is not evident here.  152 

The Juanacatlán record has comparative cycles to the Pallcacocha red intensity 153 

record (Fig. 4); the two are out of phase in the 2000 yr cycle, with periods of increased 154 

rainfall at Juanacatlán associated with reduced rainfall periods at Pallcacocha, as would be 155 

expected from a modern day ENSO type forcing. The millennial periods of enhanced NAM 156 

rainfall at Juanacatlán, which increase in strength after 3 cal ka BP (Fig. 2 and 3), are also 157 

associated with warmer phases of the multi-millennial variability in the North Pacific Gyre 158 

(Isono et al., 2009), again consistent with ENSO/PDO type forcing patterns. Carre et al. 159 

(2014), Cobb et al. (2013), and Koutavas and Joanides (2012) have also all show an 160 

increase in ENSO variance at around 3 cal ka BP. 161 

Further evidence of the links between rainfall at Juanacatlán and Pacific forcing post 162 

3 cal ka BP comes from a comparison of the Juanacatlán Ti record with a tree ring PDO 163 

reconstruction (MacDonald and Case, 2005) over the last millennium (Fig. 5), showing 164 

similarity in significant periodicities at centennial time scales, and to a lesser extent at 26 and 165 

40 years (Fig. 5).  These periodicities are rarely dominant at Juanacatlán prior to 4 cal ka BP, 166 

but do become more important after 3 cal ka BP. The period of most persistent positive PDO 167 
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values, AD 1400 – 1600 was marked by a dry phase at Juanacatlán (Fig. 5), again consistent 168 

with Pacific, ENSO type, forcing of the NAM.    169 

  Spatial variability in change through the 4-3 cal ka BP transition also points to a 170 

Pacific forcing of regional precipitation. Plotting changes over this period across the wider 171 

tropical Americas (Fig. 6) reveals substantial evidence for drying in the present day summer 172 

rainfall region of the North American Tropics (NAT). Together with cooling in the Gulf of 173 

Mexico and the onset of wetter conditions in the southern hemisphere summer rainfall zone, 174 

this is consistent with the southward migration of the ITCZ during the later Holocene (Haug et 175 

al., 2001) and the onset of more variable conditions (Lozano-Garcia et al., 2013; Metcalfe et 176 

al., 2015), a pattern also observed in other monsoon systems (McRobie et al., 2015).  At the 177 

same time, records from the northern margin of the NAM region (where winter precipitation is 178 

more important) also indicate a shift to wetter conditions, which has been attributed to 179 

stronger ENSO or ENSO-type variability, including the PDO (Barron and Anderson, 2011).  180 

However, both the PDO (Minobe, 1999) and the AMO (Gray et al., 2004) are potential 181 

drivers of the 60-70 year multi-decadal variability which is more important at Juanacatlán 182 

prior to 4 cal ka BP.  The AMO is increasingly invoked as a driver of change in the 183 

predominantly summer rainfall regions of the NH tropical Americas (Stahle et al., 2012) and 184 

also the SW USA (Oglesby et al., 2012).  Both the persistence of the AMO over most of the 185 

Holocene and its global signature have been emphasised (Knudsen et al., 2011; Wyatt et al., 186 

2012). A similar pattern of reduced multidecadal variability, between 3.5 and 4.5 cal ka BP, 187 

followed by increased significance of bidecadal cyclicity in the late Holocene has been 188 

observed in the Pacific Northwest (Stone and Fritz, 2006), raising the possibility that the 189 

change in dominant multi decadal frequency is linked to changes in PDO frequency, rather 190 

than a link to more dominant Atlantic forcing. Insufficient data are currently available to fully 191 

resolve this issue although Bernal et al. (2011) interpret a shift in 18O at 4.3 ka in the Cueva 192 

del Diablo in southwest Mexico as marking a decoupling of local moisture from North Atlantic 193 

events to a more Pacific controlled precipitation regime. 194 
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It has been suggested that the last 6000 years may be marked by a change in overall 195 

variability in the climate system brought about by a shift from external to internal forcing 196 

(Wanner, et al., 2008; Debret et al., 2009). Despite some correlation through parts of the last 197 

1000 years (Metcalfe et al., 2010), there is no clear relationship between solar variability and 198 

the 6000 year record from Juanacatlán (Supplementary Figure), which is consistent with the 199 

lack of a 200 year solar cycle (see discussion above), and of a dominantly internal forcing 200 

regime for this longer time period. Evidence for a significant climate shift around 4 cal ka BP 201 

has been identified across the tropics and sub-tropics (e.g. Liu and Feng, 2012; Ponton et al., 202 

2012), with drier conditions in the northern hemisphere and wetter conditions in the southern 203 

hemisphere tropics, consistent with a southward shift in the ITCZ (Fig. 6; Abbott et al., 2003). 204 

The Juanacatlán Ti record, the first high resolution record of the NAM tropical core through 205 

this time period, shows that the period between 4 and 3 cal ka BP marks a reorganisation in 206 

climate against a background of declining NH summer insolation and a reduced seasonality 207 

of insolation.  This weakening of external forcing  (Donders et al., 2008) apparently provided 208 

the context for the development of strong ENSO-type forcing of the NAM. de Boer et al. 209 

(2014) have suggested a similar pattern from records in the Indian Ocean with decoupling of 210 

ENSO from the Atlantic ITCZ ~ 2,600 cal yr BP. 211 

 212 

5. Conclusions 213 

Given the complexity of the NAM system and uncertainty about its forcings and their internal 214 

relationships (Arias et al., 2012) high-resolution records with excellent chronological control 215 

such as the Juanacatlán sequence are vital for robust mechanistic interpretations. Our 216 

evidence points to a shift to predominantly Pacific forcing of the NAM between 4 and 3 cal ka 217 

BP, following a period where the region of dominant forcing is less clear. This shift gave rise 218 

to the present day climatic configuration of the NAM region where complex interactions of 219 

climate controls results in differential climate responses to the same forcings across Mexico 220 

and the SW United States.  221 

 222 
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Figures 349 

 350 

 351 
 352 

Figure 1 Age-depth model for the Juanacatlán core sequence. The model is based on a 2nd 353 

order polynomial trend at the top of the core, until 262.21 cm, and then a 5th order 354 

polynomial model through the 2 σ age ranges as shown. The full list of radiocarbon dates 355 

from the Juanacatlán sequence can be found in Supplementary Table 1.  356 

 357 

  358 
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 359 

 360 

Figure 2 The annual Juanacatlán Ti record (a), shown here as the Ti peak area normalised 361 

to the incoherent peak area (equivalent to Compton scattering) from the XRF 362 

(Supplementary Data) and a wavelet analysis of this data (b), using a Morlet wavelet in the 363 

Matlab code of Torrence and Compo (1998). The time periods when the dominant 364 

frequencies (red in this figure) are statistically significant are shown in Figure 3. 365 

  366 
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 367 

Figure 3 Varying strength of the significant periodicities in the Juanacatlán Ti record (Fig. 2). 368 

a)  20 – 25 year b)  60 – 70 years c) 100 – 115 years d) 530 – 600 years  e) 1850 – 2110 369 

years. Significance levels (at the 95% confidence limit) are shown by the grey lines in each 370 

plot. The transitional zone between 4 and 3 cal ka BP is shaded for reference. 371 
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 373 

Figure 4 Comparison of the Juanacatlán Ti record (black line) with the PDO reconstruction of 374 

MacDonald and Case (2005) (grey line) between AD 993 and AD 1900. Also shown is a 375 

comparison of the global wavelet power spectrum of the two time series, showing their 376 

similarities; although none of the peaks in this plot are significant at the 95% confidence limit. 377 
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 379 
 380 

Figure 5 Comparison of decadally smoothed Juanacatlán Ti and Pallcacocha red scale (Moy 381 

et al., 2002) records through their common time period (50-5820 cal year BP). Also shown is 382 

a comparison of the global wavelet power spectrum of the two time series, showing their 383 

similarities. Only the c. 2000 year periodicities are significant at the 95% confidence limit 384 

when using the decadally smoothed data. 385 
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 387 

Figure 6 Spatial analysis of changes in climate conditions between 4 and 3 cal ka BP (sites 388 

and references are listed in Supplementary Table 2). LJ = Laguna de Juanacatlán, LP = 389 

Laguna Pallcacocha. Black triangles mark sites which get wetter through this time period, 390 

grey triangles sites which get drier. E indicates increasing ENSO activity.  Downward pointing 391 

arrows indicate decreasing temperatures. 392 
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