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Abstract

We show that radiation from complex and inherently random but correlated wave sources can be
modelled efficiently by using an approach based on the Wigner distribution function. Our method
exploits the connection between correlation functions and the Wigner function and admits in its
simplest approximation a direct representation in terms of the evolution of ray densities in phase
space. We show that next leading order corrections to the ray-tracing approximation lead to Airy-
function type phase space propagators. By exploiting the exact Wigner function propagator,
inherently wave-like effects such as evanescent decay or radiation from more heterogeneous sources
as well as diffraction and reflection can be included and analysed. We discuss in particular the role of
evanescent waves in the near-field of non-paraxial sources and give explicit expressions for the growth
rate of the correlation length as a function of the distance from the source. The approximations are
validated using full-wave simulations of model sources. In particular, results for the reflection of
partially coherent sources from flat mirrors are given where the influence of Airy function corrections
can be demonstrated. We focus here on electromagnetic sources at microwave frequencies and
modelling efforts in the context of electromagnetic compatibility.

1. Introduction

Predicting the properties of wave fields in complex environments is an extremely challenging task of crucial
importance to a wide variety of technological and engineering applications, such as vibroacoustics [1] or
electromagnetic (EM) wave modelling [2]. In particular, characterizing the radiation of EM sources reliably,
both in free space and within enclosures, is a longstanding research issue [3, 4]. In the context of electromagnetic
compatibility (EMC), digital circuits and large printed circuit boards (PCB) embed thousands of electronic
devices and metallic tracks and can produce fields reaching dangerous but hard-to-predict levels [5].

In this paper, we set out an approach for propagating such complex and statistically characterized wave fields
exploiting Wigner distribution function (WDF) techniques. This approach has its origin in quantum mechanics
[6], but has more recently found widespread attention in optics, see [7-9] for an overview. The WDF formalism
offers a direct route to pure ray-tracing approximations in an operator implementation [1], while still capturing
in its exact formulation the full wave dynamics. The formalism allows one to efficiently treat radiation from
complex sources, often having a statistical character. Complexity arises here through the stochastic nature of the
radiated field which may be best described by considering time or frequency averages and thus looking at an
ensemble of system realizations. A statistical representation is then appropriate and computationally more
efficient than a purely deterministic treatment.

The method introduced below exploits a connection between the field—field correlation function (CF) and the
WDE [10-12]. Both quantities have been studied intensively in the physics and optics literature. For wave
chaotic systems, Berry’s conjecture postulates a universal CF equivalent to correlations in Gaussian random
fields [13, 14]. Non-universal corrections can be retrieved by linking the CF to the Green function of the system
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[15—18]. In this paper, we describe how field-field CFs can be efficiently propagated using ideas based on ray
propagation in phase-space. We discuss furthermore non-paraxial effects as well as including near field effects
due to evanescent wave contributions. A systematic expansion of the Wigner function propagator including
next-to-leading-order effects in the propagating regime leads to Airy-function integral kernels containing the
ray-tracing propagator in the small wavelength limit, akin to the treatments in [ 10, 19]. We show that the Airy
propagator improves the reconstruction of the WF when higher order effects become important such as in the
presence of destructive interference in configuration space. We also show that our WDF representation
confirms the validity of the generalized form of the Van Cittert-Zernike (VCZT) theorem discussed in [20]. We
give a natural extension of this generalized VCZT for non-paraxial sources and in the near-field region where
evanescent waves play a prominent role.

Weillustrate these techniques in the context of applications in EMC and related issues. Here, the system
under investigation represents a high-density interconnect of integrated electronic circuits. Simulating EM field
distributions in a reliable way is highly topical; in addition, the wave CF can be measured explicitly in this regime
[21], thus providing the necessary input information for numerical simulations. The system under
consideration in this paper consists of a series of parallel tracks carrying partially correlated currents, and mimics
the typically very complex EM sources found on PCBs. The method has much wider application, however. In
particular, when combined with fast phase-space propagation methods such as the discrete flow mapping
techniques developed in the context of vibro-acoustics [ 1, 22], the proposed WDF approach offers an ideal
platform for developing a universal high-frequency simulation method.

2. Phase-space representation of classical fields

Radiation from simple EM sources such as antennae can be characterized deterministically through classical
electrodynamical methods [23]. Even though such sources are regular and homogeneous, efficiently predicting
far-field emission from the near-field pattern requires non-trivial effort if the sources are extended over many
wavelengths [24]. EM sources are becoming increasingly complex, however, and the problem of radiation from
digital circuits or PCBs presents even greater challenges. Modelling such sources deterministically is often
infeasible due to the complexity of the structures, whose details may not even be known in practice. Each
component of such a complex EM source is typically driven by unknown sets of random voltages, subject to fast
transients [25]. This is due to the presence of a multitude of electronic components whose switching behaviour
depends on the instantaneous operation mode of the circuit, and whose excitation signals are intrinsically
random, or highly sensitive to frequency [21]. Consequently, the physical investigation of these scenarios
challenges existing analytical and numerical techniques, and calls for more sophisticated modelling tools.

Itis thus natural to use statistics as a language for describing the radiation from such complex sources.
Specifically, we do not attempt to characterize or propagate the field itself, which is typically hard to obtain in
practice, but rather its two-point CF. It has been demonstrated in [21] that corresponding measurements are
feasible in the context of emission from electronic devices and PCBs. Here we describe the basic elements needed
to use such measurements as input for a practical algorithm with which to predict field intensities and
correlations away from the source. Initially we consider radiation into free space in section 4 by studying a simple
model source and a more realistic source obtained from a full field simulation. In section 5, we describe an
application to a problem with reflecting boundaries, which is a first step towards our ultimate goal of extending
the method to propagation of CFs in more complex environments such as cavities and larger structures.

We start from a planar source at z= 0, parametrized by coordinates x = (x, ...x;) withd=1or2in
general, and radiating into the half-space z > 0. We aim to predict the CF

FZ(xB, XA) = <w(x3, z)d)*(xA, Z)> (1)

for z > 0 under the assumption that it can be measured (or otherwise modelled) near the source screen z=0,
over different source field configurations. Here, (. ) denotes an ensemble average over different source field
correlations such as a time or frequency-band average. Furthermore, 1 (x, z) denotes one of the tangential field
components in the frequency domain. The results easily extend to cross-correlation between different
components.

In the past, the focus has often been on predicting the propagation of probability density functions of waves
passing through time-domain random [26] or turbulent [27] media. In our approach, the propagation itself is
treated deterministically, whereas the radiation from the source is characterized statistically. This can be done,
for example, by measuring the spatial field along a surface close to the source and determining the source CF by
averaging the signal over time. We thereby eliminate statistical fluctuations carried by the wave fields by
ensemble averaging physical observables over suitable parameters.
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We now present the CF propagation rule explicitly for single field components. Polarization effects can also
be accounted for by propagating the field—field correlation tensor, which can be derived from the dyadic free-
space Green’s function [28, 29].

The field in the region z > 0 is naturally presented in terms of the partial Fourier transform,

o, 2) = fe’ikp"‘z/) (x, z)dx,

where v (x, z) denotes a field component on the screen itself (z = 0) or above (z > 0)and k = k2 + k? isthe
wave number. The radiated fields can then be reconstructed using the evolution of this partial field. This can be
calculated by using the dyadic second Green identity which, in a source-free region, becomes the dyadic version
of Huygen’s principle [30]. Being a convolution integral, the partial Fourier transform of the surface integral
transforms to an algebraic equation. Then, the boundary conditions given by the fields sampled in the near-field
region of the source can be used to eliminate the magnetic field in such an equation. The result of this procedure,
restricted to the electric field components parallel to the source plane, is the following inhomogeneous plane-
wave solution

o (p, z) = TP (p, 0), ()

where

!\/1—|p|2 it |pP <1
LiIpP =1 if IpP > 1.

For the moment, we neglect waves incident from the right and thus only describe radiation from a strong,
directional source; including incoming waves at the interface can be introduced formally using the boundary
integral equations according to the discussion in [31]. An example of this scenario, involving a planar reflector
beyond the source, will be given in section 5. Here, p = (p;, ..., p;) takes the meaning of a momentum
tangential to the d-dimensional source plane. In the ray-dynamical limit, we may identify

T(p) = 3

|p| = sin a, 4)
T(p)=p, = cos a, (5)

where the angle v describes the direction of the ray with respect to the local outward normal to the source. In this
perspective, T (p) represents a generalized kinetic energy of the ray. The case |p|> > 1in (3) corresponds to
evanescent propagation, which does not contribute to the far-field, but may be detectable in the near field; see
also the discussion in sections 4.2 and 4.3. In order to represent wave fields in phase-space using canonical
coordinates (x, p) parallel to the source plane, we define the WDF

W p) = [e P T0e+ /2, % — 5/2)ds ©)
kY o
:(E) [ e=1(o+a/2. 26" — a/2.2)) da @

Upon insertion of (2) in (6), and by exploiting the inverse transformation to represent the source correlation (at
z=0)in terms of the source Wigner function W, (x, p), we find

W, (x, p) = f G.(x, p, x', p'y Wo(x/, p') dx'dp’. ®)
This provides us with a propagator of the Wigner function taking the form
K\
Go(x, p, x's py = ( —) 5(p — p) f eik(c—x)q+ikz (T (p+a/2)=T*(p=a/2)) g,
27

where the §-function represents translational invariance in x and the corresponding conservation of
momentum. Equation (2) provides a scheme to propagate wave densities in phase-space for arbitrary sources, no
matter how complex or rapidly varying. The propagation of the CFs themselves can subsequently be retrieved by
an inverse Fourier transform of (8). That is,

L 1) = ( % )d [etr wLix, pydp, ©)

where x = (x4 + xp)/2,and s = xg — x4. The intensity I, as function of the distance z can be retrieved using

(8]

d
L(x) = L(x x) = (%) [, prap. (10)
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3. Ray tracing approximations

Asymptotic approximation of the propagator (9) leads to a direct propagation method for the WDF in terms of
rays [9, 10, 32-34]. We will give a derivation of this ray limit below and will also discuss more subtle wave effects
such as evanescent decay into the near-field and higher order (in 1/k) wave corrections.

The simplest ray-based approximation is obtained under the assumption that the CF is quasi-homogeneous
atthe source, thatis, I[(xp, x4) = Iy(x + s/2, x — s/2) varies only slowly with respect to x on the scale of a
wavelength; this is also referred to as a Collet—Wolf source [35]. In that case, significant contributions to (9) are
obtained only for small g and we can expand the phase difference AT (p, q) = T(p + q/2) — T*(p — q/2)
around g = 0.

In the region |p|* < 1 corresponding to propagating waves, the difference AT receives contributions only
from odd powers of q. Neglecting cubic and higher order terms we find that

G.(x, x's pp)Né(x—x—T) (p —p)- (11)
This is the Frobenius—Perron (FP) propagator [36] for radiation into free space and leads to the evolution [10]
zp
W, (x, p) = W, [x - — p) (12)
‘T ore

of the WDFin the region |p|* < 1. This approximation is equivalent to identifying the propagation of the WDF
with the propagation of phase space densities along rays according to the evolution

zp
Tp)
p=r. (13)
The paraxial approximation is obtained by using the linearized flow in the regime [p|> < 1[9]. Outside this

regime, the full flow has asymptotes along |p|> = 1, the transition to evanescent propagation. Note that inserting
equation (12) in equation (9) and including only the contributions from the propagating region [p|* < 1leads to

FZ(xB, xA) ~ (%)d f ikpspz, (x — m, p) p. (14)

In the paraxial regime, that s for |p|> < 1, and for quasi-homogeneous sources, equation (14) retrieves the
well-known van Cittert-Zernike theorem (VCZT) or generalization thereof[11, 20, 37]. In the next section we
will show how to extend the VCZT to the non-paraxial regime and including evanescent waves.

Expanding AT to higher orders in g leads to a propagator which is capable of mapping less homogeneous
CPF’s. Including cubic terms leads in the 2D case, for example, to the Airy form

:x/—|—

G.(x, p, A O x —x — —— , 15
(o py %', p) (x x’ T())(P ) 15)

where
6q.(1) = aAi(aw),

with a = 2k/(kzT" (p))'/? and Ai denotes the Airy function. Note that limj .8, (4) = & (1), so the FP form is
obtained in the limit of large wavenumber k as expected. Similar results have been obtained in the context of the
propagation of EM waves through inhomogeneous media [19].

Further improvements over the basic FP propagation (11) are obtained by accounting for evanescent decay
into the near-field, which emerges from contributions [p[* > 1in equation (8). Since the kinetic operators in
equation (9) now add constructively, the leading contribution is formed by the zeroth order term in the
expansion of AT (p, q) and we obtain

W, (x, p) ~ e PP IWy (x, p),  [p? > 1. (16)

Improved approximations may be achieved by treating the exponent beyond leading order, but we find that (16)
gives a good description of evanescent decay already as discussed in the next section.

4. Radiation into free space

We now test the effectiveness of the FP propagator in the simple case of radiation into free space. The first
example treated in section 4.1 assumes a quasi-homogenuous source distributed according to the Gaussian
Schell model [38]. We will examine the near-field behaviour in more detail in section 4.2, considering in

4
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Figure 1. Absolute value of the WDF of a 1D Gaussian Schell correlation function at z= 0 m. The radiation frequencyis f=1 GHz
corresponding to A = 0.3 m. The distribution widthsare o, = 1.0 m, and o; = 0.1 m.

particular the limit of completely uncorrelated sources. In a second example in section 4.3, we consider a more
complex set-up mimicking the more realistic sources expected in typical EM applications. We will restrict
ourselves in these examples to 2D models (so d = 1) and characterize the behaviour of field—field correlations by
focusing on the propagation of one field component along z. We select the field tangent to the source.

4.1. Propagation of Gaussian Schell model
Using a simple 2D model for the emission of partially coherent EM radiation, we assume a source correlation in
terms of a truncated 1D Gaussian Schell model [38]

2 2
F( ) I (xB—xA) (XB—F?CA)
XB, XA ) = ex — ex _
AN 0 eXp 202 P 802

X Xz(xB) Xl(xA): (17)

where lis the length of the source. Here, the characteristic functions

l

1 > |x | < E >

X, (x) = p (18)

0) |x | 2 -

2

account for the finite size of the source. The quasi-homogeneity condition can be expressed through demanding
0; ~ A K 0y, where A = 27 /k is the optical wavelength. The source WDF is then found to be

x| k*pro?
Wolx, p) = I SR Iy A _E s
b (%, p) 0 exp[ 20)2(] 5 16 exp( 3

l—2|x|7.kp05 B 71—2|x|7.kp05
x[erf(iosﬁ 1\/5) erf( 705\/5 1\/5)] (19)

For extended sources, for which [ > ), and for x inside the region occupied by the source, equation (19)
simplifies to

2 2,2 2
x kP_U] 20)

Wo(x, p) =~ V2w oIy exp[—2 -
202 2
Figure 1 shows the WDF in phase-space at z= 0 for a spatially extended source [39]. Here, and in all other
computations with the Gaussian Schell model, we work at a frequency of operation of 1 GHz corresponding to
A = 0.3m and choose g, = 1.0 m, g; = 0.1 m.

Figure 2 shows the propagation of (19) as computed through the full integral operator (8) together with the
propagation obtained by the FP approximation (12). There is surprisingly good agreement between the exact
and approximate behaviour even far from the paraxial regime. This is remarkable given that the ray tracing
approximation is only valid to leading order. This constitutes a major computational advantage as the FP

5



I0OP Publishing NewJ. Phys. 17 (2015) 093027 G Gradoni et al

10 0 10 10 0 10
X [m] X [m]

Figure 2. Propagated Wigner distribution function (a), (b) and correlation function (c), (d) of a partially-coherent (1D Gaussian
Schell) near-homogeneous source: exact ((a) and (c)) versus approximate—Frobenius—Perron—((b) and (d)) computation at
z = 10 (all in absolute values). The radiation frequency is f= 1 GHz. The distribution widths are o, = 1 m, and o, = 0.1 m.

approximation reduces an integral equation to a coordinate transformation. The overall behaviour shown in
figures 2(a) and 2(b) reflects the distribution shearing due to the geometrical ray propagation based on

equation (13); see also [9]. The CFs can now be obtained by a back transformation according to equation (9) and
are shown in figures 2(c) and (d).

4.2. Non-paraxial VCZT

In the following, we will focus on near-field effects for small distances from the source as a function of the source
correlation parameter o;. We are in particular interested in how the correlation length propagates in the near-
field before reaching the linear VCZT regime.

In the near-field limit, the WDF shows exponentially decaying evanescent components according to (16),
while the WDF remains essentially unchanged for the propagating part |p[|> < 1. This leads to a model for the
WDF with source distribution (20) of the form

2,2 2
W, (x, p) = \/ﬁaslo exp[—x—z2 — kp_as]
207 2
{1 if [pP <1

21
e 2keIPF=1 i p? > 1. @b

Far enough from the source, such that evanescent components have completely decayed, while close enough
that evolution in the propagating region of phase space can still be neglected, we model the WDF using

2 kol 1if pP <1
W, (x, p) ~ V2ol X | x 2
G p) & Vamos OeXp[ 202 2 ] {o if |pP > 1. (22

X

Using the inverse Fourier transform, equation (9), we now obtain the CF from the WDF given by equation (21)
or equation (22). In figure 3 we show the resulting near-field evolution of the CF, placing the midpoint
x = (x4 + xg)/2 = 0 at the centre of the source.

One observes that in the presence of evanescent waves, that is for small kz, the CF decays rapidly to zero not
showing the typical sinc function oscillations. The correlation width increases as one moves away from the
source until the sinc function form is established whose width then increases linearly according to the VCZT. In
particular, in the near-field regime, the width As of the CF is smaller than the wavelength A, but it increases

6
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Figure 3. Evolution of the correlation function along the line x = 0 for a selected (partially) correlated source, from kz = 0.42 (blue
solid line) to kz = 1.68 (brown solid line). The physical dimension of the source (ko, = 25) and its correlation length (ko, = 0.02)
are the same for all the curves.

102 . ——
ko =25 | . -
101 : :
100 ¢ ' 1
w 1
< :
~ 4 g : k o =0.002
10~ ! k o, =002
/" . ko =01
10_2 : kas=1 i
1 ko =2
E kos=6.3
10-3 1 N
1072 10° 102

kz

Figure 4. Evolution of the correlation length As with z on alog-log scale at x = 0 and for a partially correlated 1D source. Evanescent
waves drive the increase of the correlation length (blue dashed line) described by a universal linear regime in equation (25) for sources
with sub-wavelenght correlations. A plateau is observed between kz ~ 1 and the so-called Rayleigh range as defined in [20, 40]. For
large kz the canonical VCZT regime sets in (red dashed line), for which the correlation length increases according to equation (28).

towards A as zapproaches and exceeds A. The second moment of the CF is not defined in the near field regime
and cannot therefore be used to define a correlation length. Instead, we define the correlation lengths to be the
spacing at which the correlation has fallen by a factor 1/./e:

L(x+ As/2, x + As/2) /T, (x, x) = e~ /2, (23)

Note that for a Gaussian CF such as assumed for the source in (17), this definition coincides with the standard
variance: As = 0.

We can now obtain the correlation lengths from exact wave propagation calculations. The results are shown
in figure 4 as a function of the distance z for different source correlation lengths o.

From equations (21) and (22), one can estimate the growth rate both in the near and the far field. Including
non-paraxial effects, there are three different regimes:

(i) in the deep near field, with kz < 1and ko; < 1, the correlation length increases linearly with a slope that is
independent of the frequency as well as of o; and o, (blue dashed line in figure 4);

7
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(i) ano-growth regime with As = const.
— For ko, < 1,onefinds kAs =~ lintherangel < kz < koy;

— For ko, > 1,then As = ¢g;intherange 0 < kz < (ko;)(ko,) = kz..Thelatter regime has already been
described for paraxial sources in [20, 40] where the onset of the VCZT regime was described as the Rayleigh
range z, = ko, 0y in our notation;

(iii) the VCZT regime for large z, or z > z, for ko, > 1, with a linear growth of the correlation length according
to

As o %z, (24)
with a slope depending on the ratio of wavelength to source dimension I (red dashed line in figure 4).

We now motivate these three regimes in more detail, beginning with case (i), which corresponds to ko, < 1,
kz < 1.The WDEF described by (21) then decays slowly along the p axis as | p | increases beyond the propagating
region |p|* = 1.In the extreme nearfield the CF is proportional to the inverse Fourier transform of the function

sz(x’ p) ~ eflkzlpl
of p, thatis,

2kz/m

L,(s) ~ 7(2’]{2)2 i (ks)z .

The correlation length defined by equation (23) then takes the form

As =~ 2Je — 1 z~ 1.6109 z. (25)

That is, we find in regime (i) that evanescent decay of the sub-wavelength correlations in the source dominates in
such a way that there is a universal growth rate in the correlation length. The numerical value of the slope in (25)
is particular to the form taken in equation (23) for the correlation length, but the qualitative conclusion applies
more generally. The presence of evanescent waves thus leads to an increase of the correlation length in the near
field in this regime which is typically faster than in the VCZT regime. This is important for sources that show
fluctuations on scales smaller than the wavelength, such as in the case of a fully uncorrelated source o; = 0,
which may serve as a model for thermal sources [41].

The plateau behaviour corresponding to regime (ii) arises when zis sufficiently large that (22) describes the
WDF, while ko; < 1.The CFis then proportional to the inverse Fourier transform

L(s) ~ lsinc(ks)
T

of the function
W, (x, p)“{l’ ry (26)
0, Ipl> > 1
of p. In this case the correlation length defined by equation (23) takes the form
kAs ~ 1.6443 27

independent of o;. It should be noted that if the condition ko; < 1is breached, then the Gaussian decay in p
present in (22) becomes the dominant feature and instead a limiting plateau level

As = o,

occurs, see figure 4. Note that in this case the plateau extends all the way to z= 0 and the linear regime of case (i)
is not seen.

Finally, regime (iii) applies once evolution of the phase space takes effect in the propagating region [p[|* < 1.
Assuming the quasihomogeneous case o, >> [, we obtain for a given midpoint x that the finite size of the source
reduces the support in p of the Wigner function and (26) is replaced by

x—1/2 x+1/2

1, <p< ,
W, (x, p) ~ V22 + (x — 1/2)? V22 + (x + 1/2)?

0, otherwise.

For simplicity consider the case x = 0. Then the CF obtained from the inverse Fourier transform of this function
is
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Scan line

Figure 5. Set of parallel metallic wires running above an oblique perfect electric conductor (PEC) ground plane. This complex source
emits radiation in the half-space z > 0. The full-wave TLM simulation has been carried out for the configuration with N=12. (Only 4
wires are shown here for convenience). The scan line (blue dashed line) is located at y = 0 m at various levels of z. It is wider than the
physical width of the wire array in the x direction.

IL(s) ~ lsinc ks

™ V1 + Qz/1y?
and the correlation length defined by (23) takes the form
As ~2 0261701 + (2z/1)?, (28)

generalizing (27). Going now to the farfield kz > kz, we find

As =~ 0.2617 x ?,

(where the numerical prefactor is particular to the convention (23)). Alternatively, if o, < I, then the screen
length becomes unimportant and o, provides the length scale appropriate to the source intensity. An analogous
calculation then allows us instead to recover the basic form
1 zZ\
As~ — x ==

2 Oy

ofthe VCZT for z > o,.

4.3. Application to a complex source

The field at the source at z= 0 is often produced by a complex process such as tracks on a PCB or integrated
circuits in electronic devices; the radiation produced in the source region then propagates into free space. We
model such a complex source here by a set of N metallic wires driven by random time-domain voltages, as
illustrated in figure 5; a realization of the voltage s, (t) driving a pin of the bundle is reported in figure 6 along
withits spectrum S, (f ). The voltage has been generated with a uniform distribution between —0.5 and 0.5V
with a time step of 500 ps. This represents a typical problem in EMC where one tries to obtain statistical
information about an erratic signal.

The presence of a perfect electric conductor (PEC) along an oblique plane makes the source radiate only into
the half-space z > 0: this mimics a configuration that is widely used in the design of PCBs. We use N = 12 wires
very close to each other and to the metallic plane in terms of wavelength. The wires are positioned in the plane
z=0m, along the y direction, at x = —0.33, —0.27, —0.21, —0.15, —0.09, —0.03, +-0.03, 4+-0.09, 4-0.15,
+0.21, +0.27, 40.33 m with respect to the centre at x = 0 m. In figure 5, only 4 wires at x = —0.09 m, —0.03 m,
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Figure 6. Time- and frequency-domain behavior of the signal driving a pin of the bundle.

+0.03 m, +0.09 m are reported for convenience. The heights h;and h,, are referred to the wires at

x = — 0.09 m, and +0.09 m, respectively. Finally, the same statistical signal, i.e., fluctuating voltage varying
from wire to wire but having the same statistical behaviour, is applied to all the 12 wires. Therefore, it is
reasonable to think of this circuit as a collection of random sources of partially coherent radiation.

The exact fields emitted from such a complex structure are computed through an in-house transmission line
matrix (TLM) code [42]. This is a time domain method for modelling 3D EM field interactions with complex
structures that may include a variety of materials. The technique is based on the equivalence between electric and
magnetic fields and the voltages and currents on a network of transmission lines. After discretizing space, the
fields in individual cells are modelled by transmission lines incident from each cell-face and intersecting at the
cell centre forming a junction. Each of these orthogonal transmission lines allows for the propagation of EM
waves. The waves are characterized by voltage and current and their associated electric and magnetic fields. In
order to obtain the desired CFs, we sample the numerically obtained fields in a plane above the tracks at different
times in order to create a suitable ensemble of uncorrelated circuit realizations. The field recorded at the scan
line y = 01in figure 5 is used as a basis for calculating field-field CFs and their Wigner functions both in the near-
and far-field.

Figures 7 (a) and (b) show the comparison between the WDF as computed through the full-wave (TLM)
simulations, and the WDF obtained by the FP approximation (12) in the far-field at z = 2.3\. In the TLM
calculation, the full time-dependent field is propagated out from the source, while in the FP approximation, the
WDF obtained from the signal at the source (as shown in figure 6, see also figure 8 (a)) is propagated according to
(12). Note, that the range along the scan line y = 0 over which the WDF and the CF are calculated is much larger
(from —3 to 3 m) than the physical width of the wire array (12 x 0.06 m = 0.72 m), see figure 7. There is good
agreement between the behavior predicted from full-wave simulations and the FP approximation, even though
the source exhibits strong inhomogeneities. Interestingly, figure 7 shows the same Wigner distribution shearing
asin figure 2 following the geometrical interpretation (13) of the correlation propagation. It is worth stressing
that such a Wigner function challenges the FP approximation (12), whose underlying assumption is quasi-
homogeneity. Note that we can always also switch to the exact transport rule (8), which is computationally more
expensive than the FP approximation, but still orders of magnitudes faster than a full TLM calculation.
Propagated CFs as shown in figure 7 (lower plots (c) and (d)) are finally obtained by applying the inverse Fourier
transform (9).

Note that we also find a pronounced broad side radiation around p ~ £1 (correspondingto o = +7/2),
and a strong asymmetry of the Wigner distribution due to the oblique metallic reflector. Those features can be
captured by inspection of the WDF representation in phase-space, while they are less apparent in the propagated
CF shown in figures 7(c) and (d).

The source distribution W (x, p) as obtained from the radiated signal in figure 6, is shown in figure 8(a).
Note that the region with |p|> > 1 corresponds to evanescent contributions. In figures 8 (b)—(d), a comparison
between WDFs as computed through the full-wave (TLM) simulations and those obtained using the WDF
propagator incorporating evanescent contributions are shown along the line x = 0. In particular, we have used
the FP approximation in equation (12) for |p|> < 1, and the evanescent approximation in equation (16) for
[pI> > 1. We find that propagation beyond z = 0.1 A results predominantly in an exponential reduction of the
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Figure 7. Far-field WDF R { W, } -(a) and (b) - and correlation functions || I}, ||- (c) and (d) - atz= 2.3 A: comparison between TLM
computation (left column) and Frobenius—Perron analytical approximation (12) (right column). The propagated correlation has been
calculated through (9).
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Figure 8. (a) Source distribution; near-field 8 { W, } WDF: comparison between TLM computation and evanescent-wave
approximation (16) for (b) z = 0.1X; (c) z = 0.2X and (d) z = 0.4\ alongx = 0. The range of p at x = O is restricted between 1 and 1.5
in (b)—(d) in order to emphasize the behavior of evanescent waves in phase-space.

WDFin theregion [p[> > 1.In the far-field, the radiation energy is restricted to the phase-space region |p| < 1,
as can be seen in the WDF in figures 7(a) and (b). The results in figures 8(b)—(d) are restricted to the momentum
rangel < p < 1.5inorder to emphasize the behaviour of the evanescent phase-space density with increasing z,
thus validating equation (16).
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A comparison of (TLM) simulated and (FP) approximate far-field propagated energy
_ 1 21
E= 2 ab@P =2 e [ Wi pdp 29)

is shown in figure 9. We see that the two numerical methods show qualitatively the same features, however, there
are quantitative differences. We think that these deviations are due to a difference in the numerical treatment of
the boundary conditions at x = £3 m. While the FP approach has no difficulties in treating these boundaries as
completely open, the TLM method needs to model this with absorbing boundary conditions. These conditions
tend to be still slightly reflective, as is evident from the source distribution in figure 8(a) around x = £3 m,

p = £ 1.Inother words, the effect of truncating the simulation domain results in a small reflection of the signal
at the boundaries. Reflections interfere with each other creating a non-trivial source of discrepancy. Other
sources of discrepancy may be the approximated FP propagation rule sampled for one EM field component only
and along a single line. The evaluation of the WDF of actual circuits can be done for the full EM field by using the
approach described here component by component.

5. Reflection of partially correlated sources

Having developed a framework for the propagation of CFs in free space, we are now interested in tackling the
case of reflection from planar boundaries. In particular we would like to test the FP approximation in the
presence of interference taking into account higher order corrections such as the Airy-function propagator,
equation (15). Itis then interesting to solve the canonical situation depicted in figure 10, where a planar reflector
islocated at distance z= L from the source at z=0.

The reflecting boundary is here for simplicity assumed to be parallel to the source plane, indefinitely
extended in the Xy -plane, and made of an ideal PEC. Therefore, for electric (TE) or magnetic (TM) fields
perpendicular to Z, the Fresnel reflection coefficient reads r (o) = —1, for all incoming angles «x [43]. We again
consider for simplicity only a scalar field, or a single component of the vector field, emitted from the source.

5.1. Theory

Consider a plane located at an arbitrary longitudinal coordinate z= D between source and detector. The field
distribution in the plane consists then of two contributions: the direct wave coming from the source, and the
reflected wave bouncing off the reflector back to the source, that is,

d(p, 2) = T (p, 0) — e*OTPIHAATR) g (p, ), (30)

where ¢ (p, 0) is the field at the source plane z=0, T(p) is defined asin (3),and A = L — D. The momentum
space CF is formed as the product of the two fields in (30) and an ensemble average is taken as in equation (1). By
plugging the closed-form expression (30) into the definition of the WDEF (6), we find the phase space
representation

Wo(ps %) = Wo (p, %) + War_p(p, x) — [ Wap, %) + cc); (3D)
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Figure 10. Arbitrary planar electromagnetic source emitting in the half-space z > 0, in presence of a planar metallic boundary.

where the first two terms are direct and reflected contributions respectively, coming to the detector straight from
the source or through the reflector, and the last two terms express the interference between direct and reflected
waves with cc standing for the complex conjugate.

Following the procedure described in the previous subsection, it can be shown that direct and reflected terms
in (31) can be calculated through the free-space propagation scheme in (8) and (9), withz=Dandz =2 L — D
respectively, while the interference terms lead to

Wa (p, x) = f f Ga(x, X'5 p, p') Wo (', p') dx'dp, (32)

with a modified Green integral operator

O\
gA(x) x/; P: P/) = 5(}7 - P/)(_)
21
% f eik(x—x’)q+iku(T(p+g)—T*(p—g))—izkAT*(p—g) dq. (33)

For the class of statistically quasi-homogeneous sources, we may again expand the exponent in (33) in a Taylor
series in g, and retain only terms up to first order. This results in a FP approximation of the interference terms,
leading to a phase-factor of the optical length A besides the Dirac’s delta in (11). Adopting the same linear
approximation for each termin (31) gives the updated WDF

w2 _eL-Dyp
Wh(x, p)= Wo(x o) , p) + Wo[x ) R p)

— 2 cos QkAT (p)) Wo(x _ p). (34)
T(p)

Similar expressions have been found in quantum mechanics [44] and optics [8] for two overlapping wave-
functions.

Again, the propagated CF can be obtained by the inverse Fourier transform (9) of (31) or (34), the latter being
closely related to the free-space VCZT.

5.2. Numerical results

We chose again an initial correlation density distributed according to the Gaussian Schell model, equation (17),
with corresponding source WDF shown in figure 1. We work as usual at a frequency of operation of 1 GHz
correspondingto A = 0.3 m and choose 0, = 1.0 m, g, = 0.1 m.

We further suppose a metallic mirrorat L = 1.8 m (6A). The propagation of the intensity from the source to
the mirror can be found by evolving the source WDF with the exact rule composed of equations (8) and (9) and
those for the interference terms, equations (31)—(33), and then inverse Fourier transforming the propagated
WDF according to equation (9). The coherent energy I(x) reaching the scan plane at z= D is given by
equation (10), that s, by considering the CFats = 0.

Figure 11 shows the behavior of the intensity I, (x = 0) near the mirror, from D = 1.0 mto D = 1.8 m.
The solid black line is computed through the full Green’s integral operators (31) and (33), while the dashed red
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Figure 11. Interference pattern formed by the intensity I, (x = 0) along the longitudinal direction as the scan plane approaches the
reflector. Exact (black solid line) versus approximate (red dashed line) computations are compared.
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Figure 12. Magnitude of the WDF of a 1D Gaussian Schell source: exact (left plots) versus approximate (right plots) computation at
A = 125X (position A in figure 11). Related correlation functions are reported in the lower plots.

line is obtained by the FP approximation (34). The oscillatory behaviour in (34) is due to the interference terms
in the WDF.

In figures 12 and 13, we show the magnitude of the WDF and the associated CFs ata distance A = 1.25\
(position A in figure 11) and at a distance A = 2\ (position B in figure 11) from the mirror, respectively. While
good agreement between the exact and the approximate propagation using the FP approximation is achieved at
position A, a maximum in the CF, the same is not true at position B. Here the intensity is suppressed due to
destructive interference and the magnitude of the CF is itself only of order O (1/k). To obtain the good
agreement shown in figure 13, we need to take into account higher order corrections in the WDF propagator
such as using the Airy function integral kernel, equation (15). The improvement when going from the leading
order FP to the Airy function approximation is shown in figures 13(b) and (c), which need to be compared with
the exact WF figure 13 (a); the corresponding propagated CF is displayed in figure 13(d). Only after going
beyond the FP approximation in this way are we able to reconstruct the fine structure of the WDF. This finding is
not surprising, but remarkable nevertheless; computing WDFs in a multi-scattering environment will encounter
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Figure 13. Magnitude of the WDF of a 1D Gaussian Schell source: exact (a) versus approximate using only FP approximation (b) and
using the Airy approximation (c) at A = 2\ (position B in figure 11). The correlation function corresponding to (c) is reported in (d).

exactly these problems and we have shown that the Airy-function approximation — still faster than a full WDF
propagation — can handle interference corrections successfully. We note that these corrections have been
reported also in the ‘diffusive’ Green function presented in [19].

6. Conclusion

An exact propagator has been derived for field-field CFs of complex sources. It has been applied to a problem
mimicking EM radiation from a complex source; extending this to other wave problems such as in vibro-
acoustics or quantum mechanics is straightforward. The phase-space representation based on the Wigner
function provides a useful means of physically interpreting the propagated data. It also serves as a very efficient
computational technique both for an exact propagation of CFs and in terms of a ray approximation leading to
the FP operator. This provides a good description of the propagated data even when applied to source data that
are relatively far from homogeneity. Where necessary, more heterogeneous sources can be accounted for by
higher-order approximations leading to an Airy propagator. This propagator proved important in the case of a
planar random source emitting in presence of a planar reflector, for which we are able to reconstruct the fine
structure of the phase space in presence of interference. Evanescent decay into the near field can also be
accounted for using simple propagation rules. These rules have been used to investigate the effect of evanescent
waves in near-field CFs. For source correlations exhibiting smaller-than-wavelength scales, we predicted a rapid
initial increase of the correlation length (with distance from the source), before it saturates with the onset of the
Van Cittert-Zernike behaviour at a distance of a wavelength. The approximations used have been validated
through full-wave simulations using model sources and numerical sources exhibiting strong statistical
inhomogeneities.
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