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We report experimental and theoretical results on how a fluid (homogeneous or
continuously stratified) is spun up in a closed, semicircular cylinder. Experiments were
performed for Rossby numbers Ro = 0.02, 0.2 and 1 (the latter corresponding to the
limiting case of spin-up from rest), with the Ekman number E = O(107>), and the Burger
number (S) varied between 0 and 10. There are two key processes: Ekman pumping that
drives the core flow; and the formation and breakdown of the vertical-wall boundary
layers, with respective characteristic time scales 7 ~ E~'/2 and Ro~!. When these time
scales are comparable, the observed flow is dominated by the gradual spin-up of the
initial anticyclone that forms when the rotation rate is increased, which fills the container’s
interior; vorticity generated adjacent to the vertical walls throughout remains confined to
the neighbourhood of the container’s walls and corners. Conversely, when E'/2/Ro <« 1,
the vertical-wall boundary layers rapidly break down, resulting in the formation of
cyclonic vortices in the container’s vertical corners, which grow and interact with the
initial anticyclone, leading to the formation of a three-cell flow pattern. For Ro = 0.02,
our theoretical description of the flow generally agrees well with experiments, and the
computation of the eruption times for the unsteady boundary layers is consistent with the
observations for both Ro = 0.02 and Ro = 0.2.

Key words: boundary layer separation, rotating flows, stratified flows

1. Introduction

Spin-up problems have been studied extensively and are mostly associated with how a
bounded rotating fluid adjusts from one state of solid-body rotation to another, due to
an increase in rotation rate of the confining boundaries. Previous studies have mostly
considered spin-up in axisymmetric containers. The theoretical work by Greenspan &
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Howard (1963) described axisymmetric spin-up of a homogeneous fluid in the linear
regime, i.e. for small Rossby number, Ro = A$2/52, where §2 — AS2 and §2 are the
initial and final angular frequencies, respectively. They showed that spin-up is driven
by a meridional circulation that forms in the interior of the fluid column due to the
Ekman boundary layers that form at the horizontal confining boundaries. The Ekman
layers transport spun-up fluid radially outwards, which is replaced by a vertical flux from
the inviscid interior. At a vertical boundary, the Ekman flux is transported in vertical
shear layers (i.e. Stewartson layers), which return the fluid horizontally into the inviscid
interior, completing the circulation (Stewartson 1957; Greenspan 1965). As a result, the
fluid spins up exponentially on the time scale E~1/227!, where E = v/Q2L? is the
Ekman number, L a characteristic length scale and v the fluid’s kinematic viscosity. In
most practical situations £ < 1, and so the spin-up time scale is much larger than the
Ekman-layer formation time, but small compared with the viscous diffusion time scale

E~'2~!. Numerous studies have provided verification of these results (see for example
the review articles by Benton & Clark (1974) and Duck & Foster (2001)). Interestingly,
Weidman (1976) showed the spin-up time scale applies also to the nonlinear regime,
when Ro is not small. Also, Walin (1969) studied axisymmetric, linear spin-up in the
presence of a stable linear density stratification, with buoyancy frequency N. In this case,
the background density gradient inhibits vertical motions, preventing the formation of
sidewall Stewartson layers and hence the meridional circulation. Instead, the Ekman flux
arriving at the sidewall erupts directly into the inviscid interior, reaching a height (or
depth) of order S~!/2L, where S = (N/£2)? is the Burger number. As a result, the limiting
state on the spin-up time scale, E-V2071 isa spatially non-uniform rotation, with the
ﬁnzil nezir-spun-up state approached only on the much longer viscous diffusion time scale,
E~'Q27.

Spin-up problems have also been studied in a variety of non-axisymmetric containers.
Of particular importance is the study by Pedlosky & Greenspan (1967) of linear spin-up of
a homogeneous fluid in a sliced circular cylinder (i.e. a closed cylinder with its base plane
inclined at angle « to the horizontal). The primary motivation for this work was to gain a
better understanding of ocean dynamics at midlatitudes over scales large enough to require
inclusion of the g effect. The base slope results in the formation, on a time scale a 101,
of two-dimensional vorticity waves (i.e. Rossby waves) which form with alternating sense
circulation, and which propagate across the slope gradually filling the fluid’s interior. For
E'? « o (the most relevant case), the Rossby waves are the dominant spin-up mechanism.
More recently, Munro & Foster (2016) studied the spin-up of a linearly stratified fluid in a
sliced circular cylinder, and showed that the background density gradient can significantly
affect the structure and characteristics of the vorticity waves that form. In particular, when

S is not small, they found that the vorticity waves are confined to a region of height S~'/2L
above the mean slope elevation, and that both the propagation speed and decay rate of the
waves increase with S.

However, most previous studies of non-axisymmetric spin-up have used containers
with a horizontal base plane (and lid, if present). Much of this work has focused on
the nonlinear case of spin-up from rest (i.e. Ro = 1), and was started by van Heijst
(1989) who considered a variety of container geometries, including a semicircular tank
and an annulus with a radial barrier. Subsequent studies have focused primarily on
using rectangular and square containers (e.g. van Heijst, Davies & Davis 1990; van de
Konijnenberg & van Heijst 1997; Munro, Hewitt & Foster 2015). A feature common to
all of these studies is that when observed relative to the corotating reference frame, the
initial starting flow is two-dimensional and takes the form of a single anticyclonic cell
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that entirely fills the container’s interior. However, vorticity generated in the sidewall
boundary layers is eventually advected into the interior, resulting in the formation of
cyclonic vortices in the vertical corner regions of the container. In a rectangular container,
large cyclonic vortices form at the downstream end of the longer sidewalls, which grow
to a size comparable to the container’s width and then interact with and deform the initial
anticyclone. The background rotation eventually stabilizes the flow pattern into an array
of alternate anticyclonic and cyclonic cells, with the number of cells being dependent on
the container’s aspect ratio (see van Heijst et al. (1990), for details). This flow pattern
persists but gradually decays due to the base (and lid) Ekman layers, on the time scale
E~1202-1 (or, alternatively, the viscous diffusion time scale if the fluid is stratified). In
contrast, in a square container, which has an aspect ratio of 1 with 1t /2 rotational symmetry
about its central axis, the cyclonic vortices that form downstream of each sidewall do
so symmetrically and throughout remain confined to the vertical corner regions of the
container, with the initial anticyclone dominating the interior region (Munro et al. 2015).
In contrast, studies of linear spin-up (Ro < 1) in non-axisymmetric containers have
received far less attention, where the primary focus has been on using an inclined base
to study the B effect (Pedlosky & Greenspan 1967; Beardsley 1969, 1975; Beardsley
& Robbins 1975; Li et al. 2012; Munro & Foster 2014, 2016). However, one study of
note is that by Foster & Munro (2012), who reported an asymptotic theory, valid for
Ro <« E'/? « 1, to describe linear spin-up in a regular square container. They showed
that the formation of cyclonic vortices in the container’s vertical corner regions — due to

the breakdown of the sidewall boundary layers — occurs on the time scale Ro~' 27!, and
so is of less significance in the linear regime. Instead, Foster & Munro (2012) showed that
on the comparatively shorter spin-up time scale E~'/2£2~!, the sidewall boundary layers
for the horizontal velocity components are inwardly growing Rayleigh layers, and the
composite solution including these layers was shown to provide excellent agreement with
experimental data, even when E'/2/Ro ~ O(10~!). Foster & Munro (2012) also showed
that on the Ro~'£2~! time scale, the sidewall boundary layers are of the conventional
(nonlinear) Prandtl type. In a subsequent study of nonlinear spin-up in a regular square
container, Munro et al. (2015) showed the sidewall Prandtl boundary layers do indeed
break down at a finite time of order Ro~!£2~! following an impulsive change in rotation
rate, which leads to the formation of cyclonic vortices in the container’s vertical corner
regions. In arelated nonlinear computation, Thomas & Rhines (2002) have investigated the
response of a rotating, stratified fluid to small (Ro ~ E'/?), spatially periodic wind-stress
forcing. Both the absence of vertical walls, and their order-one Schmidt (Prandtl) number,
preclude any direct relevance to what is investigated here.

Above, we noted the square cylinder is a somewhat degenerate case due to its /2
rotational symmetry. As a result, cyclonic vortices that form in the vertical corner regions
remain confined to the corners. There is interest, therefore, in considering linear (and
nonlinear) spin-up in a container geometry which does have this property, and so here we
consider spin-up in a semicircular cylinder. Previously, van Heijst (1989) studied spin-up
from rest (Ro = 1) of a homogeneous fluid in an open semicircular cylinder, reporting
observations from experiments based on streak paths generated from recordings of tracer
particles suspended at the free surface, and providing a theoretical description of the initial
anticyclone.

We present here a number of new results for the spin-up in the semi-circular container.
First, we report on a series of experiments conducted at various Burger numbers — a
measure of the intensity of the stratification. Results are presented for Rossby numbers
of 0.02, 0.2 and 1. In §§2.3 and 2.4, instantaneous streamline pictures computed from
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measured vorticity maps highlight the essential features of the flow. Included as §3
are theoretical results for the initial-value problem for the core flow. Boundary-layer
solutions are discussed in § 4, which are wedded with the core flow results in § 3.3 to
generate instantaneous velocity profiles across the midline of the semicircular container
in §4.1, which are compared with experimental results. The boundary-layer eruption
near (downstream) corners not surprisingly controls much of what happens to the initial,
anticyclone.

As we shall see here, the boundary layers on the straight wall and curved wall both
erupt near their downstream corners at finite times, so the usual boundary-layer/inviscid
flow methodology for constructing the overall flow field fails beyond that time. So long as
corner vortices remain confined to the immediate neighbourhood of the corners and the
boundary layer is not corrupted along its entire length, some comparisons may be made
for velocity profiles across the middle of the tank — the ‘composite solution’ noted above.
Such a procedure has been used to yield excellent comparisons of theory and experiment
by Foster & Munro (2012) and Munro et al. (2015). Of course all of this is predicated
on an a posteriori requirement that the boundary layer remain ‘thin’, and, even for the
middle-of-the tank comparisons given in this paper, that is questionable. Hence, though
the very short time comparisons are very good, as the corner regions begin to form and
significantly alter the interior flow field, the velocity profile comparisons shown here for
later times are less convincing.

2. Experiments

2.1. Apparatus and set-up

The experiments were performed using a transparent semicircular tank (radius L = 17 cm,
height H = 20 cm), mounted on a turntable with the vertical centreline through the tank’s
plane sidewall coincident with the axis of rotation. Figure 1 shows a basic sketch of
the set-up. The tank was filled either with a homogeneous salt—water solution (density
po = 1.03 gem™), or a linearly stratified salt—water solution with buoyancy frequency
N = {g(p» — p1)/p:H}'/?, where p; and p; > p, denote the fluid densities at the top and
bottom of the tank, respectively. The salt used was NaCl. The fluid column was bounded
top and bottom by the tank’s lid and base. The linear density gradient was produced and
measured using the techniques described in Economidou & Hunt (2009). The free-drain
filling technique was used.

With the initial set-up complete, the programmable turntable was carefully brought from
rest, into anticlockwise rotation, and its angular frequency incrementally increased to the
initial value £2 — A2, over a period of between 5 and 10 h. The apparatus was then left
for at least 12 h to allow the fluid to reach a state of near-solid-body rotation. (For the
homogeneous salt—water solution, the spin-up period was reduced from 12 to 3 h.) The
experiment was then started (at time t* = 0) by increasing the table’s angular frequency
to £2.

The key parameters for the experiments are listed in table 1, where the Rossby (Ro),
Ekman (E) and Burger (S) numbers are defined as

Ro=AR/2, E=v/QH> S=N/2). (2.1a—c)

Experiments were performed in the linear (Ro = 0.02) and nonlinear (Ro = 0.2 and 1)
regimes, with § varied between 0 and 10. The Schmidt number for NaCl in water is
approximately 670 (Munro, Foster & Davies 2010) and so effects associated with salinity
diffusion are henceforth considered negligible.
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Figure 1. A sketch of the experimental set-up.

Label £ (rads™!) Ro S EY2/Ro Label £ (rads™') Ro S EY?/Ro

A 1.04 0.02 0 0.25 F 1.04 0.2 0 0.025
B 0.93 0.02 04 0.26 G 0.91 02 04 0.026
C 1.04 0.02 1.6 0.25 H 1.04 02 16 0.025
D 0.76 0.02 3.0 0.29 I 0.76 02 3.0 0.029
E 0.42 0.02 10.0 0.39 J 0.42 02 100 0.039
K 04 1.0 0 0.0079

Table 1. A summary of the experimental conditions.

2.2. Measurements and notation

Measurements of fluid velocity were obtained using two-dimensional, two-component
particle image velocimetry (PIV), applied in the horizontal midheight plane of the tank.
Small, seeding particles (Pliolite) were suspended within the water column during the
initial set up, and illuminated by a thin horizontal light sheet (see figure 1) of mean
thickness =~ 4 mm. For the homogeneous case, the density of the salt—water solution ()
was matched to the mean density of the particles (1.03 g cm™), and the fluid column
stirred well to evenly distribute the particles. For the stratified case, the particles were
carefully added and allowed to settle freely into suspension in a narrow horizontal band
about their mean density level, with the densities p; and p; chosen to achieve the desired
buoyancy frequency, N, while ensuring the water density at the midheight level (H/2)
corresponded to the mean particle density.
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For times * > 0, the in-plane particle motion was recorded using a digital video camera
positioned above the tank (see figure 1). Both the lighting unit and camera were mounted
on the turntable to allow the images to be recorded in the corotating reference frame. The
images were recorded at 10 or 25 Hz (depending on the choice of Ro), with 1280 x 1024
pixel resolution. Particle image velocimetry calculations were performed in Digiflow using
square interrogation windows (17 x 17 pixels), overlapped to achieve 11 pixel spacing
between velocity vectors. The corresponding spacing between the measured velocity
vectors was at most 0.4 cm. The velocity data were calculated and analysed relative to
the coordinates (x*, y*, z*) (shown in figure 1), with corresponding velocity components
denoted by (U*, V*, W*). Application of the PIV algorithm produced measurements
of U*(x*,y*, t*) and V*(x*, y*, r*) in the midheight plane at z* = H/2, together with
measurements of the corresponding vertical vorticity component, which is henceforth
denoted ¢*.

It is convenient here to introduce the non-dimensional time, coordinates and velocity
components used to analyse the experimental data:

=07, (xy =Ly, (U, V,W)=(LA2) ' (U, v, w).
(2.2a—c)

The flow features are best described in terms of polar coordinates (7, 6, z), with the rotation
axis located at » = 0 and the tank’s plane sidewall corresponding with & = 0 and .
The polar velocity components (1, v) were calculated from (U, V) using the standard
transformations. The above dimensionless variables are henceforth used throughout.

2.3. Observations for Ro = 0.02 (linear regime)

Immediately after the tank’s rotation rate had been increased, the flow observed relative
to the corotating reference frame was an anticyclonic rotation completely filling the tank’s
interior. At early times, the Ekman layers and sidewall boundary layers are still forming,
and so in the absence of Ekman suction the ‘starting flow’ is essentially inviscid and
two-dimensional. Figure 2(a) shows the key features of the starting flow, for the case
Ro = 0.02 with § = 1.6 (experiment C in table 1). The arrows show measurements of the
velocity components (U, V), which are superimposed on a selection of flow streamlines;
the corresponding stream function was calculated from the measured vorticity field (¢)
using a Poisson solver. The data in figure 2(a) correspond to t = 3 (i.e. approximately half
a rotation period) and at this time the container had stopped accelerating. The structure of
the flow shown in figure 2(a) is the same as that reported by van Heijst (1989, see § 3.1,
pp. 184-186) for the case of spin-up from rest (Ro = 1, S = 0), and consists of closed-path
streamlines that fill the interior domain, with the outermost streamlines being essentially
parallel to the tank’s sidewalls. The starting flow rotates about the vertical axis through
x =0, y = 0.5, which is not the centroid of the semicircular section (which is located at
x=0,y=4/3n).

Here, E'/?/Ro = 0(10~"), and so the spin-up time scale (t ~ E~!/?) is comparable to
the time scale associated with the breakdown of the sidewall boundary layers (f ~ Ro~!).
As a result, the flow evolution at subsequent times differs significantly from that reported
previously by van Heijst (1989), where Ro = 1 and E'/?/Ro = O(1073). That is, in the
linear regime reported here, we do not observe a rapid breakdown of the sidewall boundary
layers and the subsequent formation of strong cyclonic vortices in the two vertical-corner
regions of the tank. Instead, the initial anticyclone throughout occupies the central region
of the tank and gradually decays on the spin-up time scale, as is evident in figure 2(b—f),
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Figure 2. Data from experiment C (£2 = 1.04 rad s~!, Ro = 0.02 and S = 1.6). Contours of the stream
function estimated from the measured vorticity, superimposed on corresponding measurements of the velocity
vectors (U, V) (only every sixth vector is shown, to avoid saturation). The dimensionless times ¢ (and tE 172y
at which the data were taken are (a) 3 (0.02), (b) 87 (0.5), (¢) 173 (1.0), (d) 347 (2.0), (e) 520 (3.0), (f) 650
(3.75). The green contours (anticyclonic flow) are uniformly distributed from 0 at increments of 0.004; the blue
contours (cyclonic flow) are negative and uniformly distributed from —0.004 at increments of —0.004. A scale
for the velocity vectors is shown in (a).

which shows various stages of the flow evolution for up to four spin-up times. Weak
cyclonic vorticity generated in the sidewall boundary layers is gradually advected by the
interior anticyclone and accumulates in the two vertical-corner regions. As a result, the
vertical corners slowly fill with fluid that is largely spun up; these corner regions gradually
grow in extent and deform the central anticyclone, as shown in figure 2(b—e). At subsequent
times the flow structure does not change much from that shown in figure 2(e), as the initial
anticyclone gradually decays and the ultimate state of solid-body rotation is approached.
The flow features shown in figure 2 are representative of what we observed for Ro =
0.02, for all values of S considered. However, the magnitude of S has a significant effect
on the rate at which the fluid is spun up. This is best illustrated by figure 3(a), which shows
measurements of the flow speed taken along x = 0 at y = 0.2 and 0.8, which are plotted
against time scaled by E!/2, for each value of S considered. Throughout, these two points
are located inside the bulk structure of the central anticyclone, where the flow speed is
greatest (see figure 2), and so provide a reliable measure of the state of spin-up. For § = 0,
the central anticyclone is spun up primarily by the Ekman layers that form at the containers

lid and base, and so the spin-up is mostly complete at tE'/> = 1, as shown in figure 3(a).
For comparison, we have also shown in figure 3(a) the Ekman decay, Uy exp(—2E'/?t/h)
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Figure 3. The plots show measurements of flow speed, ~/U? + V2, extracted along x = 0, at y = 0.2 (e) and
y = 0.8 (), and plotted against time tE'/? for up to four spin-up time scales: (a) Ro = 0.02; (b) Ro = 0.2. The
data shown are for S = 0 (black), S = 0.4 (green), S = 1.6 (blue), S = 3.0 (red) and S = 10 (cyan). Selected
error bars are shown for § = 0 and 10, which are representative. Estimates for the error bars were obtained by
calculating the local standard deviation over a 2 s period about the data point in question. The black line in (a)

shows the theoretical Ekman decay, ~ exp(—2E'/2t/h), one would expect for a homogeneous fluid (S = 0).

(solid black line) that is valid for homogeneous spin-up (see § 3.3.1); here Uy = 0.47 is
the theoretical value of initial flow speed at x = 0, y = 0.8 (see § 3.1). The data for S = 0
are in good agreement with the theory. As S is increased, the (stable) background density
gradient suppresses vertical motion, which inhibits Ekman suction and the rate of spin-up.
This is shown clearly in figure 3(a). Interestingly, there appears to be little difference in
the rate of spin-up for values of S much bigger than 1. Finally, we note that the data for
S = 0.4 and 10 in figure 3(a) exhibit the greatest degree of scatter; this is due the relative
poor-quality seeding of the PIV tracer particles, obtained after these experiments had been
set up and spun up to the initial rotation rate.

2.4. Observations for Ro = 0.2 (nonlinear regime)

Velocity measurements and corresponding flow streamlines for Ro =0.2, S=1.6
(experiment H in table 1) are shown in figure 4. The starting flow is shown in figure 4(a),
which is qualitatively the same as that observed for Ro = 0.02, S = 1.6 (figure 2a). At
subsequent times, however, the flow differs significantly. In this case E'/2/Ro = 0(1072),
and so the time scale on which the sidewall boundary layers break down is short
compared with the characteristic spin-up time scale. The data suggest the boundary layers
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Figure 4. Data from experiment H (2 = 1.04rad s~!', Ro = 0.2 and § = 1.6). Contours of the stream function
estimated from the measured vorticity, superimposed on corresponding measurements of the velocity vectors
(U, V) (only every sixth vector is shown, to avoid saturation). The dimensionless times ¢ (and tE'/2) at which
the data were taken are (a) 3 (0.02), (b) 17 (0.1), (¢) 26 (0.15), (d) 43 (0.25), (e) 87 (0.5), (f) 173 (1.0), (g) 347
(2.0), (h) 520 (3.0). The green contours (anticyclonic flow) are uniformly distributed from 0 at increments of
0.003; the blue contours (cyclonic flow) are negative and uniformly distributed from —0.005 at increments of
—0.005. A scale for the velocity vectors is shown in (a).

break down after approximately one rotation period. That early boundary-layer eruption
is confirmed in §4, which leads to an eruption time of # = 7.0. The boundary-layer
breakdown results in the subsequent formation of strong cyclonic ‘secondary’ vortices
in the two vertical corner regions of the tank, which grow rapidly, deforming the initial
anticyclone, as shown in figure 4(b—d). As the secondary vortices grow, smaller ‘tertiary’
vortices (cyclonic and anticyclonic) form in the corner regions of the tank, as well as
adjacent to the tank sidewalls, in the interstitial regions between the primary anticyclone

and the secondary cyclonic cells (see figure 4d). For times tE'/? < 0.5, these much weaker
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tertiary vortices appear to have little effect on the bulk flow. Eventually, a dominant
three-cell flow pattern emerges (figure 4¢), which persists for a period, with the primary
anticyclone occupying the central region of the tank, flanked either side by the two
secondary cyclonic cells. During this period, the tertiary anticyclonic vortex that forms
in the corner region at (x,y) = (—1, 0) continues to grow slowly (see figure 4e,f), until
eventually a four-cell flow pattern emerges, as shown in figure 4(g). Subsequently, at
tE'/? = 2.5, this tertiary, anticyclonic cell merges with the primary anticyclone, and a
three-cell flow pattern is re-established (see figure 4/), which persists at subsequent times
as the flow gradually decays due to the action of the Ekman layers at the top and bottom
of each cell, and a state of solid-body rotation is approached.

The flow features shown in figure 4 are representative of what we observed for Ro = 0.2,
for all values of S considered. Therefore, to better understand how the flow depends on S,
we again used measurements of the flow speed along x = 0 at y = 0.2 and 0.8 to analyse
the flow’s rate of decay. These two points throughout remain located in the bulk structure
of the primary anticyclone, which as figure 4 illustrates, is the most persistent flow feature.
Hence, the measurements of flow speed at these points, which are plotted in figure 3(b)
against scaled time ¢E!/2, provide a reliable measure of the state of spin-up of the primary
anticyclone, but are also indicative of the rate at which the bulk fluid approaches the state
of solid rotation. Figure 3(b) shows that, for times tE'/2 < 0.5 — this is the period in
which the cyclonic corner-vortices form and the initial three-cell flow pattern emerges (see
figure 4a—e) — the decay of the flow speed appears to be largely independent of S, except
for the case S = 10, where the rate of decay is notably slower. For times tE'/? > 0.5, the
data exhibit exponential decay which appears to be consistent with the spin-up mechanism
provided by the Ekman layers at the top and bottom of anticyclonic cell.

2.5. Observations for Ro = 1 (nonlinear, spin-up from rest)

For completeness, figure 5 shows data obtained for Ro = 1 with § = 0 (experiment K in
table 1). In this case, E'/2/Ro = O(10~3). Comparing these data with figure 4 shows that
the observed flow for Ro = 1 is qualitatively identical to that described in § 2.4 for Ro =
0.2; although for Ro = 1 the flow features clearly evolve more rapidly, with secondary
cyclonic corner cells that are comparatively larger, which results in greater deformation of
the primary anticyclone. It is also worth noting that figure 5(g) shows the merging of the
primary anticyclone with the tertiary anticyclonic cell that forms in the corner at (x, y) =
(—1, 0) (see figure 5f); this merging event results in the subsequent emergence of the final
three-cell flow pattern (shown in figure 54), which persists at subsequent times as the flow
gradually decays. (Recall, the same merging event was also observed for Ro = 0.2.)

The experiments reported in van Heijst (1989) were likewise for Ro =1 and S = 0,
although he used £2 = 0.756 rad s~! (recall, we used §2 = 0.4 rad s~!) and a semicircular
tank that was open, so the fluid’s surface was free. The data in figure 5 are mostly
consistent with van Heijst’s observations although some key differences are notable. That
is, the cyclonic corner vortices reported in van Heijst (1989) were observed to grow to
an extent sufficient to fully pinch the primary anticyclone, after which the cyclonic cells
were observed to merge. A likely contributing factor to this merging event is the concave
parabolic free surface present in van Heijst’s experiments, causing the cyclonic secondary
vortices to drift inwards — an effect also reported by, for example, Carnavale, Kloosterziel
& van Heijst (1991), van Heijst ef al. (1990) and van de Konijnenberg & van Heijst (1997).
(We thank a referee for bringing this to our attention.) Because of our flat upper boundary,
we see no such effect.
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A
)y
i

Figure 5. Data from experiment K (£2 = 0.4 rad s~!, Ro = 1 and S = 0). Contours of the stream function
estimated from the measured vorticity, superimposed on corresponding measurements of the velocity vectors
(U, V) (only every sixth vector is shown, to avoid saturation). The dimensionless times ¢ (and tE 172y at which
the data were taken are (a) 3 (0.03), (b) 5.4 (0.05), (¢) 7.5 (0.07), (d) 9.7 (0.09), (e) 17 (0.16), (f) 32 (0.3),
(g) 43 (0.4), (h) 65 (0.6). The green contours (anticyclonic flow) are uniformly distributed from O at increments
of 0.003; the blue contours (cyclonic flow) are negative and uniformly distributed from —0.005 at increments
of —0.005. A scale for the velocity vectors is shown in (a).

At subsequent times a new anticyclonic cell was observed to form in the corner region
at (x,y) = (—1, 0), which led to the emergence of a final two-cell flow pattern.

3. Theoretical development of the (linear) core flow

In this section, we develop the equations and their numerical solution for the spin-up of the
core. The analysis is linear, which requires only that Ro < 1, so the presented solutions
would still be marginally relevant for the Ro = 0.2 case discussed above, were it not for
the fact already noted that the vertical-wall boundary layers erupt very early in the spin-up
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process for Ro = 0.2 — thereby driving the interior flow to a very different state than that
predicted by the analysis below.

We take the fluid to occupy the semi-circular region D = {(r,0,2) : 0 <r < 1,0 <
0 < 7,0 < z<h},soy=0lies along 0 = 0, 7. In terms of notation, we write dD,, for
the vertical walls and 9Dy, for the horizontal walls. It is convenient to use cylindrical polar
coordinates, and so the Navier—Stokes equations are

(ru)y +vo +rw, =0, 3.1a)

— 20+ Ro[(u- Vyu—v?/r]+p, = EV?u —u/r* — 2vg /%), (3.1b)

v + 2u 4 Ro[(u - Vv + uv/r] + pg/r = E(V*v — v/ + 2up/1?), (3.1¢)
Wi+ Ro(u-Vyw+ p, = —p + EVw, (3.1d)

—Sw =0, (3.1e)

where (u, v, w) denote the velocity components in the (r, 8, z) directions. The pressure p
and density p are perturbations on the background rotating, stratified state. As is usual for
salt in water, we ignore the (small) diffusivity.

There are a variety of time scales in this motion: the order-one times of the Ekman-layer
development and inertial, internal gravity waves; the long-time, final viscous decay for
t = O(E™"), leading to a new steady state; and the ‘spin-up time’, t = O(E~'/2), during
which much (for moderate S) or not so much (for large S) spin-up occurs. In this section, we
focus on the motion on the spin-up time scale. However, before examining the spin-up-time
motion, we briefly give the result valid at very short times — before the Ekman layers begin
to induce vertical motion.

3.1. Short-time behaviour

As in all impulsively started motions, the velocity vector field is irrotational, so a stream
function may be used since at these early stages, the motion is purely horizontal. The
vorticity equation is then easily seen to be (Foster & Munro 2012)

Vip = —4, 3.2)

where the ‘—4’ is the vorticity of the pre-spin-up rigid rotation, as viewed in the frame of
reference of the spun-up container, and Vlz is the horizontal Laplacian. Thus,

u=—pg/2r, v=py/2. (3.3a.b)

The no-penetration condition is applied on dD,, and then the solution is easily found,
by standard separation-of-variable methods, namely,

11— ( 1) n
=2 Z (r — ") sin(nh). (3.4

Note that because the vertical velocity is smaller than order E'/? on this time scale, the
result is independent of S. The short-time velocity profile, v(r, m/2), evaluated using
(3.3b) and (3.4), is plotted in figure 6 and compared with experimental data for Ro = 0.02,
obtained at time # = 3.0.
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Figure 6. The solid grey line shows the velocity component v = p,/2, evaluated using (3.3b) and (3.4) along
0 = m/2, and compared with experimental data for Ro = 0.02, obtained at time ¢ = 3.0. The data shown are
for § = 0 (black), S = 0.4 (green), S = 1.6 (blue), S = 3.0 (red), S = 10 (cyan). We have included estimates of
uncertainty for S = 0 (black) only, which are representative.

3.2. Flow development on the spin-up time scale

Using (3.1b) and (3.1c¢), the equation for the vertical vorticity component, ¢, in the absence
of viscous and inertial forces is

& — 2w, =0. 3.5)
Combination of (3.1d) and (3.1e) gives
W= —pz/S. (3.6)

Then, combining (3.5) and (3.6) gives

ad
Pyt (2/8)pz] = 0. (3.7)

If we use the reference frame of the end state, then the initial vorticity is actually —2, as
noted above, so

2
¢+ §pzz = -2. (3.8)

If t > 1, then (3.3a,b) remains valid to first order, and so the vorticity is { = Vlzp /2, and
hence

2 4
Vip + gpzz = —4, 3.9

the generalization of (3.2) for the cases when p is dependent on z.
Ekman pumping occurs on 9Dy, and since w = FE'/2¢/2 on z =0, h, (3.3a,b) and
(3.6) lead to

S
P = —ZEl/Zv%p +&onz=0, (3.10a)

S
pa = ZE“ 2V3p + & onz = h. (3.100)

The symbol £ represents, as in Foster & Munro (2012), singular Ekman-layer eruptions
at the intersections of 9Dy, and 9D, — a feature that we have found to be ubiquitous to
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non-axisymmetric, unsteady, rotating, stratified flows. That arises because no net inflow
can occur into either horizontal boundary. Therefore, the quantity £ must be such that

T 1
/ f pzrdrdd = 0on Dy, (3.11)
0 Jo
It is more convenient to use (3.9) to write (3.10a) and (3.10b) as
pa=E"*(S+p) +E onz=0, (3.12q)
pu=—EYV2S+p.)+E onz=h (3.12b)

For this inviscid motion, there is a no-penetration condition,
p=0o0ndD,. (3.13)
The proper form for the solution to this initial, boundary-value problem is less than

obvious, because it must take account of condition (3.11). As in both Foster & Munro
(2012) and Munro et al. (2015), the proper ansatz turns out to be

2
p=Ki(r,0,7)+ Ka(7) (z — g) + P(r,0,z, 1), (3.14)

where we have introduced the spin-up time scale,
t=E"1. (3.15)

Substitution into (3.9) gives, first,
2 8
ViK| = _EKZ’ (3.16)

and the K solution may be written as the Fourier—Bessel series

_ 8K Z Z Cmnbn J (@p?) sin(nd), (3.17)

m=1 n=1

where o, is the m™ zero of J,,(2).
Here, P is written also as a double Fourier series,

P= Z Zan(z, ) () sin(nd), (3.18)

m=1 n=1

and its substitution into (3.9) leads to

> Z(F;{m o= 12 Fo) () sin(nf) = —S. (3.19)

m=1 n=1
Here the prime denotes a z derivative, and the subscript 7 is for a T derivative.
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We here define the following:

1
Amn = / rJu(Qmpr) dr, (3.20a)

0

2 n

by = —[1 = (=D"], (3.200)

ni

2

e = ——n S (3.20¢)

J}’l— mn 2.
rJ2 (apmur) dr Un—1(@mn)]

The orthogonality of the radial and azimuthal eigenfunctions applied to (3.19) produces
the differential equation for {F,,,},

Fl o — 12 Fon = —SCombn,  ttmn = V'S ttmn/2, (3.21a,b)
whose solution with appropriate symmetry is
Scmnb
Fon = =5+ dyun(T) cOSh[ pymn(z — h/2)]. (3.22)
mn

Note that the leading term in this expression is the impulsive start motion, so therefore
dyyn (0) = 0. (Insertion of that quantity into (3.14) and (3.18) can be shown to give a result
equivalent to (3.4).)
What remains are two items. First, we satisfy boundary condition (3.12a),
o
2

m=1n

M2

Fl/nl’l,‘[(o’ T)Jn(tmnt) sin(nd) — Kz’fl’l
1

o o0
=S+ Y > Fpnu(0, 0)Jn(ctmr) sin(nd) + 2K + € on z = 0. (3.23)

m=1 n=1

The condition on z = & is also satisfied by the choice of the hyperbolic cosine in (3.22).
The second condition is that the area integral of the left-hand side of this equation must
be zero. Therefore, substitution into (3.11) gives

© o0
hK3. = Z ZF}/’)’ln"[(O’ T)amnbp. (3.24)

m=1 n=1

Inserting solution (3.22), and integrating once in time gives

oo o0
Ky = = 0 dun ()t tmnbn S (nh/2). (3.25)

m=1 n=1
Using orthogonality in (3.23) leads to the boundary condition
Frp (0, 7) = Fp (0, 7) = (S + hK2, o + 2K2) cnbi. (3.26)
Substitution of (3.22) then leads to the evolution equation for {d;,},

S+ hK> : +2K3
anSmn

dmn,r + anTn:y} mn = — Crnbn, (3.27)
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where
Spn = sinh(Uynh/2),  Cpp = cosh(umnh/2), Ty = tanh(upmph/2).  (3.28a—c)

In the Appendix A, we give the solution that arises by setting time derivatives in these
equations to zero. The ‘steady state’ is of course the long-time solution on the spin-up time
scale. In § 3.3, below, we report the numerical solution to the equation set (3.27).

3.3. Numerical, unsteady solution

Numerical solution of (3.27) may be found by standard methods. We use an implicit
scheme for each d,;;,, with d,,,(0) = 0 as noted above. At each instant of time, the
summation for K3 is then performed, using (3.25).

It should be noted that, because of the eigenfunction decomposition of the solution, there
is a wide range of eigenvalues for the differential equation system — tanh(yn/2)/ thimn —
so the system exhibits stiffness and care must be taken to choose very small time steps.

Typically, time steps of order 107> have proven to be adequate when truncating the
Fourier-Bessel series at 50 terms. We have found that the transient response over the
ranges of S studied is very rapid — coming to a steady value by t & 0.3 — except for S = 0,
which is a bit slower, but more of that later. So, the long, slow decay of values of v on the
midline # = 7/2 seen in figure 3 is not due to this transient process but is, as we shall see,
the result of the viscous boundary layers growing into the interior.

Figure 7(a) shows computed values of the velocity component v across the tank on
6 = 7/2 for several values of S, at spin-up time T = E'/2¢ = 1.0. Note that spin-up is close
to being achieved at this time for S = 0 and nearly so for § = 0.4, whereas for S = 3.0,
for example, little has changed from the initial, impulsive-start profile — shown by the
grey, dashed line. Clearly these profiles do not correspond to the results discussed in § 2.3
because of the presence of boundary layers on the vertical walls. To further clarify that
matter, the time evolution of the velocity component v, at r = 0.2 on § = 7/2, is shown
in figure 7(b) for each value of S. The plots stand in contrast with what is shown in figure 3.
The reason for that is that the time scale for inviscid decay of the core flow is E~1/2, and
as we shall see in § 4, the vertical-wall boundary layers develop on a scale Ro~!. For the
case R = 0.02, the ratio of these two scales is 0.25 to 0.39 in the experiments reported
here (see table 1), and both effects occur simultaneously — hence the differences in the two
figures.

3.3.1. A limiting case: S — 0

The time evolution of the flow for the non-stratified case may be found by analytical means
alone; we let S — 0 in the analysis of the previous section. Expanding the solution as a
perturbation series in S,

p=po+Spi+---, (3.29)
substitution into (3.9) gives

Po.zz = 0= po=A(r,0,1), (3.30)

where the evident even symmetry has been invoked. Then, to next order,

1
Plaz=—1-— ZV%A. (3.31)
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Figure 7. (a) Core flow velocity profile along 6 = 1/2, at tEY? = 1.0 for S =0 (black), S = 0.4 (green),
S = 1.6 (blue), S = 3.0 (red). The grey, dashed line is the S-independent profile for the initial, impulsive start.
Results for § = 10 have not been included here because they are barely distinguishable from S = 3.0. (b) Time
evolution of v at r = 0.2, 6 = n/2 for § = 0 (black), S = 0.4 (green), S = 1.6 (blue), S = 3.0 (red).

Again, using even symmetry,
1 2 12
p1 = _E(Z —h/2)" |1+ ZVIA . (3.32)

Substituting into the lower-wall boundary condition, (3.12), leads to the equation for the
vorticity,

[3 + 2E1/2] VZA =0 (3.33)
at h ! ’ '
whose solution is

V2A = (V2A)—ge 2B 10 = _ g2 21/, (3.34)

So, for § = 0, the flow is the initial, impulsive-start motion, multiplied by the Ekman
decay. For consistency with the foregoing, we may write the result as

o0 o0
b
=453 CZ#Jn(amnr) sin(n@) e 2E 1/, (3.35)

m=1n=1 "N

(The double series here that multiplies the temporal exponential can easily be shown to
be mathematically equivalent to (3.4).) Notice that the S = 0.4 result in figure 7 shows
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a rapid change near the boundary, not in evidence in this solution. The reason for that is
that S — 0 is a singular limit: for S small but not identically zero, there is a thin layer of
width §'/2 near both y = 0+ and r = 1—, clearly evident in computations for small S. The
unsteady development of the flow within this S!/? layer is very complicated indeed, and
not given here for the sake of brevity. In Appendix A, however, we do include the steady
solution for this zone.

The S — O limit is fascinating in an additional way. From the analysis in § 3, one can
show that the damping coefficients for the eigenmodes are distinct and have absolute
values that are larger than 2F 1/2 /h. (See Foster & Munro (2012) and Munro et al. (2015)
for a description of a ‘normal mode’ approach to solutions of (3.27).) All are needed
to describe the motion. However, as § — 0, this complicated spectral structure becomes
degenerate: all of the damping coefficients coalesce into the single value 2E'/2 /h, evident
in (3.34).

4. Sidewall boundary layers

The layers on 0D, begin growing as Rayleigh layers, but continue to grow and develop
as nonlinear boundary layers, as we shall see. As noted in Foster & Munro (2012), so
long as E = o(5*/3), the boundary layer is a conventional Prandtl boundary layer on the
horizontal velocity components, but for S values that are extremely small, the boundary
layer is a nonlinear Stewartson ‘quarter layer’. In either case, the layer is essentially
two-dimensional. Only for E of the order $%/3 is there a three-dimensional structure to
the layer. Considering here the boundary layer on y = 0, the unscaled sidewall boundary
layer equation is

U+ 2RE"?(U — U,) + Ro(UUy + VUy) — Uyt — RoU,Upy = EUyy, (4.1

where U, is obtained from the numerical results discussed in § 3.3. The quantity R
multiplies the vortex-stretching term, R = 1 for the S = 0 case reported in this paper,
and is zero for all § # 0 cases reported here. In both situations, the layer is essentially
two-dimensional, with z dependence arising only parametrically through U.,.

We may deduce important time scale information from the equation itself. First, for very

short times, the Rayleigh layer has width +/Et, but it develops into the nonlinear boundary
layer whose width scales with /E/Ro, since the corresponding time scale is Ro~ .
Hence, T ~ E'/2/Ro is the characteristic time for nonlinear boundary-layer evolution. For
experiments C and H (figures 2 and 4 show streamline data for these cases), that ratio is
0.25 and 0.025 (see table 1) for Ro = 0.02 and Ro = 0.2, respectively — suggestive of the
order of magnitude for T at boundary-layer breakdown.

For purposes of the standard, boundary-layer computation whose results are discussed
below, y is scaled by E/* and time scale T is used. Figure 8(a) shows boundary-layer
displacement thickness on the straight wall for Ro = 0.02 and S = 1.6, at different times.
The data in figure 8(a) at time T = 0.05 (blue curve) shows the boundary layer is attached
to the wall, which is in agreement with the streamline data shown in figure 2(a) (which
are also for Ro = 0.02, S = 1.6), at the slightly earlier time v = 0.02. Figure 2(b), for
7 = 0.5, shows evidence of a weak cyclonic cell in the corner region at (x,y) = (—1, 0),
apparently still confined to the boundary layer; with an instantaneous stagnation point that
has formed a distance of approximately 0.3 from the corner, consistent with the eruption
location shown by the green curve in figure 8(a), at T = 0.29. Just beyond 7 = 0.5, the
boundary-layer computation fails, and clearly by the time t = 1 shown in figure 2(c), the
boundary layer is well separated with a well-defined corner cell.
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Figure 8. Boundary-layer displacement thickness, 8, scaled with E'/4, versus distance x along the straight
wall, for S = 1.6. (a) Ro = 0.02. The times t = E'/2¢ for which results are shown are 0.05 (blue), 0.10 (black),
0.20 (red), 0.29 (green). (b) Ro = 0.2. The times 7 for which results are shown are 0.01 (blue), 0.02 (black),
0.03 (red), 0.044 (green).

In the case shown in figure 8(b), for Ro = 0.2 and S = 1.6, the larger Rossby number
not surprisingly means an earlier-time boundary-layer eruption — as expected based on
the simple scaling arguments above. The calculation fails in fact at T = 0.0443 for this
case. Comparing figure 8(b) with experimental data in figure 4(b) (also for Ro = 0.2 and
S = 1.6), both confirm the boundary-layer attachment at t = 0.02. Clearly in figure 4(b),
for T = 0.1, the boundary layer has already erupted into the interior, consistent with the
theoretical eruption time determined above.

Similar computations and discussion may be detailed for the boundary layer on the
curved wall, but are not presented here since there is not much more to be learned from
them — except to observe that the eddy forming along that wall seems to be more elongated
and modifies the central core flow somewhat less.

It is interesting to compare the boundary-layer behaviour for § = 0. Figure 9(a)
shows the displacement thickness for different times. We note that the boundary layer
develops an internal eddy, seen in figure 9(b). However, the layer actually stops growing
and becomes thinner as noted by the blue curve, for T =4, when the velocities are
now very small. Comparing the green curve in figure 9(a) with figure 8(a), it appears
that the layer is about to erupt, but that never happens. That is because U, in (4.1)
is going to zero exponentially, as indicated in (3.35), so the nonlinear term in (4.1)
scales with

Ro 50
ET/Z (§ y (42)

and hence the boundary layer at longer times (with /R = 1 as noted earlier) is a steady,
linear Stewartson layer. It appears in this case that the eddy is wholly contained within
the boundary layer, which is consistent with the instantaneous streamline image shown in
figure 9(b), for t = 1.0. Since for § = 0, the edge velocity is going to zero exponentially,
but the boundary layer is tending toward breakdown. These two competing effects
mean that there is a critical Rossby number below which the boundary layer does
not have a finite-time eruption. Computations show that that critical Rossby number
is 0.022.

938 A15-19


https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2022.150

Downloaded from https://www.cambridge.org/core. University of Nottingham, on 14 Mar 2022 at 10:46:22, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/jfm.2022.150

R.J. Munro and M.R. Foster

So 205 0 05 o o s 08 =07 0.6
X x

Figure 9. Results for § = 0 and Ro = 0.02. (a) Boundary-layer displacement thickness, 81, scaled with E'/*,

versus distance x along the straight wall. The times = E'/?¢ for which the data are shown are 0.1 (black),

0.50 (red), 1.0 (green), 4.0 (blue). (b) Instantaneous streamline pattern in the boundary layer in the vicinity of
(x,y) =(=1,0),att = 1.0.

4.1. Composite solutions

In order to compare with the experimental data presented in § 2, we need to combine the
inviscid core solutions of § 3 with the boundary-layer calculations of § 4. The difficulty is
that, over most of the time range for the flow speeds plotted in figure 3 (i.e. 0 < 7 < 4),
the boundary layers on both straight and curved walls have erupted near the corners
(see figure 8), which ultimately led to the formation of cyclonic corner cells. Since the
boundary layers are more-or-less intact at x = 0, we will assume for the sake of the
theory/experiment comparisons that the corner cells are isolated and do not much alter
the central primary anticyclone. It is clear from the data and discussions presented in § 2
that this assumption is not valid for Ro = 0.2 and 1, and so here comparisons are made only
for the case R = 0.02. Under that assumption, we can numerically generate a composite
solution to patch together both boundary layers to the core flow to yield velocity profiles
across the container, to compare with the experiments. Figure 10 shows such composite
solutions at times T = E'/2t = 0.5 and 1.0 (grey lines), compared with corresponding data
from the experiments. To within experimental uncertainty, there is good agreement for
S =0 and 0.4. For § = 1.6 the correspondence is good for 0.2 < r < 0.8, at both times;
however, in the regions close to the sidewalls the measured flow speed is significantly less
than the composite solution. For § = 3.0, the correspondence is less good.

5. Final remarks

We have presented details of the way in which a rotating, stratified fluid in a semi-circular
tank adjusts to a slightly higher rotation rate, as measured by the Rossby number, Ro. The
flow evolution is dominated by Ekman-pumping effects in the core, and by the formation
and subsequent breakdown of the vertical-wall boundary layers. The two characteristic
time scales associated with these processes are f ~ E~!/? and r ~ Ro~!, respectively. Here
we have reported experiments for £ 12 — 0(10*2), Ro = 0.02, 0.2 and 1, with the Burger
number (S) varied between 0 and 10. When the spin-up and boundary-layer breakdown
times are comparable (E'/2/Ro ~ 10~1), the observed flow is dominated by the gradual
spin-up of the initial anticyclone, with the cyclonic vorticity generated in the sidewall
boundary layers remaining confined to the immediate neighbourhood of the sidewall and
corner regions. The presence of a background density gradient acts to inhibit vertical
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Figure 10. Composite solutions for the velocity component v on § = 7/2 (thick grey lines) compared with
corresponding experimental data, for times T = E'/>¢ = 0.5 (left-hand plots) and 1.0 (right-hand plots). The
data are for (a,b) S =0, (c.d) S = 0.4, (e,f) S = 1.6, (g,h) S = 3.0.

motion and Ekman pumping, and so the rate of spin-up is dependent on the strength of
the fluid’s stratification. In this regime we found that for S = 0 the fluid is fully spun up
after tE'/? ~ 2. However, after the same period for S > 1, the regions of peak flow speed
within the anticyclone had decayed to approximately 50 % of their initial value.
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A markedly different flow was observed for E!/?/Ro ~ 1072 and 10~3, dominated by
the formation of strong, cyclonic secondary vortices in the fluid near the four vertical
corners of the tank, which grow rapidly and deform the initial anticyclone. Eventually, a
three-cell flow pattern emerges, with the initial anticyclone occupying the tank’s centre,
flanked on either side by a cyclonic cell. This flow pattern persists and fluid is gradually
spun up. Again, for S = 0 the fluid is fully spun up after tE'/> ~ 2. However, after the same
period for § 2 1, the peak flow speed within the anticyclone had decayed to approximately
30 % of the initial value, suggesting the effects associated with stratification are somewhat
reduced in this regime.

For both ranges of E'/?/Ro, we have found that computed boundary-layer eruption times
agree well with what is observed in those experiments. For E'/2/Ro ~ 10~!, the velocity
profiles on the vertical midplane determined by forming a composite solution of core flow
and boundary layers agree well with experiment, particularly if S is not too large, because
in this Ro range, the corner vortices remain more-or-less confined to those corners where
they first form.

Finally, there are several results in this study that stand in contrast to what has been
reported for the square cylinder, in Munro et al. (2015) and Foster & Munro (2012).
First, we were intrigued by the work reported in van Heijst (1989) for the semi-circular
geometry, and wondered if, in the stratified case, we would see qualitatively different
flow evolution from what we found in the square cylinder, since, while asymmetric, the
square does have two planes of symmetry rather than the single plane for the semicircle.
The answer to that question seems to be that the boundary-layer eruptions exert a much
stronger effect on the core flow than for the square cylinder. In fact, with the corner vortices
more-or-less confined to the four corners in the square cylinder case, the large core eddy
is very nearly axisymmetric; from a rather ndive point of view, these vortices effectively
round the corners. Nothing like that happens here. That point is certainly related to a
second observation, namely, that the theoretical/experimental comparisons are, at least
from visual inspection, much better for the square cylinder than for the semicircle. Third,
we have computed here the time evolution of the core flow, instead of determining the
frequencies and mode shapes associated with the motion. The importance of that is that
the actual computed nonlinear boundary-layer velocity profiles are used to construct the
‘composite velocity profiles’, rather than using the simpler Rayleigh-layer model of Foster
& Munro (2012). Finally, we have now seen what was not so evident in the square cylinder:
the decay of the interior velocities is dominated by the growth of the sidewall boundary
layers, and not by the Ekman-layer-induced decay of the linear, core flow. However, since
the temporal growth of the S = 0 wall layer is much less than for S # 0, the spin-up in that
case is dominated by the ‘inviscid’ core-velocity decay.

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
R.J. Munro https://orcid.org/0000-0002-7583-518X;

M.R. Foster https://orcid.org/0000-0003-2440-1805.

Appendix A. Steady-state core flow
A.l. Steady-state solution
Putting the time derivatives to zero in (3.27) leads to the equation
dnn = —wcmnbn. (A1)
Winn Cmn
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The tilde denotes this steady solution. Multiplying this equation by a, tmnbnSmn, and
summing over all m and n, then using (3.25), leads to

A
—hKy = —(S+2Ky) Yy AT, (A2)
1 Mmn
m=1 n=1
Solving,
~ So _ ApmnCrmnb n
K2 m o=2 Z Z Tmn. (A3a,b)
m=1 n=1
Hence, from (A1),
- Sh b
= — ST, (A4)
h — 0 an Cmn

Putting the pieces together, we have, for this steady state, that

Ah o o Comnbn h[ e (z — h/2 .
:h—gZZCaz {I—COS [MC'(; /)]}Jn(amnr)sm(nG)

m=1n=1

_ S0 AN A5
+2(h_6)<z—2). (AS)

For purposes of comparison, the very short-time response is given in (3.4), and may be
shown to be equivalent to

o o
Ccmnb, .
Pohort =43 D = 5 In (@) sin(nf). (A6)

m=1n=1 "N

There are several observations to be made from (AS5) and (A6) about the end of processes

on this time scale. The last term in (AS5), of course, merely alters the isopycnals, and is not
dynamically relevant.

A.2. Comments on the steady state

We summarize below principal observations on the steady flow.

(i) From (AS), since the square bracket inside the sum is zero at both z = 0 and z = A,
the fluid is fully spun up near the upper and lower boundaries for all S.
(i1) If S = O(1), then virtually all of the core is not spun up on this time scale.
(ii1)) For § = o(1), 0 = O(1). Careful examination of the sum indicates that p = O(S) in
the core, so there is a weak interior flow in this steady state, and the core is essentially
spun up fully on this time scale.
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@iv) For § > 1,

2
AmnCmnb;; 4 x 0.793
Sl/z Z Z - g2 (A7)

m=1 n=1

The number 0.793 is determined by computing the double summation. Since S is
large, the hyperbolic functions take simple forms, and so (AS) becomes

Crnbn 1 1/2
P=0= 0793/51/2 ZZ [1_eXp(_§S .

X Jp(amur) sin(nd). (A8)

(The last term has been dropped as noted before.) In this expression, Z = z in z <
h/2 and Z =h—z in z > h/2. So, we see that the core is still at the short-time
behaviour, and the regions within S~!/2 of each horizontal boundary are partially
spun up. In fact, we see that — as we found previously in Foster & Munro (2012) —
there is ‘over-spin’, since

3.17

W] Dshort + €xponentially small terms, (A9)

p~ [1 +
in the core.

(v) Examining the initial problem (3.2), (3.12a), it is evident that both S — 0 and § —
oo are singular limits. As noted in item (iv) above, in the case of large S, that is seen
in the layers of width S~!/2 near top and bottom walls — immediately apparent from
(A8). However, the nature of the eigenfunction expansion (A5) masks the small-§S
structure. We noted in item (iii) the core is fully spun up for small S on this time
scale, but figure 7 shows a complication — in fact, there is a layer on 9D, in which
the fluid is not fully spun up. The non-uniformity can be inferred from (AS): The
hyperbolic cosine inside the square bracket is near one when its argument is very
small, leading to the conclusion, (iii). However, if «,,, is sufficiently large, then the
argument of the hyperbolic cosine is not small even if S is small. In fact, the argument
is order one when «,,!, a characteristic radial length scale, is order S'/2. Thus, we
expect a wall layer of width S'/? at small S values. The structural details may be
shown more clearly by a small-S asymptotic analysis of § 3.3.1 and (3.12a), but that
is not included here for brevity.

(vi) As promised in § 3.3.1, the solution for the pressure in the S'/? zone inside r = 1 is

given by
> 2nmt(l —r)
p= SX; ra sin(nmz/h) exp [—w} , (A10)
n=
where
4h? L ;
rn=——==1-ED"T——[1+ (D7, (A1l)
n-T niw

so the speed — order S in the interior, as noted above — scales with § 1/2 in this narrow
region.

We have seen here that this ‘steady state’ is not really achieved as described at finite
Rossby number, since the growing boundary layers on the straight wall and the half-circle
erode the ‘steady’ values in the above solutions near 9D,,.
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