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ABSTRACT 

The paper outlines a feasibility study using modelling 

and simulation to reduce dwell times and increase rail 

network capacity.  We use agent based modelling, 

where passengers are treated as a separate entities, 

basing their movements on rules from the Social Force 

Model (SFM), proposed by Helbing to model pedestrian 

dynamics. Implementing this SFM, together with a 

novel decision making system for passengers' door 

choices, a mesoscopic model is produced of the 

platform, train and passengers. An outline of the 

modelling process is presented, along with a critical 

analysis of the final model.  Analyses are conducted to 

evaluate novel concepts in train and platform design, to 

reduce loading times, using passengers with a range of 

attributes. In a simulation experiment, four concepts 

(wider doors, designated boarding/alighting doors, and 

an active passenger information system) are assessed, 

with the latter two giving reductions in loading times of 

7.0% and 7.3%. 

 

Keywords: agent-based modelling, simulation, rail 

passengers, dwell time reduction. 

 

1. INTRODUCTION 

The rail network in the UK is fast approaching 

maximum capacity and passenger numbers are growing 

6-7% per year. The current transport secretary, The Rt 

Hon Justine Greening has even said expressly "without 

investment in new capacity, our main rail arteries will 

grind to a halt during the 2020s, with disruption, 

overcrowding and damage to our economy" 

(Department for Transport 2012). It is stated in the Rail 

Technical Strategy (RTS 2012), an outline of a plan for 

the next 30 years of the rail industry, that even before 

2020, East Croydon station would be too crowded to 

function successfully.  This is one of many examples 

within a network approaching its capacity. 

One relatively simple (and therefore cheap) way to 

increase capacity of the rail network is to reduce 

loading/unloading times (dwell time); this allows more 

frequent services while not requiring additional rolling 

stock. In their study on international dwell times, Harris 

and Anderson (2007) proposed examples to reduce 

dwell times. These included wider platforms, separate 

boarding and alighting platforms and "step aside" signs 

in front of doors. They found that "function time", 

where doors are closing and the train is preparing for 

departure is equally important as boarding/alighting 

time; however this varied widely between stations and 

countries. The study also identified that some of these 

dwell time reducing methods succeeded, but failed to 

quantify by how much. When displaying results, they 

did not identify the stations and reasons for their 

relative success or failure. Harris (2000) also performed 

a study on station capacity at Norreport, Denmark, 

which interestingly found that military style music 

helped speed up the boarding/alighting process. 

Our project tests the ability of simulation to assess a 

number of these and other novel methods for reducing 

dwell times, as well as the impact each method would 

have across a number of different scenarios. 

While there have been many studies into crowd and 

pedestrian dynamics, they tend to be focused on stadia 

and crowds at events. There are a few studies looking at 

modelling and simulation in a rail context, however 

there seems to be a lack of studies performed on 

reducing loading times, particularly focusing on the 

train-platform interface. In the Academic Response to 

the Rail Technical Strategy (RRUKA 2013), it was 

highlighted that there were no projects in the area of 

"Modelling to optimise seating/loading capacity and 

speed" listed on the research database of the Rail Safety 

and Standards Board (RSSB), though there is a demand 

for this type of research.  There have been attempts to 

simulate train stations before, but on two different 

scales. Macroscopically, there have been a number of 

publications (Grontmij and Carl Bro n.d.; Thompson et 

al. 2013) using Legion SpaceWorks software package in 

order to model the station as a whole. The focus of the 

analysis was on ticketing barriers and halls and not on 

the train-platform interface, where there is likely to be 

greater impact on dwell time. Microscopically, Zhang et 

al. (2008) performed a simulation study on the relative 

sizes of boarding and alighting groups and the effect 

this has on dwell times. The Pedestrian Accessibility 

Movement Environment Laboratory (PAMELA) at 

UCL investigated the effects of factors such as platform 

humps (Fujiyama, et al. 2014) and stairs on walking 

speeds in physical mock-ups (Fujiyama and Tyler 
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2010). This research group has also produced a report 

for the Department for Transport (DfT) on train dwell 

times (Fujiyama et al. 2008).  This type of study is 

carried out at great expense in both time and money, 

and can only hope to study a small section of the 

platform or train at any one time, ignoring any 

interactions between sections. This is acknowledged in 

the DfT report, and suggests that the train and the 

platform should be "considered as one connected 

system". 

In order to test strategies to reduce train dwell time, it is 

proposed that modelling and simulation of the platform-

train interface as a holistic system would provide a 

relatively cheap, easy and extremely flexible solution to 

assess strategies and concepts in reducing dwell times, 

also with opportunities to take account of the attributes 

of different types of passengers. The following 

strategies to reduce dwell times were assessed: 

 

 Wider doors (1.5x and 2x the standard size) 

 Designated boarding and alighting doors 

 Novel passenger information systems, such as 

those proposed by Network Rail and 

Thameslink, and currently in a limited trial in a 

Dutch station (Fast Co. Design 2014). 

 

While we acknowledge that there are several simulation 

tools that enable similar studies (e.g. Sourd et al. 2011; 

Nash et al. 2007; Zhang et al. 2008), the novelty of our 

approach lies in the application of the Extended Social 

Force Model (ESFM) (Xi et al. 2011) in the context of 

dwell time optimisation, as well as the fact that we are 

able to define a specific heterogeneous population when 

we develop our scenarios. The aim of this paper is to 

introduce our novel Agent-Based Modelling (ABM) 

approach and to demonstrate the feasibility of it for 

assessing potential methods of reducing rail passenger 

dwell times for different passenger populations. 

 

2. MODELLING THEORY 

ABM is the current state of the art in modelling and 

simulation for pedestrian dynamics (Castle and Crooks 

2006) and is based on treating each pedestrian as an 

individual "Agent" that bases its decisions on a set of 

predetermined rules. This naturally lends itself to 

modelling of pedestrians in a heterogeneous crowd. 

ABM was first used extensively in the Social Sciences 

(Dowie and Schelling 1980; Axelrod 1997) to show 

emergent collective behaviour; how a number of 

microscopic decisions lead to much larger macroscopic 

level emergent behaviour of a crowd. It was in the 

Social Sciences that the Social Force Model (SFM) was 

first proposed (Helbing 1991). The SFM treats each 

agent as if it had an electrical charge, and so as two 

agents move towards each other they feel a repulsive 

effect. They also receive an attractive force from their 

destination point (usually an area). The resultant force 

acts on the agent, and gives it an acceleration (or 

deceleration), adjusting the speed of each agent. In 

addition to these psychological forces, when agents are 

physically touching two physiological forces are 

produced, based on granular interaction forces: a 

tangential force, and a frictional force. The same 

combination of psychological and physiological forces 

is produced with interactions with walls and barriers 

(boundaries).  

While the SFM ABMs act on a continuous space it is 

possible to abstract things further, so that entities act on 

a discrete grid. This can be achieved by using Cellular 

Automata (CA). CA are mathematical idealisations of 

physical systems in which space and time are discrete, 

and physical quantities take on a finite set of states (e.g. 

on and off) (Wolfram 1983). In the beginning of a 

simulation run an initial state is assigned to each cell. A 

new generation of cells is then created within each time 

step, according to a fixed rule (usually a mathematical 

function).  This determines the new state of each cell, in 

terms of the current state of the cell and the states of the 

cells in its neighbourhood. Running the simulation in 

this way for some time often leads to the emergence of 

recurring patterns on the grid. Legion software was first 

built as a CA model (Still 2000) but seems now to be an 

ABM on a continuous space, although this is not made 

clear due to its proprietary nature (Berrou et al. 2007). It 

uses a "least effort" principle of deciding each 

pedestrian's movement. It goes through a number of 

iterations in order to find the path of least effort, and so 

could be viewed as computationally inefficient. 

Nevertheless, Legion is the most commonly used 

software and there is a set of Network Rail capacity 

assessment guidelines (Network Rail 2011) and a 

London Underground best practice guide (Transport for 

London 2006), which outline the expected procedure for 

simulation, using this software. There has also been an 

effort to calibrate and validate Legion against empirical 

evidence (Berrou et al. 2007).  For a larger scope, 

whole-station model it would seem very appropriate. 

Due to its expense, its proprietary nature and therefore 

its lack of adaptability, it is deemed inappropriate for 

this project, in relation to the train-platform interface. 

For our project we decided to use ABM together with 

the SFM to determine agent movement. On this scope it 

is more appropriate than a CA model (which would be 

better for a microscopic look at the doors alone), or a 

"least effort" principle as used by Legion for a 

macroscopic, whole-station perspective. To add some 

novelty, we decided to incorporate the ESFM proposed 

by Xi et al. (2010), who used this to study the 

movement of shoppers within a shopping mall. We did 

not find any evidence suggesting that it had been used 

in the rail context before. The ESFM adds "vision" to 

the SFM. A simple way of considering vision is to use a 

"form factor" coefficient which modifies the 

psychological force felt by a passenger. We also 

developed a novel decision making algorithm which is 

based on a passenger's knowledge of the station. The 

ESFM also includes a socially attractive force between 

members of a group, but due to time constraints this 

could not be developed for use in our model. 



3. MODEL DEVELOPMENT 

For the model design and implementation we used 

AnyLogic 7.1.2 (University Edition). AnyLogic is a 

multi-paradigm Eclipse-based commercial drag and 

drop modelling and simulation IDE. It can be 

programmed and extended using Java and supports GUI 

design. 

 

3.1.  Base Model 

In starting to create a computational model, it was 

important to start with a small scale, simple model to 

test the SFM. The SFM was implemented by computing 

the force on an agent at each time step, using the 

Equations 1-3, provided by Xi et al. (2010). 

 

𝑚𝑖

𝑑𝒗𝑖

𝑑𝑡
=  𝑚𝑖

𝑣𝑖
0(𝑡)𝒆𝑖

0(𝑡)− 𝒗𝑖(𝑡)

𝜏𝑖
+  ∑ 𝒇

𝑖𝑗
+  ∑ 𝒇

𝑖𝑊𝑊𝑗(≠𝑖)    (1) 

𝒇
𝑖𝑗

=  𝒇
𝑖𝑗
𝑝𝑠𝑦 +  𝒇

𝑖𝑗
𝑝ℎ𝑦,      𝒇

𝑖𝑗
𝑝𝑠𝑦 =  𝐴𝑖exp (

𝑟𝑖𝑗− 𝑑𝑖𝑗

𝐵𝑖
)𝒏𝑖𝑗    (2) 

𝒇
𝑖𝑗
𝑝ℎ𝑦 = 𝑘𝑔(𝑟𝑖𝑗 −  𝑑𝑖𝑗)𝒏𝑖𝑗 +  𝜅𝑔(𝑟𝑖𝑗 −  𝑑𝑖𝑗)Δ𝑣𝑗𝑖

𝑡 𝒕𝑖𝑗 (3) 

 

Using this force, it is possible to update the velocity, 

and position of the agent at each time step. From this 

the parameters used in the SFM could be calibrated in 

order to produce realistic behaviour. The four 

behaviours that are to be expected were outlined in 

Helbing's papers (Helbing and Molnar 1995; Helbing et 

al. 2000). These are: 

 

 Clogging at bottlenecks 

 Lane formation 

 Oscillations at doorways 

 Freezing by heating 

 

The "Freezing by Heating" behaviour refers to 

pedestrians' high desired velocities resulting in slower 

overall movements. For the calibration we used a trial 

and error approach. All four behaviours were visible 

once parameters were set to the values shown in Table 

1; column 1. Most of these are quite different to the 

ones from Helbing shown in Table 1; column 2. In our 

implementation the diameter of each agent is set by a 

uniform distribution between 0.45 and 0.75m, and their 

mass related to this, with a range of 60-100kg. 

 

Table 1: Parameters Used in Both Models 

Initial values Helbing's values Final values

A [N] 200 2000 30000

B [m]
1.5 x combined 

radii (approx. 1.5)
0.08 0.6

k [kgm
-1

s
-1

)] 390 2500000 9500

K [kgs
-2

] 300 1200000 30000

τ [s] 0.5 0.5 0.5  
 

It was also necessary to consider another set of 

parameters for the interactions with the walls or other 

boundaries. This is due firstly, to the large amount of 

agents and the nature of waiting for doors to open and 

secondly, because of agents near to the walls of the train 

or the closed doors, which feel a large force from the 

passengers behind them. A large reactionary force is 

then needed from the wall to counteract this and stop 

passengers "jumping through walls". This required 

larger parameter values, particularly for the physical 

forces. Even after these changes some passengers do not 

stop at the walls but we decided to leave this as further 

work. The final parameter values are shown in Table 1; 

column 3. 

 

3.2.  Passenger Types 

We used attributes that influence behaviour to 

distinguish between the different types of passengers. A 

passenger decision-making process was developed 

which depends on the values of these attributes. One of 

these attributes is "knowledge" of the station. If a 

passenger has this attribute set to true, they base their 

decision on the least crowded door. In a real-life 

situation, this tends to be a certain door or number of 

doors that are usually under-utilised. A passenger with 

knowledge of the station would be able to identify this. 

These passengers are shown in GREEN in the output 

animation of the platform visualisation within 

AnyLogic. If a passenger does not have knowledge of 

the station, then there are two different decision-making 

processes, depending on their arrival time relative to the 

train's arrival time. First of all, if a passenger arrives 

well before the train arrival time (before the simulation 

start time), they move towards the nearest anticipated 

door area. This is a prediction, and so therefore in the 

simulation they aim for a random point in a wide area. 

If a passenger arrives in this time period, they are 

initialised at the beginning of the simulation in one of 

two areas, "nearPlatform" (shown in RED) and 

"farPlatform" (shown in BLUE), either at the front edge 

of the platform or at the rear. These locations are based 

on areas outlined in the Network Rail Station Design 

Principles (Network Rail 2015). If a passenger in this 

time frame has knowledge of the station, they aim for a 

narrower, more accurate area of where they anticipate 

the door to be. If a passenger arrives near to the train 

arrival time, when crowds are already forming (after the 

simulation start time) and does not have knowledge of 

the station, they pass by each door in turn, starting at the 

nearest to the platform entrance they arrived from, to 

the furthest. If the crowd at a door is under a specified 

threshold, the passenger will choose that door to enter. 

If not, then they pass to the next door. The threshold 

differs depending on the total amount of passengers on, 

or crowdedness of, the platform.  For this simulation it 

is set as a sixth of the total number of passengers (with 

six doors). These passengers are shown in progressively 

darker BLUE the later they arrive. For alighting 

passengers (shown in YELLOW), the nearest door is 

chosen.  Then the nearest exit from the station is chosen 

once they are on the platform. In this simple feasibility 

test, once boarding passengers are on the train they are 

ignored (disappear from view in the simulation – this is 

also the case for other passengers on the train at this 

station). For simplicity, it was also assumed that 



boarders do not wait for alighters before they start 

moving.  Instead it is left to the social force model to 

decide which group moves, hopefully oscillating, 

depending on relative group sizes.  

After the passengers' movements and decision making 

were modelled, tested, calibrated and de-bugged, the 

AnyLogic 3D engine was employed to give a more 

realistic visualisation. One significant bug fixed was 

agents getting "trapped" in corners. When an agent has 

to go through a door, a temporary waypoint or target 

had to be added in the doorway, to ensure they went 

through the door before heading towards their overall 

target.  

 

3.3. Passenger States 

During the simulation a passenger can be in different 

states. This was captured by producing a UML state 

machine diagram which is then translated into source 

code by AnyLogic. In this kind of diagram states are 

represented by ovals and transitions between states are 

represented by arrows (Siebers and Onggo 2014). 

Events will trigger state changes. There are different 

types of events, the key ones are: timeouts (triggered 

when a specific time has elapsed), rates (triggered at a 

certain rate which usually depends on a distribution), 

and conditions (a condition has become true). Such a 

state chart is embedded in every passenger object so 

that each passenger has its own current state depending 

on their type (i.e. the current settings of his attributes) 

and their environment. The passenger state machine 

diagram is shown in Figure 1. This sets the variables 

and targets for each passenger in the beginning of a 

simulation run, and provides information about the state 

they are in during the simulation run (on platform, 

deciding door, exiting etc.). 

 

4. MODEL IMPLEMENTATION 

 

4.1.  Simulation Platform 

The model has been implemented using the AnyLogic 

IDE. The complete model is available for download at 

http://www.cs.nott.ac.uk/~pos/publications/mas2015mo

del.zip. Although AnyLogic comes with a pedestrian 

library which uses the SFM and could be used to build 

simple models, we found this library to be limited and 

inflexible. Therefore we developed our own SFM 

implementation, considering the form factor coefficient 

and our novel decision making algorithm within our 

agent template. In the end we only used the library for 

providing the 3D animation of the passenger agents.  

 

4.2.  Simulation Execution Algorithm 

The overall simulation runs in time steps. Throughout 

the time horizon at each time step a certain algorithm is 

executed. The pseudo code for this algorithm is 

provided in Figure 2. 

 

4.3. Verification and Validation 

Six model verification and validation techniques, 

originally described by Law and Kelton (1982), have 

been applied to validate the model. These included 

continuous debugging, independent review, reasonable 

output, trace, model run with known characteristics, and 

animation. At each stage of building the model any 

bugs were identified and debugged. At various points 

throughout the project experts in human factors and 

agent-based simulation were consulted to verify any 

assumptions and observations made and to assess the 

state of the model. The base case outputs of the 

simulation model were compared both qualitatively and 

quantitatively to previously observed and expected 

outputs. Decision making processes, scenarios and 

strategies were all derived from observation and 

assumptions of real stations. Real data were used for 

input parameters, for both agents and the environment. 

The simulation has both 2D and 3D animations to 

provide a visualised output, in both static images and 

video which could lead to further analysis. After 

applying all these verification and validation techniques 

we are confident that our simulation model is 

sufficiently accurate for the purpose at hand. 

 

 
Figure 1: The Passenger State Machine Diagram which Updates a Passenger's Targets and Variables Throughout the 

Simulation 

http://www.cs.nott.ac.uk/~pos/publications/mas2015model.zip
http://www.cs.nott.ac.uk/~pos/publications/mas2015model.zip


Find mass of agent, update the current and target 

coordinates, and reset forces  

Calculate the attractive force to the destination  

For each passenger:  

 If not the current passenger:  

 Check distance  

 If in connection range:  

  Calculate physical and psychological forces  

Check whether doors are open or closed:  

 Set relevant boundaries  

 Calculate distance  

 If in connection range:  

 Calculate physical and psychological forces  

Repeat above for boundaries which are constant  

Update position and velocity based on the sum of the 

above forces  

Check passenger type (boarder, boarder with 

knowledge, alighter)  

 Check whether near relevant destination  

 If so set target reached variable to true  

 Else move to new position in time step 

Figure 2: Pseudo Code for Each Simulation Time Step 

 

5. EXPERIMENTATION 

 

5.1. Scenarios 

There are four different scenarios which are examined 

in the experimentation. In all scenarios a three carriage 

train was used, with carriages based on the British Rail 

Class 456, deemed to be a fairly generic train design. 

Each carriage is 20m long, and has two doors facing the 

platform, as well as the opposing side (however these 

are ignored in the model as they do not have an 

influence on the boarding and alighting). The platform 

is also modelled to be fairly generic, with no particular 

features such as barriers or narrow areas. It was 

modelled to be 90m long and approximately 15m wide, 

perhaps wider than the average. In each simulation 100 

boarding passengers are distributed randomly in two 

areas of the platform (near to the track awaiting the train 

and in a waiting area at the rear of the platform) at the 

beginning of the simulation, with additional passengers 

arriving from two entrances during the run time of the 

simulation. Boarders base their door decision on where 

they predict the nearest door to be. Images of the 

simulation in both 2D and 3D can be seen in Figure 3 

and Figure 4. 

 

The attributes for the different scenarios are as follows: 

 

 Scenario 1: The "standard" generic scenario: 

600 passengers (2/3 capacity, split evenly 

between boarders, alighters, and 200 ignored in 

the simulation but assumed to be staying on 

train); Normal Distribution (ND) of desired 

walking speeds, with Mean (M) 1.3m/s and 

Standard Deviation (SD) 0.2m/s (Fitzpatrick et 

al. 2006); 10% of passengers have 

"knowledge" of the emptiest door 

 Scenario 2: The "rush hour" scenario in which 

the majority of the passengers are expected to 

be middle-aged commuters: 1200 passengers 

(4/3 capacity, deemed to be "overcrowded" 

(Rail Technical Web Pages 2011), and split 

equally between boarders, alighters and 400 

staying on the train); ND, with M 1.47m/s 

(Fitzpatrick et al. 2006) and SD 0.2m/s; 50% 

of passengers have "knowledge" of the 

emptiest door 

 Scenario 3: "OAP day out" in which a large 

number of passengers are elderly passengers. 

This may somewhat represent a daytime 

situation, but is mainly for curiosity, as to the 

effects of a number of slower passengers on 

the system as a whole: 600 passengers (same 

even split as the "standard" situation, at 2/3 of 

capacity); ND, with M 1m/s and SD 0.5m/s 

(Oxley et al. 2004); 10% of passengers have 

"knowledge" 

 Scenario 4: The "Emergency" scenario, to 

assess how well the train and platform can be 

cleared, including a higher desired velocity 

representing panic: 400 passengers, 44% of 

capacity, and all of which being alighters; ND, 

with M 3m/s and SD 1m/s; 10% of passengers 

have "knowledge". 

 

5.2. Strategies 

In each of the four scenarios, the standard strategy (as 

currently used) is compared to four alternative strategies 

in order to reduce dwell time. The standard strategy 

uses the standard doors, 1600mm in width (Rail 

Technical Web Pages 2011). Doors are used for both 

boarding and alighting, and it is assumed that boarders 

do not wait for all alighters to exit the train before 

entering.  The direction of crowd movement through 

doors is left to the SFM. 

The first alternative strategy for reducing dwell time is a 

slightly wider door, at 2400mm (1.5x standard door 

width). If a standard door is classed as a double door, 

this would be a triple width. It is chosen so that we can 

have some insight as to whether this allows for more 

"lanes" of traffic through the door (e.g. three lanes), or 

whether people avoid an additional middle lane, for 

example, due to social forces. 

The second alternative strategy used is "quadruple" 

width doors, or 2x the standard, at 3200mm. Similar to 

the above, it is interesting to see whether this allows 

four "lanes" of traffic, or double the flowrate of a 

standard sized door, or whether there is a diminishing 

return effect. 

 



 
Figure 3: 2D Visualisation of the Simulation 

 

 
Figure 4: 3D Visualisation of the Simulation 

 

The third alternative strategy used is a dedicated 

boarding and alighting door system. This is developed 

from insight given by Harris and Anderson (2007). It 

was found that stations with dedicated boarding and 

alighting platforms had significantly smaller dwell 

times. Unfortunately, as stations and results were kept 

anonymous, it is impossible to give a quantitative 

percentage decrease from this paper.  They do 

acknowledge the weakness in dedicated platforms (i.e. 

the large amounts of infrastructure needed to have two 

platforms on every track). This would be almost 

impossible to achieve on the current British rail network 

(either increasing the numbers of platforms per track, or 

the number of tracks would need to be reduced).  This 

would not give the network capacity increase that is 

needed. Thus dedicated doors for boarding and alighting 

on the same platform are proposed. These allow the 

separation of passenger flows, similar to dedicated 

platforms, but without the costly infrastructure changes. 

This strategy is modelled by adapting the execution 

algorithm presented in Figure 2, to only allow boarding 

and alighting at their designated doors. The fourth 

alternative strategy is used to represent a novel 

passenger information system. This was first proposed 

by a Dutch design company, and is a long LED screen, 

placed above the edge of the platform. By using infrared 

sensors, the screen is updated with real-time 

information on the number of passengers in each 

carriage and the locations of the waiting points for the 

doors for the less crowded carriages. An image of this 

in a small-scale test at a single station is shown in 

Figure 5. This information system is modelled 

computationally by every passenger in the scenario 

having "knowledge" of the station and the least busy 

door. 

 

5.3. Experiment execution 

Each of the strategies and scenarios were tested (four 

factors with five levels respectively). Each combination 

was tested three times and means for loading times for 

three repetitions were then calculated. 

 

 
Figure 5: The Novel Passenger Information System 

(Above the Train) during a Pilot Test at the Den Bosch 

Rail Station (Fast Co. Design 2014) 

 

5.4. Results and Discussion 

The quantitative output in this particular experiment 

was total loading time, taken when 90% of passengers 

had either alighted or boarded. 90% was chosen to 

overcome some of the bugs still in the model, ignoring 

those passengers who became stuck within the 

simulation. Despite the main focus on loading time in 

this experiment, there are a number of other numerical 

outputs that could be available from this simulation. 

Boarding and alighting times could be measured 

separately. Within the simulation window a plot of the 

door utilisation is shown in real time. This information 

could be noted at a number of time steps, producing a 

plot of each door use against time to provide an insight 

as to when each door is fully, over, or underutilized, as 

in the example from the standard simulation in Figure 6.   

 

 
Figure 6: Number of People (Utilisation) at each of the 

Six Doors at the Time of Doors Opening (left) and 60 

Seconds After (right) 



When the doors are first opened, all doors are similarly 

utilised (11 to 17 passengers), whereas 60 seconds after 

this, the end doors have on average 172% more 

passengers than the inner doors, with a range of 5 to 19 

passengers at each door. 

The average loading times for each strategy in each 

scenario is shown in Figure 7. From this, analysis can 

be performed on the effectiveness of each strategy. In 

the standard scenario, with no loading strategy, an 

average loading time was 70 seconds, and other 

strategies are compared to this standard. For the 400 

boarding and alighting passengers this seems realistic. 

Wiggenraad (2001) found that each alighting passenger 

going through any one door takes 1.1s, while each 

boarding passenger takes 0.85s. For this standard 

scenario with 200 boarders and 200 alighters, this 

would amount to 65s. 

Using a mean reduction in total loading time as the 

measure of a strategy's efficiency, the best strategy 

seems to be the novel passenger information system, 

with a reduction of 7.3%. The dedicated boarding and 

alighting doors also performed well, with a 7.0% 

reduction. However, these were less efficient during the 

emergency scenario, due to a modelling assumption that 

would likely be ignored in a real emergency (i.e. that 

only the designated alighting doors could be used, 

despite the emergency). This effectively halved the 

number of exit doors available, and it would be hoped 

that common sense would prevail and this would not 

apply in an actual emergency. 

The information system did not seem to be effective in 

the rush hour scenario. This could also be due to a 

ruling made during the modelling stage. By assuming 

boarding passengers do not allow alighting passengers 

to get off the train first, pressure builds up around the 

doors, particularly with the high passenger numbers 

seen in rush hour. When doors are less well used by 

boarding passengers, a release of this pressure is 

triggered as the alighting passengers have a clear exit 

door. When all doors are used more equally, as with the 

passenger information system, there are few 

opportunities for this social pressure to be released. One 

suggestion would then be to use a combination of the 

designated boarding/alighting doors and this passenger 

information system. 

Wider doors led to a 1.5% and 3.5% reduction 

respectively. This is less than perhaps could be 

expected.  Wiggenraad (2001) found an 11.8% 

reduction with 18% wider doors. He also found a 

diminishing returns effect that is not seen in this 

simulation; a 72.7% wider door only gave a 13.7%  

reduction. Part of the reason for this may be the 

differing definitions of "standard" width. When 

Wiggenraad performed his experiment the standard was 

1100mm, whereas now, in this model it was taken as 

1600mm. This means the same percentage increase is 

now a larger actual increase in width, potentially 

allowing a whole additional  lane of traffic through the 

door. 

Qualitatively, the model performed well. Within each 

simulation there were a number of expected behaviours 

shown. Crowding around doors, lane formation and 

oscillations in the direction of movement through doors 

can all be viewed in Figure 8 (see the expected 

behaviours from Helbing's papers 1995, 2000). 

 

6. LIMITATIONS AND FURTHER WORK 

 

6.1. Limitations 

While the results above show that the model, in its 

current state, can give very useful and direct real-world 

outputs, some weaknesses remain. One potential 

weakness of multi agent simulation is the time taken to 

run large simulations with many agents. In the "rush 

hour" scenarios, it took approximately 20 minutes to run 

a 4 minute simulation, using an Intel Pentium 2.1GHz 

with 1GB RAM. However, while this is a long time 

period for a short simulation, when added to the 

development and modelling time, this would still be 

quicker than developing and building a physical 

experiment. There is also a compounding issue with 

higher numbers of agents.  Higher forces are seen and 

therefore smaller time steps are needed to maintain 

realistic movement, adding to the slow performance. 

One remaining bug, agents "bouncing" unrealistically 

long distances in short spaces of time, also becomes a 

greater issue with larger numbers of agents. When this 

occurs, agents initialise overlapping other agents, 

causing their repulsive forces to be unnaturally high. 

These are not physically possible or realistically 

expected. This also tends to occur in the first few 

seconds of the simulation starting, for the same reason 

of agents overlapping when initialising. It also occurs 

when the alighters initialise in the confined space of the 

train, forcing some to get stuck in the train. These have 

to be ignored in the results and outputs, but still produce 

a computational strain. This also limited the emergency 

simulation to 400 alighters, as adding more caused most 

of the agents to be forced out through the walls of the 

train, producing unnatural results. 

 

 

 

 
Figure 7: Loading Time Results for the Various Strategies (in legend) and Scenarios (along x axis) 



 
Figure 8: Clockwise from Top Left: Crowding Around 

Doors/Bottlenecks; Lane Formation and Oscillations 

Through Doorways; Alighters Going Out in YELLOW; 

Boarders Going Through in GREEN, BLUE and RED) 

 

6.2. Further work 

In this project we have conducted a feasibility study. 

There is much further work that could be done with this 

model in order to give it better real-world application. 

The first, and perhaps most important potential 

improvement, is to iron out more of the issues and bugs 

affecting the current iteration. In particular a rule should 

be applied so that no agent can be initialised within 

touching distance of an existing agent, in order to avoid 

the unnatural "bouncing". This seems to also be the 

major cause of passengers "jumping through walls". 

The next potential step is applying the model to the 

interior of the train. This has a large effect on flow 

through the doors and therefore on boarding and 

alighting times.  Currently, there are no known studies 

into modelling this aspect. This would also fit with the 

philosophy of looking at the holistic train-platform 

system. It remains to be seen if the social force model 

would be applicable in this situation. Having so many 

obstacles in such a confined space, the forces related to 

these may sum to be so great as to produce unrealistic 

behaviour, forcing passengers to bounce around, or to 

be pushed backwards or through walls. This could be 

avoided by incorporating another set or parameters for 

internal obstacles, or a smaller connection range, 

ignoring all but the closest of obstacles in social force 

calculations. It would also require an additional state for 

sitting, though sitting passengers would take up a 

different floor area than those standing or walking.  

New concepts in the design of this could also be 

evaluated. This could also be applied to the 

environments on the platform (e.g. in relation to 

benches or seats for waiting at the rear of the platform). 

Some of the passengers that are randomly distributed at 

the rear of the platform at the beginning of the 

simulation would be assumed to be sitting.  

Another potential improvement could be through more 

detailed input data, with particular use in validation and 

calibration. Input data from a specific platform, train, or 

scenario (a train dwell) at a station, including the 

numbers and the characteristics of passengers, could be 

compared to a simulation of the scenario. This could be 

used to produce a wider range of outputs and results, 

such as a passenger density map as a direct qualitative 

output, and flows at doors or entrances/exits. These 

could also be compared to outputs from similar 

simulations (e.g. Legion SpaceWorks). Once the agent-

based model and simulation outputs are empirically 

validated against a number of real-world scenarios, we 

can be confident that the outputs with the differing 

dwell-time reducing strategies are sufficiently accurate 

for the purpose at hand. 

Groups have been proposed and implemented before as 

part of the social force model (Xi et al. 2010). This 

requires a socially attractive force between group 

members, as opposed to the socially repulsive forces 

between unrelated agents. This is relatively simple 

mathematically, with one additional term in the social 

force equation.  However, the difficulty comes in 

keeping track computationally of group members, and 

initialising them within these groups. 

In this model, it was not assumed that all alighters are 

allowed off the train before boarders start getting on. In 

Britain, in particular, this is expected in most occasions, 

and so further tests could be performed with this social 

rule assumed. In many other countries (e.g. Germany or 

China) this is not the case, and it would be useful to 

have an option that allows parallel alighting and 

boarding at different levels. 

 

7. CONCLUSIONS 

The study presented in this paper has demonstrated the 

potential for using ABM, incorporating the Extended 

SFM, to assess methods of reducing dwell time at 

stations. A train / platform environment has been 

created that is capable of being adapted to represent 

new design ideas (e.g. providing wider doors or train 

carriages with different door configurations). A set of 

scenarios have been developed that reflect a range of 

real world situations, including different densities and 

attributes of people that interact with the station 

environment. These scenarios have been tested, 

producing some preliminary findings on boarding and 

alighting time. For example, from this model, it has 

been highlighted that using dedicated boarding and 

alighting doors and a novel passenger information 

system are promising strategies for reducing dwell 

times.  Further work could be performed to see if this 

can give similar physical results to the reductions seen 

in this experiment (i.e. 7% and 7.3%).  A combination 

of these strategies could be very effective.  

The findings (quantitative on boarding times) and 

qualitative (e.g. queuing strategies) can be used to 

explore the likely effectiveness of new ideas and 

solutions to dwell time problems in a range of contexts. 

There is still some work to do to solve some of the 

problems in the model and simulation (i.e. interactions 

between agents and the environment), as well as 

opportunities to extend the work to develop a better 

understanding of other travel situations (e.g. travelling 

in groups). 
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